Science.gov

Sample records for advanced structural applications

  1. Advanced textile applications for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Shah, Bharat M.; Shukla, Jay G.

    1992-01-01

    Advanced composite primary structural concepts were evaluated for low cost, damage tolerant structures. Development of advanced textile preforms for fuselage structural applications with resin transfer molding and powder epoxy materials are now under development.

  2. Advanced textile applications for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Shah, Bharat M.; Shukla, Jay G.

    1992-01-01

    Advanced composite primary structural concepts have been evaluated for low cost, damage tolerant structures. Development of advanced textile preforms for fuselage structural applications with resin transfer molding and powder epoxy material is now under development.

  3. Development of Damped Metal Matrix Composites for Advanced Structural Applications

    DTIC Science & Technology

    1990-04-01

    DTIP FiLE COPY Applied Research Laboratory (Dto 00 CD Technical Report NO DEVELOPMENT OF DAMPED METAL MATRIX COMPOSITES FOR ADVANCED STRUCTURAL...DEVELOPMENT OF DAMPED METAL MATRIX COMPOSITES FOR ADVANCED STRUCTURAL APPLICATIONS by Clark A. Updike Ram B. Bhagat Technical Report No. TR 90-004 April 1990... Metal Matrix Composites for Advanced Structural Applications 12 PERSONAL AUTHOR(S) C.A. Updike, R. Bhagat 1 3a TYPE OF REPORT 13b TIME COVERED 14. DATE

  4. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  5. Applications of Isotopes in Advancing Structural & Functional Heparanomics

    PubMed Central

    Tran, Vy M.; Nu Nguyen, Thao Kim; Raman, Karthik; Kuberan, Balagurunathan

    2011-01-01

    Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure-function relationships and the study of heparanomics. There are several factors that exacerbate challenges involved in the structural elucidation of heparin and heparan sulfate. Therefore, there is a great interest in developing novel strategies and analytical tools to overcome the barriers in decoding the enigmatic heparanome. This review article focuses on the applications of isotopes, both radioisotopes and stable isotopes, in the structural elucidation of the complex heparanome at the disaccharide or oligosaccharide level using liquid chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. This review article also outlines the utility of isotopes in determining the substrate specificity of biosynthetic enzymes that eventually dictate the emergence of biologically active oligosaccharides. PMID:20838780

  6. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  7. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  8. The use of advanced materials in space structure applications

    NASA Astrophysics Data System (ADS)

    Eaton, D. C. G.; Slachmuylders, E. J.

    The last decade has seen the Space applications of composite materials become almost commonplace in the construction of configurations requiring high stiffness and/or dimensional stability, particularly in the field of antennas. As experience has been accumulated, applications for load carrying structures utilizing the inherent high specific strength/stiffness of carbon fibres have become more frequent. Some typical examples of these and their design development criteria are reviewed. As these structures and the use of new plastic matrices emerge, considerable attention has to be given to establishing essential integrity control requirements from both safety and cost aspects. The advent of manned European space flight places greater emphasis on such requirements. Attention is given to developments in the fields of metallic structures with discussion of the advantages and disadvantages of their application. The design and development of hot structures, thermal protection systems and air-breathing engines for future launch vehicles necessitates the use of the emerging metal/matrix and other advanced materials. Some of their important features are outlined. Means of achieving such objectives by greater harmonization within Europe are emphasized. Typical examples of on-going activities to promote such collaboration are described.

  9. Fundamental studies of structure borne noise for advanced turboprop applications

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Koval, L. R.

    1985-01-01

    The transmission of sound generated by wing-mounted, advanced turboprop engines into the cabin interior via structural paths is considered. The structural model employed is a beam representation of the wing box carried into the fuselage via a representative frame type of carry through structure. The structure for the cabin cavity is a stiffened shell of rectangular or cylindrical geometry. The structure is modelled using a finite element formulation and the acoustic cavity is modelled using an analytical representation appropriate for the geometry. The structural and acoustic models are coupled by the use of hard wall cavity modes for the interior and vacuum structural modes for the shell. The coupling is accomplished using a combination of analytical and finite element models. The advantage is the substantial reduction in dimensionality achieved by modelling the interior analytically. The mathematical model for the interior noise problem is demonstrated with a simple plate/cavity system which has all of the features of the fuselage interior noise problem.

  10. Advanced composites in sailplane structures: Application and mechanical properties

    NASA Technical Reports Server (NTRS)

    Muser, D.

    1979-01-01

    Advanced Composites in sailplanes mean the use of carbon and aramid fibers in an epoxy matrix. Weight savings were in the range of 8 to 18% in comparison with glass fiber structures. The laminates will be produced by hand-layup techniques and all material tests were done with these materials. These values may be used for calculation of strength and stiffness, as well as for comparison of the materials to get a weight-optimum construction. Proposals for material-optimum construction are mentioned.

  11. Development of Advanced Aluminum Alloys from Rapidly Solidified Powders for Aerospace Structural Applications

    DTIC Science & Technology

    1980-03-01

    density, compared to Al 7075 -T76, without significant loss in modu- lus, toughness, fatigue behavior , or stress corrosion resistance. Selective... 7075 -T76, without significant loss in modu- lus, toughness, fatigue behavior , or stress corrosion resistance. Selective application of the two advanced...density ratio, when compared to Al 7075 -T76 and without a significant loss in other properties important for structural applications. The program is

  12. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  13. Recent advances in development and application of derivatization reagents having a benzofurazan structure: a brief overview.

    PubMed

    Santa, Tomofumi

    2014-06-01

    Chemical derivatization is often used to improve the separation efficiency and to enhance the detectability of the target compounds in high-performance liquid chromatography and capillary electrophoresis. The derivatization reagents having a benzofurazan (2,1,3-benzoxadiazole) structure are one of the most often used reagent for this purpose. In this paper, the recent advances in the development and the application of benzofurazan derivatization reagents are reviewed.

  14. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  15. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  16. Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances

    PubMed Central

    Lionta, Evanthia; Spyrou, George; Vassilatis, Demetrios K.; Cournia, Zoe

    2014-01-01

    Structure-based drug discovery (SBDD) is becoming an essential tool in assisting fast and cost-efficient lead discovery and optimization. The application of rational, structure-based drug design is proven to be more efficient than the traditional way of drug discovery since it aims to understand the molecular basis of a disease and utilizes the knowledge of the three-dimensional structure of the biological target in the process. In this review, we focus on the principles and applications of Virtual Screening (VS) within the context of SBDD and examine different procedures ranging from the initial stages of the process that include receptor and library pre-processing, to docking, scoring and post-processing of topscoring hits. Recent improvements in structure-based virtual screening (SBVS) efficiency through ensemble docking, induced fit and consensus docking are also discussed. The review highlights advances in the field within the framework of several success studies that have led to nM inhibition directly from VS and provides recent trends in library design as well as discusses limitations of the method. Applications of SBVS in the design of substrates for engineered proteins that enable the discovery of new metabolic and signal transduction pathways and the design of inhibitors of multifunctional proteins are also reviewed. Finally, we contribute two promising VS protocols recently developed by us that aim to increase inhibitor selectivity. In the first protocol, we describe the discovery of micromolar inhibitors through SBVS designed to inhibit the mutant H1047R PI3Kα kinase. Second, we discuss a strategy for the identification of selective binders for the RXRα nuclear receptor. In this protocol, a set of target structures is constructed for ensemble docking based on binding site shape characterization and clustering, aiming to enhance the hit rate of selective inhibitors for the desired protein target through the SBVS process. PMID:25262799

  17. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    PubMed

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science.

  18. Recent Advances In Structural Vibration And Failure Mode Control In Mainland China: Theory, Experiments And Applications

    SciTech Connect

    Li Hui; Ou Jinping

    2008-07-08

    A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced.

  19. Application of holographic interferometry for analysis of the dynamic and modal characteristics of an advanced exotic metal airfoil structure

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    1999-03-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of

  20. Comparison of two matrix data structures for advanced CSM testbed applications

    NASA Technical Reports Server (NTRS)

    Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.

    1989-01-01

    The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.

  1. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Polymer networks and gels are important classes of materials for defense applications . In an effort to......it is no longer needed. Do not return it to the originator. ARL-TR-7612 ● FEB 2016 US Army Research Laboratory Advanced Polymer

  2. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  3. Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Korobenko, Artem

    During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.

  4. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Messinger, Ross

    2008-01-01

    An assessment was performed to identify the applicability of composite material technologies to major structural elements of the NASA Constellation program. A qualitative technology assessment methodology was developed to document the relative benefit of 24 structural systems with respect to 33 major structural elements of Ares I, Orion, Ares V, and Altair. Technology maturity assessments and development plans were obtained from more than 30 Boeing subject matter experts for more than 100 technologies. These assessment results and technology plans were combined to generate a four-level hierarchy of recommendations. An overarching strategy is suggested, followed by a Constellation-wide development plan, three integrated technology demonstrations, and three focused projects for a task order follow-on.

  5. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  6. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design.

    PubMed

    Grinter, Sam Z; Zou, Xiaoqin

    2014-07-11

    The docking methods used in structure-based virtual database screening offer the ability to quickly and cheaply estimate the affinity and binding mode of a ligand for the protein receptor of interest, such as a drug target. These methods can be used to enrich a database of compounds, so that more compounds that are subsequently experimentally tested are found to be pharmaceutically interesting. In addition, like all virtual screening methods used for drug design, structure-based virtual screening can focus on curated libraries of synthesizable compounds, helping to reduce the expense of subsequent experimental verification. In this review, we introduce the protein-ligand docking methods used for structure-based drug design and other biological applications. We discuss the fundamental challenges facing these methods and some of the current methodological topics of interest. We also discuss the main approaches for applying protein-ligand docking methods. We end with a discussion of the challenging aspects of evaluating or benchmarking the accuracy of docking methods for their improvement, and discuss future directions.

  7. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  8. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  9. Application of Microsatellite Markers in Conservation Genetics and Fisheries Management: Recent Advances in Population Structure Analysis and Conservation Strategies

    PubMed Central

    Abdul-Muneer, P. M.

    2014-01-01

    Microsatellites are the most popular and versatile genetic marker with myriads of applications in population genetics, conservation biology, and evolutionary biology. These are the arrays of DNA sequences, consisting of tandemly repeating mono-, di-, tri-, and tetranucleotide units, which are distributed throughout the genomes of most eukaryotic species. Microsatellites are codominant in nature, highly polymorphic, easily typed, and Mendelian inherited, all properties which make them very suitable for the study of population structure and pedigree analysis and capable of detecting differences among closely related species. PCR for microsatellites can be automated for identifying simple sequence repeat polymorphism. Small amount of blood samples or alcohol preserved tissue is adequate for analyzing them. Most of the microsatellites are noncoding, and therefore variations are independent of natural selection. These properties make microsatellites ideal genetic markers for conservation genetics and fisheries management. This review addresses the applications of microsatellite markers in conservation genetics and recent advances in population structure analysis in the context of fisheries management. PMID:24808959

  10. Advanced finite-element methods for design and analysis of nanooptical structures: applications

    NASA Astrophysics Data System (ADS)

    Burger, Sven; Zschiedrich, Lin; Pomplun, Jan; Blome, Mark; Schmidt, Frank

    2013-03-01

    An overview on recent applications of the finite-element method Maxwell-solver JCMsuite to simulation tasks in nanooptics is given. Numerical achievements in the fields of optical metamaterials, plasmonics, photonic crystal fibers, light emitting devices, solar cells, optical lithography, optical metrology, integrated optics, and photonic crystals are summarized.

  11. SiC lightweight telescopes for advanced space applications. II - Structures technology

    NASA Technical Reports Server (NTRS)

    Anapol, Michael I.; Hadfield, Peter; Tucker, Theodore

    1992-01-01

    A critical technology area for lightweight SiC-based telescope systems is the structural integrity and thermal stability over spaceborne environmental launch and thermal operating conditions. Note, it is highly desirable to have an inherently athermal design of both SiC mirrors and structure. SSG has developed an 8 inch diameter SiC telescope system for brassboard level optical and thermal testing. The brassboard telescope has demonstrated less than 0.2 waves P-V in the visible wavefront change over +50 C to -200 C temperature range. SSG has also fabricated a SiC truss structural assembly and successfully qualified this hardware at environmental levels greater than 3 times higher than normal Delta, Titan, and ARIES launch loads. SSG is currently developing two SiC telescopes; an 20 cm diameter off-axis 3 mirror re-imaging and a 60 cm aperture on-axis 3 mirror re-imager. Both hardware developments will be tested to flight level environmental, optical, and thermal specifications.

  12. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    PubMed

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  13. Aerospace applications of advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Langenbeck, S. L.

    1993-01-01

    Advanced metallic materials within the Al-base family are being developed for applications on current and future aerospace vehicles. These advanced materials offer significant improvements in density, strength, stiffness, fracture resistance, and/or higher use temperature which translates into improved vehicle performance. Aerospace applications of advanced metallic materials include space structures, fighters, military and commercial transport aircraft, and missiles. Structural design requirements, including not only static and durability/damage tolerance criteria but also environmental considerations, drive material selections. Often trade-offs must be made regarding strength, fracture resistance, cost, reliability, and maintainability in order to select the optimum material for a specific application. These trade studies not only include various metallic materials but also many times include advanced composite materials. Details of material comparisons, aerospace applications, and material trades will be presented.

  14. In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications

    SciTech Connect

    Daniel A Scherson

    2013-03-14

    Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

  15. Nanobiocatalyst advancements and bioprocessing applications.

    PubMed

    Misson, Mailin; Zhang, Hu; Jin, Bo

    2015-01-06

    The nanobiocatalyst (NBC) is an emerging innovation that synergistically integrates advanced nanotechnology with biotechnology and promises exciting advantages for improving enzyme activity, stability, capability and engineering performances in bioprocessing applications. NBCs are fabricated by immobilizing enzymes with functional nanomaterials as enzyme carriers or containers. In this paper, we review the recent developments of novel nanocarriers/nanocontainers with advanced hierarchical porous structures for retaining enzymes, such as nanofibres (NFs), mesoporous nanocarriers and nanocages. Strategies for immobilizing enzymes onto nanocarriers made from polymers, silicas, carbons and metals by physical adsorption, covalent binding, cross-linking or specific ligand spacers are discussed. The resulting NBCs are critically evaluated in terms of their bioprocessing performances. Excellent performances are demonstrated through enhanced NBC catalytic activity and stability due to conformational changes upon immobilization and localized nanoenvironments, and NBC reutilization by assembling magnetic nanoparticles into NBCs to defray the high operational costs associated with enzyme production and nanocarrier synthesis. We also highlight several challenges associated with the NBC-driven bioprocess applications, including the maturation of large-scale nanocarrier synthesis, design and development of bioreactors to accommodate NBCs, and long-term operations of NBCs. We suggest these challenges are to be addressed through joint collaboration of chemists, engineers and material scientists. Finally, we have demonstrated the great potential of NBCs in manufacturing bioprocesses in the near future through successful laboratory trials of NBCs in carbohydrate hydrolysis, biofuel production and biotransformation.

  16. Nanobiocatalyst advancements and bioprocessing applications

    PubMed Central

    Misson, Mailin; Zhang, Hu; Jin, Bo

    2015-01-01

    The nanobiocatalyst (NBC) is an emerging innovation that synergistically integrates advanced nanotechnology with biotechnology and promises exciting advantages for improving enzyme activity, stability, capability and engineering performances in bioprocessing applications. NBCs are fabricated by immobilizing enzymes with functional nanomaterials as enzyme carriers or containers. In this paper, we review the recent developments of novel nanocarriers/nanocontainers with advanced hierarchical porous structures for retaining enzymes, such as nanofibres (NFs), mesoporous nanocarriers and nanocages. Strategies for immobilizing enzymes onto nanocarriers made from polymers, silicas, carbons and metals by physical adsorption, covalent binding, cross-linking or specific ligand spacers are discussed. The resulting NBCs are critically evaluated in terms of their bioprocessing performances. Excellent performances are demonstrated through enhanced NBC catalytic activity and stability due to conformational changes upon immobilization and localized nanoenvironments, and NBC reutilization by assembling magnetic nanoparticles into NBCs to defray the high operational costs associated with enzyme production and nanocarrier synthesis. We also highlight several challenges associated with the NBC-driven bioprocess applications, including the maturation of large-scale nanocarrier synthesis, design and development of bioreactors to accommodate NBCs, and long-term operations of NBCs. We suggest these challenges are to be addressed through joint collaboration of chemists, engineers and material scientists. Finally, we have demonstrated the great potential of NBCs in manufacturing bioprocesses in the near future through successful laboratory trials of NBCs in carbohydrate hydrolysis, biofuel production and biotransformation. PMID:25392397

  17. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  18. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  19. Advances and trends in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Atluri, Satya N.

    1987-01-01

    The development status and applicational range of techniques in computational structural mechanics (CSM) are evaluated with a view to advances in computational models for material behavior, discrete-element technology, quality assessment, the control of numerical simulations of structural response, hybrid analysis techniques, techniques for large-scale optimization, and the impact of new computing systems on CSM. Primary pacers of CSM development encompass prediction and analysis of novel materials for structural components, computational strategies for large-scale structural calculations, and the assessment of response prediction reliability together with its adaptive improvement.

  20. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  1. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  2. Advanced Structures: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for extremely lightweight, multi-function structures with modular interfaces - the building-block technology for advanced spacecraft. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  3. Advanced technology commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.

    1991-01-01

    Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.

  4. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    SciTech Connect

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D.

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  5. Advanced strategic interceptor composite structures

    SciTech Connect

    Ennis, D.H.; Patty, C.E. Jr.

    1993-12-31

    Launch mass reduction, stiffness increase, and primary bending mode frequency increase remain the prime focus of the US Army Strategic Defense Command (USASDC) advanced composite material development and testing program. The initial activity was directed toward fabrication of a demonstration structure consistent with the Ground-Based Interceptor (GBI) ERIS flight design. The objectives of this phase of the work were three-fold: selection of the optimum composite materials; concurrent bonding and joining technology development; evaluation of the performance of each test structure relative to its metal counterpart and relative to alternative composites. The effort exceeded model predictions. The resin matrix composite structure mass was 52% lower than the metal design. Modal testing demonstrated a 200% increase in stiffness and a 41% gain in first mode bending frequency. Given the demonstrated level of success, an additional element was added to the task focus: cost-effective, mass quantity fabrication techniques. Single step technology has been successfully applied to a relatively simple thermoset based bridge structure. Two step molding and assembly have been demonstrated for a GBI-X class thermoplastic structure. Preliminary testing has been completed to isolate and resolve problems associated with single step fabrication of the more complex GBI-X class structure. Fabrication of an appropriate test article as preparation for modal survey evaluation of the latter is in progress. Results are presented. Future program directions are summarized.

  6. Structural tailoring of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Brown, K. W.; Hopkins, Dale A.

    1988-01-01

    The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimization on highly swept propfan blades. The optimization procedure seeks to minimize an objective function defined as either: (1) direct operating cost of full scale blade or, (2) aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analysis system includes an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution forced response life prediction capability. STAT includes all relevant propfan design constraints.

  7. Advanced design concepts for shuttle airframe structure

    NASA Technical Reports Server (NTRS)

    Card, M. F.; Davis, J. G., Jr.; Shideler, J. L.

    1972-01-01

    The development of weight-saving advanced design concepts for shuttle airframe structure is presented. Design concepts under investigation employ selective composite reinforcement and/or efficient geometric arrangements. An effort to develop metallic panel designs which exploit the relaxation of smooth external-surface requirements for skin structure is reviewed. Available highlights from research and development studies which investigate the application of composite reinforcement to the design of two types of fuselage panels, a shear web, a large fuselage frame, and a landing-gear-door assembly are presented. Preliminary results from these studies suggest weight savings of 25 percent can be obtained.

  8. Advances in uncooled systems applications

    NASA Astrophysics Data System (ADS)

    Anderson, John S.; Bradley, Daryl; Chen, Chungte W.; Chin, Richard; Gonzalez, H.; Hegg, Ronald G.; Kostrzewa, K.; Le Pere, C.; Ton, S.; Kennedy, Adam; Murphy, Daniel F.; Ray, Michael; Wyles, Richard; Miller, James E.; Newsome, Gwendolyn W.

    2003-09-01

    The Low Cost Microsensors (LCMS) Program recently demonstrated state-of-the-art imagery in a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 x 480 format focal plane array (FPA) engine. The 640 x 480 sensor is applicable to long-range surveillance and targeting missions. The intent of this DUS&T effort was to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging. In addition, the Advanced Uncooled Thermal Imaging Sensors (AUTIS) Program extended this development to light-weight, compact unmanned aerial vehicle (UAV) applications.

  9. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

  10. Advances and Applications for Geodesy

    NASA Astrophysics Data System (ADS)

    Calais, Eric; Schwartz, Susan; Arrowsmith, Ramon

    2010-07-01

    2010 UNAVCO Science Workshop; Boulder, Colorado, 8-11 March 2010; Geodesy's reach has expanded rapidly in recent years as EarthScope and international data sets have grown and new disciplinary applications have emerged. To explore advances in geodesy and its applications in geoscience research and education, approximately 170 scientists (representing 11 countries: Colombia, Denmark, Ecuador, France, Japan, Lebanon, Mexico, New Zealand, Russia, Spain, and the United States), including 15 students, gathered at the 2010 UNAVCO Science Workshop in Colorado. UNAVCO is a nonprofit membership-governed consortium that facilitates geoscience research and education using geodesy. Plenary sessions integrated discovery with broad impact and viewed geodesy through three lenses: (1) pixel-by-pixel geodetic imaging where various remote sensing methodologies are revealing fine-scale changes in the near-surface environment and the geologic processes responsible for them; (2) epoch-by-epoch deformation time series measured in seconds to millennia, which are uncovering ephemeral processes associated with the earthquake cycle and glacial and groundwater flow; and (3) emerging observational powers from advancing geodetic technologies. A fourth plenary session dealt with geodesy and water, a new strategic focus on the hydrosphere, cryosphere, and changing climate. Keynotes included a historical perspective by Bernard Minster (Scripps Institution of Oceanography) on space geodesy and its applications to geophysics, and a summary talk by Susan Eriksson (UNAVCO) on the successes of Research Experience in Solid Earth Science for Students (RESESS) and its 5-year follow-on with opportunities to mentor the next generation of geoscientists through cultivation of diversity.

  11. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  12. Reliability and qualification of advanced microelectronics for space applications

    NASA Technical Reports Server (NTRS)

    Kayali, S.

    2003-01-01

    This paper provides a discussion of the subject and an approach to establish a reliability and qualification methodology to facilitate the utilization of state-of-the-art advanced microelectronic devices and structures in high reliability applications.

  13. Advanced fuel concepts and applications

    SciTech Connect

    Miley, G.H.

    1981-01-01

    Despite their more stringent plasma heating and confinement requirements, advanced fuel (AF) fusion cycles potentially offer improved environmental compatibility and lower costs. This comes about by elimination of tritium breeding requirements and by a reduction in neutron flux (hence, activation and radiation damage). Also a larger energy fraction carried by charged particles makes direct energy conversion more suitable. As a first application, a symbiotic system of semi-catalyzed-deuterium fueled hybrid fuel factories, supplying both fissle fuel to light water reactors and /sup 3/He to D-/sup 3/He satellite fusion reactors, is proposed. Subsequently, an evolution into a system of synfuel factories with satellite D-/sup 3/He reactors is envisioned.

  14. Advanced Technology Composite Fuselage-Structural Performance

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

    1997-01-01

    Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

  15. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  16. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  17. Advanced materials for space applications

    NASA Astrophysics Data System (ADS)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  18. Advances in Hot-Structure Development

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Glass, David E.

    2006-01-01

    The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic

  19. Recent advances in the application of core-shell structured magnetic materials for the separation and enrichment of proteins and peptides.

    PubMed

    Zhao, Man; Xie, Yiqin; Deng, Chunhui; Zhang, Xiangmin

    2014-08-29

    Many endogenous proteins/peptides and proteins/peptides with post-translational modifications (PTMs) are presented at extremely low abundance, and they usually suffer strong interference with highly abundant proteins/peptides as well as other contaminants, resulting in low ionization efficiency in MS analysis. Therefore, the separation and enrichment of proteins/peptides from complex mixtures is of great importance to the successful identification of them. Core-shell structured magnetic microspheres have been widely used in the enrichment and isolation of proteins/peptides, thanks to unique properties such as strong magnetic responsiveness, outstanding binding capacity, excellent biocompatibility, robust mechanical strength and admirable recoverability. The aim of this review is to update the advances in the application of core-shell structured magnetic materials for proteomics analysis, including the separation and enrichment of low-concentration proteins/peptides, the selective enrichment of phosphoproteins and the selective enrichment of glycoproteins, and to compare the enrichment performance of magnetic microspheres with different kinds of functionalization.

  20. Signature molecular descriptor : advanced applications.

    SciTech Connect

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  1. Advancements in vibroacoustic evaluation of satellite structures

    NASA Astrophysics Data System (ADS)

    Stavrinidis, C.; Witting, M.; Ikoss, S. I.; Klein, M.

    2001-02-01

    The importance of the launcher vibroacoustic environment is increasing with respect to satellite loads due to the increase in size and decrease in surface mass of lightweight appendages like antennas and solar arrays. The loads generated by the vibroacoustic environment need to be covered adequately to ensure satellite structural integrity. This is of particular importance in the low-frequency range where the low frequencies of light appendages and equipment couple with the acoustic environment. In order to cope with the increasing demand for prediction of structural loads due to the acoustic environment, various methods have been developed in the frame of ESA research and development activities. These range from simplified approaches with partial fluid-structure coupling, e.g. the POSTAR package provided by INTESPACE (France) to more sophisticated approaches with full fluid-structure coupling. In the frequency domain this includes pure finite element modelling techniques, where specific tools have been developed by FFA (Sweden) using the ASKA package, as well as coupled finite element—boundary element approaches that have been developed in cooperation with DASA-Dornier (Germany), STRACO (France) and FFA using the commercial packages ASKA and RAYON. For fully coupled fluid structure analysis in the time domain the ASTRYD code from METRAVIB (France) is employed where advancements have been supported by CNES. Applications of these tools range from simple benchmarks such as simply supported plates, cavity enclosures or generic satellite-fairing models to complex satellite structure configurations. Evaluations of antenna reflector structures (Artemis communication antenna) and satellite equipment panels (polar platform) are presented. The paper covers also the investigation of payload/fairing effects (influence of fairing helium purging on the coupled-system response) together with DASA-Dornier, FFA and STRACO, as well as the vibroacoustic analysis of solar array

  2. Advanced Bragg grating filters for DWDM applications

    NASA Astrophysics Data System (ADS)

    Sokolov, Victor I.; Khudobenko, Alexander I.; Panchenko, Vladislav Y.

    2002-09-01

    The advent of the technology of Dense Wavelength Division Multiplexing (DWDM) in Optical Fiber Networks (OFNs) has resulted in the necessity of developing advanced Optical Add/Drop Multiplexers (OADMs) on the basis of submicron Bragg gratings. The OADMs for dense multichannel OFNs with bit rates 10 - 40 Gbits/s per channel and channel spacing 200, 100 and 50 GHz must possess rectangular-shaped reflection/transmission spectra and linear phase characteristic within the stop/passband. These features can not be achieved with uniform periodic Bragg gratings and therefore nonuniform gratings with space-modulated coupling coefficient should be used. We present the recent advances in the design and fabrication of narrowband wavelength-selective optical filters for DWDM applications on the basis of single-mode fibers with side-polishing and periodic relief Bragg gratings with apodized coupling coefficient. The peculiarities of propagation, interaction and diffraction of electromagnetic waves in nonuniform Bragg grating structures are considered. Narrowband reflection filters based on side-polished fibers and submicron relief gratings on SiO2 and SiO materials are designed and fabricated. The filters have stopband width 0.4 - 0.8 nm and peak reflectivity R > 98% in the 1.55 mkm wavelength communication region. Narrowband flat-top reflection filters for DWDM applications based on side-polished fibers and periodic relief Bragg gratings are designed. The schemes for multichannel integration of Bragg grating filters into OFNs are presented.

  3. Application of advanced materials to rotating machines

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1983-01-01

    In discussing the application of advanced materials to rotating machinery, the following topics are covered: the torque speed characteristics of ac and dc machines, motor and transformer losses, the factors affecting core loss in motors, advanced magnetic materials and conductors, and design tradeoffs for samarium cobalt motors.

  4. Deployable truss structure advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, J. E.; Dudeck, M. P.

    1986-01-01

    The 5-meter technology antenna program demonstrated the overall feasibility of integrating a mesh reflector surface with a deployable truss structure to achieve a precision surface contour compatible with future, high-performance antenna requirements. Specifically, the program demonstrated: the feasibility of fabricating a precision, edge-mounted, deployable, tetrahedral truss structure; the feasibility of adjusting a truss-supported mesh reflector contour to a surface error less than 10 mils rms; and good RF test performance, which correlated well with analytical predictions. Further analysis and testing (including flight testing) programs are needed to fully verify all the technology issues, including structural dynamics, thermodynamics, control, and on-orbit RF performance, which are associated with large, deployable, truss antenna structures.

  5. Advanced teleoperation: Technology innovations and applications

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.; Bejczy, Antal K.; Kim, Won S.

    1994-01-01

    The capability to remotely, robotically perform space assembly, inspection, servicing, and science functions would rapidly expand our presence in space, and the cost efficiency of being there. There is considerable interest in developing 'telerobotic' technologies, which also have comparably important terrestrial applications to health care, underwater salvage, nuclear waste remediation and other. Such tasks, both space and terrestrial, require both a robot and operator interface that is highly flexible and adaptive, i.e., capable of efficiently working in changing and often casually structured environments. One systems approach to this requirement is to augment traditional teleoperation with computer assists -- advanced teleoperation. We have spent a number of years pursuing this approach, and highlight some key technology developments and their potential commercial impact. This paper is an illustrative summary rather than self-contained presentation; for completeness, we include representative technical references to our work which will allow the reader to follow up items of particular interest.

  6. HIAD Advancements and Extension of Mission Applications

    NASA Technical Reports Server (NTRS)

    Johnson, R. Keith; Cheatwood, F. McNeil; Calomino, Anthony M.; Hughes, Stephen J.; Korzun, Ashley M.; DiNonno, John M.; Lindell, Mike C.; Swanson, Greg T.

    2016-01-01

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has made significant advancements over the last decade with flight test demonstrations and ground development campaigns. The first generation (Gen-1) design and materials were flight tested with the successful third Inflatable Reentry Vehicle Experiment flight test of a 3-m HIAD (IRVE-3). Ground development efforts incorporated materials with higher thermal capabilities for the inflatable structure (IS) and flexible thermal protection system (F-TPS) as a second generation (Gen-2) system. Current efforts and plans are focused on extending capabilities to improve overall system performance and reduce areal weight, as well as expand mission applicability. F-TPS materials that offer greater thermal resistance, and ability to be packed to greater density, for a given thickness are being tested to demonstrated thermal performance benefits and manufacturability at flight-relevant scale. IS materials and construction methods are being investigated to reduce mass, increase load capacities, and improve durability for packing. Previous HIAD systems focused on symmetric geometries using stacked torus construction. Flight simulations and trajectory analysis show that symmetrical HIADs may provide L/D up to 0.25 via movable center of gravity (CG) offsets. HIAD capabilities can be greatly expanded to suit a broader range of mission applications with asymmetric shapes and/or modulating L/D. Various HIAD concepts are being developed to provide greater control to improve landing accuracy and reduce dependency upon propulsion systems during descent and landing. Concepts being studied include a canted stack torus design, control surfaces, and morphing configurations that allow the shape to be actively manipulated for flight control. This paper provides a summary of recent HIAD development activities, and plans for future HIAD developments including advanced materials, improved construction techniques, and alternate

  7. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  8. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  9. NAS Applications and Advanced Algorithms

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Biswas, Rupak; VanDerWijngaart, Rob; Kutler, Paul (Technical Monitor)

    1997-01-01

    This paper examines the applications most commonly run on the supercomputers at the Numerical Aerospace Simulation (NAS) facility. It analyzes the extent to which such applications are fundamentally oriented to vector computers, and whether or not they can be efficiently implemented on hierarchical memory machines, such as systems with cache memories and highly parallel, distributed memory systems.

  10. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  11. The advanced magnetovision system for Smart application

    NASA Astrophysics Data System (ADS)

    Kaleta, Jerzy; Wiewiórski, Przemyslaw; Lewandowski, Daniel

    2010-04-01

    An original method, measurement devices and software tool for examination of magneto-mechanical phenomena in wide range of SMART applications is proposed. In many Hi-End market constructions it is necessary to carry out examinations of mechanical and magnetic properties simultaneously. Technological processes of fabrication of modern materials (for example cutting, premagnetisation and prestress) and advanced concept of using SMART structures involves the design of next generation system for optimization of electric and magnetic field distribution. The original fast and higher than million point static resolution scanner with mulitsensor probes has been constructed to measure full components of the magnetic field intensity vector H, and to visualize them into end user acceptable variant. The scanner has also the capability to acquire electric potentials on surface to work with magneto-piezo devices. Advanced electronic subsystems have been applied for processing of results in the Magscaner Vison System and the corresponding software - Maglab has been also evaluated. The Dipole Contour Method (DCM) is provided for modeling different states between magnetic and electric coupled materials and to visually explain the information of the experimental data. Dedicated software collaborating with industrial parametric systems CAD. Measurement technique consists of acquiring a cloud of points similarly as in tomography, 3D visualisation. The actually carried verification of abilities of 3D digitizer will enable inspection of SMART actuators with the cylindrical form, pellets with miniature sizes designed for oscillations dampers in various construction, for example in vehicle industry.

  12. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  13. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.

  14. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  15. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing

  16. Advances and applications of ABCI

    NASA Astrophysics Data System (ADS)

    Chin, Y. H.

    1993-05-01

    ABCI (Azimuthal Beam Cavity Interaction) is a computer program which solves the Maxwell equations directly in the time domain when a Gaussian beam goes through an axi-symmetrical structure on or off axis. Many new features have been implemented in the new version of ABCI (presently version 6.6), including the 'moving mesh' and Napoly's method of calculation of wake potentials. The mesh is now generated only for the part of the structure inside a window and moves together with the window frame. This moving mesh option reduces the number of mesh points considerably, and very fine meshes can be used. Napoly's integration method makes it possible to compute wake potentials in a structure such as a collimator, where parts of the cavity material are at smaller radii than that of the beam pipes, in such a way that the contribution from the beam pipes vanishes. For the monopole wake potential, ABCI can be applied even to structures with unequal beam pipe radii. Furthermore, the radial mesh size can be varied over the structure, permitting use a fine mesh only where actually needed. With these improvements, the program allows computation of wake fields for structures far too complicated for older codes. Plots of a cavity shape and wake potentials can be obtained in the form of a Top Drawer file. The program can also calculate and plot the impedance of a structure and/or the distribution of the deposited energy as a function of the frequency from Fourier transforms of wake potentials. Its usefulness is illustrated by showing some numerical examples.

  17. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  18. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

  19. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  20. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  1. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  2. Towards advanced OCT clinical applications

    NASA Astrophysics Data System (ADS)

    Kirillin, Mikhail; Panteleeva, Olga; Agrba, Pavel; Pasukhin, Mikhail; Sergeeva, Ekaterina; Plankina, Elena; Dudenkova, Varvara; Gubarkova, Ekaterina; Kiseleva, Elena; Gladkova, Natalia; Shakhova, Natalia; Vitkin, Alex

    2015-07-01

    In this paper we report on our recent achievement in application of conventional and cross-polarization OCT (CP OCT) modalities for in vivo clinical diagnostics in different medical areas including gynecology, dermatology, and stomatology. In gynecology, CP OCT was employed for diagnosing fallopian tubes and cervix; in dermatology OCT for monitoring of treatment of psoriasis, scleroderma and atopic dermatitis; and in stomatology for diagnosis of oral diseases. For all considered application, we propose and develop different image processing methods which enhance the diagnostic value of the technique. In particular, we use histogram analysis, Fourier analysis and neural networks, thus calculating different tissue characteristics as revealed by OCT's polarization evolution. These approaches enable improved OCT image quantification and increase its resultant diagnostic accuracy.

  3. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  4. Survey of Advanced Applications Over ACTS

    NASA Technical Reports Server (NTRS)

    Bauer, Robert; McMasters, Paul

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) system provided a national testbed that enabled advanced applications to be tested and demonstrated over a live satellite link. Of the applications that used ACTS. some offered unique advantages over current methods, while others simply could not be accommodated by conventional systems. The initial technical and experiments results of the program were reported at the 1995 ACTS Results Conference. in Cleveland, Ohio. Since then, the Experiments Program has involved 45 new experiments comprising 30 application experiments and 15 technology related experiments that took advantage of the advanced technologies and unique capabilities offered by ACTS. The experiments are categorized and quantified to show the organizational mix of the experiments program and relative usage of the satellite. Since paper length guidelines preclude each experiment from being individually reported, the application experiments and significant demonstrations are surveyed to show the breadth of the activities that have been supported. Experiments in a similar application category are collectively discussed, such as. telemedicine. or networking and protocol evaluation. Where available. experiment conclusions and impact are presented and references of results and experiment information are provided. The quantity and diversity of the experiments program demonstrated a variety of service areas for the next generation of commercially available, advanced satellite communications.

  5. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology

  6. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  7. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  8. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  9. The design of repairable advanced composite structures

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1985-01-01

    This paper addresses the repair of advanced composite structures by mechanical fasteners or by adhesive bonding. It is shown that many of today's composite designs are unreasonably difficult to repair. Conversely, the knowledge to design repairable structures is already available, if only it is applied during the initial design stage. Bolted or riveted repairs require only the avoidance of extremely orthotropic composite fiber patterns; those near the quasi-isotropic layup are the most suitable. Mildly orthotropic fiber patterns are appropriate for structures in which there is a dominant load direction. Thick composite structures are shown to require bolted or riveted repairs while thin structures favor adhesively bonded permanent repairs, although provisions can be easily made for temporary mechanical repairs. The reasons why integrally stiffened cocured composite designs are usually impractical to repair are explained and alternative repairable design concepts are presented.

  10. Synthetic Peptide templates for molecular recognition: recent advances and applications.

    PubMed

    Singh, Yashveer; Dolphin, Gunnar T; Razkin, Jesus; Dumy, Pascal

    2006-09-01

    The creation of molecular systems that can mimic some of the properties of natural macromolecules is one of the major endeavors in contemporary protein chemistry. However, the construction of artificial proteins with predetermined structure and function is difficult on account of complex folding pathways. The use of topological peptide templates has been suggested to induce and stabilize defined secondary and tertiary structures. This is because the recent advances in the chemistry of coupling reagents, protecting groups, and solid-phase synthesis have made the chemical synthesis of peptides with conformationally controlled and complex structures feasible. Besides their use as structure-inducing devices, these peptide templates can also be utilized to construct novel structures with tailor-made functions. Herein, we present recent advances in the field of peptide-template-based approaches with particular emphasis on the demonstrated utility of this approach in molecular recognition, along with related applications.

  11. Adding structure to the transition process to advanced mathematical activity

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann

    2010-03-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.

  12. Technology and application advancements of uncooled imagers

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Kohin, Margaret

    2005-05-01

    Having delivered over 30,000 uncooled microbolometer based thermal imaging engines, BAE Systems is the world's leading producer. Advancements in technology include the demonstration of broadband microbolometers on a 46 μm pixel pitch which have excellent sensitivity in the MWIR (NETD ~180 mK, 3-5 μm) and LWIR (NETD ~ 15 mK, 8-12 μm) wavebands. Application advancements include the development of a family of thermal weapons sights for the military which will replace current cooled systems with lighter, lower power systems and the introduction of a new generation of handheld and pole mounted thermal imagers for commercial markets.

  13. Advanced Data Structure and Geographic Information Systems

    NASA Technical Reports Server (NTRS)

    Peuquet, D. (Principal Investigator)

    1984-01-01

    The current state of the art in specified areas of Geographic Information Systems GIS technology is examined. Study of the question of very large, efficient, heterogeneous spatial databases is required in order to explore the potential application of remotely sensed data for studying the long term habitability of the Earth. Research includes a review of spatial data structures and storage, development of operations required by GIS, and preparation of a testbed system to compare Vaster data structure with NASA's Topological Raster Structure.

  14. Recent Advances In Optimization Of Aerospace Structures And Engines

    NASA Astrophysics Data System (ADS)

    Rao*, J. S.

    Optimization theories have been well advanced during the last few decades; however when it came to handle real life engineering structures it has been always time consuming and approximate when the structure geometry is highly complex. Design of Experiments has helped in understanding the influence of size and shape parameters on achieving a specified objective function with required constraints and a suitable analysis platform, but has its limitations in arriving at the final optimal solution. There are several commercial codes that addressed this need to handle large size structures subjected to dynamic loads. Most advanced tools in this category are Altair OptiStruct and Altair HyperStudy available in Altair HyperWorks suite. Application of these tools in achieving optimum solutions for linear advanced aircraft structures for minimization of weight are first explained. The application of these tools for globally elastic and locally plastic nonlinear structures to reduce local plastic strains and achieve higher life under dynamic loads will then be discussed.

  15. Advanced thermal control for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  16. Advanced photovoltaic power system technology for lunar base applications

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  17. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  18. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  19. Quantum memories: emerging applications and recent advances.

    PubMed

    Heshami, Khabat; England, Duncan G; Humphreys, Peter C; Bustard, Philip J; Acosta, Victor M; Nunn, Joshua; Sussman, Benjamin J

    2016-11-12

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  20. Quantum memories: emerging applications and recent advances

    PubMed Central

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198

  1. Quantum memories: emerging applications and recent advances

    NASA Astrophysics Data System (ADS)

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-11-01

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  2. Tutorial: Advanced fault tree applications using HARP

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.

    1993-01-01

    Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.

  3. New Advanced Dielectric Materials for Accelerator Applications

    SciTech Connect

    Kanareykin, A.

    2010-11-04

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  4. Environmental Applications of Biosurfactants: Recent Advances

    PubMed Central

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A.; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-01

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies. PMID:21340005

  5. Environmental applications of biosurfactants: recent advances.

    PubMed

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-18

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  6. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    SciTech Connect

    Abbatiello, L.A.; Haselkorn, M.

    1996-11-29

    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  7. Communication services for advanced network applications.

    SciTech Connect

    Bresnahan, J.; Foster, I.; Insley, J.; Toonen, B.; Tuecke, S.

    1999-06-10

    Advanced network applications such as remote instrument control, collaborative environments, and remote I/O are distinguished by traditional applications such as videoconferencing by their need to create multiple, heterogeneous flows with different characteristics. For example, a single application may require remote I/O for raw datasets, shared controls for a collaborative analysis system, streaming video for image rendering data, and audio for collaboration. Furthermore, each flow can have different requirements in terms of reliability, network quality of service, security, etc. They argue that new approaches to communication services, protocols, and network architecture are required both to provide high-level abstractions for common flow types and to support user-level management of flow creation and quality. They describe experiences with the development of such applications and communication services.

  8. Advanced MR Imaging in Pediatric Brain Tumors, Clinical Applications.

    PubMed

    Lequin, Maarten; Hendrikse, Jeroen

    2017-02-01

    Advanced MR imaging techniques, such as spectroscopy, perfusion, diffusion, and functional imaging, have improved the diagnosis of brain tumors in children and also play an important role in defining surgical as well as therapeutic responses in these patients. In addition to the anatomic or structural information gained with conventional MR imaging sequences, advanced MR imaging techniques also provide physiologic information about tumor morphology, metabolism, and hemodynamics. This article reviews the physiology, techniques, and clinical applications of diffusion-weighted and diffusion tensor imaging, MR spectroscopy, perfusion MR imaging, susceptibility-weighted imaging, and functional MR imaging in the setting of neuro-oncology.

  9. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  10. Probabilistic structural analysis methods and applications

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.

    1988-01-01

    An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.

  11. Advanced Applications of RNA Sequencing and Challenges

    PubMed Central

    Han, Yixing; Gao, Shouguo; Muegge, Kathrin; Zhang, Wei; Zhou, Bing

    2015-01-01

    Next-generation sequencing technologies have revolutionarily advanced sequence-based research with the advantages of high-throughput, high-sensitivity, and high-speed. RNA-seq is now being used widely for uncovering multiple facets of transcriptome to facilitate the biological applications. However, the large-scale data analyses associated with RNA-seq harbors challenges. In this study, we present a detailed overview of the applications of this technology and the challenges that need to be addressed, including data preprocessing, differential gene expression analysis, alternative splicing analysis, variants detection and allele-specific expression, pathway analysis, co-expression network analysis, and applications combining various experimental procedures beyond the achievements that have been made. Specifically, we discuss essential principles of computational methods that are required to meet the key challenges of the RNA-seq data analyses, development of various bioinformatics tools, challenges associated with the RNA-seq applications, and examples that represent the advances made so far in the characterization of the transcriptome. PMID:26609224

  12. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  13. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    SciTech Connect

    Pujari, V.J.; Tracey, D.M.; Foley, M.R.

    1996-02-01

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  14. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  15. Supercritical fluid extraction: Recent advances and applications.

    PubMed

    Herrero, Miguel; Mendiola, Jose A; Cifuentes, Alejandro; Ibáñez, Elena

    2010-04-16

    Among the different extraction techniques used at analytical and preparative scale, supercritical fluid extraction (SFE) is one of the most used. This review covers the most recent developments of SFE in different fields, such as food science, natural products, by-product recovery, pharmaceutical and environmental sciences, during the period 2007-2009. The revision is focused on the most recent advances and applications in the different areas; among them, it is remarkable the strong impact of SFE to extract high value compounds from food and natural products but also its increasing importance in areas such as heavy metals recovery, enantiomeric resolution or drug delivery systems.

  16. Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992

    SciTech Connect

    Not Available

    1993-03-01

    This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

  17. Computerized structural mechanics for 1990's: Advanced aircraft needs

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Backman, B. F.

    1989-01-01

    The needs for computerized structural mechanics (CSM) as seen from the standpoint of the aircraft industry are discussed. These needs are projected into the 1990's with special focus on the new advanced materials. Preliminary design/analysis, research, and detail design/analysis are identified as major areas. The role of local/global analyses in these different areas is discussed. The lessons learned in the past are used as a basis for the design of a CSM framework that could modify and consolidate existing technology and include future developments in a rational and useful way. A philosophy is stated, and a set of analyses needs driven by the emerging advanced composites is enumerated. The roles of NASA, the universities, and the industry are identified. Finally, a set of rational research targets is recommended based on both the new types of computers and the increased complexity the industry faces. Computerized structural mechanics should be more than new methods in structural mechanics and numerical analyses. It should be a set of engineering applications software products that combines innovations in structural mechanics, numerical analysis, data processing, search and display features, and recent hardware advances and is organized in a framework that directly supports the design process.

  18. Report on sodium compatibility of advanced structural materials.

    SciTech Connect

    Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T.

    2012-07-09

    This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four

  19. Structural and electrical properties of Ag grid/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) coatings for diode application through advanced printing technology.

    PubMed

    Duraisamy, Navaneethan; Ponniah, Ganeshthangaraj; Jo, Jeongdai; Choi, Kyung-Hyun

    2013-08-01

    This paper is focused on printed techniques for the fabrication of hybrid structure of silver (Ag) grid/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) (PEDOT:PSS) on polyethylene terepthalate (PET) as a flexible substrate. Ag grid has been printed on PET substrate by using gravure offset printing process, followed by PEDOT:PSS thin film deposition on Ag grid through electrohydrodynamic atomization (EHDA) technique. The important parameters for achieving uniform hybrid structure of Ag grid/PEDOT:PSS through printed techniques have been clearly discussed. Field emission scanning electron microscope studies revealed the uniformity of printed Ag grid with homogeneous deposition of PEDOT:PSS on Ag grid. The optical properties of Ag grid/PEDOT:PSS were measured by UV-visible spectroscopy, which showed nearly 80-82% of transparency in the visible region and it was nearly same as PEDOT:PSS thin film on PET substrate. Current-voltage (I-V) analysis of fabricated hybrid device by using printed Ag grid/PEDOT:PSS as a bottom electrode showed good rectifying behavior with possible interfacial mechanisms. Capacitance-voltage (C-V) analysis was carried over different frequencies. These results suggest that fabrication of hybrid structure through printed techniques will play a significant role in mass production of printed electronic devices for commercial application by using flexible substrate.

  20. Advanced Energetics for Aeronautical Applications. Volume II

    NASA Technical Reports Server (NTRS)

    Alexander, David S.

    2005-01-01

    NASA has identified water vapor emission into the upper atmosphere from commercial transport aircraft, particularly as it relates to the formation of persistent contrails, as a potential environmental problem. Since 1999, MSE has been working with NASA-LaRC to investigate the concept of a transport-size emissionless aircraft fueled with liquid hydrogen combined with other possible breakthrough technologies. The goal of the project is to significantly advance air transportation in the next decade and beyond. The power and propulsion (P/P) system currently being studied would be based on hydrogen fuel cells (HFCs) powering electric motors, which drive fans for propulsion. The liquid water reaction product is retained onboard the aircraft until a flight mission is completed. As of now, NASA-LaRC and MSE have identified P/P system components that, according to the high-level analysis conducted to date, are light enough to make the emissionless aircraft concept feasible. Calculated maximum aircraft ranges (within a maximum weight constraint) and other performance predictions are included in this report. This report also includes current information on advanced energy-related technologies, which are still being researched, as well as breakthrough physics concepts that may be applicable for advanced energetics and aerospace propulsion in the future.

  1. 12 CFR 950.2 - Authorization and application for advances; obligation to repay advances.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Authorization and application for advances; obligation to repay advances. 950.2 Section 950.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK ASSETS AND OFF-BALANCE SHEET ITEMS ADVANCES Advances to Members § 950.2...

  2. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  3. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report

    SciTech Connect

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L.

    1993-08-01

    The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

  4. Advanced textile structural composites -- status and outlook

    SciTech Connect

    Arendts, F.J.; Drechsler, K.; Brandt, J.

    1993-12-31

    Composites with 3D woven, braided or knitted fiber reinforcement offer a high potential for the cost-effective manufacturing of structures featuring an interesting mechanical performance, for example with regard to damage tolerance or energy absorption capability. In this paper, the properties of various textile structural composites with regard to stiffness, strength, damage tolerance, energy absorption capability as well as the respective manufacturing processes (RTM or thermoplastic hybrid-yarn technique) are presented in comparison to conventional ud tape based composites. The influence of the fiber architecture on the mechanical performance (tensile stiffness and strength, compression strength, interlaminar shear strength, compression strength after impact, fracture mechanical properties, through-penetration resistance) of monolithic and composite sandwich structures has been evaluated in an experimental study. It has been shown that composites involving new 3D weavings with minimum fiber crimp can compete with tape-based laminates as far as stiffness and strength are concerned. Using knittings makes it possible to manufacture composites having superior through-penetration resistance. The specific feature of the 3D braiding process is the ability to produce complex shaped structures having a high degree of freedom with regard to fiber geometry. Finally, the application of various textile structural composites will be presented on the basis of three demonstrator components (automotive engine mount, aircraft leading edge and motor cycle helmet), and the potential for further developments will be discussed.

  5. Studies of noise transmission in advanced composite material structures

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Mcgary, M. C.; Powell, C. A.

    1983-01-01

    Noise characteristics of advanced composite material fuselages were discussed from the standpoints of applicable research programs and noise transmission theory. Experimental verification of the theory was also included.

  6. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  7. Application development environment for advanced digital workstations

    NASA Astrophysics Data System (ADS)

    Valentino, Daniel J.; Harreld, Michael R.; Liu, Brent J.; Brown, Matthew S.; Huang, Lu J.

    1998-06-01

    One remaining barrier to the clinical acceptance of electronic imaging and information systems is the difficulty in providing intuitive access to the information needed for a specific clinical task (such as reaching a diagnosis or tracking clinical progress). The purpose of this research was to create a development environment that enables the design and implementation of advanced digital imaging workstations. We used formal data and process modeling to identify the diagnostic and quantitative data that radiologists use and the tasks that they typically perform to make clinical decisions. We studied a diverse range of radiology applications, including diagnostic neuroradiology in an academic medical center, pediatric radiology in a children's hospital, screening mammography in a breast cancer center, and thoracic radiology consultation for an oncology clinic. We used object- oriented analysis to develop software toolkits that enable a programmer to rapidly implement applications that closely match clinical tasks. The toolkits support browsing patient information, integrating patient images and reports, manipulating images, and making quantitative measurements on images. Collectively, we refer to these toolkits as the UCLA Digital ViewBox toolkit (ViewBox/Tk). We used the ViewBox/Tk to rapidly prototype and develop a number of diverse medical imaging applications. Our task-based toolkit approach enabled rapid and iterative prototyping of workstations that matched clinical tasks. The toolkit functionality and performance provided a 'hands-on' feeling for manipulating images, and for accessing textual information and reports. The toolkits directly support a new concept for protocol based-reading of diagnostic studies. The design supports the implementation of network-based application services (e.g., prefetching, workflow management, and post-processing) that will facilitate the development of future clinical applications.

  8. Advanced Stirling conversion systems for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.

    1987-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar Distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. The National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) is conducting free-piston Stirling activities which are directed toward a dynamic power source for space applications. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear. Generic free-piston technology is currently being developed by LeRC for DOE/ORNL for use with a residential heat pump under an Interagency Agreement. Since 1983, the SP-100 Program (DOD/NASA/DOE) is developing dynamic power sources for space. Although both applications (heat pump and space power) appear to be quite different, their requirements complement each other. A cooperative Interagency Agreement (IAA) was signed in 1985 with NASA Lewis to provide technical management for an Advanced Stirling Conversion System (ASCS) for SNLA. Conceptual design(s) using a free-piston Stirling (FPSE), and a heat pipe will be discussed. The ASCS will be designed using technology which can reasonably be expected to be available in the 1980's.

  9. Extending HPF for advanced data parallel applications

    NASA Technical Reports Server (NTRS)

    Chapman, Barbara; Mehrotra, Piyush; Zima, Hans

    1994-01-01

    The stated goal of High Performance Fortran (HPF) was to 'address the problems of writing data parallel programs where the distribution of data affects performance'. After examining the current version of the language we are led to the conclusion that HPF has not fully achieved this goal. While the basic distribution functions offered by the language - regular block, cyclic, and block cyclic distributions - can support regular numerical algorithms, advanced applications such as particle-in-cell codes or unstructured mesh solvers cannot be expressed adequately. We believe that this is a major weakness of HPF, significantly reducing its chances of becoming accepted in the numeric community. The paper discusses the data distribution and alignment issues in detail, points out some flaws in the basic language, and outlines possible future paths of development. Furthermore, we briefly deal with the issue of task parallelism and its integration with the data parallel paradigm of HPF.

  10. Surface plasmon resonance biosensors: advances and applications

    NASA Astrophysics Data System (ADS)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  11. Commercial applications of electron beam advanced oxidation technology

    NASA Astrophysics Data System (ADS)

    Curry, Randy D.; Bosma, John T.

    1995-03-01

    Emerging commercial applications of electron-beam advanced oxidation technology offer a significant advancement in the treatment of waste steams. Both electron beam and X-ray (Brehmsstrahlung) advanced oxidation processes have been shown to be effective in the destruction of volatile and semivolatile organic compounds. Emerging commercial applications, however, far exceed in scope current applications of oxidation technologies for the destruction of simple semivolatile and volatile organic compounds in water. Emerging applications include direct treatment of contaminated soil, removal of metal ions from water and sterilization of water, sludges, and food. Application of electron beam advanced oxidation technologies are reviewed, along with electron- beam-generated X-ray (Brehmsstrahlung) advanced oxidation processes. Advantages of each technology are discussed along with advanced accelerator technologies which are applicable for commercial processing of waste streams. An overview of the U.S. companies and laboratories participating in this research area are included in this discussion.

  12. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

  13. On the Mechanical Behavior of Advanced Composite Material Structures

    NASA Astrophysics Data System (ADS)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  14. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  15. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  16. Advanced giant magnetoresistance technology for measurement applications

    NASA Astrophysics Data System (ADS)

    Weiss, Roland; Mattheis, Roland; Reiss, Günter

    2013-08-01

    Giant magnetoresistance (GMR) sensors are considered one of the first real applications of nanotechnology. They consist of nm-thick layered structures where ferromagnetic metals are sandwiched by nonmagnetic metals. Such multilayered films produce a large change in resistance (typically 10 to 20%) when subjected to a magnetic field, compared with a maximum change of a few per cent for other types of magnetic sensors. This technology has been intensively used in read heads for hard disk drives and now increasingly finds applications due to the high sensitivity and signal-to-noise ratio. Additionally these sensors are compatible with miniaturization and thus offer a high spatial resolution combined with a frequency range up to the 100 MHz regime and simple electronic conditioning. In this review, we first discuss the basics of the underlying magnetoresistance effects in layered structures and then present three prominent examples for future applications: in the field of current sensing the new GMR sensors offer high bandwidth and good accuracy in a space-saving open loop measurement configuration. In rotating systems they can be used for multiturn angle measurements, and in biotechnology the detection of magnetic particles enables the quantitative measurement of biomolecule concentrations.

  17. Advances in artificial olfaction: sensors and applications.

    PubMed

    Gutiérrez, J; Horrillo, M C

    2014-06-01

    The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned.

  18. Applications of advanced fracture mechanics to fuselage

    NASA Astrophysics Data System (ADS)

    Kanninen, M. F.; O'Donoghue, P. E.; Green, S. T.; Leung, C. P.; Roy, S.; Burnside, O. H.

    Multi-site damage (MSD) in the form of cracking at rivet holes in lap splice joints has been identified as a serious threat to the integrity of commercial aircraft nearing their design life targets. Consequently, to assure the safety of aircraft that have accumulated large numbers of flights, flight hours and years in service requires requires inspection procedures that are based on the possibility that MSD may be present. For inspections of aircraft components to be properly focused on me defect sizes that are critical for structural integrity, fracture analyses are needed. The current methods are essentially those of linear elastic fracture mechanics (LEFM) which are strictly valid only for cracks that extend in a quasi-static manner under small-scale crack tip plasticity conditions. While LEFM is very likely to be appropriate for subcritical crack growth, quantifying the conditions for fracture instability and subsequent propagation may require advanced fracture mechanics techniques. The specific focus in this paper was to identify the conditions in which inelastic-dynamic effects occur in (1) the linking up Of local damage in a lap splice joint to form a major crack, and (2) large-scale fuselage failure by a rapidly occurring fluid structure interaction process.

  19. Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

  20. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  1. Application of a Meso-scale Based Ballistic Fabric Model to the Development of Advanced Lightweight Engine Fan Blade-Out Containment Structure

    DTIC Science & Technology

    2012-09-01

    Cook elastoplastic material in ABAQUS, while the metallic structure of the fan case is made of aluminum alloy also modeled as an elastoplastic ...alloy modeled by a Johnson-Cook elastoplastic material in ABAQUS, while the metallic structure of the fan case is made of aluminum alloy also...modeled as an elastoplastic material. A multilayered Kevlar woven dry fabric structure is wrapped around the thin aluminum shell to form a soft hybrid

  2. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  3. Laser applications in advanced chip packaging

    NASA Astrophysics Data System (ADS)

    Müller, Dirk; Held, Andrew; Pätzel, Rainer; Clark, Dave; van Nunen, Joris

    2016-03-01

    While applications such as drilling μ-vias and laser direct imaging have been well established in the electronics industry, the mobile device industry's push for miniaturization is generating new demands for packaging technologies that allow for further reduction in feature size while reducing manufacturing cost. CO lasers have recently become available and their shorter wavelength allows for a smaller focus and drilling hole diameters down to 25μm whilst keeping the cost similar to CO2 lasers. Similarly, nanosecond UV lasers have gained significantly in power, become more reliable and lower in cost. On a separate front, the cost of ownership reduction for Excimer lasers has made this class of lasers attractive for structuring redistribution layers of IC substrates with feature sizes down to 2μm. Improvements in reliability and lower up-front cost for picosecond lasers is enabling applications that previously were only cost effective with mechanical means or long-pulsed lasers. We can now span the gamut from 100μm to 2μm for via drilling and can cost effectively structure redistribution layers with lasers instead of UV lamps or singulate packages with picosecond lasers.

  4. Applications and advances of positron beam spectroscopy

    SciTech Connect

    Howell, R., LLNL

    1998-03-18

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center, the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques would play in materials analysis and the demand for the data. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of stockpile stewardship. The Livermore facilities now include the world`s highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. It was concluded that the positron microprobe under development at LLNL and other new instruments that would be relocated at LLNL at the high current keV source are an exciting step forward in providing results for the positron technique. These new data will impact a wide variety of applications.

  5. Advanced structures technology applied to a supersonic cruise arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1976-01-01

    The application of advanced technology to a promising aerodynamic configuration was explored to investigate the improved payload range characteristics over the configuration postulated during the National SST Program. The results of an analytical study performed to determine the best structural approach for design of a Mach number 2.7 arrow-wing supersonic cruise aircraft are highlighted. The data conducted under the auspices of the Structures Directorate of the National Aeronautics and Space Administration, Langley Research Center, established firm technical bases from which further trend studies were conducted to quantitatively assess the benefits and feasibility of using advanced structures technology to arrive at a viable advanced supersonic cruise aircraft.

  6. 14 CFR 151.117 - Advance planning proposals: Procedures; application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Advance planning proposals: Procedures; application. 151.117 Section 151.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Engineering Proposals § 151.117 Advance planning proposals: Procedures; application. (a) Each eligible...

  7. Gold Nanoparticles: Recent Advances in the Biomedical Applications.

    PubMed

    Zhang, Xiaoying

    2015-07-01

    Among the multiple branches of nanotechnology applications in the area of medicine and biology, Nanoparticle technology is the fastest growing and shows significant future promise. Nanoscale structures, with size similar to many biological molecules, show different physical and chemical properties compared to either small molecules or bulk materials, find many applications in the fields of biomedical imaging and therapy. Gold nanoparticles (AuNPs) are relatively inert in biological environment, and have a number of physical properties that are suitable for several biomedical applications. For example, AuNPs have been successfully employed in inducing localized hyperthermia for the destruction of tumors or radiotherapy for cancer, photodynamic therapy, computed tomography imaging, as drug carriers to tumors, bio-labeling through single particle detection by electron microscopy and in photothermal microscopy. Recent advances in synthetic chemistry makes it possible to make gold nanoparticles with precise control over physicochemical and optical properties that are desired for specific clinical or biological applications. Because of the availability of several methods for easy modification of the surface of gold nanoparticles for attaching a ligand, drug or other targeting molecules, AuNPs are useful in a wide variety of applications. Even though gold is biologically inert and thus shows much less toxicity, the relatively low rate of clearance from circulation and tissues can lead to health problems and therefore, specific targeting of diseased cells and tissues must be achieved before AuNPs find their application for routine human use.

  8. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L.

    2012-05-31

    Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural

  9. Advances in experimental mechanics for advanced aircraft structures

    NASA Astrophysics Data System (ADS)

    O'Brien, Eddie W.

    1997-03-01

    The industrial requirement for higher efficiency, lean performance, airframe structures to form the basis of more cost effective Commercial Aircraft has encouraged developments in all aspects of aeronautical design and manufacture. Until recently the main emphasis has been in the area of computer and numerical analysis, however new developments in experimental mechanics are emerging as very powerful tools for use in the validation of numerical analyses and for primary stress analysis data. The developments described have been forced by economic drivers that address more efficient analysis techniques with respect to cost, specific weight and expended time for analysis.

  10. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    SciTech Connect

    Busby, Jeremy T

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  11. Advanced Embedded Active Assemblies for Extreme Space Applications

    NASA Technical Reports Server (NTRS)

    DelCastillo, Linda; Moussessian, Alina; Mojarradi, Mohammad; Kolawa, Elizabeth

    2009-01-01

    This work describes the development and evaluation of advanced technologies for the integration of electronic die within membrane polymers. Specifically, investigators thinned silicon die, electrically connecting them with circuits on flexible liquid crystal polymer (LCP), using gold thermo-compression flip chip bonding, and embedding them within the material. Daisy chain LCP assemblies were thermal cycled from -135 to +85degC (Mars surface conditions for motor control electronics). The LCP assembly method was further utilized to embed an operational amplifier designed for operation within the Mars surface ambient. The embedded op-amp assembly was evaluated with respect to the influence of temperature on the operational characteristics of the device. Applications for this technology range from multifunctional, large area, flexible membrane structures to small-scale, flexible circuits that can be fit into tight spaces for flex to fit applications.

  12. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  13. Advanced fabrication techniques for cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1978-01-01

    An improved design for regeneratively cooled engine structures was identified. This design uses photochemically machined (PCM) coolant passages. It permits the braze joint to be placed in a relatively cool area, remote from the critical hot face sheet. The geometry of the passages at the face sheet also minimizes stress concentration and, therefore, enhances the low cycle fatigue performance. The two most promising alloys identified for this application are Inconel 617 and Nickel 201. Inconel 617 was selected because it has excellent creep rupture properties, while Nickel 201 was selected because of its predicted good performance under low cycle fatigue loading. The fabrication of the PCM coolant passages in both Inconel 617 and Nickel 201 was successfully developed. During fabrication of Inconel 617, undesirable characteristics were observed in the braze joints. A development program to resolve this condition was undertaken and led to definition of an isothermal solidification process for joining Inconel 617 panels. This process produced joints which approach parent metal strength and homogeneity.

  14. Graph mining: procedure, application to drug discovery and recent advances.

    PubMed

    Takigawa, Ichigaku; Mamitsuka, Hiroshi

    2013-01-01

    Combinatorial chemistry has generated chemical libraries and databases with a huge number of chemical compounds, which include prospective drugs. Chemical structures of compounds can be molecular graphs, to which a variety of graph-based techniques in computer science, specifically graph mining, can be applied. The most basic way for analyzing molecular graphs is using structural fragments, so-called subgraphs in graph theory. The mainstream technique in graph mining is frequent subgraph mining, by which we can retrieve essential subgraphs in given molecular graphs. In this article we explain the idea and procedure of mining frequent subgraphs from given molecular graphs, raising some real applications, and we describe the recent advances of graph mining.

  15. Fabrication and application of advanced functional materials from lignincellulosic biomass

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both

  16. Advances in LEDs for automotive applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  17. Advanced Developments in Cyclic Polymers: Synthesis, Applications, and Perspectives

    PubMed Central

    Zhu, Yinghuai; Hosmane, Narayan S

    2015-01-01

    Due to the topological effect, cyclic polymers demonstrate different and unique physical and biological properties in comparison with linear counterparts having the same molecular-weight range. With advanced synthetic and analytic technologies, cyclic polymers with different topologies, e.g. multicyclic polymers, have been reported and well characterized. For example, various cyclic DNA and related structures, such as cyclic duplexes, have been prepared conveniently by click chemistry. These types of DNA have increased resistance to enzymatic degradation and have high thermodynamic stability, and thus, have potential therapeutic applications. In addition, cyclic polymers have also been used to prepare organic–inorganic hybrids for applications in catalysis, e.g. catalyst supports. Due to developments in synthetic technology, highly pure cyclic polymers could now be produced in large scale. Therefore, we anticipate discovering more applications in the near future. Despite their promise, cyclic polymers are still less explored than linear polymers like polyolefins and polycarbonates, which are widely used in daily life. Some critical issues, including controlling the molecular weight and finding suitable applications, remain big challenges in the cyclic-polymer field. This review briefly summarizes the commonly used synthetic methodologies and focuses more on the attractive functional materials and their biological properties and potential applications. PMID:26478835

  18. Application of NASA's advanced life support technologies in polar regions

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Lewis, C.

    1997-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.

  19. Predicting Career Advancement with Structural Equation Modelling

    ERIC Educational Resources Information Center

    Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia

    2012-01-01

    Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…

  20. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  1. Advanced Materials and Multifunctional Structures for Aerospace Vehicles

    DTIC Science & Technology

    2006-10-01

    through covalent integration of functional nanotubes ”, Advanced Functional Materials, 14(7) (2004) 643-648. 185 R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, and...on Advanced Materials for Multi Functional Structures in Aerospace Vehicles. The advanced synthesis, processing and the characterization techniques...when more than one primary function is performed either simultaneously or sequentially in time. These systems are based on metallic, ceramic and

  2. Corrosion performance of advanced structural materials in sodium.

    SciTech Connect

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and

  3. Advanced Standing and Bridge Courses: Structures and Issues

    ERIC Educational Resources Information Center

    GlenMaye, Linnea F.; Lause, Timothy W.; Bolin, Brien L.

    2010-01-01

    This study explores the issue of advanced standing in MSW programs in light of the new Educational Policy and Accreditation Standards (EPAS). Advanced standing structures of MSW programs were studied using a purposive sample consisting of 203 MSW program directors with a response rate of 28% (N=58). The results indicate that slightly more than 15%…

  4. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  5. Synthesis and characterization of advanced materials for Navy applications

    NASA Technical Reports Server (NTRS)

    Covino, J.; Lee, I.

    1994-01-01

    The synthesis of ceramics and ceramic coatings through the sol-gel process has extensive application with the United States Navy and a broad range of potential commercial applications as well. This paper surveys seven specific applications for which the Navy is investigating these advanced materials. For each area, the synthetic process is described and the characteristics of the materials are discussed.

  6. Advanced Hybrid Materials for Aerospace Propulsion Applications (Briefing Charts)

    DTIC Science & Technology

    2013-02-01

    Viewgraph 3. DATES COVERED (From - To) February 2013- April 2013 4. TITLE AND SUBTITLE Advanced hybrid materials for aerospace propulsion applications ...Many material improvements are needed for specific aerospace propulsion applications . Because the industrial community in extremely risk-averse, the...activities focused on inert materials for solid rocket propulsion applications , including the development of alternative high-temperature thermosetting

  7. Predicting RNA structure: advances and limitations.

    PubMed

    Hofacker, Ivo L; Lorenz, Ronny

    2014-01-01

    RNA secondary structures can be predicted using efficient algorithms. A widely used software package implementing a large number of computational methods is the ViennaRNA Package. This chapter describes how to use programs from the ViennaRNA Package to perform common tasks such as prediction of minimum free-energy structures, suboptimal structures, or base pairing probabilities, and generating secondary structure plots with reliability annotation. Moreover, we present recent methods to assess the folding kinetics of an RNA via 2D projections of the energy landscape, identification of local minima and energy barriers, or simulation of RNA folding as a Markov process.

  8. Advances in biomimetic regeneration of elastic matrix structures

    PubMed Central

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  9. Advanced Structural and Inflatable Hybrid Spacecraft Module

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)

    2001-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  10. Advances in structure-based vaccine design

    PubMed Central

    Kulp, Daniel W; Schief, William R

    2014-01-01

    Despite the tremendous successes of current vaccines, infectious diseases still take a heavy toll on the global population, and that provides strong rationale for broadening our vaccine development repertoire. Structural vaccinology, in which protein structure information is utilized to design immunogens, has promise to provide new vaccines against traditionally difficult targets. Crystal structures of antigens containing one or more protection epitopes, especially when in complex with a protective antibody, are the launching point for immunogen design. Integrating structure and sequence information for families of broadly neutralizing antibodies (bNAbs) has recently enabled the creation of germline-targeting immunogens that bind and activate germline B-cells in order to initiate the elicitation of such antibodies. The contacts between antigen and neutralizing antibody define a structural epitope, and methods have been developed to transplant epitopes to scaffold proteins for structural stabilization, and to design minimized antigens that retain one or more key epitopes while eliminating other potentially distracting or unnecessary features. To develop vaccines that protect against antigenically variable pathogens, pioneering structure-based work demonstrated that multiple strain-specific epitopes could be engineered onto a single immunogen. We review these recent structural vaccinology efforts to engineer germline-targeting, epitope-specific, and/or broad coverage immunogens. PMID:23806515

  11. Programming robotics applications on an advanced hypercube multiprocessor

    SciTech Connect

    Barhen, J.

    1986-01-01

    Specialized computer architectures for advanced robotics applications at ORNL/CESAR are based on the hypercube ensemble concept. The current status of algorithm development is summarized and results for robot dynamics and navigation problems are presented. 13 refs., 1 tab.

  12. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  13. Recent advances in bioprinting techniques: approaches, applications and future prospects.

    PubMed

    Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang

    2016-09-20

    Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.

  14. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    The objective of this paper is to provide an overview assessment of three separate programs at Langley Research Center that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of an span-loaded cargo aircraft with the payload distributed along the wing. This concept has the potential for reduced structural weights. The second technology is the application of laminar flow control (LFC) to the aircraft to reduce the aerodynamic drag. The use of LFC can reduce the fuel requirements during long-range cruise. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel. Coal-derived hydrogen as an aircraft fuel offers both the prospect for reduced dependence on petroleum fuels and improved performance for long-range aircraft.

  15. Advanced transponders for deep space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Kayalar, Selahattin; Yeh, Hen-Geul; Kyriacou, Charles

    1993-01-01

    Three architectures for advanced deep space transponders are proposed. The architectures possess various digital techniques such as fast Fourier transform (FFT), digital phase-locked loop (PLL), and digital sideband aided carrier detection with analog or digital turn-around ranging. Preliminary results on the design and conceptual implementation are presented. Modifications to the command detector unit (CDU) are also presented.

  16. Introduction to Natural Resources: Advanced Applications.

    ERIC Educational Resources Information Center

    Crummett, Dan

    This guide, which is designed for use with student and teacher guides to a 10-unit secondary-level course in natural resources, contains a series of student supplements and advanced assignment and job sheets that provide students with additional opportunities to explore the following areas of natural resources and conservation education: outdoor…

  17. PTTI 2030 - System Applications of Advanced Clocks

    DTIC Science & Technology

    2010-11-01

    earth quakes, volcanoes , and tsunamis. REPLACEMENT OF CELL -PHONE BACK-HAUL TIMING Though recent advances in miniature atomic clocks have...contact with other soldiers, ships, tanks, and bases. The super - ruggedized construction of each DeSoLoS can withstand the catastrophic events of war

  18. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  19. Recent advances in curdlan biosynthesis, biotechnological production, and applications.

    PubMed

    Zhan, Xiao-Bei; Lin, Chi-Chung; Zhang, Hong-Tao

    2012-01-01

    Curdlan is a water-insoluble β-(1,3)-glucan produced by Agrobacterium species under nitrogen-limited condition. Its heat-induced gelling properties render curdlan to be very useful in the food industry initially. Recent advances in the understanding of the role curdlan plays in both innate and adaptive immunity lead to its growing applications in biomedicine. Our review focuses on the recent advances on curdlan biosynthesis and the improvements of curdlan fermentation production both from our laboratory and many others as well as the latest advances on the new applications of curdlan and its derivatives particularly in their immunological functions in biomedicine.

  20. Recent advances in medical imaging: anatomical and clinical applications.

    PubMed

    Grignon, Bruno; Mainard, Laurence; Delion, Matthieu; Hodez, Claude; Oldrini, Guillaume

    2012-10-01

    The aim of this paper was to present an overview of the most important recent advances in medical imaging and their potential clinical and anatomical applications. Dramatic changes have been particularly observed in the field of computed tomography (CT) and magnetic resonance imaging (MRI). Computed tomography (CT) has been completely overturned by the successive development of helical acquisition, multidetector and large area-detector acquisition. Visualising brain function has become a new challenge for MRI, which is called functional MRI, currently based principally on blood oxygenation level-dependent sequences, which could be completed or replaced by other techniques such as diffusion MRI (DWI). Based on molecular diffusion due to the thermal energy of free water, DWI offers a spectrum of anatomical and clinical applications, ranging from brain ischemia to visualisation of large fibrous structures of the human body such as the anatomical bundles of white matter with diffusion tensor imaging and tractography. In the field of X-ray projection imaging, a new low-dose device called EOS has been developed through new highly sensitive detectors of X-rays, allowing for acquiring frontal and lateral images simultaneously. Other improvements have been briefly mentioned. Technical principles have been considered in order to understand what is most useful in clinical practice as well as in the field of anatomical applications. Nuclear medicine has not been included.

  1. Advanced control evaluation for structures (ACES) programs

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome; Waites, Henry

    1988-01-01

    The ACES programs are a series of past, present, and future activities at the Marshall Space Flight Center (MSFC) Ground facility for Large Space Structure Control Verification (GF/LSSCV). The main objectives of the ACES programs are to implement control techniques on a series of complex dynamical systems, to determine the control/structure interaction for the control techniques, and to provide a national facility in which dynamics and control verification can be effected. The focus is on these objectives and how they are implemented under various engineering and economic constraints. Future plans that will be effected in upcoming ACES programs are considered.

  2. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  3. Mechanochemical synthesis of advanced nanomaterials for catalytic applications.

    PubMed

    Xu, Chunping; De, Sudipta; Balu, Alina M; Ojeda, Manuel; Luque, Rafael

    2015-04-21

    Mechanochemical synthesis emerged as the most advantageous, environmentally sound alternative to traditional routes for nanomaterials preparation with outstanding properties for advanced applications. Featuring simplicity, high reproducibility, mild/short reaction conditions and often solvent-free condition (dry milling), mechanochemistry can offer remarkable possibilities in the development of advanced catalytically active materials. The proposed contribution has been aimed to provide a brief account of remarkable recent findings and advances in the mechanochemical synthesis of solid phase advanced catalysts as opposed to conventional systems. The role of mechanical energy in the synthesis of solid catalysts and their application is critically discussed as well as the influence of the synthesis procedure on the physicochemical properties and the efficiency of synthesized catalysts is studied. The main purpose of this feature article is to highlight the possibilities of mechanochemical protocols in (nano)materials engineering for catalytic applications.

  4. Lattice Structures For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.

    2012-07-01

    The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.

  5. Advances in Nanocarbon Metals: Fine Structure

    DTIC Science & Technology

    2015-03-01

    SUPPLEMENTARY NOTES 14. ABSTRACT This study is an investigation of the structure and some properties of silver, copper, and aluminum alloy covetics...Covetics can incorporate large amounts of carbon (C) in a nanoscale form to alter physical and mechanical properties of the base metal or alloy ...and properties can be obtained. 15. SUBJECT TERMS covetic, nanocarbon silver, aluminum , copper 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  6. Advanced Sensors and Applications Study (ASAS)

    NASA Technical Reports Server (NTRS)

    Chism, S. B.; Hughes, C. L.

    1976-01-01

    The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.

  7. Advances in scintillators for medical imaging applications

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Shah, Kanai S.

    2014-09-01

    A review is presented of some recent work in the field of inorganic scintillator research for medical imaging applications, in particular scintillation detectors for Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET).

  8. Uncooled thermal imaging sensor and application advances

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Cox, Stephen; Murphy, Bob; Grealish, Kevin; Joswick, Mike; Denley, Brian; Feda, Frank; Elmali, Loriann; Kohin, Margaret

    2006-05-01

    BAE Systems continues to advance the technology and performance of microbolometer-based thermal imaging modules and systems. 640x480 digital uncooled infrared focal plane arrays are in full production, illustrated by recent production line test data for two thousand focal plane arrays. This paper presents a snapshot of microbolometer technology at BAE Systems and an overview of two of the most important thermal imaging sensor programs currently in production: a family of thermal weapons sights for the United States Army and a thermal imager for the remote weapons station on the Stryker vehicle.

  9. Advanced miniature processing handware for ATR applications

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)

    2003-01-01

    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).

  10. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  11. Advanced reliability methods for structural evaluation

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.; Wu, Y.-T.

    1985-01-01

    Fast probability integration (FPI) methods, which can yield approximate solutions to such general structural reliability problems as the computation of the probabilities of complicated functions of random variables, are known to require one-tenth the computer time of Monte Carlo methods for a probability level of 0.001; lower probabilities yield even more dramatic differences. A strategy is presented in which a computer routine is run k times with selected perturbed values of the variables to obtain k solutions for a response variable Y. An approximating polynomial is fit to the k 'data' sets, and FPI methods are employed for this explicit form.

  12. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    PubMed Central

    Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu

    2015-01-01

    Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034

  13. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1977-01-01

    The ideal cycle, its application to a practical machine, and the specific advantages of high efficiency, low emissions, multi-fuel capability, and low noise of the stirling engine are discussed. Certain portions of the Stirling engine must operate continuously at high temperature. Ceramics offer the potential of cost reduction and efficiency improvement for advanced engine applications. Potential applications for ceramics in Stirling engines, and some of the special problems pertinent to using ceramics in the Stirling engine are described. The research and technology program in ceramics which is planned to support the development of advanced Stirling engines is outlined.

  14. Advances in hadronic structure from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Constantinou, Martha

    2017-01-01

    Understanding nucleon structure is considered a milestone of hadronic physics and new facilities are planned devoted to its study. A future Electron-Ion-Collider proposed by the scientific community will greatly deepen our knowledge on the fundamental constituents of the visible world. To achieve this goal, a synergy between the experimental and theoretical sectors is imperative, and Lattice QCD is in a unique position to provide input from first principle calculations. In this talk we will discuss recent progress in nucleon structure from Lattice QCD, focusing on the evaluation of matrix elements using state-of-the-art simulations with pion masses at their physical value. The axial form factors, electromagnetic radii, the quark momentum fraction and the spin content of the nucleon will be discussed. We will also highlight quantities that may guide New Physics searches, such as the scalar and tensor charges. Finally, we will give updates on a new direct approach to compute quark parton distributions functions on the lattice.

  15. A manufacturing database of advanced materials used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Bao, Han P.

    1994-01-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  16. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  17. Advancement and application of bubble detector technology

    SciTech Connect

    Buckner, M.A.; Casson, W.H.; Sims, C.S.

    1991-01-01

    Every field is searching for it's better mouse trap, and the field of dosimetry is no different. Until recently, a dosimetrist would have been hard-pressed to identify an affordable and yet reliably accurate dosimeter for mixed neutron and gamma fields. A new technology has reared it head and is vying for position in the dosimetry community. This relatively young technology is building upon the foundation of the bubble chamber, conceptualized by Glaser in 1952 (Glaser 1952). Although the attitudes surrounding this technology, as with any new development, are somewhat mixed, with the proper combination of tweaking and innovative thought, applications of this technology hold great promise for the future of neutron dosimetry. The Dosimetry Applications Research (DOSAR) facility of Oak Ridge National Laboratory (ORNL) is looking into some innovative applications of this technology. We are investigating options for overcoming its limiting features in hopes of achieving an unprecedented level of proficiency in neutron detection. Among these are the developing and testing of a Combination Area Neutron Spectrometer, CANS, assessing the plausibility of extremity applications, the assembly of an alternative reader for research, investigation of temperature-related effects and how to correct them and considerations on the coming of age of neutron dosimetry via real time detection of bubble formation in Bubble Technology Industries Inc. (BTI) detectors. In the space allowed, we will attempt to answer the questions: (1) What areas hold the greatest promise for application of this emerging technology (2) What obstacles must be overcome before full-blown application becomes a reality ; and (3) What might the future hold 11 refs., 6 figs., 3 tabs.

  18. Advanced thermal control technology for commercial applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1991-01-01

    A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.

  19. Recent advances and applications of probabilistic topic models

    NASA Astrophysics Data System (ADS)

    Wood, Ian

    2014-12-01

    I present here an overview of recent advances in probabilistic topic modelling and related Bayesian graphical models as well as some of their more atypical applications outside of their home: text analysis. These techniques allow the modelling of high dimensional count vectors with strong correlations. With such data, simply calculating a correlation matrix is infeasible. Probabilistic topic models address this using mixtures of multinomials estimated via Bayesian inference with Dirichlet priors. The use of conjugate priors allows for efficient inference, and these techniques scale well to data sets with many millions of vectors. The first of these techniques to attract significant attention was Latent Dirichlet Allocation (LDA) [1, 2]. Numerous extensions and adaptations of LDA have been proposed: non-parametric models; assorted models incorporating authors, sentiment and other features; models regularised through the use of extra metadata or extra priors on topic structure, and many more [3]. They have become widely used in the text analysis and population genetics communities, with a number of compelling applications. These techniques are not restricted to text analysis, however, and can be applied to other types of data which can be sensibly discretised and represented as counts of labels/properties/etc. LDA and it's variants have been used to find patterns in data from diverse areas of inquiry, including genetics, plant physiology, image analysis, social network analysis, remote sensing and astrophysics. Nonetheless, it is relatively recently that probabilistic topic models have found applications outside of text analysis, and to date few such applications have been considered. I suggest that there is substantial untapped potential for topic models and models inspired by or incorporating topic models to be fruitfully applied, and outline the characteristics of systems and data for which this may be the case.

  20. Applications technology satellites advanced mission study

    NASA Technical Reports Server (NTRS)

    Gould, L. M.

    1972-01-01

    Three spacecraft configurations were designed for operation as a high powered synchronous communications satellite. Each spacecraft includes a 1 kw TWT and a 2 kw Klystron power amplifier feeding an antenna with multiple shaped beams. One of the spacecraft is designed to be boosted by a Thor-Delta launch vehicle and raised to synchronous orbit with electric propulsion. The other two are inserted into a elliptical transfer orbit with an Atlas Centaur and injected into final orbit with an apogee kick motor. Advanced technologies employed in the several configurations include tubes with multiple stage collectors radiating directly to space, multiple-contoured beam antennas, high voltage rollout solar cell arrays with integral power conditioning, electric propulsion for orbit raising and on-station attitude control and station-keeping, and liquid metal slip rings.

  1. Advanced communications payload for mobile applications

    NASA Technical Reports Server (NTRS)

    Ames, S. A.; Kwan, R. K.

    1990-01-01

    An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.

  2. Advances in laser diodes for pyrotechnic applications

    NASA Technical Reports Server (NTRS)

    Craig, Richard R.

    1993-01-01

    Background information concerning the use of laser diodes in pyrotechnic applications is provided in viewgraph form. The following topics are discussed: damage limits, temperature stability, fiber coupling issues, and small (100 micron) and large (400 micron) fiber results. The discussions concerning fiber results concentrate on the areas of package geometry and electro-optical properties.

  3. Stimulus-responsive hydrogels: Theory, modern advances, and applications

    PubMed Central

    Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A.

    2016-01-01

    Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry. PMID:27134415

  4. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  5. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  6. Ferrite Materials for Advanced Multifunction Microwave Systems Applications

    DTIC Science & Technology

    2006-07-05

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Ferrite Materials for Advanced Multifunction Microwave Systems Applications Award No. (Grant) N00014-03-1-0070 PR...were also used in this work. (200 words) 14. SUBJECT TERMS 15. NUMBER OF PAGES Microwave ferrites , yttrium iron garnet, lithium ferrites , hexagonal...Unlimited COVER PAGE FINAL REPORT to the UNITED STATES OFFICE OF NAVAL RESEARCH Ferrite Materials for Advanced Multifunction Microwave Systems

  7. Advanced polymer systems for optoelectronic integrated circuit applications

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Stengel, Kelly M. T.; Shacklette, Lawrence W.; Norwood, Robert A.; Xu, Chengzeng; Wu, Chengjiu; Yardley, James T.

    1997-01-01

    An advanced versatile low-cost polymeric waveguide technology is proposed for optoelectronic integrated circuit applications. We have developed high-performance organic polymeric materials that can be readily made into both multimode and single-mode optical waveguide structures of controlled numerical aperture (NA) and geometry. These materials are formed from highly crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, toughness, loss, and stability against yellowing and humidity. These monomers are intermiscible, providing for precise adjustment of the refractive index from 1.30 to 1.60. Waveguides are formed photolithographically, with the liquid monomer mixture polymerizing upon illumination in the UV via either mask exposure or laser direct-writing. A wide range of rigid and flexible substrates can be used, including glass, quartz, oxidized silicon, glass-filled epoxy printed circuit board substrate, and flexible polyimide film. We discuss the use of these materials on chips and on multi-chip modules (MCMs), specifically in transceivers where we adaptively produced waveguides on vertical-cavity surface-emitting lasers (VCSELs) embedded in transmitter MCMs and on high- speed photodetector chips in receiver MCMs. Light coupling from and to chips is achieved by cutting 45 degree mirrors using excimer laser ablation. The fabrication of our polymeric structures directly on the modules provides for stability, ruggedness, and hermeticity in packaging.

  8. Advances in applications of spiking neuron networks

    NASA Astrophysics Data System (ADS)

    Cios, Krzysztof J.; Sala, Dorel M.

    2000-03-01

    In this paper, we present new findings in constructing and applications of artificial neural networks that use a biologically inspired spiking neuron model. The used model is a point neuron with the interaction between neurons described by postsynaptic potentials. The synaptic plasticity is achieved by using a temporal correlation learning rule, specified as a function of time difference between the firings of pre- and post-synaptic neurons. Using this rule we show how certain associations between neurons in a network of spiking neurons can be implemented. As an example we analyze the dynamic properties of networks of laterally connected spiking neurons and we show their capability to self-organize into topological maps in response to external stimulation. In another application we explore the capability networks of spiking neurons to solve graph algorithms by using temporal coding of distances in a given spatial configuration. The paper underlines the importance of temporal dimension in artificial neural network information processing.

  9. Advanced gloss sensing for robotic applications

    NASA Astrophysics Data System (ADS)

    Deinhammer, Christian; Brandner, Markus

    2012-10-01

    Specular gloss is an important measurand used in quality control of manufacturing processes of highly reflective parts. In this work we present an in-process quality control system to evaluate the gloss of free-form surfaces to be used in an automated polishing process. Due to the geometry of our test objects the presented sensor is mounted on a robot arm and, therefore, needs to be robust against sensor misalignment. This robustness is achieved using a 2D CCD-camera as detector which allows us to properly handle sensor orientation deviations of up to 10. The required dynamic range of the sensor is obtained based on the acquisition of high dynamic range images. We present first results of a sensor prototype and show its applicability to the target application.

  10. Automated S/TEM metrology on advanced semiconductor gate structures

    NASA Astrophysics Data System (ADS)

    Strauss, M.; Arjavac, J.; Horspool, D. N.; Nakahara, K.; Deeb, C.; Hobbs, C.

    2012-03-01

    Alternate techniques for obatining metrology data from advanced semiconductor device structures may be required. Automated STEM-based dimensional metrology (CD-STEM) was developed for complex 3D geometries in read/write head metrology in teh hard disk drive industry. It has been widely adopted, and is the process of record for metrology. Fully automated S/TEM metrology on advanced semiconductor gate structures is viable, with good repeatability and robustness. Consistent automated throughput of 10 samples per hour was achieved. Automated sample preparation was developed with sufficient throughput and quality to support the automated CD-STEM.

  11. Advanced Life Systems for Extreme Environments: An Arctic Application

    NASA Technical Reports Server (NTRS)

    Lewis, Carol E.; Stanford, Kerry L.; Bubenheim, David L.; Covington, Alan (Technical Monitor)

    1995-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S. Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions (U.S. Arctic Research Commission). These solutions are also damaging to the environment. Sanitation and a safe water supply are particularly problems in rural villages. About one-fourth of Alaska's 86.000 Native residents live in these communities. They are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain (Office of Technology Assessment, 1994). Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Advanced Life Systems for Extreme Environments (ALSEE) provides a solution to sanitation and safe water problems. The system uses an advanced integrated technology developed for Antarctic and space applications. ALSEE uses the systems approach to address more than waste and water problems. By incorporating hydroponic horticulture and aquaculture into the waste treatment system, ALSEE addresses the quality and quantity of fresh foods available to Arctic residents. A temperate climate is required for year-round plant growth. ALSEE facilities can be designed to include a climate controlled area within the structure. This type of environment is a change from the long periods of darkness and cold found in the Arctic and can help alleviate stress so often associated with these extremes. While the overall concept of ALSEE projects is advanced, system facilities can be operated by village residents with appropriate training. ALSEE provides continuing training and

  12. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  13. Advanced Interconnect Roadmap for Space Applications

    NASA Technical Reports Server (NTRS)

    Galbraith, Lissa

    1999-01-01

    This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.

  14. Advances and applications of occupancy models

    USGS Publications Warehouse

    Bailey, Larissa; MacKenzie, Darry I.; Nichols, James D.

    2013-01-01

    Summary: The past decade has seen an explosion in the development and application of models aimed at estimating species occurrence and occupancy dynamics while accounting for possible non-detection or species misidentification. We discuss some recent occupancy estimation methods and the biological systems that motivated their development. Collectively, these models offer tremendous flexibility, but simultaneously place added demands on the investigator. Unlike many mark–recapture scenarios, investigators utilizing occupancy models have the ability, and responsibility, to define their sample units (i.e. sites), replicate sampling occasions, time period over which species occurrence is assumed to be static and even the criteria that constitute ‘detection’ of a target species. Subsequent biological inference and interpretation of model parameters depend on these definitions and the ability to meet model assumptions. We demonstrate the relevance of these definitions by highlighting applications from a single biological system (an amphibian–pathogen system) and discuss situations where the use of occupancy models has been criticized. Finally, we use these applications to suggest future research and model development.

  15. Adding Structure to the Transition Process to Advanced Mathematical Activity

    ERIC Educational Resources Information Center

    Engelbrecht, Johann

    2010-01-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…

  16. LBB application in the US operating and advanced reactors

    SciTech Connect

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  17. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  18. Advances in direct and diffraction methods for surface structural determination

    NASA Astrophysics Data System (ADS)

    Tong, S. Y.

    1999-08-01

    I describe recent advances in low-energy electron diffraction holography and photoelectron diffraction holography. These are direct methods for determining the surface structure. I show that for LEED and PD spectra taken in an energy and angular mesh, the relative phase between the reference wave and the scattered wave has a known geometric form if the spectra are always taken from within a small angular cone in the near backscattering direction. By using data in the backscattering small cone at each direction of interest, a simple algorithm is developed to invert the spectra and extract object atomic positions with no input of calculated dynamic factors. I also describe the use of a convergent iterative method of PD and LEED. The computation time of this method scales as N2, where N is the dimension of the propagator matrix, rather than N3 as in conventional Gaussian substitutional methods. Both the Rehr-Albers separable-propagator cluster approach and the slab-type non-separable approach can be cast in the new iterative form. With substantial savings in computational time and no loss in numerical accuracy, this method is very useful in applications of multiple scattering theory, particularly for systems involving either very large unit cells (>300 atoms) or where no long-range order is present.

  19. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).

  20. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  1. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  2. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  3. RNA Structure: Advances and Assessment of 3D Structure Prediction.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2017-03-30

    Biological functions of RNA molecules are dependent upon sustained specific three-dimensional (3D) structures of RNA, with or without the help of proteins. Understanding of RNA structure is frequently based on 2D structures, which describe only the Watson-Crick (WC) base pairs. Here, we hierarchically review the structural elements of RNA and how they contribute to RNA 3D structure. We focus our analysis on the non-WC base pairs and on RNA modules. Several computer programs have now been designed to predict RNA modules. We describe the RNA-Puzzles initiative, which is a community-wide, blind assessment of RNA 3D structure prediction programs to determine the capabilities and bottlenecks of current predictions. The assessment metrics used in RNA-Puzzles are briefly described. The detection of RNA 3D modules from sequence data and their automatic implementation belong to the current challenges in RNA 3D structure prediction. Expected final online publication date for the Annual Review of Biophysics Volume 46 is May 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  4. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.

  5. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  6. Analytical Protein Microarrays: Advancements Towards Clinical Applications

    PubMed Central

    Sauer, Ursula

    2017-01-01

    Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems. PMID:28146048

  7. Analytical Protein Microarrays: Advancements Towards Clinical Applications.

    PubMed

    Sauer, Ursula

    2017-01-29

    Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.

  8. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  9. Functionalization of cellulose nanocrystals for advanced applications.

    PubMed

    Tang, Juntao; Sisler, Jared; Grishkewich, Nathan; Tam, Kam Chiu

    2017-05-15

    Replacing the widespread use of petroleum-derived non-biodegradable materials with green and sustainable materials is a pressing challenge that is gaining increasing attention by the scientific community. One such system is cellulose nanocrystal (CNC) derived from acid hydrolysis of cellulosic materials, such as plants, tunicates and agriculture biomass. The utilization of colloidal CNCs can aid in the reduction of carbon dioxide that is responsible for global warming and climate change. CNCs are excellent candidates for the design and development of functional nanomaterials in many applications due to several attractive features, such as high surface area, hydroxyl groups for functionalization, colloidal stability, low toxicity, chirality and mechanical strength. Several large scale manufacturing facilities have been commissioned to produce CNCs of up to 1000kg/day, and this has generated increasing interests in both academic and industrial laboratories. In this feature article, we will describe the recent development of functionalized cellulose nanocrystals for several important applications in ours and other laboratories. We will highlight some challenges and offer perspectives on the potentials of these sustainable nanomaterials.

  10. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.

  11. Advanced accelerator and mm-wave structure research at LANL

    SciTech Connect

    Simakov, Evgenya Ivanovna

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  12. Advanced electrochemical concepts for NASA applications

    NASA Astrophysics Data System (ADS)

    Halpert, Gerald; Attia, Alan

    A Jet Propulsion Laboratory (JPL) survey of 23 electrochemical systems for space applications in which experts from universities, industry, and government participated is discussed. They recommended achievable specific energy for these systems and forecast the likelihood of their development of these systems by the year 1995, 2000, and 2005. The highest ranked systems for operation in planetary inner-orbit spacecraft included Na/beta-double prime-alumina/Z, where Z = S, FeCl2 or NiCl2, the upper plateau Li(Al)/FeS2 system, and the H2/O2 alkaline regenerative fuel cell. The achievable specific energy for these as operational batteries was estimated to be 130, 180 and 100 Wh/kg, respectively. For planetary outer-orbit and small geosynchronous (GEO) spacecraft Li/TiS2 (estimated 90 Wh/kg) was the choice.

  13. Advanced Heat Pipes For Optical Applications

    NASA Astrophysics Data System (ADS)

    Shaubach, Robert M.; Eastman, G. Yale

    1984-12-01

    Heat pipes offer the potential of vibrationless cooling of optical surfaces while maintaining a high degree of temperature uniformity on the cooled surface. The objective of the present program is to develop and demonstrate prototype heat pipes for this application. The material of construction is silicon; the pqwer density range is 5 to 50 Watts/per square centimeter with a nominal objective of 30 W/cm2. This paper describes the first eighteen months of work, during which the contract goals were met. The program was carried out by Thermacore on Contract F33615-82-C-5127 for the Department of the Air Force, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio. Dr. Alan K. Hopkins of the Materials Laboratory supplied technical supervision of the program for the Air Force.

  14. An advanced unmanned vehicle for remote applications

    SciTech Connect

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  15. [Advances in the application of smart phones in modern medicine].

    PubMed

    Wang, Lin; Hu, Jie; Li, Fei; Wei, Huilin; Li, Ying; Lu, Tianjian; Wang, Shuqi; Xu, Feng

    2014-02-01

    Since smart phones have been developed, significant advances in the function of mobile phone due to the development of software, hardware and accessories have been reached. Till now, smart phones have been engaged in daily life with an increasing impact. As a new medical model, mobile phone medicine is emerging and has found wide spread applications in medicine, especially in diagnosing, monitoring and screening various diseases. In addition, mo bile phone medical application shows great potential trend to improve healthcare in resource-limited regions due to its advantageous features of portability and information communication capability. Nowadays, the scientific and technological issues related to mobile phone medicine have attracted worldwide attention. In this review, we summarize state-of-the-art advances of mobile phone medicine with focus on its diagnostics applications in order to expand the fields of their applications and promote healthcare informatization.

  16. Advanced Boost System Developing for High EGR Applications

    SciTech Connect

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  17. PREFACE: Advanced Materials for Demanding Applications

    NASA Astrophysics Data System (ADS)

    McMillan, Alison; Schofield, Stephen; Kelly, Michael

    2015-02-01

    This was a special conference. It was small enough (60+ delegates) but covering a wide range of topics, under a broad end-use focussed heading. Most conferences today either have hundreds or thousands of delegates or are small and very focussed. The topics ranged over composite materials, the testing of durability aspects of materials, and an eclectic set of papers on radar screening using weak ionized plasmas, composites for microvascular applications, composites in space rockets, and materials for spallation neutron sources etc. There were several papers of new characterisation techniques and, very importantly, several papers that started with the end-user requirements leading back into materials selection. In my own area, there were three talks about the technology for the ultra-precise positioning of individual atoms, donors, and complete monolayers to take modern electronics and optoelectronics ideas closer to the market place. The President of the Institute opened with an experience-based talk on translating innovative technology into business. Everyone gave a generous introduction to bring all-comers up to speed with the burning contemporary issues. Indeed, I wish that a larger cohort of first-year engineering PhD students were present to see the full gamut of what takes a physics idea to a success in the market place. I would urge groups to learn from Prof Alison McMillan (a Vice President of the Institute of Physics) and Steven Schofield, to set up conferences of similar scale and breadth. I took in more than I do from mega-meetings, and in greater depth. Professor Michael Kelly Department of Engineering University of Cambridge

  18. Advanced atomic force microscopy: Development and application

    NASA Astrophysics Data System (ADS)

    Walters, Deron A.

    Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.

  19. Application of advanced computational technology to propulsion CFD

    NASA Astrophysics Data System (ADS)

    Szuch, John R.

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid dynamics (ICFM) to a state of practical application for aerospace propulsion system design. This paper presents an overview of efforts underway at NASA Lewis to advance and apply computational technology to ICFM. These efforts include the use of modern, software engineering principles for code development, the development of an AI-based user-interface for large codes, the establishment of a high-performance, data communications network to link ICFM researchers and facilities, and the application of parallel processing to speed up computationally intensive and/or time-critical ICFM problems. A multistage compressor flow physics program is cited as an example of efforts to use advanced computational technology to enhance a current NASA Lewis ICFM research program.

  20. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  1. Application of advanced technologies to future military transports

    NASA Technical Reports Server (NTRS)

    Clark, Rodney L.; Lange, Roy H.; Wagner, Richard D.

    1990-01-01

    Long range military transport technologies are addressed with emphasis of defining the potential benefits of the hybrid laminar flow control (HLFC) concept currently being flight tested. Results of a 1990's global range transport study are presented showing the expected payoff from application of advanced technologies. Technology forecast for military transports is also presented.

  2. Tele-Immersion: An Internet 2 Advanced Application.

    ERIC Educational Resources Information Center

    Simco, Greg

    2000-01-01

    Describes Tele-Immersion, and Advanced Applications initiative of the Internet 2 to develop group collaboration and interactivity beyond the current practices of the Internet. Discusses research areas that relate to this realm of virtual reality, including depth perception and rendering, which maps digital representations to a human compatible…

  3. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  4. Advances in the application of diffusion Monte Carlo to solids

    NASA Astrophysics Data System (ADS)

    Shulenburger, L.; Mattsson, T. R.

    2014-03-01

    The need for high fidelity electronic structure calculations has catalyzed an explosion in the development of new techniques. Improvements in DFT functionals, many body perturbation theory and dynamical mean field theory are starting to make significant headway towards reaching the accuracy required for a true predictive capability. One technique that is undergoing a resurgence is diffusion Monte Carlo (DMC). The early calculations with this method were of unquestionable accuracy (providing a valuable reference for DFT functionals) but were largely limited to model systems because of their high computational cost. Algorithmic advances and improvements in computer power have reached the point where this is no longer an insurmountable obstacle. In this talk I will present a broad study of DMC applied to condensed matter (arXiv:1310.1047). We have shown excellent agreement for the bulk modulus and lattice constant of solids exhibiting several different types of binding, including ionic, covalent and van der Waals. We will discuss both the opportunities for application of this method as well as opportunities for further theoretical improvements. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract No. DE-AC04-94AL85000.

  5. Engineering derivatives from biological systems for advanced aerospace applications

    NASA Technical Reports Server (NTRS)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  6. Advanced Functional Materials for Energy Related Applications

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush

    The current global heavy dependency on fossil fuels gives rise to two critical problems: I) fossil fuels will be depleted in the near future; II) the release of green house gas CO2 generated by the combustion of fossil fuels contributes to global warming. To potentially address both problems, this dissertation documents three primary areas of investigation related to the development of alternative energy sources: electrocatalysts for fuel cells, photocatalysts for hydrogen generation, and photoreduction catalysts for converting CO2 to CH4. Fuel cells could be a promising source of alternative energy. Decreasing the cost and improving the durability and power density of Pt/C as a catalyst for reducing oxygen are major challenges for developing fuel cells. To address these concerns, we have synthesized a Nitrogen-Sulfur-Iron-doped porous carbon material. Our results indicate that the synthesized catalyst exhibits not only higher current density and stability but also higher tolerance to crossover chemicals than the commercial Pt/C catalyst. More importantly, the synthetic method is simple and inexpensive. Using photocatalysts and solar energy is another potential alternative solution for energy demand. We have synthesized a new biomimetic heterogeneous photocatalyst through the incorporation of homogeneous complex 1 [(i-SCH 2)2NC(O)C5H4N]-Fe2(CO) 6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). As photosensitizer ZrPF absorbs the visible light and produces photoexcited electrons that can be transferred through axial covalent bond to di-nuclear complex 1 for hydrogen generation. Additionally, we have studied the photoreduction of CO2 to CH4 using self-doped TiO2 (Ti+3@TiO 2) as photocatalytic materials. The incorporation of Ti3+ into TiO2 structures narrows the band gap, leading to significantly increased photocatalytic activity for the reduction of CO2 into renewable hydrocarbon fuel in the presence of water vapor under visible

  7. Advances in target imaging of deep Earth structure

    NASA Astrophysics Data System (ADS)

    Masson, Y.; Romanowicz, B. A.; Clouzet, P.

    2015-12-01

    A new generation of global tomographic models (Lekić and Romanowicz, 2011; French et al, 2013, 2014) has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features, requires further efforts to obtain higher resolution images. The focus of our ongoing effort is to develop advanced tomographic methods to image remote regions of the Earth at fine scales. We have developed an approach in which distant sources (located outside of the target region) are replaced by an equivalent set of local sources located at the border of the computational domain (Masson et al., 2014). A limited number of global simulations in a reference 3D earth model is then required. These simulations are computed prior to the regional inversion, while iterations of the model need to be performed only within the region of interest, potentially allowing us to include shorter periods at limited additional computational cost. Until now, the application was limited to a distribution of receivers inside the target region. This is particularly suitable for studies of upper mantle structure in regions with dense arrays (e.g. see our companion presentation Clouzet et al., this Fall AGU). Here we present our latest development that now can include teleseismic data recorded outside the imaged region. This allows us to perform regional waveform tomography in the situation where

  8. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  9. A survey of advanced battery systems for space applications

    NASA Astrophysics Data System (ADS)

    Attia, Alan I.

    1989-12-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  10. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  11. Advances in Multi-Sensor Data Fusion: Algorithms and Applications

    PubMed Central

    Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying

    2009-01-01

    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of “algorithm fusion” methods; (3) Establishment of an automatic quality assessment scheme. PMID:22408479

  12. Differently Structured Advance Organizers Lead to Different Initial Schemata and Learning Outcomes

    ERIC Educational Resources Information Center

    Gurlitt, Johannes; Dummel, Sebastian; Schuster, Silvia; Nuckles, Matthias

    2012-01-01

    Does the specific structure of advance organizers influence learning outcomes? In the first experiment, 48 psychology students were randomly assigned to three differently structured advance organizers: a well-structured, a well-structured and key-concept emphasizing, and a less structured advance organizer. These were followed by a sorting task, a…

  13. Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  14. Inorganic nanolayers: structure, preparation, and biomedical applications.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  15. Inorganic nanolayers: structure, preparation, and biomedical applications

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  16. Structural Change Can Be Detected in Advanced-Glaucoma Eyes

    PubMed Central

    Belghith, Akram; Medeiros, Felipe A.; Bowd, Christopher; Liebmann, Jeffrey M.; Girkin, Christopher A.; Weinreb, Robert N.; Zangwill, Linda M.

    2016-01-01

    Purpose To compare spectral-domain optical coherence tomography (SD-OCT) standard structural measures and a new three-dimensional (3D) volume optic nerve head (ONH) change detection method for detecting change over time in severely advanced-glaucoma (open-angle glaucoma [OAG]) patients. Methods Thirty-five eyes of 35 patients with very advanced glaucoma (defined as a visual field mean deviation < −21 dB) and 46 eyes of 30 healthy subjects to estimate aging changes were included. Circumpapillary retinal fiber layer thickness (cpRNFL), minimum rim width (MRW), and macular retinal ganglion cell–inner plexiform layer (GCIPL) thicknesses were measured using the San Diego Automated Layer Segmentation Algorithm (SALSA). Progression was defined as structural loss faster than 95th percentile of healthy eyes. Three-dimensional volume ONH change was estimated using the Bayesian-kernel detection scheme (BKDS), which does not require extensive retinal layer segmentation. Results The number of progressing glaucoma eyes identified was highest for 3D volume BKDS (13, 37%), followed by GCPIL (11, 31%), cpRNFL (4, 11%), and MRW (2, 6%). In advanced-OAG eyes, only the mean rate of GCIPL change reached statistical significance, −0.18 μm/y (P = 0.02); the mean rates of cpRNFL and MRW change were not statistically different from zero. In healthy eyes, the mean rates of cpRNFL, MRW, and GCIPL change were significantly different from zero. (all P < 0.001). Conclusions Ganglion cell–inner plexiform layer and 3D volume BKDS show promise for identifying change in severely advanced glaucoma. These results suggest that structural change can be detected in very advanced disease. Longer follow-up is needed to determine whether changes identified are false positives or true progression. PMID:27454660

  17. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  18. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  19. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  20. Structural Tailoring of Advanced Turboprops (STAT) programmer's manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.; Harvey, P. R.

    1989-01-01

    The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimizations on highly swept propfan blades. This manual describes the functionality of the STAT system from a programmer's viewpoint. It provides a top-down description of module intent and interaction. The purpose of this manual is to familiarize the programmer with the STAT system should he/she wish to enhance or verify the program's function.

  1. Self Healing Composite for Aircraft's Structural Application

    NASA Astrophysics Data System (ADS)

    Teoh, S. H.; Chia, H. Y.; Lee, M. S.; Nasyitah, A. J. N.; Luqman, H. B. S. M.; Nurhidayah, S.; Tan, Willy. C. K.

    When one cuts himself, it is amazing to watch how quickly the body acts to mend the wound. Immediately, the body works to pull the skin around the cut back together. The concept of repair by bleeding of enclosed functional agents serves as the biomimetic inspiration of synthetic self repair systems. Such synthetic self repair systems are based on advancement in polymeric materials; the process of human thrombosis is the inspiration for the application of self healing fibres within the composite materials. Results based on flexural 3 point bend test on the prepared samples have shown that the doubled layer healed hollow fibre laminate subjected to a healing regime of 3 weeks has a healed strength increase of 27% compared to the damaged baseline laminate. These results gave us confidence that there is a great potential to adopt such self healing mechanism on actual composite parts like in aircraft's composite structures.

  2. Microstructurally tailored ceramics for advanced energy applications by thermoreversible gelcasting

    NASA Astrophysics Data System (ADS)

    Shanti, Noah Omar

    Thermoreversible gelcasting (TRG) is an advantageous technique for rapidly producing bulk, net-shape ceramics and laminates. In this method, ceramic powder is suspended in warm acrylate triblock copolymer/alcohol solutions that reversibly gel upon cooling by the formation of endblock aggregates, to produce slurries which are cast into molds. Gel properties can be tailored by controlling the endblock and midblock lengths of the copolymer network-former and selecting an appropriate alcohol solvent. This research focuses on expanding and improving TRG techniques, focusing specifically on advanced energy applications including the solid oxide fuel cell (SOFC). Rapid drying of filled gels can lead to warping and cracking caused by high differential capillary stresses. A new drying technique using concentrated, alcohol-based solutions as liquid desiccants (LDs) to greatly reduce warping is introduced. The optimal LD is a poly(tert-butyl acrylate)/isopropyl alcohol solution with 5 mol% tert-butyl acrylate units. Alcohol emissions during drying are completely eliminated by combining initial drying in an LD with final stage drying in a vacuum oven having an in-line solvent trap. Porous ceramics are important structures for many applications, including SOFCs. Pore network geometries are tailored by the addition of fugitive fillers to TRG slurries. Uniform spherical, bimodal spherical and uniform fibrous fillers are used. Three-dimensional pore structures are visualized by X-ray computed tomography, allowing for direct measurements of physical parameters such as concentration and morphology as well as transport properties such as tortuosity. Tortuosity values as low as 1.52 are achieved when 60 vol% of solids are uniform spherical filler. Functionally graded laminates with layers ranging from 10 mum to > 1 mm thick are produced with a new technique that combines TRG with tape casting. Gels used for bulk casting are not suitable for use with tape casting, and appropriate base

  3. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Oneill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  4. Recent advances in processing and applications of microwave ferrites

    NASA Astrophysics Data System (ADS)

    Harris, Vincent G.; Geiler, Anton; Chen, Yajie; Yoon, Soack Dae; Wu, Mingzhong; Yang, Aria; Chen, Zhaohui; He, Peng; Parimi, Patanjali V.; Zuo, Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier; Vittoria, Carmine

    2009-07-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  5. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  6. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications.

    PubMed

    Usman, Ali; Zia, Khalid Mahmood; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima; Zia, Fatima

    2016-05-01

    Chitin and chitosan are amino polysaccharides having massive structural propensities to produce bioactive materials with innovative properties, functions and diverse applications particularly in biomedical field. The specific physico-chemical, mechanical, biological and degradation properties offer efficient way to blend these biopolymers with synthetic ones. Polyurethane (PU) gained substantial attention owing to its structure-properties relationship. The immense activities of chitin/chitosan are successfully utilized to enhance the bioactive properties of polyurethanes. This review shed a light on chitin and chitosan based PU materials with their potential applications especially focusing the bio-medical field. All the technical scientific issues have been addressed highlighting the recent advancement in the biomedical field.

  7. Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Weeks, Carrell E.

    2005-01-01

    Titanium matrix composites (TMCs) have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. New gamma titanium aluminide alloys and an appropriate fiber could offer an improved TMC for use in intermediate temperature applications (400-800 C). The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a structural material in future aerospace transportation systems, where very light-weight structures are necessary to meet the goals of advanced aerospace programs.

  8. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  9. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  10. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications.

    PubMed

    Lee, Chee Huei; Bhandari, Shiva; Tiwari, Bishnu; Yapici, Nazmiye; Zhang, Dongyan; Yap, Yoke Khin

    2016-07-15

    A comprehensive overview of current research progress on boron nitride nanotubes (BNNTs) is presented in this article. Particularly, recent advancements in controlled synthesis and large-scale production of BNNTs will first be summarized. While recent success in mass production of BNNTs has opened up new opportunities to implement the appealing properties in various applications, concerns about product purity and quality still remain. Secondly, we will summarize the progress in functionalization of BNNTs, which is the necessary step for their applications. Additionally, selected potential applications in structural composites and biomedicine will be highlighted.

  11. Characteristics and applications of advanced technology microchannel plates

    NASA Astrophysics Data System (ADS)

    Horton, J. R.; Tasker, G. W.; Fijol, J. J.

    1990-09-01

    A method for fabrication of novel thin-film continuous dynode electron multipliers is described. The feasibility of crucial manufacturing steps, including anisotropic dry etching of substrates into photolithographically-defined arrays of high-aspect-ratio channels, and the formation of thin-film continuous dynodes by CVD is shown. Potential performance and design advantages of this advanced technology-microchannel plate over the conventional reduced lead silicate glass microchannel plate and implications for new applications are discussed.

  12. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  13. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.

    PubMed

    Vashist, Sandeep Kumar; Zheng, Dan; Al-Rubeaan, Khalid; Luong, John H T; Sheu, Fwu-Shan

    2011-01-01

    Electrochemical (EC) sensing approaches have exploited the use of carbon nanotubes (CNTs) as electrode materials owing to their unique structures and properties to provide strong electrocatalytic activity with minimal surface fouling. Nanofabrication and device integration technologies have emerged along with significant advances in the synthesis, purification, conjugation and biofunctionalization of CNTs. Such combined efforts have contributed towards the rapid development of CNT-based sensors for a plethora of important analytes with improved detection sensitivity and selectivity. The use of CNTs opens an opportunity for the direct electron transfer between the enzyme and the active electrode area. Of particular interest are also excellent electrocatalytic activities of CNTs on the redox reaction of hydrogen peroxide and nicotinamide adenine dinucleotide, two major by-products of enzymatic reactions. This excellent electrocatalysis holds a promising future for the simple design and implementation of on-site biosensors for oxidases and dehydrogenases with enhanced selectivity. To date, the use of an anti-interference layer or an artificial electron mediator is critically needed to circumvent unwanted endogenous electroactive species. Such interfering species are effectively suppressed by using CNT based electrodes since the oxidation of NADH, thiols, hydrogen peroxide, etc. by CNTs can be performed at low potentials. Nevertheless, the major future challenges for the development of CNT-EC sensors include miniaturization, optimization and simplification of the procedure for fabricating CNT based electrodes with minimal non-specific binding, high sensitivity and rapid response followed by their extensive validation using "real world" samples. A high resistance to electrode fouling and selectivity are the two key pending issues for the application of CNT-based biosensors in clinical chemistry, food quality and control, waste water treatment and bioprocessing.

  14. Hafnium zirconate gate dielectric for advanced gate stack applications

    NASA Astrophysics Data System (ADS)

    Hegde, R. I.; Triyoso, D. H.; Samavedam, S. B.; White, B. E.

    2007-04-01

    We report on the development of a hafnium zirconate (HfZrO4) alloy gate dielectric for advanced gate stack applications. The HfZrO4 and hafnium dioxide (HfO2) films were formed by atomic layer deposition using metal halides and heavy water as precursors. The HfZrO4 material properties were examined and compared with those of HfO2 by a wide variety of analytical methods. The dielectric properties, device performance, and reliability of HfZrO4 were investigated by fabricating HfZrO4/tantalum carbide (TaxCy) metal-oxide-semiconductor field effect transistor. The HfZrO4 dielectric film has smaller band gap, smaller and more uniform grains, less charge traps, and more uniform film quality than HfO2. The HfZrO4 dielectric films exhibited good thermal stability with silicon. Compared to HfO2, the HfZrO4 gate dielectric showed lower capacitance equivalent thickness value, higher transconductance, less charge trapping, higher drive current, lower threshold voltage (Vt), reduced capacitance-voltage (C-V ) hysteresis, lower interface state density, superior wafer level thickness uniformity, and longer positive bias temperature instability lifetime. Incorporation of zirconium dioxide (ZrO2) into HfO2 enhances the dielectric constant (k ) of the resulting HfZrO4 which is associated with structural phase transformation from mainly monoclinic to tetragonal. The tetragonal phase increases the k value of HfZrO4 dielectric to a large value as predicted. The improved device characteristics are attributed to less oxygen vacancy in the fine grained microstructure of HfZrO4 films.

  15. Recent Advances in Computed Tomographic Technology: Cardiopulmonary Imaging Applications.

    PubMed

    Tabari, Azadeh; Lo Gullo, Roberto; Murugan, Venkatesh; Otrakji, Alexi; Digumarthy, Subba; Kalra, Mannudeep

    2017-03-01

    Cardiothoracic diseases result in substantial morbidity and mortality. Chest computed tomography (CT) has been an imaging modality of choice for assessing a host of chest diseases, and technologic advances have enabled the emergence of coronary CT angiography as a robust noninvasive test for cardiac imaging. Technologic developments in CT have also enabled the application of dual-energy CT scanning for assessing pulmonary vascular and neoplastic processes. Concerns over increasing radiation dose from CT scanning are being addressed with introduction of more dose-efficient wide-area detector arrays and iterative reconstruction techniques. This review article discusses the technologic innovations in CT and their effect on cardiothoracic applications.

  16. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed.

  17. Advances in Production and Applications of Carbon Nanotubes.

    PubMed

    Jia, Xilai; Wei, Fei

    2017-02-01

    Recent decades have witnessed many breakthroughs in research on carbon nanotubes (CNTs), particularly regarding controllable synthesis, production scale-up, and application advances for this material. This sp (2)-bonded nanocarbon uniquely combines extreme mechanical strength, exceptionally high electrical conductivity, as well as many other superior properties, making it highly attractive for fundamental research and industrial applications. Synthesis and mass production form the solid basis for high-volume applications of CNTs. During recent decades, CNT production capacity has reached more than thousands of tons per year, greatly decreasing the price of CNTs. Although the unique physiochemical properties of an individual CNT are stated repeatedly, manifestation of such unique properties in a macroscopic material, e.g., realization of high-strength CNT fibers, remains a great challenge. If such challenges are solved, many critical applications will be enabled. Herein we review the critical progress in the development of synthesis and scaled-up production methods for CNTs, and discuss advances in their applications. Scientific problems and technological challenges are discussed together.

  18. Advances in the manufacturing, types, and applications of biosensors

    NASA Astrophysics Data System (ADS)

    Ravindra, Nuggehalli M.; Prodan, Camelia; Fnu, Shanmugamurthy; Padronl, Ivan; Sikha, Sushil K.

    2007-12-01

    In recent years, there have been significant technological advancements in the manufacturing, types, and applications of biosensors. Applications include clinical and non-clinical diagnostics for home, bio-defense, bio-remediation, environment, agriculture, and the food industry. Biosensors have progressed beyond the detection of biological threats such as anthrax and are finding use in a number of non-biological applications. Emerging biosensor technologies such as lab-on-a-chip have revolutionized the integration approaches for a very flexible, innovative, and user-friendly platform. An overview of the fundamentals, types, applications, and manufacturers, as well as the market trends of biosensors is presented here. Two case studies are discussed: one focused on a characterization technique—patch clamping and dielectric spectroscopy as a biological sensor—and the other about lithium phthalocyanine, a material that is being developed for in-vivo oxymetry.

  19. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  20. Advances and trends in structural and solid mechanics; Proceedings of the Symposium, Washington, DC, October 4-7, 1982

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Editor); Housner, J. M.

    1983-01-01

    The mechanics of materials and material characterization are considered, taking into account micromechanics, the behavior of steel structures at elevated temperatures, and an anisotropic plasticity model for inelastic multiaxial cyclic deformation. Other topics explored are related to advances and trends in finite element technology, classical analytical techniques and their computer implementation, interactive computing and computational strategies for nonlinear problems, advances and trends in numerical analysis, database management systems and CAD/CAM, space structures and vehicle crashworthiness, beams, plates and fibrous composite structures, design-oriented analysis, artificial intelligence and optimization, contact problems, random waves, and lifetime prediction. Earthquake-resistant structures and other advanced structural applications are also discussed, giving attention to cumulative damage in steel structures subjected to earthquake ground motions, and a mixed domain analysis of nuclear containment structures using impulse functions.

  1. Recent advances in the biomimicry of structural colours.

    PubMed

    Dumanli, Ahu Gümrah; Savin, Thierry

    2016-12-21

    Nature has mastered the construction of nanostructures with well-defined macroscopic effects and purposes. Structural colouration is a visible consequence of the particular patterning of a reflecting surface with regular structures at submicron length scales. Structural colours usually appear bright, shiny, iridescent or with a metallic look, as a result of physical processes such as diffraction, interference, or scattering with a typically small dissipative loss. These features have recently attracted much research effort in materials science, chemistry, engineering and physics, in order to understand and produce structural colours. In these early stages of photonics, researchers facing an infinite array of possible colour-producing structures are heavily inspired by the elaborate architectures they find in nature. We review here the recent technological strategies employed to artificially mimic the structural colours found in nature, as well as some of their current and potential applications.

  2. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    SciTech Connect

    Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.

    1986-06-01

    Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  3. Applications and Advances in Electronic-Nose Technologies

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man. PMID:22346690

  4. Feature-based tolerancing for advanced manufacturing applications

    SciTech Connect

    Brown, C.W.; Kirk, W.J. III; Simons, W.R.; Ward, R.C.; Brooks, S.L.

    1994-11-01

    A primary requirement for the successful deployment of advanced manufacturing applications is the need for a complete and accessible definition of the product. This product definition must not only provide an unambiguous description of a product`s nominal shape but must also contain complete tolerance specification and general property attributes. Likewise, the product definition`s geometry, topology, tolerance data, and modeler manipulative routines must be fully accessible through a robust application programmer interface. This paper describes a tolerancing capability using features that complements a geometric solid model with a representation of conventional and geometric tolerances and non-shape property attributes. This capability guarantees a complete and unambiguous definition of tolerances for manufacturing applications. An object-oriented analysis and design of the feature-based tolerance domain was performed. The design represents and relates tolerance features, tolerances, and datum reference frames. The design also incorporates operations that verify correctness and check for the completeness of the overall tolerance definition. The checking algorithm is based upon the notion of satisfying all of a feature`s toleranceable aspects. Benefits from the feature-based tolerance modeler include: advancing complete product definition initiatives, incorporating tolerances in product data exchange, and supplying computer-integrated manufacturing applications with tolerance information.

  5. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  6. Advances in computer imaging/applications in facial plastic surgery.

    PubMed

    Papel, I D; Jiannetto, D F

    1999-01-01

    Rapidly progressing computer technology, ever-increasing expectations of patients, and a confusing medicolegal environment requires a clarification of the role of computer imaging/applications. Advances in computer technology and its applications are reviewed. A brief historical discussion is included for perspective. Improvements in both hardware and software with the advent of digital imaging have allowed great increases in speed and accuracy in patient imaging. This facilitates doctor-patient communication and possibly realistic patient expectations. Patients seeking cosmetic surgery now often expect preoperative imaging. Although society in general has become more litigious, a literature search up to 1998 reveals no lawsuits directly involving computer imaging. It appears that conservative utilization of computer imaging by the facial plastic surgeon may actually reduce liability and promote communication. Recent advances have significantly enhanced the value of computer imaging in the practice of facial plastic surgery. These technological advances in computer imaging appear to contribute a useful technique for the practice of facial plastic surgery. Inclusion of computer imaging should be given serious consideration as an adjunct to clinical practice.

  7. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  8. Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies

    ScienceCinema

    Tijana Rajh

    2016-07-12

    Dr. Rajh will present a general talk on nanotechnology – an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

  9. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  10. Catheters: instrumental advancements in biomedical applications of optical fibers.

    PubMed

    de Lima, Carlos J; Moreira, Leonardo M; Lyon, Juliana P; Villaverde, Antonio B; Pacheco, Marcos T T

    2009-07-01

    This review is focused on the advancements in biomedical engineering regarding the elaboration of new prototypes of optical fiber catheters to be applied in spectroscopic analysis, such as Raman and fluorescence spectroscopy. Our group has contributed to the development of new prototypes with interesting properties, such as side-viewing signal excitation and collection, distal tip with bending control, and Raman scattering minimization from the optical fiber. In addition, several groups have contributed to other new catheter-improving properties of this spectroscopic device. However, a relatively small number of studies has been published in the literature, due to industrial interest in this interdisciplinary and multidisciplinary area. To our knowledge, no review that has focused on the applications of catheters to several modes of spectroscopy has been published. In this work we revised this topic, analyzing the advancements and limitations of the recent biomedical catheters.

  11. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620

  12. Advances in targeted proteomics and applications to biomedical research

    PubMed Central

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-01-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  13. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  14. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    NASA Astrophysics Data System (ADS)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  15. Advances in targeted proteomics and applications to biomedical research

    SciTech Connect

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.

  16. Application of infinite model predictive control methodology to other advanced controllers.

    PubMed

    Abu-Ayyad, M; Dubay, R; Hernandez, J M

    2009-01-01

    This paper presents an application of most recent developed predictive control algorithm an infinite model predictive control (IMPC) to other advanced control schemes. The IMPC strategy was derived for systems with different degrees of nonlinearity on the process gain and time constant. Also, it was shown that IMPC structure uses nonlinear open-loop modeling which is conducted while closed-loop control is executed every sampling instant. The main objective of this work is to demonstrate that the methodology of IMPC can be applied to other advanced control strategies making the methodology generic. The IMPC strategy was implemented on several advanced controllers such as PI controller using Smith-Predictor, Dahlin controller, simplified predictive control (SPC), dynamic matrix control (DMC), and shifted dynamic matrix (m-DMC). Experimental work using these approaches combined with IMPC was conducted on both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems and compared with the original forms of these advanced controllers. Computer simulations were performed on nonlinear plants demonstrating that the IMPC strategy can be readily implemented on other advanced control schemes providing improved control performance. Practical work included real-time control applications on a DC motor, plastic injection molding machine and a MIMO three zone thermal system.

  17. Status of Advanced Stitched Unitized Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  18. Thin-film infrared absorber structures for advanced thermal detectors

    NASA Astrophysics Data System (ADS)

    Parsons, A. D.; Pedder, D. J.

    1988-06-01

    Imaging thermal detector technology is a rapidly advancing field in which the current emphasis is towards the development of very large arrays of very small pyroelectric detector elements. For maximum responsivity, each of the thin pyroelectric elements in an array must be provided with a thermal absorber to convert incoming infrared radiation into heat. This paper describes one such absorber structure, comprising a thin metal film, impedance matched to free space, and a quarter-wave polymer film which offers an acceptably low thermal mass. The structure and properties of this thin-film absorber are compared with those of an electroplated platinum black absorber commonly used in thermal detectors. The theory of the absorber is presented and good agreement is shown between calculated and experimentally derived absorption spectra.

  19. Recent advances in AM OLED technologies for application to aerospace and military systems

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles

    2012-06-01

    While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.

  20. Advanced Methodology for Simulation of Complex Flows Using Structured Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur; Modiano, David

    1995-01-01

    Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.

  1. Overview of recent direct wafer bonding advances and applications

    NASA Astrophysics Data System (ADS)

    Moriceau, H.; Rieutord, F.; Fournel, F.; Le Tiec, Y.; Di Cioccio, L.; Morales, C.; Charvet, A. M.; Deguet, C.

    2010-12-01

    Direct wafer bonding processes are being increasingly used to achieve innovative stacking structures. Many of them have already been implemented in industrial applications. This article looks at direct bonding mechanisms, processes developed recently and trends. Homogeneous and heterogeneous bonded structures have been successfully achieved with various materials. Active, insulating or conductive materials have been widely investigated. This article gives an overview of Si and SiO2 direct wafer bonding processes and mechanisms, silicon-on-insulator type bonding, diverse material stacking and the transfer of devices. Direct bonding clearly enables the emergence and development of new applications, such as for microelectronics, microtechnologies, sensors, MEMs, optical devices, biotechnologies and 3D integration.

  2. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  3. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    An assessment is presented of three separate programs that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of a span-loaded cargo aircraft with the payload distributed along the wing. The second technology is the application of laminar flow control to the aircraft to reduce the aerodynamic drag. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel.

  4. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  5. Advancing Risk Assessment through the Application of Systems Toxicology

    PubMed Central

    Sauer, John Michael; Kleensang, André; Peitsch, Manuel C.; Hayes, A. Wallace

    2016-01-01

    Risk assessment is the process of quantifying the probability of a harmful effect to individuals or populations from human activities. Mechanistic approaches to risk assessment have been generally referred to as systems toxicology. Systems toxicology makes use of advanced analytical and computational tools to integrate classical toxicology and quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Three presentations including two case studies involving both in vitro and in vivo approaches described the current state of systems toxicology and the potential for its future application in chemical risk assessment. PMID:26977253

  6. Characteristics and applications of advanced technology microchannel plates

    NASA Astrophysics Data System (ADS)

    Horton, Jerry R.; Tasker, G. William; Fijol, John J.

    1990-10-01

    A method for fabrication of novel thin-filrn continuous dynode electron multipliers is described. We have shown the feasibility of crucial manufacturing steps, including anisotropic dry etching of substrates into photolithographically-defined arrays of high-aspect-ratio channels, and the formation of thin-film continuous dynodes by chemical vapor deposition. We discuss potential performance and design advantages of this advanced technology microchannel plate (AT-MCP) over the conven tional reduced lead silicate glass inicrochannel plate (RLSG-'MCP) and implications for new applications.

  7. Recent advances to NEC (Numerical Electromagnetics Code): Applications and validation

    SciTech Connect

    Burke, G.J. )

    1989-03-03

    Capabilities of the antenna modeling code NEC are reviewed and results are presented to illustrate typical applications. Recent developments are discussed that will improve accuracy in modeling electrically small antennas, stepped-radius wires and junctions of tightly coupled wires, and also a new capability for modeling insulated wires in air or earth is described. These advances will be included in a future release of NEC, while for now the results serve to illustrate limitations of the present code. NEC results are compared with independent analytical and numerical solutions and measurements to validate the model for wires near ground and for insulated wires. 41 refs., 26 figs., 1 tab.

  8. Applications of advanced transport aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  9. Advances and applications of induced pluripotent stem cells.

    PubMed

    Pietronave, Stefano; Prat, Maria

    2012-03-01

    Direct reprogramming of somatic cells into pluripotent cells is an emerging technology for creating patient-specific cells, and potentially opens new scenarios in medical and pharmacological fields. From the discovery of Shinya Yamanaka, who first obtained pluripotent cells from fibroblasts by retrovirus-derived ectopic expression of defined embryonic transcription factors, new methods have been developed to generate safe induced pluripotent stem (iPS) cells without genomic manipulations. This review will focus on the recent advances in iPS technology and their application in pharmacology and medicine.

  10. Advances in polymeric systems for tissue engineering and biomedical applications.

    PubMed

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.

  11. Recent Advances in Application of Biosensors in Tissue Engineering

    PubMed Central

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  12. Advanced ultrasonic testing of complex shaped composite structures

    NASA Astrophysics Data System (ADS)

    Dolmatov, D.; Zhvyrblya, V.; Filippov, G.; Salchak, Y.; Sedanova, E.

    2016-06-01

    Due to the wide application of composite materials it is necessary to develop unconventional quality control techniques. One of the methods that can be used for this purpose is ultrasonic tomography. In this article an application of a robotic ultrasonic system is considered. Precise positioning of the robotic scanner and path generating are defined as ones of the most important aspects. This study proposes a non-contact calibration method of a robotic ultrasonic system. Path of the scanner requires a 3D model of controlled objects which are created in accordance with the proposed algorithm. The suggested techniques are based on implementation of structured light method.

  13. Advances in deployable structures and surfaces for large apertures in space

    NASA Astrophysics Data System (ADS)

    Santiago-Prowald, J.; Baier, H.

    2013-12-01

    Large apertures in space have applications for telecommunications, Earth observation and scientific missions. This paper reviews advances in mechanical architectures and technologies for large deployable apertures for space antennas and telescopes. Two complementary approaches are described to address this challenge: the deployment of structures based on quasi-rigid members and highly flexible structures. Regarding the first approach, deployable articulated structures are classified in terms of their kinematics as 3D or planar linkages in multiple variants, resulting in different architectures of radial, peripheral or modular constructions. A dedicated discussion on the number of degrees of freedom and constraints addresses the deployment reliability and thermo-elastic stability of large elastic structures in the presence of thermal gradients. This aspect has been identified as a design driver for new developments of peripheral ring and modular structures. Meanwhile, other design drivers are maintained, such as the optimization of mass and stiffness, overall accuracy and stability, and pragmatic aspects including controlled industrial development and a commitment to operators' needs. Furthermore, reflecting surface technologies and concepts are addressed with a view to the future, presenting advances in technical solutions for increasing apertures and reducing areal mass densities to affordable levels for future missions. Highly flexible materials capable of producing ultra-stable shells are described with reference to the state of the art and new developments. These concepts may enable large deployable surfaces for antennas and telescopes, as well as innovative optical concepts such as photon sieves. Shape adjustment and shape control of these surfaces are described in terms of available technologies and future needs, particularly for the reconfiguration of telecommunications antennas. In summary, the two complementary approaches described and reviewed cover the

  14. Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Nacucchi, M.; De Pascalis, F.; Scatto, M.; Capodieci, L.; Albertoni, R.

    2016-06-01

    Advanced polymeric foams with enhanced thermal insulation and mechanical properties are used in a wide range of industrial applications. The properties of a foam strongly depend upon its cell structure. Traditionally, their microstructure has been studied using 2D imaging systems based on optical or electron microscopy, with the obvious disadvantage that only the surface of the sample can be analysed. To overcome this shortcoming, the adoption of X-ray micro-tomography imaging is here suggested to allow for a complete 3D, non-destructive analysis of advanced polymeric foams. Unlike metallic foams, the resolution of the reconstructed structural features is hampered by the low contrast in the images due to weak X-ray absorption in the polymer. In this work an advanced methodology based on high-resolution and low-contrast techniques is used to perform quantitative analyses on both closed and open cells foams. Local structural features of individual cells such as equivalent diameter, sphericity, anisotropy and orientation are statistically evaluated. In addition, thickness and length of the struts are determined, underlining the key role played by the achieved resolution. In perspective, the quantitative description of these structural features will be used to evaluate the results of in situ mechanical and thermal test on foam samples.

  15. Recent advances in industrial application of tannases: a review.

    PubMed

    Beniwal, Vikas; Kumar, Anil; Sharma, Jitender; Chhokar, Vinod

    2013-12-01

    Tannin acyl hydrolase (E.C. 3.1.1.20) commonly referred as tannase, is a hydrolytic enzyme that catalyses the hydrolysis of ester bonds present in gallotannins, ellagitannins, complex tannins and gallic acid esters. Tannases are the important group of botechnologically relevant enzymes distributed throughout the animal, plant and microbial kingdoms. However, microbial tannases are currently receiving a great deal of attention. Tannases are extensively used in food, feed, pharmaceutical, beverage, brewing and chemical industries. Owing to its diverse area of applications, a number of patents have been appeared in the recent past. The present review pretends to present the advances and perspectives in the industrial application of tannase with special emphasis on patents.

  16. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    SciTech Connect

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor

    2012-05-31

    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  17. Gold nanoparticles in biomedical applications: recent advances and perspectives.

    PubMed

    Dykman, Lev; Khlebtsov, Nikolai

    2012-03-21

    Gold nanoparticles (GNPs) with controlled geometrical, optical, and surface chemical properties are the subject of intensive studies and applications in biology and medicine. To date, the ever increasing diversity of published examples has included genomics and biosensorics, immunoassays and clinical chemistry, photothermolysis of cancer cells and tumors, targeted delivery of drugs and antigens, and optical bioimaging of cells and tissues with state-of-the-art nanophotonic detection systems. This critical review is focused on the application of GNP conjugates to biomedical diagnostics and analytics, photothermal and photodynamic therapies, and delivery of target molecules. Distinct from other published reviews, we present a summary of the immunological properties of GNPs. For each of the above topics, the basic principles, recent advances, and current challenges are discussed (508 references).

  18. Advancing pig cloning technologies towards application in regenerative medicine.

    PubMed

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine.

  19. CSM Testbed Development and Large-Scale Structural Applications

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.

    1989-01-01

    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  20. Intelligent Facial Recognition Systems: Technology advancements for security applications

    SciTech Connect

    Beer, C.L.

    1993-07-01

    Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g., fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.

  1. Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.

    1995-01-01

    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.

  2. An advanced Gibbs-Duhem integration method: theory and applications.

    PubMed

    van 't Hof, A; Peters, C J; de Leeuw, S W

    2006-02-07

    The conventional Gibbs-Duhem integration method is very convenient for the prediction of phase equilibria of both pure components and mixtures. However, it turns out to be inefficient. The method requires a number of lengthy simulations to predict the state conditions at which phase coexistence occurs. This number is not known from the outset of the numerical integration process. Furthermore, the molecular configurations generated during the simulations are merely used to predict the coexistence condition and not the liquid- and vapor-phase densities and mole fractions at coexistence. In this publication, an advanced Gibbs-Duhem integration method is presented that overcomes above-mentioned disadvantage and inefficiency. The advanced method is a combination of Gibbs-Duhem integration and multiple-histogram reweighting. Application of multiple-histogram reweighting enables the substitution of the unknown number of simulations by a fixed and predetermined number. The advanced method has a retroactive nature; a current simulation improves the predictions of previously computed coexistence points as well. The advanced Gibbs-Duhem integration method has been applied for the prediction of vapor-liquid equilibria of a number of binary mixtures. The method turned out to be very convenient, much faster than the conventional method, and provided smooth simulation results. As the employed force fields perfectly predict pure-component vapor-liquid equilibria, the binary simulations were very well suitable for testing the performance of different sets of combining rules. Employing Lorentz-Hudson-McCoubrey combining rules for interactions between unlike molecules, as opposed to Lorentz-Berthelot combining rules for all interactions, considerably improved the agreement between experimental and simulated data.

  3. 12 CFR 950.2 - Authorization and application for advances; obligation to repay advances.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... HOME LOAN BANK ASSETS AND OFF-BALANCE SHEET ITEMS ADVANCES Advances to Out-of-District Members and... transaction, for money borrowed from a Bank by a member of any Bank shall be considered an advance subject...

  4. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  5. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  6. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  7. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  8. Advances and applications of molecular cloning in clinical microbiology.

    PubMed

    Sharma, Kamal; Mishra, Ajay Kumar; Mehraj, Vikram; Duraisamy, Ganesh Selvaraj

    2014-10-01

    Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents.

  9. The pultrusion process for structures on advanced aerospace transportation systems

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.

    1986-01-01

    The pultrusion process, which has the potential for use in the manufacture of structures for aerospace hardware, is described. In this process, reinforcing fibers are pulled continuously through a resin system for wetting and subsequently through a heated die for polymerization. By using this process, fabrication of very long lengths of high strength, lightweight structures with consistently high quality for aerospace applications is possible. The more conventional processes involve hand lay-up, vacuum bagging, autoclaving or oven curing techniques such that lengths of structural elements produced are limited by the lengths of autoclaves or curing ovens. Several types of developmental structural elements are described in which fiberglass, aramid, graphite, and hybrid fiber systems have been used as reinforcements in an epoxy matrix and their flexural properties compared. Reinforcement fibers having tailor-made orientations which achieve tailor-made strength in the pultrusions are described. The potential aerospace applications for the pultruded products are described with advantages cited over conventional hand lay-up methods.

  10. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  11. Recent Advances in the Structural Mechanisms of DNA Glycosylases

    PubMed Central

    Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.

    2012-01-01

    DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011

  12. Advances in Organic Near-Infrared Materials and Emerging Applications.

    PubMed

    Qi, Ji; Qiao, Wenqiang; Wang, Zhi Yuan

    2016-06-01

    Much progress has been made in the field of research on organic near-infrared materials for potential applications in photonics, communications, energy, and biophotonics. This account mainly describes our research work on organic near-infrared materials; in particular, donor-acceptor small molecules, organometallics, and donor-acceptor polymers with the bandgaps less than 1.2 eV. The molecular designs, structure-property relationships, unique near-infrared absorption, emission and color/wavelength-changing properties, and some emerging applications are discussed.

  13. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

  14. Advanced carbon manufacturing for energy and biological applications

    NASA Astrophysics Data System (ADS)

    Turon Teixidor, Genis

    The science of miniaturization has experienced revolutionary advances during the last decades, witnessing the development of the Integrated Circuit and the emergence of MEMS and Nanotechnology. Particularly, MEMS technology has pioneered the use of non-traditional materials in microfabrication by including polymers, ceramics and composites to the well known list of metals and semiconductors. One of the latest additions to this set of materials is carbon, which represents a very important inclusion given its significance in electrochemical energy conversion systems and in applications where it is used as sensor probe material. For these applications, carbon is optimal in several counts: It has a wide electrochemical stability window, good electrical and thermal conductivity, high corrosion resistance and mechanical stability, and is available in high purity at a low cost. Furthermore carbon is biocompatible. This thesis presents several microfabricated devices that take advantage of these properties. The thesis has two clearly differentiated parts. In the first one, applications of micromachined carbon in the field of energy conversion and energy storage are presented. These applications include lithium ion micro batteries and the development of new carbon electrodes with fractal geometries. In the second part, the focus shifts to biological applications. First, the study of the interaction of living cells with micromachined carbon is presented, followed by the description of a sensor based on interdigitated nano-electrode arrays, and finally the development of the new instrumentation needed to address arrays of carbon electrodes, a multiplexed potentiostat. The underlying theme that connects all these seemingly different topics is the use of carbon microfabrication techniques in electrochemical systems.

  15. Recent Advances in Therapeutic Applications of Induced Pluripotent Stem Cells.

    PubMed

    Rami, Farzaneh; Beni, Shamsi Naderi; Kahnamooi, Mahboobeh Mojaver; Rahimmanesh, Ilnaz; Salehi, Ahmad Reza; Salehi, Rasoul

    2017-04-01

    Induced pluripotent stem (iPS) cells are generated by reprogramming of differentiated somatic cells. These cells are identical to human embryonic stem cells (hESCs) in gene expression pattern and the ability to differentiate. iPS cells can be used in in vitro modeling of diseases, testing drugs, assessing gene therapy methods, and cell therapy. Yet, the most important and promising application of iPS cells is in regenerative medicine. Regenerative medicine is a novel area in medicine aiming at the treatment of impaired or lost tissues by replacing them with functional and healthy ones. Currently, organ transplantation, which is considered the only treatment and cure for a number of diseases, is limited by shortage of organ donors and availability of the right match. Therefore, utilization of an alternative source of cells and tissues is critical in transplantation therapy. In this study, we review recent advances in therapeutic application of iPS cells in diseases where organ transplantation remains the only solution and will discuss the potential and usage of iPS cells in different areas of regenerative medicine. The primary theory of using iPS cells in regenerative medicine has brought lots of promises due to its potential for solving the immunological, social, and ethical problems of using ESCs. Nevertheless, several issues and problems have to be resolved before applying iPS cells in therapeutic applications.

  16. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  17. Cermet-fueled reactors for advanced space applications

    SciTech Connect

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.; Vaidyanathan, S.; Bhattacharyya, S.K.; Barner, J.O.

    1987-12-01

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel were carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.

  18. Recent Advances in Infrasound Science for National Security Applications

    NASA Astrophysics Data System (ADS)

    Arrowsmith, S.; Blom, P. S.; Marcillo, O. E.; Whitaker, R. W.

    2014-12-01

    Infrasound is sound below the frequency-threshold of human hearing, covering the frequency range from 0.01 - 20 Hz. Infrasound science studies the generation, propagation, measurement, and analysis of infrasound. Sources of infrasound include a wide variety of energetic natural and manmade phenomena that include chemical and nuclear explosions, rockets and missiles, and aircraft. The dominant factors influencing the propagation of infrasound are the spatial and temporal variations in temperature, wind speed, and wind direction. In recent years, Infrasound Science has experienced a renaissance due to the installation of an international monitoring system of 60 infrasound arrays for monitoring the Comprehensive Nuclear Test Ban Treaty, and to the demonstrated value of regional infrasound networks for both scientific and applied purposes. Furthermore, in the past decade, significant advances have been made on using measurements of infrasound to invert for these properties of the atmosphere at altitudes where alternative measurement techniques are extremely costly. This presentation provides a review of recent advances in infrasound science as relevant to National Security applications.

  19. Advanced materials and biochemical processes for geothermal applications

    SciTech Connect

    Kukacka, L.E.; van Rooyen, D.; Premuzic, E.T.

    1987-04-01

    Two Geothermal Technology Division (GTD)-sponsored programs: (1) Geothermal Materials Development, and (2) Advanced Biochemical Processes for Geothermal Brines, are described. In the former, work in the following tasks is in progress: (1) high temperature elastomeric materials for dynamic sealing applications, (2) advanced high temperature (300/sup 0/C) lightweight (1.1 g/cc) well cementing materials, (3) thermally conductive composites for heat exchanger tubing, (4) corrosion rates for metals in brine-contaminated binary plant working fluids, and (5) elastomeric liners for well casing. Methods for the utilization and/or the low cost environmentally acceptable disposal of toxic geothermal residues are being developed in the second program. This work is performed in two tasks. In one, microorganisms that can interact with toxic metals found in geothermal residues to convert them into soluble species for subsequent reinjection back into the reservoir or to concentrate them for removal by conventional processes are being identified. In the second task, process conditions are being defined for the encapsulation of untreated or partially biochemically treated residues in Portland cement-based formulations and the subsequent utilization of the waste fractions in building materials. Both processing methods yield materials which appear to meet disposal criteria for non-toxic solid waste, and their technical and economic feasibilities have been established.

  20. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  1. Development of Advanced Robotic Hand System for space application

    NASA Technical Reports Server (NTRS)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  2. Joining SI3N4 for Advanced Turbomachinery Applications

    SciTech Connect

    GLASS, S. JILL; LOEHMAN, RONALD E.; HOSKING, F. MICHAEL; STEPHENS JR., JOHN J.; VIANCO, PAUL T.; NEILSEN, MICHAEL K.; WALKER, CHARLES A.; POLLINGER, J.P.; MAHONEY, F.M.; QUILLEN, B.G.

    2000-07-01

    The main objective of this project was to develop reliable, low-cost techniques for joining silicon nitride (Si{sub 3}N{sub 4}) to itself and to metals. For Si{sub 3}N{sub 4} to be widely used in advanced turbomachinery applications, joining techniques must be developed that are reliable, cost-effective, and manufacturable. This project addressed those needs by developing and testing two Si{sub 3}N{sub 4} joining systems; oxynitride glass joining materials and high temperature braze alloys. Extensive measurements were also made of the mechanical properties and oxidation resistance of the braze materials. Finite element models were used to predict the magnitudes and positions of the stresses in the ceramic regions of ceramic-to-metal joints sleeve and butt joints, similar to the geometries used for stator assemblies.

  3. Advances in applications and methodology for aerial infrared thermography

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.

    2004-04-01

    Most aerial infrared (IR) is performed by the military, but there are commercial uses. Some of these non-military applications are the focus of this paper. Generally speaking, the farther away one can get from the object of an infrared survey, while maintaining the needed spatial resolution and thermal sensitivity, the more usable the data is. Wide areas and large objects can be effectively imaged from the air. In fact, the use of high-resolution aerial infrared imagery is often the only way that one can see slight nuances of temperature differences and trace the patterns of heat. In order to produce an easy to understand, high quality and useable report, the data must be acquired, recorded and processed in an efficient and effective way. This paper discusses the ongoing advances in methodology, platform and equipment required to produce high quality usable data for the end-user.

  4. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  5. Recent advances in bioprocessing application of membrane chromatography.

    PubMed

    Orr, Valerie; Zhong, Luyang; Moo-Young, Murray; Chou, C Perry

    2013-01-01

    Compared to traditional chromatography using resins in packed-bed columns, membrane chromatography is a relatively new and immature bioseparation technology based on the integration of membrane filtration and liquid chromatography into a single-stage operation. Over the past decades, advances in membrane chemistry have yielded novel membrane devices with high binding capacities and improved mass transfer properties, significantly increasing the bioprocessing efficiency for purification of biomolecules. Due to the disposable nature, low buffer consumption, and reduced equipment costs, membrane chromatography can significantly reduce downstream bioprocessing costs. In this review, we discuss technological merits and disadvantages associated with membrane chromatography as well as recent bioseparation applications with a particular attention on purification of large biomolecules.

  6. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  7. Development of high viscosity coatings for advanced Space Shuttle applications

    NASA Technical Reports Server (NTRS)

    Garofalini, S. H.; Banas, R.; Creedon, J.

    1979-01-01

    Laboratory studies for increasing the thermal resistance of high viscosity coatings for silica reusable surface insulation are presented. The coatings are intended for the reentry temperature associated with advanced Space Shuttle applications which will involve aerodynamic shear forces during entry from earth orbits. Coating viscosity was increased by (1) reduction in the concentration of the low viscosity additive B2O3; (2) reduction in the particle size of the constituent powders in coatings; and (3) addition of a high viscosity glass former (GeO2). A coating system was produced by combining the three methods which showed apparent higher viscosity than the current coating, while satisfying all the current Shuttle Orbiter coating requirements.

  8. Marine biotechnology advances towards applications in new functional foods.

    PubMed

    Freitas, Ana C; Rodrigues, Dina; Rocha-Santos, Teresa A P; Gomes, Ana M P; Duarte, Armando C

    2012-01-01

    The marine ecosystem is still an untapped reservoir of biologically active compounds, which have considerable potential to supply food ingredients towards development of new functional foods. With the goal of increasing the availability and chemical diversity of functional marine ingredients, much research has been developed using biotechnological tools to discover and produce new compounds. This review summarizes the advances in biotechnological tools for production of functional ingredients, including enzymes, for the food industry. Tools involving biotechnological processes (bioreactors, fermentations, bioprocessing) and those involving genetic research designated as molecular biotechnology are discussed highlighting how they can be used in the controlled manipulation and utilization of marine organisms as sources of food ingredients, as well as discussing the most relevant shortcomings towards applications in new functional foods.

  9. Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments.

  10. Advanced solitonic metamaterial structures under external magnetophotonic control

    NASA Astrophysics Data System (ADS)

    Boardman, A. D.; Egan, P.

    2013-09-01

    Metamaterial research is an extremely important global activity that promises to change our lives in many different ways, including making objects invisible and having a very dramatic impact upon the energy and medical sectors of society. Behind all of the applications, however, lies the design of metamaterials and this can be led by elegant routes that include nonlinearity, waveguide complexity and structured light. The associated optical device formats often involve coupling to soliton behavior. Vortex formation is going to be a critical feature for future applications focusing attention upon the role of angular momentum in special metamaterial-driven light beams. In this context nonlinear diffraction must be assessed and some discussion of a magnetooptical environment will be included. Solitonic behavior of light beams will be mentioned, including what have now become known as Peregrine solitons.

  11. Designing advanced alkaline polymer electrolytes for fuel cell applications.

    PubMed

    Pan, Jing; Chen, Chen; Zhuang, Lin; Lu, Juntao

    2012-03-20

    Although the polymer electrolyte fuel cell (PEFC) is a superior power source for electric vehicles, the high cost of this technology has served as the primary barrier to the large-scale commercialization. Over the last decade, researchers have pursued lower-cost next-generation materials for fuel cells, and alkaline polymer electrolytes (APEs) have emerged as an enabling material for platinum-free fuel cells. To fulfill the requirements of fuel cell applications, the APE must be as conductive and stable as its acidic counterpart, such as Nafion. This benchmark has proved challenging for APEs because the conductivity of OH(-) is intrinsically lower than that of H(+), and the stability of the cationic functional group in APEs, typically quaternary ammonia (-NR(3)(+)), is usually lower than that of the sulfonic functional group (-SO(3)(-)) in acidic polymer electrolytes. To improve the ionic conductivity, APEs are often designed to be of high ion-exchange capacity (IEC). This modification has caused unfavorable changes in the materials: these high IEC APEs absorb excessive amounts of water, leading to significant swelling and a decline in mechanical strength of the membrane. Cross-linking the polymer chains does not completely solve the problem because stable ionomer solutions would not be available for PEFC assembly. In this Account, we report our recent progress in the development of advanced APEs, which are highly resistant to swelling and show conductivities comparable with Nafion at typical temperatures for fuel-cell operation. We have proposed two strategies for improving the performance of APEs: self-cross-linking and self-aggregating designs. The self-cross-linking design builds on conventional cross-linking methods and works for APEs with high IEC. The self-aggregating design improves the effective mobility of OH(-) and boosts the ionic conductivity of APEs with low IEC. For APEs with high IEC, cross-linking is necessary to restrict the swelling of the

  12. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    SciTech Connect

    Bolisetti, Chandrakanth; Coleman, Justin Leigh

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  13. Study on utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Thomson, L. W.; Wilson, R. D.

    1985-01-01

    The potential for utilizing advanced composites in fuselage structures of large transports was assessed. Six fuselage design concepts were selected and evaluated in terms of structural performance, weight, and manufacturing development and costs. Two concepts were selected that merit further consideration for composite fuselage application. These concepts are: (1) a full depth honeycomb design with no stringers, and (2) an I section stringer stiffened laminate skin design. Weight reductions due to applying composites to the fuselages of commercial and military transports were calculated. The benefits of applying composites to a fleet of military transports were determined. Significant technology issues pertinent to composite fuselage structures were identified and evaluated. Program plans for resolving the technology issues were developed.

  14. High performance silicon solar arrays employing advanced structures

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.; Hedgepeth, J. M.; Adams, L.

    1981-01-01

    Specific design features to reduce cell mass, lower panel operating temperatures, and improve power to mass ratios for silicon solar cell arrays in space applications are presented. Because mass constraints limit payload capacity for launch into GEO, graphite/epoxy structures combined with high performance Si cells are needed to deliver a power/mass ratio of 265 W/kg, notably for Solar Electric Propulsion systems, compared with existing level of 65 W/kg. Shallow diffusion and back surface field cell technology have raised cell efficiencies to 15%, with a back emissivity of 1.64. Structural design requirements comprise Shuttle interface compatibility, full ground test capability, low mass, and high stiffness. Three array alternatives are discussed, and the STACBEAM configuration, which consists of a triangular truss and a piston deployer with folding accomplished on simple hinges, provides 0.2 Hz stiffness and achieves the design power/mass goals.

  15. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  16. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  17. Advanced aerospace composite material structural design using artificial intelligent technology

    SciTech Connect

    Sun, S.H.; Chen, J.L.; Hwang, W.C.

    1993-12-31

    Due to the complexity in the prediction of property and behavior, composite material has not substituted for metal widely yet, though it has high specific-strength and high specific-modulus that are more important in the aerospace industry. In this paper two artificial intelligent techniques, the expert systems and neural network technology, were introduced to the structural design of composite material. Expert System which has good ability in symbolic processing can helps us to solve problem by saving experience and knowledge. It is, therefore, a reasonable way to combine expert system technology to tile composite structural design. The development of a prototype expert system to help designer during the process of composite structural design is presented. Neural network is a network similar to people`s brain that can simulate the thinking way of people and has the ability of learning from the training data by adapting the weights of network. Because of the bottleneck in knowledge acquisition processes, the application of neural network and its learning ability to strength design of composite structures are presented. Some examples are in this paper to demonstrate the idea.

  18. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges.

    PubMed

    Yu, Xiaoqing; Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang

    2017-03-15

    Graphene (G)-based composite materials have been widely explored for the sensing applications ascribing to their atom-thick two-dimensional conjugated structures, high conductivity, large specific surface areas and controlled modification. With the enormous advantages of film structure, G-based composite films (GCFs), prepared by combining G with different functional nanomaterials (noble metals, metal compounds, carbon materials, polymer materials, etc.), show unique optical, mechanical, electrical, chemical, and catalytic properties. Therefore, great quantities of sensors with high sensitivity, selectivity, and stability have been created in recent years. In this review, we focus on the recent advances in the fabrication technologies of GCFs and their specific sensing applications. In addition, the relationship between the properties of GCFs and sensing performance is concentrated on. Finally, the personal perspectives and key challenges of GCFs are mentioned in the hope to shed a light on their potential future research directions.

  19. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  20. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  1. Next-generation sequencing: advances and applications in cancer diagnosis

    PubMed Central

    Serratì, Simona; De Summa, Simona; Pilato, Brunella; Petriella, Daniela; Lacalamita, Rosanna; Tommasi, Stefania; Pinto, Rosamaria

    2016-01-01

    Technological advances have led to the introduction of next-generation sequencing (NGS) platforms in cancer investigation. NGS allows massive parallel sequencing that affords maximal tumor genomic assessment. NGS approaches are different, and concern DNA and RNA analysis. DNA sequencing includes whole-genome, whole-exome, and targeted sequencing, which focuses on a selection of genes of interest for a specific disease. RNA sequencing facilitates the detection of alternative gene-spliced transcripts, posttranscriptional modifications, gene fusion, mutations/single-nucleotide polymorphisms, small and long noncoding RNAs, and changes in gene expression. Most applications are in the cancer research field, but lately NGS technology has been revolutionizing cancer molecular diagnostics, due to the many advantages it offers compared to traditional methods. There is greater knowledge on solid cancer diagnostics, and recent interest has been shown also in the field of hematologic cancer. In this review, we report the latest data on NGS diagnostic/predictive clinical applications in solid and hematologic cancers. Moreover, since the amount of NGS data produced is very large and their interpretation is very complex, we briefly discuss two bioinformatic aspects, variant-calling accuracy and copy-number variation detection, which are gaining a lot of importance in cancer-diagnostic assessment. PMID:27980425

  2. Advances in wearable technology and its medical applications.

    PubMed

    Bonato, Paolo

    2010-01-01

    The concept of monitoring individuals in the home and community settings was introduced more than 50 years ago, when Holter monitoring was proposed (in the late 1940s) and later adopted (in the 1960s) as a clinical tool. However, technologies to fully enable such vision were lacking and only sporadic and rather obtrusive monitoring techniques were available for several decades. Over the past decade, we have witnessed a great deal of progress in the field of wearable sensors and systems. Advances in this field have finally provided the tools to implement and deploy technology with the capabilities required by researchers in the field of patients' home monitoring. These technologies provide the tools to achieve early diagnosis of diseases such as congestive heart failure, prevention of chronic conditions such as diabetes, improved clinical management of neurodegenerative conditions such as Parkinson's disease, and the ability to promptly respond to emergency situations such as seizures in patients with epilepsy and cardiac arrest in subjects undergoing cardiovascular monitoring. Current research efforts are focused on the development of systems enabling clinical applications. The current focus on developing and deploying wearable systems targeting specific clinical applications has the potential of leading to clinical adoption within the next five to ten years.

  3. Results of advanced battery technology evaluations for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1992-10-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  4. Advanced fuel cells for transportation applications. Final report

    SciTech Connect

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  5. Results of advanced batter technology evaluations for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-01-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

  6. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  7. NASA programs in advanced sensors and measurement technology for aeronautical applications

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    1990-01-01

    NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.

  8. Structural Tailoring of Advanced Turboprops (STAT). Theoretical manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1992-01-01

    This manual describes the theories in the Structural Tailoring of Advanced Turboprops (STAT) computer program, which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (1-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements, and a 1-P forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.

  9. Remote Structural Health Monitoring and Advanced Prognostics of Wind Turbines

    SciTech Connect

    Douglas Brown; Bernard Laskowski

    2012-05-29

    The prospect of substantial investment in wind energy generation represents a significant capital investment strategy. In order to maximize the life-cycle of wind turbines, associated rotors, gears, and structural towers, a capability to detect and predict (prognostics) the onset of mechanical faults at a sufficiently early stage for maintenance actions to be planned would significantly reduce both maintenance and operational costs. Advancement towards this effort has been made through the development of anomaly detection, fault detection and fault diagnosis routines to identify selected fault modes of a wind turbine based on available sensor data preceding an unscheduled emergency shutdown. The anomaly detection approach employs spectral techniques to find an approximation of the data using a combination of attributes that capture the bulk of variability in the data. Fault detection and diagnosis (FDD) is performed using a neural network-based classifier trained from baseline and fault data recorded during known failure conditions. The approach has been evaluated for known baseline conditions and three selected failure modes: pitch rate failure, low oil pressure failure and a gearbox gear-tooth failure. Experimental results demonstrate the approach can distinguish between these failure modes and normal baseline behavior within a specified statistical accuracy.

  10. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  11. Advance in orientation microscopy: quantitative analysis of nanocrystalline structures.

    PubMed

    Seyring, Martin; Song, Xiaoyan; Rettenmayr, Markus

    2011-04-26

    The special properties of nanocrystalline materials are generally accepted to be a consequence of the high density of planar defects (grain and twin boundaries) and their characteristics. However, until now, nanograin structures have not been characterized with similar detail and statistical relevance as coarse-grained materials, due to the lack of an appropriate method. In the present paper, a novel method based on quantitative nanobeam diffraction in transmission electron microscopy (TEM) is presented to determine the misorientation of adjacent nanograins and subgrains. Spatial resolution of <5 nm can be achieved. This method is applicable to characterize orientation relationships in wire, film, and bulk materials with nanocrystalline structures. As a model material, nanocrystalline Cu is used. Several important features of the nanograin structure are discovered utilizing quantitative analysis: the fraction of twin boundaries is substantially higher than that observed in bright-field images in the TEM; small angle grain boundaries are prominent; there is an obvious dependence of the grain boundary characteristics on grain size distribution and mean grain size.

  12. Advancing DNA-based Nanotechnology Capabilities and Applications

    NASA Astrophysics Data System (ADS)

    Marchi, Alexandria N.

    Biological systems have inspired interest in developing artificial molecular self-assembly techniques that imitate nature's ability to harness chemical forces to specifically position atoms within intricate assemblies. Of the biomolecules used to mimic nature's abilities, nucleic acids have gained special attention. Specifically, deoxyribonucleic acid is a stable molecule with a readily accessible code that exhibits predictable and programmable intermolecular interactions. These properties are exploited in the revolutionary structural DNA nanotechnology method known as scaffolded DNA origami. For DNA origami to establish itself as a widely used method for creating self-assembling, complex, functional materials, current limitations need to be overcome and new methods need to be established to move forward with developing structures for diverse applications in many fields. The limitations discussed in this dissertation include 1) pushing the scale of well-formed, fully-addressable origami to two and seven times the size of conventional origami, 2) testing cost-effective staple strand synthesis methods for producing pools of oligos for a specified origami, and 3) engineering mechanical properties using non-natural nucleotides in DNA assemblies. After accomplishing the above, we're able to design complex DNA origami structures that incorporate many of the current developments in the field into a useful material with applicability in wide-ranging fields, namely cell biology and photonics.

  13. Recent advances in hydrogen peroxide imaging for biological applications.

    PubMed

    Guo, Hengchang; Aleyasin, Hossein; Dickinson, Bryan C; Haskew-Layton, Renée E; Ratan, Rajiv R

    2014-01-01

    Mounting evidence supports the role of hydrogen peroxide (H2O2) in physiological signaling as well as pathological conditions. However, the subtleties of peroxide-mediated signaling are not well understood, in part because the generation, degradation, and diffusion of H2O2 are highly volatile within different cellular compartments. Therefore, the direct measurement of H2O2 in living specimens is critically important. Fluorescent probes that can detect small changes in H2O2 levels within relevant cellular compartments are important tools to study the spatial dynamics of H2O2. To achieve temporal resolution, the probes must also be photostable enough to allow multiple readings over time without loss of signal. Traditional fluorescent redox sensitive probes that have been commonly used for the detection of H2O2 tend to react with a wide variety of reactive oxygen species (ROS) and often suffer from photostablilty issues. Recently, new classes of H2O2 probes have been designed to detect H2O2 with high selectivity. Advances in H2O2 measurement have enabled biomedical scientists to study H2O2 biology at a level of precision previously unachievable. In addition, new imaging techniques such as two-photon microscopy (TPM) have been employed for H2O2 detection, which permit real-time measurements of H2O2 in vivo. This review focuses on recent advances in H2O2 probe development and optical imaging technologies that have been developed for biomedical applications.

  14. Applications and advances of positron beam spectroscopy: appendix a

    SciTech Connect

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  15. Advanced Health Management Algorithms for Crew Exploration Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Jones, Judit

    2005-01-01

    Achieving the goals of the President's Vision for Exploration will require new and innovative ways to achieve reliability increases of key systems and sub-systems. The most prominent approach used in current systems is to maintain hardware redundancy. This imposes constraints to the system and utilizes weight that could be used for payload for extended lunar, Martian, or other deep space missions. A technique to improve reliability while reducing the system weight and constraints is through the use of an Advanced Health Management System (AHMS). This system contains diagnostic algorithms and decision logic to mitigate or minimize the impact of system anomalies on propulsion system performance throughout the powered flight regime. The purposes of the AHMS are to increase the probability of successfully placing the vehicle into the intended orbit (Earth, Lunar, or Martian escape trajectory), increase the probability of being able to safely execute an abort after it has developed anomalous performance during launch or ascent phases of the mission, and to minimize or mitigate anomalies during the cruise portion of the mission. This is accomplished by improving the knowledge of the state of the propulsion system operation at any given turbomachinery vibration protection logic and an overall system analysis algorithm that utilizes an underlying physical model and a wide array of engine system operational parameters to detect and mitigate predefined engine anomalies. These algorithms are generic enough to be utilized on any propulsion system yet can be easily tailored to each application by changing input data and engine specific parameters. The key to the advancement of such a system is the verification of the algorithms. These algorithms will be validated through the use of a database of nominal and anomalous performance from a large propulsion system where data exists for catastrophic and noncatastrophic propulsion sytem failures.

  16. Advanced Turbine Technology Applications Project (ATTAP). 1944 Annual report

    SciTech Connect

    1995-06-01

    This report summarizes work performed in development and demonstration of structural ceramics technology for automotive gas turbine engines. At the end of this period, the project name was changed to ``Ceramic Turbine Engine Demonstration Project``, effective Jan. 1995. Objectives are to provide early field experience demonstrating the reliability and durability of ceramic components in a modified, available gas turbine engine application, and to scale up and improve the manufacturing processes for ceramic turbine engine components and demonstrate the application of these processes in the production environment. The 1994 ATTAP activities emphasized demonstration and refinement of the ceramic turbine nozzles in the AlliedSignal/Garrett Model 331-200[CT] engine test bed in preparation for field testing; improvements in understanding the vibration characteristics of the ceramic turbine blades; improvements in critical ceramics technologies; and scaleup of the process used to manufacture ceramic turbine components.

  17. Advances in skin regeneration: application of electrospun scaffolds.

    PubMed

    Norouzi, Mohammad; Boroujeni, Samaneh Moghadasi; Omidvarkordshouli, Noushin; Soleimani, Masoud

    2015-06-03

    The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed.

  18. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia

  19. Radioactive nanoparticles and their main applications: recent advances.

    PubMed

    Kharisov, Boris I; Kharissova, Oxana V; Berdonosov, Sergei S

    2014-01-01

    Selected nanoparticles and nanocomposites on the basis of radioactive elements are reviewed. Isotopes of metallic gold, iodine and technetium salts, CeO2 and other lanthanide and actinide compounds, as well as several p- (P, C, F, Te) and d- (Fe, Co, Cu, Cd, Zn) elements form most common radioactive nanoparticles. Methods for their fabrication, including dopation with radionuclides and neutron/proton/deuteron activation, are discussed. These nanocomposites possess a series of useful applications, in particular in biology and medicine, including cancer therapeutics, drug delivery systems and radiotracers, as well as in the studies of several catalytic processes and materials structure.

  20. Near net shape forming of advanced structural ceramic devices

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Chih

    This research applied a combination of rapid prototyping techniques and ceramic gelcasting processes in the design and manufacturing of advanced structural ceramic components that cannot be fabricated by other shape-forming processes. An Assembly Mold SDM process, a derivative process of Shape Deposition Manufacturing, was adopted along with modified gelcasting with great success. The fabricated gas turbine rotors, inlet nozzles, and mesoscale burner arrays have demonstrated superior shape accuracy, mechanical strength, and surface smoothness with a feature size of 200 mum. The design concepts and functionalities of the ceramic devices were verified with performance tests. The shape complexity and surface quality of ceramic parts have been further improved by the use of a mold assembly made of a low melting temperature metal alloy. The introduction of metal alloy required modifications in the mold design, machining procedure, and ceramic processing. A complete shape forming process (from slurry to final parts) was developed for the low melting temperature metal alloy. In addition, the choice of ceramic material now includes SiC, which is critical to the development of micro heat exchangers. Forty-channel, high-aspect-ratio structured SiC heat exchangers were fabricated, and the thermal conductivity value of SiC was found to be comparable to that of steel. The catalyst deposition and ceramic precursor impregnation processes were proposed to enable use of the SiC heat exchangers as micro reactors. Micro-electro-mechanical-systems (MEMS)-related techniques such as SU-8 deep photolithography and polydimethylsiloxane (PDMS) soft lithography were combined with gelcasting to make micro patterns on structural ceramics. A feature size of 125 mum and aspect ratio of 8 have been achieved in the preliminary experiments. Based on the fabricated ceramic devices, a graphical method to characterize the shape attributes of complex-shaped components was proposed and used to compare

  1. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  2. 76 FR 74067 - Medicare Program; Announcement of a New Application Deadline for the Advance Payment Model

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Advance Payment Model for certain accountable care organizations participating in the Medicare Shared..., coordinated care and generate cost savings. The Advance Payment Model will test whether and how pre-paying a... Application Deadline for the Advance Payment Model AGENCY: Centers for Medicare & Medicaid Services (CMS),...

  3. Managing Linguistic Data Summaries in Advanced P2P Applications

    NASA Astrophysics Data System (ADS)

    Hayek, Rabab; Raschia, Guillaume; Valduriez, Patrick; Mouaddib, Noureddine

    As the amount of stored data increases, data localization techniques become no longer sufficient in P2P systems. A practical approach is to rely on compact database summaries rather than raw database records, whose access is costly in large P2P systems. In this chapter, we describe a solution for managing linguistic data summaries in advanced P2P applications which are dealing with semantically rich data. The produced summaries are synthetic, multidimensional views over relational tables. The novelty of this proposal relies on the double summary exploitation in distributed P2P systems. First, as semantic indexes, they support locating relevant nodes based on their data descriptions. Second, due to their intelligibility, these summaries can be directly queried and thus approximately answer a query without the need for exploring original data. The proposed solution consists first in defining a summary model for hierarchical P2P systems. Second, appropriate algorithms for summary creation and maintenance are presented. A query processing mechanism, which relies on summary querying, is then proposed to demonstrate the benefits that might be obtained from summary exploitation.

  4. Advanced Imaging and Robotics Technologies for Medical Applications

    NASA Astrophysics Data System (ADS)

    Masamune, Ken; Hong, Jaesung

    2011-10-01

    Due to the importance of surgery in the medical field, a large amount of research has been conducted in this area. Imaging and robotics technologies provide surgeons with the advanced eye and hand to perform their surgeries in a safer and more accurate manner. Recently medical images have been utilized in the operating room as well as in the diagnostic stage. If the image to patient registration is done with sufficient accuracy, medical images can be used as "a map" for guidance to the target lesion. However, the accuracy and reliability of the surgical navigation system should be sufficiently verified before applying it to the patient. Along with the development of medical imaging, various medical robots have also been developed. In particular, surgical robots have been researched in order to reach the goal of minimal invasiveness. The most important factors to consider are determining the demand, the strategy for their use in operating procedures, and how it aids patients. In addition to the above considerations, medical doctors and researchers should always think from the patient's point of view. In this article, the latest medical imaging and robotic technologies focusing on surgical applications are reviewed based upon the factors described in the above.

  5. Advances in laser-based isotope ratio measurements: selected applications

    NASA Astrophysics Data System (ADS)

    Kerstel, E.; Gianfrani, L.

    2008-09-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are being used by a growing number of isotope researchers for significant advances in their own field of research. In this review article, we discuss the current status and new frontiers of research on high-sensitivity and high-precision laser spectroscopy for isotope ratio analyses. Although many of our comments will be generally applicable to laser isotope ratio analyses in molecules of environmental importance, this paper concerns itself primarily with water and carbon dioxide, two molecules that were studied extensively in our respective laboratories. A complete coverage of the field is practically not feasible in the space constraints of this issue, and in any case doomed to fail, considering the large body of work that has appeared ever since the review by Kerstel in 2004 ( Handbook of Stable Isotope Analytical Techniques, Chapt. 34, pp. 759-787).

  6. Advances in functional magnetic resonance imaging: technology and clinical applications.

    PubMed

    Dickerson, Bradford C

    2007-07-01

    Functional MRI (fMRI) is a valuable method for use by clinical investigators to study task-related brain activation in patients with neurological or neuropsychiatric illness. Despite the relative infancy of the field, the rapid adoption of this functional neuroimaging technology has resulted from, among other factors, its ready availability, its relatively high spatial and temporal resolution, and its safety as a noninvasive imaging tool that enables multiple repeated scans over the course of a longitudinal study, and thus may lend itself well as a measure in clinical drug trials. Investigators have used fMRI to identify abnormal functional brain activity during task performance in a variety of patient populations, including those with neurodegenerative, demyelinating, cerebrovascular, and other neurological disorders that highlight the potential utility of fMRI in both basic and clinical spheres of research. In addition, fMRI studies reveal processes related to neuroplasticity, including compensatory hyperactivation, which may be a universally-occurring, adaptive neural response to insult. Functional MRI is being used to study the modulatory effects of genetic risk factors for neurological disease on brain activation; it is being applied to differential diagnosis, as a predictive biomarker of disease course, and as a means to identify neural correlates of neurotherapeutic interventions. Technological advances are rapidly occurring that should provide new applications for fMRI, including improved spatial resolution, which promises to reveal novel insights into the function of fine-scale neural circuitry of the human brain in health and disease.

  7. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  8. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  9. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    DOE PAGES

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-01-01

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible tomore » precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.« less

  10. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    SciTech Connect

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-01-01

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible to precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.

  11. Structural materials for space applications

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    1989-01-01

    The long-term performance of structural materials in the space environment is a key research activity within NASA. The primary concerns for materials in low Earth orbit (LEO) are atomic oxygen erosion and space debris impact. Atomic oxygen studies have included both laboratory exposures in atomic oxygen facilities and flight exposures using the Shuttle. Characterization of atomic oxygen interaction with materials has included surface recession rates, residual mechanical properties, optical property measurements, and surface analyses to establish chemical changes. The Long Duration Exposure Facility (LDEF) is scheduled to be retrieved in 1989 and is expected to provide a wealth of data on atomic oxygen erosion in space. Hypervelocity impact studies have been conducted to establish damage mechanisms and changes in mechanical properties. Samples from LDEF will be analyzed to determine the severity of space debris impact on coatings, films, and composites. Spacecraft placed in geosynchronous Earth orbit (GEO) will be subjected to high doses of ionizing radiation which for long term exposures will exceed the damage threshold of many polymeric materials. Radiation interaction with polymers can result in chain scission and/or cross-linking. The formation of low molecular weight products in the epoxy plasticize the matrix at elevated temperatures and embrittle the matrix at low temperatures. This affects both the matrix-dominated mechanical properties and the dimensional stability of the composite. Embrittlement of the matrix at low temperatures results in enhanced matrix microcracking during thermal cycling. Matrix microcracking changes the coefficient of thermal expansion (CTE) of composite laminates and produces permanent length changes. Residual stress calculations were performed to estimate the conditions necessary for microcrack development in unirradiated and irradiated composites. The effects of UV and electron exposure on the optical properties of transparent

  12. Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances

    DTIC Science & Technology

    2012-12-01

    Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances Ping-Hong Yeh1*, Terrence R. Oakes2,3...00-2012 4. TITLE AND SUBTITLE Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances 5a...Gerard Riedy1,2,3,4 1Traumatic Brain Injury Image Analysis Lab, Henry Jackson Foundation for the Advancement of Military Medicine, Rockville, USA

  13. Recent Advances in Seismic Wavefront Tracking Techniques and Their Applications

    NASA Astrophysics Data System (ADS)

    Sambridge, M.; Rawlinson, N.; Hauser, J.

    2007-12-01

    In observational seismology, wavefront tracking techniques are becoming increasingly popular as a means of predicting two point traveltimes and their associated paths. Possible applications include reflection migration, earthquake relocation and seismic tomography at a wide variety of scales. Compared with traditional ray based techniques such as shooting and bending, wavefront tracking has the advantage of locating traveltimes between the source and every point in the medium; in many cases, improved efficiency and robustness; and greater potential for tracking multiple arrivals. In this presentation, two wavefront tracking techniques will be considered: the so-called Fast Marching Method (FMM), and a wavefront construction (WFC) scheme. Over the last several years, FMM has become a mature technique in seismology, with a number of improvements to the underlying theory and the release of software tools that allow it to be used in a variety of applications. At its core, FMM is a grid based solver that implicitly tracks a propagating wavefront by seeking finite difference solutions to the eikonal equation along an evolving narrow band. Recent developments include the use of source grid refinement to improve accuracy, the introduction of a multi-stage scheme to allow reflections and refractions to be tracked in layered media, and extension to spherical coordinates. Implementation of these ideas has led to a number of different applications, including teleseismic tomography, wide-angle reflection and refraction tomography, earthquake relocation, and ambient noise imaging using surface waves. The WFC scheme represents the wavefront surface as a set of points in 6-D phase space; these points are advanced in time using local initial value ray tracing in order to form a sequence of wavefront surfaces that fill the model volume. Surface refinement and simplification techniques inspired by recent developments in computer graphics are used to maintain a fixed density of nodes

  14. Advances in endodontics: Potential applications in clinical practice

    PubMed Central

    Kishen, Anil; Peters, Ove A.; Zehnder, Matthias; Diogenes, Anibal R.; Nair, Madhu K.

    2016-01-01

    Contemporary endodontics has seen an unprecedented advance in technology and materials. This article aimed to review some of the challenges and advances in the following sections: (1) endodontic imaging, (2) root canal preparation, (3) root canal disinfection, (4) root canal filling, and (4) regenerative endodontic procedures (REPs). Jointly, these advances are aimed at improving the state of the art and science of root canal treatment. PMID:27217630

  15. LSST system analysis and integration task for an advanced science and application space platform

    NASA Technical Reports Server (NTRS)

    1980-01-01

    To support the development of an advanced science and application space platform (ASASP) requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. These payloads were a 100 meter diameter atmospheric gravity wave antenna, a 100 meter by 100 meter particle beam injection experiment, a 2 meter diameter, 18 meter long astrometric telescope, and a 15 meter diameter, 35 meter long large ambient deployable IR telescope. A low earth orbit at 500 km altitude and 56 deg inclination was selected as being the best compromise for meeting payload requirements. Platform subsystems were defined which would support the payload requirements and a physical platform concept was developed. Structural system requirements which included utilities accommodation, interface requirements, and platform strength and stiffness requirements were developed. An attitude control system concept was also described. The resultant ASASP concept was analyzed and technological developments deemed necessary in the area of large space systems were recommended.

  16. Recent Advances in Techniques for Starch Esters and the Applications: A Review

    PubMed Central

    Hong, Jing; Zeng, Xin-An; Brennan, Charles S.; Brennan, Margaret; Han, Zhong

    2016-01-01

    Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS) is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis/infrared spectroscopy (TGA/IR) and headspace gas chromatography (HS-GC), have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented. PMID:28231145

  17. Recent advances in phosphate laser glasses for high power applications. Revision 1

    SciTech Connect

    Campbell, J.H.

    1996-05-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4 cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  18. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    SciTech Connect

    Naus, D.J

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development.

  19. Prestressed concrete pressure vessels and their applicability to advanced energy system concepts

    SciTech Connect

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts are discussed as well as the research and development activities conducted at ORNL in support of PCPV development.

  20. Advanced magnetic resonance imaging techniques in the preterm brain: methods and applications.

    PubMed

    Tao, Joshua D; Neil, Jeffrey J

    2014-01-01

    Brain development and brain injury in preterm infants are areas of active research. Magnetic resonance imaging (MRI), a non-invasive tool applicable to both animal models and human infants, provides a wealth of information on this process by bridging the gap between histology (available from animal studies) and developmental outcome (available from clinical studies). Moreover, MRI also offers information regarding diagnosis and prognosis in the clinical setting. Recent advances in MR methods - diffusion tensor imaging, volumetric segmentation, surface based analysis, functional MRI, and quantitative metrics - further increase the sophistication of information available regarding both brain structure and function. In this review, we discuss the basics of these newer methods as well as their application to the study of premature infants.

  1. Recent Advances in Techniques for Starch Esters and the Applications: A Review.

    PubMed

    Hong, Jing; Zeng, Xin-An; Brennan, Charles S; Brennan, Margaret; Han, Zhong

    2016-07-09

    Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS) is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis/infrared spectroscopy (TGA/IR) and headspace gas chromatography (HS-GC), have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented.

  2. Application of advanced electronics to a future spacecraft computer design

    NASA Technical Reports Server (NTRS)

    Carney, P. C.

    1980-01-01

    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  3. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  4. Recent Advances in Structures for Hypersonic Flight, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The papers at this symposium were presented by 24 speakers representing airframe, missile, and engine manufacturers, the U.S. Air Force, and two NASA Research Centers. The papers cover a variety of topics including engine structures, cooled airframe structures, hot structures, thermal protection systems, cryogenic tankage structures, cryogenic insulations, and analysis methods for thermal/structures.

  5. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications

    PubMed Central

    O'Neill, P. F.; Ben Azouz, A.; Vázquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H. C.; Diamond, D.; Brabazon, D.

    2014-01-01

    The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes. PMID:25538804

  6. Structural applications of Avimid K3B LDF thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Perrella, Andrew P.

    Composite applications on advanced aircraft require lightweight, high performance, tough material systems which are capable of operating at high service temperatures. These composite systems must also be producible and cost effective. Avimid K3B composite materials and related process and part manufacturing technologies offers a unique solutions to these requirements. The objective of this paper is to describe selected Avimid K3B processing approaches such as Long Discontinuous Fiber thermoforming and fusion bonding. A review of the Avimid K3B F-16 Strake Door Joint Development Program is presented. This program successfully developed, built and structurally validated a flight demonstration component using these materials and manufacturing methods.

  7. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  8. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  9. Advanced MCT technologies at LETI for space applications

    NASA Astrophysics Data System (ADS)

    Durand, A.; Destefanis, G.; Gravrand, O.; Rothmann, J.

    This document is a recap of an oral presentation made at Nice during the INSU Astrophysics Detector Workshop 2008. It aims at giving an overview of the achievements and ongoing developments presently carried out at CEA-LETI in the field of Infrared focal plane array. Although most of the research actually performed at LETI is not driven by space oriented application, the excellence and the cutting edge of the outcome is or can be applied to space-dedicated components. This paper focus on features and developments from which astrophysics observation would benefit in the near future on the European market. This encompassed “traditionnal” developments such as format enlargement, low dark current technology such as p/n structure but it also shade light on promising and thrilling development such as avalanche photodiode array. It eventually gives some hints of none MCT technologies processed at LETI.

  10. Advances in nanoimprint lithography and applications in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Liang, Xiaogan

    The research work presented in this thesis focuses on three topics: (1) studies of several critical aspects of nanoimprint lithography (NIL), including methods of mold pressing, air bubble defects, and dynamic behaviors of liquid resist flow; (2) applications of NIL to the fabrication of novel nanofluidic devices, which can be used for real-time DNA detection; and (3) additional applications of structured stamps or templates in the direct engineering of functional materials. Based upon these topics, the thesis is divided into three parts. The first part describes recent studies of critical techniques of NIL. First, a novel imprint approach using electrostatic force was developed to pattern spin-on resists in ambient environment. Using this Electrostatic Force-Assisted NIL (EFAN) approach, highly uniform imprints over a 4" diameter wafer area and sub-0.5 mum overlay precision were obtained using very simple equipment. Second, another important method for performing step-and-repeat imprint in the atmosphere, dispensing-based NIL, still suffers from air bubble defects formed by feature pinning and the circling of residual air by the merge of multiple resist droplets. However, it was found that the tiny bubbles can be completely absorbed by the liquid resist. The effects of several key parameters, such as bubble size, imprinting pressure, resist viscosity and solubility, and residual layer thickness, on the air dissolution rate were studied experimentally and theoretically. Their impact to the yield and throughput of NIL was also analyzed. Third, a novel method was developed for filling liquid resists into the air gap between the structured mold and the substrate. The method is assisted by dielectrophoresis, caused by electrohydrodynamic force. The second part describes the applications of NIL to making nanofluidic channel devices and device integration. First, a novel imprint-based method was developed to fabricate precisely positioned single nanofluidic channels of

  11. Synthesis and characterization of advanced nanomaterials for energy applications

    NASA Astrophysics Data System (ADS)

    Xie, Ming

    Energy is essential for life. It is thus important to continue understanding how to reduce energy consumption, and increase energy generation. The use of nanoscale materials (nanomaterials) are expected to reduce resources and energy needed in fabricating electrical and electronic devices and help in reducing energy consumption. For example, boron nitride nanotubes (BNNTs) which have uniform band structures, are expected to find application in nanoscale electronic and optoelectronic devices. These devices will have smaller dimension, cost fewer resources and less energy to fabricate, and consume less energy due to minimum electron scattering in their ideally defect-free tubular structures. On the other hand, nanomaterials are also expected to improve the performance of thermoelectric devices that can convert heat into energy. In this thesis, we first investigated low-temperature synthesis of BNNTs (Chapter 1). Effects of substrate temperatures, bias voltages, and catalysts are discussed and a selective-phase growth model is proposed. During the course of this investigation, we discovered Si nanotubes (SiNTs) by catalytic plasma treatment (Chapter 2). The detailed growth parameters and characterizations are presented and a modified growth model is discussed. In addition, electronic properties are measured by AFM. Since Si has exceptional thermoelectric properties, the newly discovered SiNTs are prospects for related applications. We have thus evaluated the potential conversion efficiency and production cost of various nanostructured thermoelectric materials (Chapter 3 and 4). Based on state-of-the-art dish-stirling systems, we evaluate the feasibility of replacing stirling engines by thermoelectric modules. Finally, we have decided to investigate the properties of boron-nanocarbon ensembles (Chapter 5 and 6) as prospective thermoelectric materials. Detailed characterizations includes SEM, HRTEM, Raman, XRD are presented. Seebeck coefficient and electrical

  12. Innovative tissue engineering structures through advanced manufacturing technologies.

    PubMed

    Ciardelli, Gianluca; Chiono, Valeria; Cristallini, Caterina; Barbani, Niccoletta; Ahluwalia, Arti; Vozzi, Giovanni; Previti, Antonino; Tantussi, Giovanni; Giusti, Paolo

    2004-04-01

    Awide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(epsilon-caprolactone) and poly-(epsilon-caprolactone)-poly-(oxyethylene)-poly-(epsilon-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10-300 mm Hg, resulting in controlled polymer deposition of 5-600 microm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 microm x 700 microm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found

  13. Advanced applications of cosmic-ray muon radiography

    NASA Astrophysics Data System (ADS)

    Perry, John

    The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories. We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident. Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged

  14. Advanced leading edge thermal-structure concept. Direct bond reusable surface insulation to a composite structure

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.

    1984-01-01

    An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.

  15. Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering.

    PubMed

    Stout, David A

    2015-01-01

    Since the discovery and synthesis of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) over a decade ago, researchers have envisioned and discovered new potential applications for these materials. CNTs and CNFs have rapidly become a platform technology for a variety of uses, including biomedical applications due to their mechanical, electrical, thermal, optical and structural properties. CNTs and CNFs are also advantageous due to their ability to be produced in many different shapes and sizes. Since their discovery, of the many imaginable applications, CNTs and CNFs have gained a significant amount of attention and therapeutic potential in tissue engineering and drug delivery applications. In recent years, CNTs and CNFs have made significant contributions in designing new strategies for, delivery of pharmaceuticals, genes and molecular probes into cells, stem cell therapies and assisting in tissue regeneration. Furthermore, it is widely expressed that these materials will significantly contribute to the next generation of health care technologies in treating diseases and contributing to tissue growth. Hence, this review seeks to explore the recent advancements, current status and limitations of CNTs and CNFs for drug delivery and tissue engineering applications.

  16. Structural sensitivity analysis: Methods, applications and needs

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.

    1984-01-01

    Innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. The techniques include a finite difference step size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Some of the critical needs in the structural sensitivity area are indicated along with plans for dealing with some of those needs.

  17. Structural sensitivity analysis: Methods, applications, and needs

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.

    1984-01-01

    Some innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. These techniques include a finite-difference step-size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, a simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Finally, some of the critical needs in the structural sensitivity area are indicated along with Langley plans for dealing with some of these needs.

  18. In-Situ Investigation of Advanced Structural Coatings and Composites

    NASA Technical Reports Server (NTRS)

    Ustundag, Ersan

    2003-01-01

    The premise of this project is a comprehensive study that involves the in-situ characterization of advanced coatings and composites by employing both neutron and x-ray diffraction techniques in a complementary manner. The diffraction data would then be interpreted and used in developing or validating advanced micromechanics models with life prediction capability. In the period covered by this report, basic work was conducted to establish the experimental conditions for various specimens and techniques. In addition, equipment was developed that will allow the in-situ studies under a range of conditions (stress, temperature, atmosphere, etc.).

  19. Foam inflated rigidized structures for space applications

    NASA Astrophysics Data System (ADS)

    Lester, D. M.; Warner, M. J.; Blair, M.

    1993-11-01

    Large lightweight stowable structures that can be deployed in space without astronaut extra vehicular activity are vital to expanding space exploration and utilization. To meet this challenge Foam Inflated Rigidized (FIR) structures have been developed by Thiokol Corporation on the Air Forces's Gossamer Baggie Torus program. In this paper the development, proof of concept demonstration of an eight foot diameter octagonal torus, and design application of this technology for structural elements to stabilize the solar collector of a solar thermal rocket are discussed. A FIR structure uses foam to inflate and pre-stress a resin impregnated fabric skin. The predeployed foam used was a solvent swelled polymer that foams immediately when exposed to vacuum due to rapid solvent loss. This property allows a very simple deployment mechanism to be used in erecting these structures. Once inflated, the skin resin is cured using the available ultraviolet radiation. By using high strength and stiffness fiber materials a stiff, strong lightweight structure was produced.

  20. Advanced nanomaterials–sustainable preparation and their catalytic applications

    EPA Science Inventory

    Sustainable nanomaterials have attracted great attention as highly functionalized nanocatalysts in diverse forms including solid-supported nanocatalysts, graphene materials, and core-shell catalysts among other nanostructures. Technology advancements in last decades have allowed ...

  1. Structural Analysis and Quantitative Determination of Clevidipine Butyrate Impurities Using an Advanced RP-HPLC Method.

    PubMed

    Zhou, Yuxia; Zhou, Fan; Yan, Fei; Yang, Feng; Yao, Yuxian; Zou, Qiaogen

    2016-03-01

    Eleven potential impurities, including process-related compounds and degradation products, have been analyzed by comprehensive studies on the manufacturing process of clevidipine butyrate. Possible formation mechanisms could also be devised. MS and NMR techniques have been used for the structural characterization of three previously unreported impurities (Imp-3, Imp-5 and Imp-11). To separate and quantify the potential impurities in a simultaneous fashion, an efficient and advanced RP-HPLC method has been developed. In doing so, four major degradation products (Imp-2, Imp-4, Imp-8 and Imp-10) can be observed under varying stress conditions. This analytical method has been validated according to ICH guidelines with respect to specificity, accuracy, linearity, robustness and stability. The method described has been demonstrated to be applicable in routine quality control processes and stability evaluation studies of clevidipine butyrate.

  2. ITER structural design criteria and their extension to advanced fusion reactor blankets.

    SciTech Connect

    Kalnin, G.; Majumdar, S.

    1999-09-03

    Application of the new low-temperature-design rules of the ITER Structural Design Criteria (ISDC) is illustrated by considering copper alloys that, according to recent data, are particularly prone to irradiation embrittlement at relatively low fluences at certain temperatures, Allowable stresses are derived and the impact of the embrittlement on allowable surface heat flux of a simple first-wall/limiter design is demonstrated. High-temperature-design rules of ISDC are applied to EVOLVE (Evaporation Of Lithium and Vapor Extraction), a blanket design concept currently being investigated under the U.S. APEX (Advanced Power Extraction) program. One version of this concept envisions the use of a series of parallel tungsten tubes (first-wall) that are cooled internally by lithium vapor, typically. at 1200 C. A single tungsten first-wall tube is considered for thermal and stress analyses by finite-element method.

  3. Power Law Versus Exponential Form of Slow Crack Growth of Advanced Structural Ceramics: Dynamic Fatigue

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    The life prediction analysis based on an exponential crack velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress-rate ("dynamic fatigue") and preload testing at ambient and elevated temperatures. The data fit to the strength versus In (stress rate) relation was found to be very reasonable for most of the materials. It was also found that preloading technique was equally applicable for the case of slow crack growth (SCG) parameter n > 30. The major limitation in the exponential crack velocity formulation, however, was that an inert strength of a material must be known priori to evaluate the important SCG parameter n, a significant drawback as compared to the conventional power-law crack velocity formulation.

  4. Surviving the space environment - An overview of advanced materials and structures development at the CWRU CCDS

    NASA Technical Reports Server (NTRS)

    Wallace, John F.; Zdankiewicz, Edward M.; Schmidt, Robert N.

    1991-01-01

    The development of advanced materials and structures for long-term use in space is described with specific reference given to applications to the Space Station Freedom and the lunar base. A flight-testing program is described which incorporates experiments regarding the passive effects of space travel such as material degradation with active materials experiments such as the Materials Exposure Flight Experiment. Also described is a research and development program for materials such as organic coatings and polymeric composites, and a simulation laboratory is described which permits the analysis of materials in the laboratory. The methods of investigation indicate that the NASA Center for the Commercial Development of Space facilitates the understanding of material degradation in space.

  5. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    NASA Astrophysics Data System (ADS)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  6. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1976-01-01

    Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.

  7. Resistive switching behavior in Lu2O3 thin film for advanced flexible memory applications

    PubMed Central

    2014-01-01

    In this article, the resistive switching (RS) behaviors in Lu2O3 thin film for advanced flexible nonvolatile memory applications are investigated. Amorphous Lu2O3 thin films with a thickness of 20 nm were deposited at room temperature by radio-frequency magnetron sputtering on flexible polyethylene terephthalate substrate. The structural and morphological changes of the Lu2O3 thin film were characterized by x-ray diffraction, atomic force microscopy, and x-ray photoelectron spectroscopy analyses. The Ru/Lu2O3/ITO flexible memory device shows promising RS behavior with low-voltage operation and small distribution of switching parameters. The dominant switching current conduction mechanism in the Lu2O3 thin film was determined as bulk-controlled space-charge-limited-current with activation energy of traps of 0.33 eV. The oxygen vacancies assisted filament conduction model was described for RS behavior in Lu2O3 thin film. The memory reliability characteristics of switching endurance, data retention, good flexibility, and mechanical endurance show promising applications in future advanced memory. PMID:24387704

  8. Advances in SiC/SiC Composites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2006-01-01

    In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.

  9. Advanced flip chip technologies in rf, microwave, and MEMS applications

    NASA Astrophysics Data System (ADS)

    Oppermann, Hermann H.; Kallmayer, C.; Klein, M.; Aschenbrenner, R.; Reichl, Herbert

    2000-04-01

    A variety of flip chip technologies are available today which differ in bumping material, substrate type, pad metallization and joining method. They are found in packages as well as on multichip modules and directly flip chip bonded on the board. Components including flip chip like bal grid arrays and chip size packages are introduced. Flip chip is the most favored assembly technology for high frequency applications due to the small parasitic of the short bump interconnect. High performance packages for optoelectronic devices using self-alignment during a fluxless reflow soldering are shown as well as the integration of MMICs. High density multichip modules have been fabricated for large pixel defectors of a nuclear detector with eight Chips and more than 46000 I/Os with an acceptable yield. Flip chip technology is a very flexible assembly method for different applications. Variations of the bump structure can be used for MEMS packaging as well and it was demonstrated by the assembly of a thin membrane to form an absolute pressure sensor with a vacuum enclosure. For different packaging requirements the appropriate technology should be chosen very carefully. An overview will be given for different bumping and flip chip joining methods suitable for high volume production as well as for prototyping. Wafer bumping methods will focus on electro less deposition of nickel/gold as well as on electroplating of gold, SnPb and AuSn solders. For rapid prototyping single chip bumping methods are described. Examples of different joining methods - soldering, adhesive bonding and thermocompression bonding - will be shown.

  10. Recent advances in percolation theory and its applications

    NASA Astrophysics Data System (ADS)

    Saberi, Abbas Ali

    2015-05-01

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  11. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    SciTech Connect

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G.; Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  12. Advances and trends in structures and dynamics; Proceedings of the Symposium, Washington, DC, October 22-25, 1984

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Editor); Hayduk, R. J. (Editor)

    1985-01-01

    Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.

  13. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1993-01-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.

  14. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    SciTech Connect

    Michaelides, Angelos; Martinez, Todd J.; Alavi, Ali; Kresse, Georg

    2015-09-14

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  15. Advanced design for lightweight structures: Review and prospects

    NASA Astrophysics Data System (ADS)

    Braga, Daniel F. O.; Tavares, S. M. O.; da Silva, Lucas F. M.; Moreira, P. M. G. P.; de Castro, Paulo M. S. T.

    2014-08-01

    Current demand for fuel efficient aircraft has been pushing the aeronautical sector to develop ever more lightweight designs while keeping safe operation and required structural strength. Along with light-weighting, new structural design concepts have also been established in order to maintain the aircraft in service for longer periods of time, with high reliability levels. All these innovations and requirements have led to deeply optimized aeronautical structures contributing to more sustainable air transport. This article reviews the major design philosophies which have been employed in aircraft structures, including safe-life, fail-safe and damage tolerance taking into account their impact on the structural design. A brief historical review is performed in order to analyse what led to the development of each philosophy. Material properties are related to each of the design philosophies. Damage tolerant design has emerged as the main structural design philosophy in aeronautics, requiring deep knowledge on materials fatigue and corrosion strength, as well as potential failure modes and non-destructive inspection techniques, particularly minimum detectable defect and scan times. A discussion on the implementation of structural health monitoring and self-healing structures within the current panorama of structures designed according to the damage tolerant philosophy is presented. This discussion is aided by a review of research on these two subjects. These two concepts show potential for further improving safety and durability of aircraft structures.

  16. Designing of Metallic Photonic Structures and Applications

    SciTech Connect

    Kim, Yong-Sung

    2006-01-01

    In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result.

  17. Development of Advanced Seals for Industrial Turbine Applications

    NASA Astrophysics Data System (ADS)

    Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet

    2002-10-01

    A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.

  18. Parachute systems technology: Fundamentals, concepts, and applications: Advanced parachute design

    SciTech Connect

    Peterson, C.W.; Johnson, D.W.

    1987-01-01

    Advances in high-performance parachute systems and the technologies needed to design them are presented in this paper. New parachute design and performance prediction codes are being developed to assist the designer in meeting parachute system performance requirements after a minimum number of flight tests. The status of advanced design codes under development at Sandia National Laboratories is summarized. An integral part of parachute performance prediction is the rational use of existing test data. The development of a data base for parachute design has been initiated to illustrate the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. Examples of advancements in parachute materials are presented, and recent problems with Mil-Spec broadgoods are reviewed. Finally, recent parachute systems tested at Sandia are summarized to illustrate new uses of old parachutes, new parachute configurations, and underwater recovery of payloads.

  19. Structural design of integral tankage for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Davis, R. B.; Lemessurier, R. W.

    1982-01-01

    Fully reusable launch vehicle concepts being studied for post-Shuttle era transports present major challenges for the structural design of large propellant tankage. The dominant structural elements are internal tankage for both cryogenic and non-cryogenic propellants which must operate in a broad range of thermal environments while meeting requirements for low weight and reusability. Several approaches to integral tank design are discussed and an analysis of a hot structure honeycomb sandwich tank for a circular body vehicle is presented.

  20. 78 FR 71601 - KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit Application Accepted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Energy Regulatory Commission KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit... the applicant to KC Small Hydro LLC. (KCS Hydro). On November 5, 2013, Advanced Hydropower, Inc... the feasibility of a hydropower project to be located at the U.S. Army Corps of Engineers'...

  1. 77 FR 8848 - Application for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Application for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information: Advanced Placement Test.... Full Text of Announcement I. Funding Opportunity Description Purpose of Program: The AP Test...

  2. 78 FR 19691 - Applications for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Applications for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information Advanced Placement Test... Announcement I. Funding Opportunity Description Purpose of Program: The AP Test Fee program awards grants...

  3. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  4. Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions

    ERIC Educational Resources Information Center

    Syed, Mahbubur Rahman, Ed.

    2009-01-01

    The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…

  5. 47 CFR 2.1400 - Application for advance approval under part 73.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Application for advance approval under part 73. 2.1400 Section 2.1400 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Advance Approval of Subscription...

  6. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  7. Advanced photovoltaic power system technology for lunar base applications

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Flood, Dennis J.

    1988-01-01

    Advanced photovoltaic/electrochemical (batteries or regenerative fuel cells for storage) power system options for a lunar base are discussed and compared. Estimated system masses are compared with those projected for the SP-100 nuclear system. The results of the comparison are quantified in terms of the mass saved in a scenario which assembles the initial base elements in Low Earth Orbit (LEO) and launches from there to the lunar surface. A brief summary is given of advances in photovoltaic/electrochemical power system technologies currently under development in the NASA/OAST program. A description of the planned focussed technology program for surface power in the new Pathfinder initiative is also provided.

  8. Advances in experimental spectroscopy of Z-pinch plasmas and applications

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Safronova, A. S.; Safronova, U. I.; Shrestha, I.; Weller, M. E.; Osborne, G. C.; Shlyaptseva, V. V.; Wilcox, P. G.; Stafford, A.

    2012-06-01

    Recent advances in experimental work on plasma spectroscopy of Z-pinches are presented. The results of experiments on the 1.7 MA Z-pinch Zebra generator at UNR with wire arrays of various configurations and X-pinches are overviewed. A full x-ray and EUV diagnostic set for detailed spatial and temporal monitoring of such plasmas together with theoretical support from relativistic atomic structure and non-LTE kinetic codes used in the analysis are discussed. The use of a variety of wire materials in a broad range from Al to W provided an excellent opportunity to observe and study specific atomic and plasma spectroscopy features. In addition, the applications of such features to fusion and astrophysics will be considered.

  9. Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.

    2014-01-01

    The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.

  10. Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Gardner, Nathaniel W.; Stanford, Bret K.; Martin, Robert A.

    2015-01-01

    The structural performance of two advanced composite tow-steered shells with large cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles of the shells vary continuously around their circumference from +/- 10 degrees on the crown and keel, to +/- 45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the tow drop/add capability of the system to achieve a more uniform wall thickness. These unstiffened shells, both without and with small cutouts, were previously tested in axial compression and buckled elastically. In this study, a single unreinforced cutout, scaled to represent a cargo door on a commercial aircraft, is machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of these shells with large cutouts are also computed using linear finite element structural analyses for preliminary comparisons with test data. During testing, large displacements are observed around the large cutouts, but the shells maintain an average of 91 percent of the axial stiffness, and also carry 85 percent of the buckling loads, when compared to the pristine shells without cutouts. These relatively small reductions indicate that there is great potential for using tow steering to mitigate the adverse effects of large cutouts on the overall structural performance.

  11. Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships

    NASA Technical Reports Server (NTRS)

    Walker, K. P.

    1981-01-01

    Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.

  12. Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems

    DTIC Science & Technology

    2014-11-30

    AFRL-OSR-VA-TR-2015-0007 FUNDAMENTAL ADVANCES IN INVERSE MECHANICS TOWARDS SELF-AWARE JOHN BRIGHAM UNIVERSITY OF PITTSBURGH Final Report 12/04/2014...TITLE AND SUBTITLE Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems 5a. CONTRACT NUMBER...methods for solving inverse problems related to smart morphable structures that can evaluate their current environment and then adapt accordingly to

  13. Fuselage structure using advanced technology fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Robinson, R. K.; Tomlinson, H. M. (Inventor)

    1982-01-01

    A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.

  14. Advanced Cryo-Tanks Structural Design Investigated in CHATT

    NASA Astrophysics Data System (ADS)

    Sippel, Martin; Kopp, Alexander; Mattsson, David; Koussios, Sotiris

    2014-06-01

    An EU-funded study called CHATT (Cryogenic Hypersonic Advanced Tank Technologies) has been initiated early 2012 and recently passed its mid-term milestone. The project CHATT is part of the European Commission's Seventh Framework Programme and run on behalf of the Commission by DLR-SART in a multinational collaboration. One of the core objectives is to investigate Carbon Fiber Reinforced Plastic (CFRP) cryogenic pressure tanks. Four different subscale CFRP-tanks are planned to be designed, manufactured, and tested.The paper outlines the study logic of CHATT, gives a presentation of the technology development tasks, and summarizes available research results on the liner testing and CFRP-tank manufacturing.

  15. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, the International Space Station, Uninhabited Aerial Vehicles, and Expendable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  16. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  17. Advances in understanding glycosyltransferases from a structural perspective

    PubMed Central

    Gloster, Tracey M

    2014-01-01

    Glycosyltransferases (GTs), the enzymes that catalyse glycosidic bond formation, create a diverse range of saccharides and glycoconjugates in nature. Understanding GTs at the molecular level, through structural and kinetic studies, is important for gaining insights into their function. In addition, this understanding can help identify those enzymes which are involved in diseases, or that could be engineered to synthesize biologically or medically relevant molecules. This review describes how structural data, obtained in the last 3–4 years, have contributed to our understanding of the mechanisms of action and specificity of GTs. Particular highlights include the structure of a bacterial oligosaccharyltransferase, which provides insights into N-linked glycosylation, the structure of the human O-GlcNAc transferase, and the structure of a bacterial integral membrane protein complex that catalyses the synthesis of cellulose, the most abundant organic molecule in the biosphere. PMID:25240227

  18. Recent advances in numerical analysis of structural eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    A wide range of eigenvalue problems encountered in practical structural engineering analyses is defined, in which the structures are assumed to be discretized by any suitable technique such as the finite-element method. A review of the usual numerical procedures for the solution of such eigenvalue problems is presented and is followed by an extensive account of recently developed eigenproblem solution procedures. Particular emphasis is placed on the new numerical algorithms and associated computer programs based on the Sturm sequence method. Eigenvalue algorithms developed for efficient solution of natural frequency and buckling problems of structures are presented, as well as some eigenvalue procedures formulated in connection with the solution of quadratic matrix equations associated with free vibration analysis of structures. A new algorithm is described for natural frequency analysis of damped structural systems.

  19. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Rogers, Craig A.

    1998-07-01

    The emerging electro-mechanical impedance technology has high potential for in-situ health monitoring and NDE of structural systems and complex machinery. At first, the fundamental principles of the electro-mechanical impedance method are briefly reviewed and ways for practical implementation are highlighted. The equations of piezo- electric material response are given, and the coupled electro-mechanical impedance of a piezo-electric wafer transducer as affixed to the monitored structure is discussed. Due to the high frequency operation of this NDE method, wave propagation phenomena are identified as the primary coupling method between the structural substrate and the piezo-electric wafer transducer. Attention is then focused on several recent advancements that have extended the electro-mechanical impedance method into new areas of applications and/or have developed its underlying principles. US Army Construction Engineering Research Laboratory used the electro-mechanical impedance method to monitor damage development in composite overlaid civil infrastructure specimens under full-scale static testing. A simplified E/M impedance measuring technique was employed at the Polytechnic University of Madrid, Spain, to detect damage in GFRP composite specimens. The development of miniaturized `bare-bones' impedance analyzer equipment that could be easily packaged into transponder-size dimensions is being studied at the University of South Carolina. US Army Research Laboratory developed novel piezo-composite film transducers for embedment into composite structures. Disbond gauges for monitoring the structural joints of adhesively bonded rotor blades have been studies in the Mechanical Engineering Department at the University of South Carolina. These recent developments accentuate the importance and benefits of using the electro-mechanical impedance method for on-line health monitoring and damage detection in a variety of applications. Further investigation of the electro

  20. GPR application to historical buildings structural control

    NASA Astrophysics Data System (ADS)

    Pettinelli, E.; Barone, P. M.; Mattei, E.; Di Matteo, A.

    2009-04-01

    Preservation of historical buildings requires particular care, as any intervention must conducted in a way which does not alter or damage the style, structure or contents of the edifice. In order to properly plan the restoration of a building, non-destructive techniques can be extensively used to detect structural elements and weaknesses. Ground Penetrating Radar is particularly well adapted to this type of work, as the method is non-invasive, rapid, and provides high resolution images of contrasting subsurface materials. In the present work we show three case-histories on three historical buildings - different in age, structure and geometry - in which GPR technique has been successfully used. To obtain 2D time slices of the investigated area, high frequency bistatic GPR (900 MHz and 1GHz antennas) was applied in each site, acquiring data along several parallel profiles. The first case presented here, is the GPR detection of the fractures and the internal lesions in the architrave of the Porticus Octaviae, a Roman building partially restored, located downtown Rome. The second case shows the application of the GPR to detect the internal structure of the floors above the vaulted ceilings that houses a series of 16th century frescos in the important Zuccari Palace, also located in Rome. Finally, the third case illustrates the application of GPR to reconstruct the geometry and the reinforcement structures of the floors and the inside walls of the Provincial Palace of Pescara, dated back to the Fascist age. These three examples show that GPR technique is a valid support which, in exhaustive way, can highlight the state of conservation of historical buildings. In particular, this technique can produce fundamental information for the restorers, in terms of location, dimension, and geometry of the internal lesions in the structure, helping them in developing the best possible protection plan for an historical building. REFERENCES Annan A.P.; 2004: Ground Penetrating Radar

  1. Engineering industrial yeast for renewable advanced biofuels applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  2. The Application of Advanced Technology to Improve Air Bag Performance

    NASA Technical Reports Server (NTRS)

    Phen, R.; Dowdy, M.; Ebbeler, D.; Kim, E.; Moore, N.; Van Zandt, T.

    1998-01-01

    In December 1996 the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) signed a memorandum of understanding for NASA to assess the capability of advanced technology to reduce air bag inflation-induced injuries and increase air bag effectiveness.

  3. Advances in Child Behavior Therapy: Applications and Implications.

    ERIC Educational Resources Information Center

    Kazdin, Alan E.

    1979-01-01

    Reviews advances in child behavior therapy by illustrating the range of problems treated and the techniques and accomplishments that have emerged. Discusses training of parents, teachers, peers, and children themselves in behavior change techniques, as well as general implications of therapeutic developments for enhancing child welfare. (GC)

  4. Titanium and advanced composite structures for a supersonic cruise arrow wing configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Hoy, J. M.

    1976-01-01

    Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.

  5. Structural Dynamics Testing of Advanced Stirling Convertor Components

    NASA Technical Reports Server (NTRS)

    Oriti, Sal; Williams, Zach

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  6. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    SciTech Connect

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  7. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  8. Application of NASTRAN to large space structures

    NASA Technical Reports Server (NTRS)

    Balderes, T.; Zalesak, J.; Dyreyes, V.; Lee, E.

    1976-01-01

    The application of NASTRAN to design studies of two very large-area lightweight structures is described. The first is the Satellite Solar Power Station, while the second is a deployable three hundred meter diameter antenna. A brief discussion of the operation of the SSPS is given, followed by a description of the structure. The use of the NASTRAN program for static, vibration and thermal analysis is illustrated and some results are given. Next, the deployable antenna is discussed and the use of NASTRAN for static analysis, buckling analysis and vibration analysis is detailed.

  9. Magnesium alloy applications in automotive structures

    NASA Astrophysics Data System (ADS)

    Easton, Mark; Beer, Aiden; Barnett, Matthew; Davies, Chris; Dunlop, Gordon; Durandet, Yvonne; Blacket, Stuart; Hilditch, Tim; Beggs, Peter

    2008-11-01

    The use of magnesium alloys in structural applications has great potential for the lightweighting of transportation vehicles. Research within the CAST Cooperative Research Centre has tackled some of the important issues related to the use of magnesium in structural applications. To this end, a new alloy with extrudability and properties similar to 6000 series aluminum alloys has been developed. Furthermore, a method of laser heating magnesium alloys before self-piercing riveting has enabled high-integrity joining between magnesium components or between magnesium and dissimilar metals. In this paper, new technologies and improved understanding of the deformation behavior of wrought magnesium alloys are discussed in light of key metallurgical features such as alloy composition, grain size, and work hardening rate.

  10. Advanced fiber-composite hybrids--A new structural material

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    Introduction of metal foil as part of matrix and fiber composite, or ""sandwich'', improves strength and stiffness for multidirectional loading, improves resistance to cyclic loading, and improves impact and erosion resistance of resultant fiber-composite hybrid structure.

  11. Advances in Mycobacterium tuberculosis therapeutics discovery utlizing structural biology

    PubMed Central

    Chim, Nicholas; Owens, Cedric P.; Contreras, Heidi; Goulding, Celia W.

    2013-01-01

    In 2012, tuberculosis (TB) remains a global health threat and is exacerbated both by the emergence of drug resistant Mycobacterium tuberculosis strains and its synergy with HIV infection. The waning effectiveness of current treatment regimens necessitates the development of new or repurposed anti-TB therapeutics for improved combination therapies against the disease. Exploiting atomic resolution structural information of proteins in complex with their substrates and/or inhibitors can facilitate structure-based rational drug design. Since our last review in 2009, there has been a wealth of new M. tuberculosis protein structural information. Once again, we have compiled the most promising structures with regards to potential anti-TB drug development and present them in this updated review. PMID:23167715

  12. Nuclear structure models: Applications and development

    SciTech Connect

    Semmes, P.B.

    1992-07-01

    This report discusses the following topics: Studies of superdeformed States; Signature Inversion in Odd-Odd Nuclei: A fingerprint of Triaxiality; Signature Inversion in {sup 120}Cs - Evidence for a Residual p-n Interaction; Signatures of {gamma} Deformation in Nuclei and an Application to {sup 125}Xe; Nuclear Spins and Moments: Fundamental Structural Information; and Electromagnetic Properties of {sup 181}Ir: Evidence of {beta} Stretching.

  13. Application of advanced technologies to small, short-haul transport aircraft (STAT)

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Mall, O. D.; Awker, R. W.; Scholl, J. W.

    1982-01-01

    The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length.

  14. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  15. Recent advances in Rosaceae gum exudates: From synthesis to food and non-food applications.

    PubMed

    Bouaziz, Fatma; Koubaa, Mohamed; Ellouz Ghorbel, Raoudha; Ellouz Chaabouni, Semia

    2016-05-01

    In recent years, great interest has been devoted to the development of new applications for natural gums. These molecules were used for a variety of purposes since they are chemically inert, non-toxic, less expensive, biodegradable and widely available. They represent one of the most abundant raw materials used not only in commercial food products, but also in cosmetic and pharmaceutical products. Plant gums take their advantages compared to other gums (e.g., from animal and microbial sources) mainly because of their acceptance by consumers. Despite of the well description given in literature for the features of plant gum exudates, there is a lack distinguishing the different families that are producing gums, and their potential applications. Among these gums, the ones produced by Rosaceae family (e.g., almond, apricot, cherry, peach, and plum plants) have been taking special attention. Thus, the aim of this review is to report the recent advances in Rosaceae gum exudates. An emphasis is given for the formation mechanisms of these gums, their chemical composition, functional properties and structures, beneficial properties, as well as their food/non-food applications.

  16. Advanced Woven SiC/SiC Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2007-01-01

    The temperature, stress, and environmental conditions of many gas turbine, hypersonic, and even nuclear applications make the use of woven SiC/SiC composites an attractive enabling material system. The development in SiC/SiC composites over the past few years has resulted in significant advances in high temperature performance so that now these materials are being pursued for several turbine airfoil and reusable hypersonic applications. The keys to maximizing stress capability and maximizing temperature capability will be outlined for SiC/SiC. These include the type of SiC fiber, the fiber-architecture, and the matrix processing approach which leads to a variety of matrix compositions and structure. It will also be shown that a range of mechanical, thermal, and permeability properties can be attained and tailored depending on the needs of an application. Finally, some of the remaining challenges will be discussed in order for the use of these composite systems to be fully realized.

  17. Advanced On-Board Processor (AOP). [for future spacecraft applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Advanced On-board Processor the (AOP) uses large scale integration throughout and is the most advanced space qualified computer of its class in existence today. It was designed to satisfy most spacecraft requirements which are anticipated over the next several years. The AOP design utilizes custom metallized multigate arrays (CMMA) which have been designed specifically for this computer. This approach provides the most efficient use of circuits, reduces volume, weight, assembly costs and provides for a significant increase in reliability by the significant reduction in conventional circuit interconnections. The required 69 CMMA packages are assembled on a single multilayer printed circuit board which together with associated connectors constitutes the complete AOP. This approach also reduces conventional interconnections thus further reducing weight, volume and assembly costs.

  18. GIS Based Application of Advanced Traveler Information System in India

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Singh, V.

    2012-02-01

    Developed countries like USA, Canada, Japan, UK, Australia and Germany have adopted advanced traveler information technologies expeditiously in comparison to developing countries. But, unlike developed countries, developing countries face considerable financial and framework constraints. Moreover local traffic, roadway, signalization, demographic, topological and social conditions in developing countries are quite different from those in developed countries. In this paper, a comprehensive framework comprising of system architecture, development methodology and salient features of a developed Advanced Traveler Information System (ATIS) for metropolitan cities in developing countries has been discussed. Development of proposed system is based on integration of two well known information technologies viz. Geographic Information Systems (GIS) and World Wide Web (WWW). Combination of these technologies can be utilized to develop an integrated ATIS that targets different types of travelers like private vehicle owners, transit users and casual outside visitors.

  19. Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Borkowski, Luke

    Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and

  20. Bacteriophage-based tools: recent advances and novel applications

    PubMed Central

    O'Sullivan, Lisa; Buttimer, Colin; McAuliffe, Olivia; Bolton, Declan; Coffey, Aidan

    2016-01-01

    Bacteriophages (phages) are viruses that infect bacterial hosts, and since their discovery over a century ago they have been primarily exploited to control bacterial populations and to serve as tools in molecular biology. In this commentary, we highlight recent diverse advances in the field of phage research, going beyond bacterial control using whole phage, to areas including biocontrol using phage-derived enzybiotics, diagnostics, drug discovery, novel drug delivery systems and bionanotechnology. PMID:27990274

  1. Modern night vision goggles for advanced infantry applications

    NASA Astrophysics Data System (ADS)

    Estrera, Joseph P.; Ostromek, Timothy E.; Isbell, Wayne; Bacarella, Antonio V.

    2003-09-01

    Northrop Grumman Electro-Optical Systems (NGEOS) has concentrated in recent years on the development of advanced night vision goggle (NVG) systems. These NVGs developments concentrate on past operational deficiencies such as high light/bright source conditions during military operations in urban terrain (MOUT), poor individual movement technique (IMT) infantry operations, and obscured battlefield and reduced weather conditions. The first area of NVG advancement involves direct image intensifier (I2) replacement involving automatic gated power supply technology for wide dynamic NVG operation and advanced Generation III halo free I2 technology for reduction of NVG image halo and "blooming" artifacts. The second significant development area is NVG individual movement technique (IMT) deficiencies such as reduced field of view, reduced depth perception, center of gravity problems, and limited operation flexibility. These issues of NVG IMT have resulted in the development of an IMT enhanced night vision goggle for the U.S. Army's enhanced night vision goggle (ENVG). Finally, Northrop Grumman EOS is developing a NVG with the capability of producing optimized real-time image fusion from an image intensified sensor and uncooled long wavelength infrared (LWIR) sensor. This new technology allows for optimum imaging in battlefield obscured and laser polluted environment. These image fusion NVG development efforts have concentrated on both optical overlay image fusion and digital image fusion. This paper will compare and contrast these two types of image fusion technologies.

  2. HTGR applications program advanced systems. Semiannual report, October 1, 1982-March 31, 1983

    SciTech Connect

    1983-05-01

    Work Breakdown Structure (WBS 41) activities emphasize the advanced HTGR modular reactor system (MRS) for reformer (R) and steam cycle/-cogeneration (SC/C) applications. This report describes progress in system performance for a 250-MW(t) MRS-R and a 300-MW(t) MRS-SC/C plant; it details the groundrules and parameters for the FY-83 nuclear core design and examines and compares fuel cycle economics. This report gives results from a study on decay heat removal transients for the MRS-R and MRS-SC/C variants. It evaluates the bypass valve system and the number and location of helium circulators, and it describes the progress on circulator component design, a prestressed concrete vessel steel closure design, and plant licensing and safety. Under the Advanced Technology Transfer Task (WBS 15), this report includes a section on a pebble bed reactor (PBR) MRS core heatup thermal model analysis. This report also gives the results of a survey on candidate reformer tube materials from GA Technologies Inc. to identify acceptable substitute materials for Inconel 617 to alleviate possible cobalt activation and carburization problems.

  3. Materials advances required to reduce energy consumption through the application of heavy duty diesel engines

    SciTech Connect

    Patten, J.W.

    1984-09-01

    Several key materials advances are required to reduce energy consumption through application of heavy duty diesel engines. Heavy duty diesel engines are viewed as effecting energy use both directly through fuel consumption, and indirectly through their durability with large energy expenditures required to replace worn-out engines. Materials advances that would improve fuel consumption include materials related to hot gas-path insulation, and materials related to design advances (other than insulation). Most design advances that are focused on fuel consumption or other performance factors also directly influence durability through materials properties. Several major engine components and many conventional (and advanced) materials are examined. If materials development is integrated with design and manufacturing advances, then fuel economy higher than 0.28 BSFC (50 pct thermal efficiency), and durability beyond 750,000 miles may be achievable.

  4. Conotoxins: Structure, Therapeutic Potential and Pharmacological Applications.

    PubMed

    Mir, Rafia; Karim, Sajjad; Kamal, Mohammad Amjad; Wilson, Cornelia M; Mirza, Zeenat

    2016-01-01

    Cone snails, also known as marine gastropods, from Conus genus produce in their venom a diverse range of small pharmacologically active structured peptides called conotoxins. The cone snail venoms are widely unexplored arsenal of toxins with therapeutic and pharmacological potential, making them a treasure trove of ligands and peptidic drug leads. Conotoxins are small disulfide bonded peptides, which act as remarkable selective inhibitors and modulators of ion channels (calcium, sodium, potassium), nicotinic acetylcholine receptors, noradrenaline transporters, N-methyl-D-aspartate receptors, and neurotensin receptors. They are highly potent and specific against several neuronal targets making them valuable as research tools, drug leads and even therapeutics. In this review, we discuss their gene superfamily classification, nomenclature, post-translational modification, structural framework, pharmacology and medical applications of the active conopeptides. We aim to give an overview of their structure and therapeutic potential. Understanding these aspects of conopeptides will help in designing more specific peptidic analogues.

  5. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  6. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  7. Resin transfer molding for advanced composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  8. Advanced structural analysis of nanoporous materials by thermal response measurements.

    PubMed

    Oschatz, Martin; Leistner, Matthias; Nickel, Winfried; Kaskel, Stefan

    2015-04-07

    Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm.

  9. Advanced structural design for precision radial velocity instruments

    NASA Astrophysics Data System (ADS)

    Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-07-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

  10. 0-G experiments with advanced ceramic fabric wick structures

    SciTech Connect

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.; Cooper, M.F.; Pauley, K.A.

    1991-07-01

    Both Air Force and NASA future spacecraft thermal management needs span the temperature range from cryogenic to liquid metals. Many of these needs are changing and not well defined and will remain so until goals, technology, and missions converge. Nevertheless, it is certain that high-temperature (> 800 K) and medium-temperature (about 450 K) radiator systems will have to be developed that offer significant improvements over current designs. This paper discusses experiments performed in the lower temperature regime as part of a comprehensive advanced ceramic fabric (ACF) heat pipe development program. These experiments encompassed wicking tests with various ceramic fabric samples, and heat transfer tests with a 1-m long prototype ACF water heat pipe. A prototype ceramic fabric/titanium water heat pipe has been constructed and tested; it transported up to 60 W of power at about 390 K. Startup and operation both with and against gravity examined. Wick testing was begun to aid in the design and construction of an improved prototype heat pipe, with a 38-{mu}m stainless steel linear covered by a biaxially-braided Nextel (trademark of the 3M Co., St. Paul, Minnesota) sleeve that is approximately 300-{mu}m thick. Wick testing took place in 1-g; limited testing in 0-g was initiated, and results to date suggest that in 0-g, wick performance improves over that in 1-g.

  11. Fracture Toughness of Advanced Structural Ceramics: Applying ASTM C1421

    DOE PAGES

    Swab, Jeffrey J.; Tice, Jason; Wereszczak, Andrew A.; ...

    2014-11-03

    The three methods of determining the quasi-static Mode I fracture toughness (KIc) (surface crack in flexure – SC, single-edge precracked beam – PB, and chevron notched beam – VB) found in ASTM C1421 were applied to a variety of advanced ceramic materials. All three methods produced valid and comparable KIc values for the Al2O3, SiC, Si3N4 and SiAlON ceramics examined. However, not all methods could successfully be applied to B4C, ZrO2 and WC ceramics due to a variety of material factors. The coarse-grained microstructure of one B4C hindered the ability to observe and measure the precracks generated in the SCmore » and PB methods while the transformation toughening in the ZrO2 prevented the formation of the SC and PB precracks and thus made it impossible to use either method on this ceramic. The high strength and elastic modulus of the WC made it impossible to achieve stable crack growth using the VB method because the specimen stored a tremendous amount of energy prior to fracture. Even though these methods have passed the rigors of the standardization process there are still some issues to be resolved when the methods are applied to certain classes of ceramics. We recommend that at least two of these methods be employed to determine the KIc, especially when a new or unfamiliar ceramic is being evaluated.« less

  12. Recent advances in metal hydrides for clean energy applications

    SciTech Connect

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  13. Applications of advanced optical fiber sensors at UESTC

    NASA Astrophysics Data System (ADS)

    Rao, Yun-Jiang

    2012-02-01

    Based on many years research, a number of novel fiber-optic sensors and systems are developed by the Fiber Optics Group at University of Electronic Science & Technology of China (UESTC). This paper presents a review of the applications of these sensors and systems developed in recent years, including: (1) Micro fiber-optic Fabry-Perot interferometric sensors for high temperature strain measurement applications; (2) Fiber Bragg grating (FBG) sensors for safety monitoring applications in transportations industry; (3) Long-distance Brillouin optical time-domain analyzer (BOTDA) for high performance temperature/strain measurement; (4) Fiber-optic fences based on FBG and phasesensitive optical time-domain reflectometer (Φ-OTDR) for intrusion monitoring applications.

  14. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  15. Advances and Applications of Single Cell Sequencing Technologies

    PubMed Central

    Wang, Yong; Navin, Nicholas E.

    2015-01-01

    Single cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic. PMID:26000845

  16. Advances and applications of single-cell sequencing technologies.

    PubMed

    Wang, Yong; Navin, Nicholas E

    2015-05-21

    Single-cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology, and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic.

  17. Application of advanced polymeric materials for controlled release pesticides

    NASA Astrophysics Data System (ADS)

    Rahim, M.; Hakim, M. R.; Haris, H. M.

    2016-08-01

    The objective of this work was to study the capability of advanced polymeric material constituted by chitosan and natural rubber matrices for controlled release of pesticides (1-hydroxynaphthalene and 2-hydroxynaphthalene) in aqueous solution. The released amount of pesticides was measured spectrophotometrically from the absorbance spectra applying a standardized curve. The release of the pesticides was studied into refreshing and non-refreshing neutral aqueous media. Interestingly, formulation successfully indicated a consistent, controlled and prolonged release of pesticides over a period of 35 days.

  18. Advances in DOE modeling and optical performance for SMO applications

    NASA Astrophysics Data System (ADS)

    Carriere, James; Stack, Jared; Childers, John; Welch, Kevin; Himel, Marc D.

    2010-04-01

    The introduction of source mask optimization (SMO) to the design process addresses an urgent need for the 32nm node and beyond as alternative lithography approaches continue to push out. To take full advantage of SMO routines, an understanding of the characteristic properties of diffractive optical elements (DOEs) is required. Greater flexibility in the DOE output is needed to optimize lithographic process windows. In addition, new and tighter constraints on the DOEs used for off-axis illumination (OAI) are being introduced to precisely predict, control and reduce the effects of pole imbalance and stray light on the CD budget. We present recent advancements in the modeling and optical performance of these DOEs.

  19. Advanced packaging technology for high frequency photonic applications

    SciTech Connect

    Armendariz, M.G.; Hadley, G.R.; Warren, M.E.

    1996-03-01

    An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

  20. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    SciTech Connect

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.