Science.gov

Sample records for advanced surface modification

  1. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    PubMed

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  2. Recent advances in liposome surface modification for oral drug delivery.

    PubMed

    Nguyen, Thanh Xuan; Huang, Lin; Gauthier, Mario; Yang, Guang; Wang, Qun

    2016-05-01

    Oral delivery via the gastrointestinal (GI) tract is the dominant route for drug administration. Orally delivered liposomal carriers can enhance drug solubility and protect the encapsulated theraputic agents from the extreme conditions found in the GI tract. Liposomes, with their fluid lipid bilayer membrane and their nanoscale size, can significantly improve oral absorption. Unfortunately, the clinical applications of conventional liposomes have been hindered due to their poor stability and availability under the harsh conditions typically presented in the GI tract. To overcome this problem, the surface modification of liposomes has been investigated. Although liposome surface modification has been extensively studied for oral drug delivery, no review exists so far that adequately covers this topic. The purpose of this paper is to summarize and critically analyze emerging trends in liposome surface modification for oral drug delivery.

  3. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    EPA Science Inventory

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  4. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    EPA Science Inventory

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  5. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  6. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  7. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  8. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications.

    PubMed

    Lin, Min; Zhao, Ying; Wang, ShuQi; Liu, Ming; Duan, ZhenFeng; Chen, YongMei; Li, Fei; Xu, Feng; Lu, TianJian

    2012-01-01

    Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) with appropriate surface modification can be used for a wide range of biomedical applications such as bio-detection, cancer therapy, bio-labeling, fluorescence imaging, magnetic resonance imaging and drug delivery. The upconversion phenomenon exhibited by Ln-doped UCNPs renders them tremendous advantages in biological applications over other types of fluorescent materials (e.g., organic dyes, fluorescent proteins, gold nanoparticles, quantum dots, and luminescent transition metal complexes) for: (i) enhanced tissue penetration depths achieved by near-infrared (NIR) excitation; (ii) improved stability against photobleaching, photoblinking and photochemical degradation; (iii) non-photodamaging to DNA/RNA due to lower excitation light energy; (iv) lower cytotoxicity; and (v) higher detection sensitivity. Ln-doped UCNPs are therefore attracting increasing attentions in recent years. In this review, we present recent advances in the synthesis of Ln-doped UCNPs and their surface modification, as well as their emerging applications in biomedicine. The future prospects of Ln-doped UCNPs for biomedical applications are also discussed.

  9. Surface Modification of Intraocular Lenses.

    PubMed

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-20

    This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO 2 , heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs.

  10. Surface Modification of Intraocular Lenses

    PubMed Central

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-01

    Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993

  11. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification

    NASA Astrophysics Data System (ADS)

    Qiu, Peiyu; Zhou, Na; Chen, Hengyu; Zhang, Chunlei; Gao, Guo; Cui, Daxiang

    2013-11-01

    Owing to their unique photo-physical properties, rare-earth ions-doped upconversion nanoparticles (UCNPs) have attracted extensive attention in recent years. UCNPs have many special merits, such as a long luminescence lifetime, narrow emission band widths, high quantum yields and low toxicity, which allows their potential applications in bio-medical field, biological luminescent labels and drug delivery carriers. Compared with traditional fluorescence labels exited by UV (ultraviolet), such as organic dyes and quantum dots, UCNPs can transfer near-infrared (NIR) light into visible light, which is commonly called upconversion luminescence (UCL). This paper reviews the recent advances of several typical synthesis methods of UCNPs in detail as well as the fabrication and optimization of the particle morphology, and the latest advances of UCNPs for multimode imaging, surface passivation and functionalization are also described.

  12. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification.

    PubMed

    Qiu, Peiyu; Zhou, Na; Chen, Hengyu; Zhang, Chunlei; Gao, Guo; Cui, Daxiang

    2013-12-07

    Owing to their unique photo-physical properties, rare-earth ions-doped upconversion nanoparticles (UCNPs) have attracted extensive attention in recent years. UCNPs have many special merits, such as a long luminescence lifetime, narrow emission band widths, high quantum yields and low toxicity, which allows their potential applications in bio-medical field, biological luminescent labels and drug delivery carriers. Compared with traditional fluorescence labels exited by UV (ultraviolet), such as organic dyes and quantum dots, UCNPs can transfer near-infrared (NIR) light into visible light, which is commonly called upconversion luminescence (UCL). This paper reviews the recent advances of several typical synthesis methods of UCNPs in detail as well as the fabrication and optimization of the particle morphology, and the latest advances of UCNPs for multimode imaging, surface passivation and functionalization are also described.

  13. Advanced Natural Gas Reciprocating Engine: Parasitic Loss Control through Surface Modification

    SciTech Connect

    Farshid Sadeghi; Chin-Pei Wang

    2008-12-31

    This report presents results of our investigation on parasitic loss control through surface modification in reciprocating engine. In order to achieve the objectives several experimental and corresponding analytical models were designed and developed to corroborate our results. Four different test rigs were designed and developed to simulate the contact between the piston ring and cylinder liner (PRCL) contact. The Reciprocating Piston Test Rig (RPTR) is a novel suspended liner test apparatus which can be used to accurately measure the friction force and side load at the piston-cylinder interface. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with the experimental measurements. Comparisons between the experimental and analytical results showed good agreement. The results revealed that in the reciprocating engines higher friction occur near TDC and BDC of the stroke due to the extremely low piston speed resulting in boundary lubrication. A Small Engine Dynamometer Test Rig was also designed and developed to enable testing of cylinder liner under motored and fired conditions. Results of this study provide a baseline from which to measure the effect of surface modifications. The Pin on Disk Test Rig (POD) was used in a flat-on-flat configuration to study the friction effect of CNC machining circular pockets and laser micro-dimples. The results show that large and shallow circular pockets resulted in significant friction reduction. Deep circular pockets did not provide much load support. The Reciprocating Liner Test Rig (RLTR) was designed to simplifying the contact at the PRCL interface. Accurate measurement of friction was obtained using 3-axis piezoelectric force transducer. Two fiber optic sensors were used to measure the film thickness precisely. The results show that the friction force is reduced through the use of modified surfaces. The Shear Driven Test Rig (SDTR) was designed to simulate the mechanism of the

  14. Surface modification of solids

    SciTech Connect

    Appleton, B.R.

    1984-05-01

    The use of ion beam and pulsed laser processing is reviewed for the near-surface modification of a wide range of materials. The techniques of ion implantation doping, ion beam and laser mixing, and pulsed-laser annealing are stressed with particular emphasis on the nonequilibrium aspects of these processing techniques and on new materials properties which can result. Examples are presented illustrating the utility of these techniques for fundamental materials research as well as practical surface modifications.

  15. Cyclic Polymers: From Scientific Curiosity to Advanced Materials for Gene Delivery and Surface Modification.

    PubMed

    Verbraeken, Bart; Hoogenboom, Richard

    2017-06-12

    Cyclic versus linear: The superiority of cyclic polymers over their linear counterparts is highlighted. Cyclic poly(2-oxazoline)s have been shown to provide excellent shielding properties when grafted to TiO2 surfaces and Fe3 O4 nanoparticles owing to their ultrahigh grafting densities leading to low friction surfaces, superior antifouling properties, and extreme nanoparticle stabilization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Surface modifications of nitinol.

    PubMed

    Haider, Waseem; Munroe, N; Tek, V; Pulletikurthi, C; Gill, P K S; Pandya, S

    2009-01-01

    Nitinol (an acronym for the Nickel-Titanium Naval Ordnance Laboratory) has been extensively explored as an implant material for the medical industry. The potential problem with Nitinol implant devices is the release of Ni in the human body, which has stimulated a great deal of research on surface modifications and the application of coatings. This paper presents a comprehensive review of various treatments to modify the surface of Nitinol in an effort to inhibit Ni release and to render improved biocompatibility. We discuss the important in-service properties of Nitinol, such as biocompatibility, corrosion resistance, stability, uniformity, and the nature of passivating oxides produced by passivation, electropolishing, magnetoelectropolishing, ion beam implantation, sterilization, and artificial coatings.

  17. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials.

    PubMed

    Kocaman, Suheyla; Karaman, Mustafa; Gursoy, Mehmet; Ahmetli, Gulnare

    2017-03-01

    In this study, surface-modified grinded coconut waste (CW) particles were used as bio-fillers to prepare polymeric composite materials with enhanced properties. Epoxy resin modified with acrylated and epoxidized soybean oil (AESO) was used as the polymer matrix. Two different strategies, namely chemical treatment and plasma enhanced chemical vapor deposition (PECVD) were utilized to modify the surface of CW particles for using them as compatible bio-fillers in composite preparation. Chemical modification involved the treatment of CW particles in a highly alkali NaOH solution, while PECVD modification involved coating of a thin film of hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) around individual CW particle surfaces. Untreated and surface-modified CW particles were used in 10-50wt% for preparation of epoxy composites. FTIR analysis was performed to study the effect of modification on the structures of particles and as-prepared composites. The composite morphologies were investigated by XRD and SE. TGA test was conducted to study the thermal behavior of the composites. Also, the effects of CW particle surface modification on the mechanical and water sorption properties of epoxy resin composites were investigated in detail. It was observed that PECVD-treated CW particles had much more positive effects on the thermal, mechanical, wettability and flammability properties of composites.

  18. Surface modification of bioceramics

    NASA Astrophysics Data System (ADS)

    Monkawa, Akira

    Hydroxyapatite [Ca10(PO4)6(OH)2, HAp] is a major inorganic component of bone and teeth tissues and has the excellent biocompatibility and high osteoconductivity. The interactions between HAp and protein or cell have been studied. The HAp related bioceramics such as bone substitute, coating substance of metal implants, inorganic-polymer composites, and cell culture. We described two methods; (1) surface modification of HAp using organosilane; (2) fabrication of HAp ultra-thin layer on gold surface for protein adsorption analyzed with QCM-D technique. The interfacial interaction between collagen and HAp in a nano-region was controlled by depositing the organosilane of n-octadecyltrimethoxysilane (ODS: -CH3) or aminopropyltriethoxysilane (APTS: -NH2) with a chemical vapor deposition method. The morphologies of collagen adsorbed on the surfaces of HAp and HAp deposited with APTS were similar, however that of the surface with ODS was apparently different, due to the hydrophobic interaction between the organic head group of -CH3 and residual groups of collagen. We present a method for coating gold quartz crystal microbalance with dissipation (QCM-D) sensor with ultra-thin layer of hydroxyapatite nanocrystals evenly covering and tightly bound to the surface. The hydroxyapatite sensor operated in liquid with high stability and sensitivity. The in-situ adsorption mechanism and conformational change of fibrinogen on gold, titanium and hydroxyapatite surfaces were investigated by QCM-D technique and Fourier-transform infrared spectroscopy. The study indicates that the hydroxyapatite sensor is applicable for qualitative and conformational analysis of protein adsorption.

  19. Surface modification in microchip electrophoresis.

    PubMed

    Belder, Detlev; Ludwig, Martin

    2003-11-01

    Different approaches and techniques for surface modification of microfluidic devices applied for microchip electrophoresis are reviewed. The main focus is on the improved electrophoretic separation by reducing analyte-wall interactions and manipulation of electroosmosis. Approaches and methods for permanent and dynamic surface modification of microfluidic devices, manufactured from glass, quartz and also different polymeric substrates, are described.

  20. Inorganic Surface Modification of Nonwoven Polymeric Substrates

    NASA Astrophysics Data System (ADS)

    Halbur, Jonathan Chandler

    In this study, atomic layer deposition (ALD), a vapor phase inorganic thin film deposition technique, is used to modify the surface of a range of industrially relevant polymers to enhance surface properties or impart additional functionalities. Several unique demonstrations of polymer surface modification are presented including uniform nanomaterial photodeposition to the surface of nonowoven fabrics and the first application of photocatalytic thin film coated nonwovens for advanced filtration of heavy metals from solution. Recent advances in polymer synthesis and processing technologies have resulted in the production of novel polymer systems with unique chemistries and sub-micron scale dimensions. As a result, advanced fiber systems have received much attention for potential use in a wide range of industrially and medically important applications such as advanced and selective filtration, catalysis, flexible electronics, and tissue engineering. However, tailoring the surface properties of the polymer is still needed in order to realize the full range of advanced applications, which can be difficult given the high complexity and non-uniformity of nonwoven polymeric structures. Uniform and controllable inorganic surface modification of nonwovens allows the introduction or modification of many crucial polymer properties with a wide range of application methods.

  1. Plasma surface modification of polymers

    NASA Technical Reports Server (NTRS)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  2. Surface modification to waveguides

    DOEpatents

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  3. Surface modification to waveguides

    DOEpatents

    Timberlake, John R.; Ruzic, David N.; Moore, Richard L.; Cohen, Samuel A.; Manos, Dennis M.

    1983-01-01

    A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  4. Surface modification by molecular ions

    SciTech Connect

    Hanley, L.; Schultz, D. G.; Ada, E. T.

    1999-06-10

    There are several advantages in using molecular ions for surface modification. The modification can be confined to the uppermost layer of the surface, the molecular character of the ion can be imparted to the surface, and sputter yields are often higher. These effects are demonstrated by the use of mass selected ion beams incident on well characterized surfaces. Energy transfer is examined by detecting the masses and energies of ions scattered off surfaces and performing molecular dynamics simulations. Surface modification is followed by chemical analysis with x-ray photoelectron spectroscopy and surface mass spectrometry. TRIDYN monte carlo simulations are used to support some of the modification experiments. Energy transfer is examined for Si(CD{sub 3}){sub 3}{sup +} scattered off clean and hexanethiolate covered Au(111). Adsorbate desorption cross sections and substrate damage depths for NH{sub 3}/CO/Ni(111) are compared for 10-1000 eV isobaric atomic and polyatomic ions, Xe{sup +} and SF{sub 5}{sup +}. The surface chemical modification of polystyrene thin films by 10-100 eV SF{sub 5}{sup +} and C{sub 3}F{sub 5}{sup +} ions is also examined.

  5. Ion beam surface modification

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.

    1982-01-01

    The essential details of a study on the practical applications and mechanisms of polymer sputtering via Argon ion impact are summarized. The potential to modify the properties of polymer surfaces to improve their adherence, durability, biocompatibility, or other desirable properties by ion beam sputtering was emphasized. Ion beam milling can be of benefit as an analytical tool to obtain composition versus depth information. Ion impact from a directed ion gun source specifically etches polymer structures according to their morphologies, therefore this technique may be useful to study unknown or new morphological features. Factors addressed were related to: (1) the texture that arises on a polymer target after ion impact; (2) the chemistry of the top surface after ion impact; (3) the chemistry of sputtered films of polymeric material deposited on substrates placed adjacent to targets during ion impact; and (4) practical properties of textured polymer targets, specifically the wettability and adhesive bonding properties.

  6. Atmospheric Plasma for Surface Modification

    DTIC Science & Technology

    2011-02-01

    Plasma for Surface Modification 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...barrier coatings, dry low friction surfaces • Deposition Polymerized hydrocarbon coatings, chemical barriers, scratch resistant coatings, glass-like... surfaces , diamond like films • Oxidation/reduction Organic and inorganic functionalities • Activation. Hydroxyl, carboxylic, carbonyl, amine, vinyl

  7. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo.

    PubMed

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-05-07

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.

  8. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-04-01

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e

  9. Surface modification for corrosion resistance

    SciTech Connect

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  10. [Advances in genetic modification technologies].

    PubMed

    Zhang, Baixue; Sun, Qixin; Li, Haifeng

    2015-08-01

    Genetic modification technology is a new molecular tool for targeted genome modification. It includes zinc finger nucleases (ZFN) technology, transcription activator-like effector nucleases (TALEN) technology and clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) (CRISPR-Cas) nucleases technology. All of these nucleases create DNA double-strand breaks (DSB) at chromosomal targeted sites and induce cell endogenous mechanisms that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway, resulting in targeted endogenous gene knock-out or exogenous gene insertion. In recent years, genetic modification technologies have been successfully applied to bacteria, yeast, human cells, fruit fly, zebra fish, mouse, rat, livestock, cynomolgus monkey, Arabidopsis, rice, tobacco, maize, sorghum, wheat, barley and other organisms, showing its enormous advantage in gene editing field. Especially, the newly developed CRISPR-Cas9 system arose more attention because of its low cost, high effectiveness, simplicity and easiness. We reviewed the principles and the latest research progress of these three technologies, as well as prospect of future research and applications.

  11. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  12. Surface Modification for Microreactor Fabrication

    PubMed Central

    Pijanowska, Dorota G.; Remiszewska, Elżbieta; Pederzolli, Cecilia; Lunelli, Lorenzo; Vendano, Michele; Canteri, Roberto; Dudziński, Konrad; Kruk, Jerzy; Torbicz, Wladyslaw

    2006-01-01

    In this paper, methods of surface modification of different supports, i.e. glass and polymeric beads for enzyme immobilisation are described. The developed method of enzyme immobilisation is based on Schiff's base formation between the amino groups on the enzyme surface and the aldehyde groups on the chemically modified surface of the supports. The surface of silicon modified by APTS and GOPS with immobilised enzyme was characterised by atomic force microscopy (AFM), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and infrared spectroscopy (FTIR). The supports with immobilised enzyme (urease) were also tested in combination with microreactors fabricated in silicon and Perspex, operating in a flow-through system. For microreactors filled with urease immobilised on glass beads (Sigma) and on polymeric beads (PAN), a very high and stable signal (pH change) was obtained. The developed method of urease immobilisation can be stated to be very effective.

  13. Surface Modifications in Adhesion and Wetting

    NASA Astrophysics Data System (ADS)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (<50 nm), it is challenging to characterize their material properties for correlation to adhesive performance. We circumvent this problem by estimating the elastic modulus of the silane-based coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling

  14. Surface modification of polyester biomaterials for tissue engineering.

    PubMed

    Jiao, Yan-Peng; Cui, Fu-Zhai

    2007-12-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition.

  15. Paper surface modification by lasers

    NASA Astrophysics Data System (ADS)

    Zekou, E.; Kotsifaki, D. G.; Serafetinides, A. A.

    2010-10-01

    Lasers can provide a precious tool to conservation process due to their accuracy and the controlled energy they deliver, especially to fragile organic material such as paper. The current study concerns laser modification such as paper cleaning, initially of test papers artificially soiled and then of an original book of the early 20th Century. The test objects were A4 copier paper, newspaper, and paper Whatman No.1056. During the experiments, ink of a pen, pencil and ink from a stamp was mechanically employed on each paper surface. Laser cleaning was applied using a Q-switched Nd:YAG operating at 532 nm and CO2 laser at 10.6 μm for various fluences. The experimental results were presented by using optical microscopy. Eventually, laser cleaning of ink was performed to a book of 1934, by choosing the best conditions and parameters from cleaning the test samples, like Nd:YAG laser operating at 532 nm.

  16. Ion beam and laser induced surface modifications

    NASA Astrophysics Data System (ADS)

    Appleton, B. R.

    1984-01-01

    The capabilities of energetic ion beam and laser processing of surfaces are reviewed. Ion implantation doping, ion beam mixing, and laser and electron beam processing techniques are capable of producing new and often unique surface properties. The inherent control of these techniques has led to significant advances in our ability to tailor the properties of solids for a wide range of technological applications. Equally important, these techniques have allowed tests of fundamental materials interactions under conditions not heretofore achievable and have resulted in increased understanding of a broad range of materials phenomena. These include new metastable phase formation, rapid nucleation and crystal growth kinetics, amorphous metals and metaglasses, supersaturated solid solutions and substitutional alloys, interface interactions, solute trapping, laser-assisted chemical modifications, and a host of other.

  17. Polymer surface modification by plasmas and photons

    NASA Astrophysics Data System (ADS)

    Chan, C.-M.; Ko, T.-M.; Hiraoka, H.

    1996-05-01

    Polymers have been applied successfully in fields such as adhesion, biomaterials, protective coatings, friction and wear, composites, microelectronic devices, and thin-film technology. In general, special surface properties with regard to chemical composition, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and cross-linking density are required for the success of these applications. Polymers very often do not possess the surface properties needed for these applications. However, they have excellent bulk physical and chemical properties, are inexpensive, and are easy to process. For these reasons, surface modification techniques which can transform these inexpensive materials into highly valuable finished products have become an important part of the plastics and many other industries. In recent years, many advances have been made in developing surface treatments to alter the chemical and physical properties of polymer surfaces without affecting bulk properties. Common surface modification techniques include treatments by flame, corona, plasmas, photons, electron beams, ion beams, X-rays, and γ-rays. Plasma treatment is probably the most versatile surface treatment technique. Different types of gases such as argon, oxygen, nitrogen, fluorine, carbon dioxide, and water can produce the unique surface properties required by various applications. For example, oxygen-plasma treatment can increase the surface energy of polymers, whereas fluorine-plasma treatment can decrease the surface energy and improve the chemical inertness. Cross-linking at a polymer surface can be introduced by an inert-gas plasma. Modification by plasma treatment is usually confined to the top several hundred ångströms and does not affect the bulk properties. The main disadvantage of this technique is that it requires a vacuum system, which increases the cost of operation. Thin polymer films with unique chemical and physical properties are produced by plasma polymerization

  18. Sustainable environmental nanotechnology using nanoparticle surface modification.

    EPA Science Inventory

    Reactive nanomaterials used for environmental remediation require surface modification to make them mobile in the subsurface. Nanomaterials released into the environment inadvertently without an engineered surface coating will acquire one (e.g. adsorption of natural organic matt...

  19. Sustainable environmental nanotechnology using nanoparticle surface modification.

    EPA Science Inventory

    Reactive nanomaterials used for environmental remediation require surface modification to make them mobile in the subsurface. Nanomaterials released into the environment inadvertently without an engineered surface coating will acquire one (e.g. adsorption of natural organic matt...

  20. Surface modification to prevent oxide scale spallation

    DOEpatents

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  1. Modification of polystyrene surface in aqueous solutions.

    PubMed

    Mielczarski, J A; Jeyachandran, Y L; Mielczarski, E; Rai, B

    2011-10-15

    Herein, we report our analysis of the surface modification of polystyrene (PS) when treated under ambient conditions with a common biological buffer such as phosphate buffered saline (PBS) or aqueous solutions of the ionic constituents of PBS. Attenuated total reflection Fourier transform infrared spectroscopy was used for the analysis because the resultant spectra are very sensitive to minor changes in the chemical and structural properties of PS films. In addition, ultraviolet-visible spectroscopy was applied to characterize the surface modifications of PS. Treatment with PBS resulted in the most significant chemical and structural surface modifications of the PS films, as compared with each of the solutions of the constituents of PBS, which were tested separately. A multistep mechanism for the wet modification of PS is discussed. We postulate that the observed surface modifications are the result of photo-oxidation/reduction, swelling, and conformational changes and re-arrangement of the polymer chain. The resultant surface modifications could be similar to those produced by commonly used dry processes such as plasma treatments and electron, ion or ultraviolet irradiation. We found that the modifications that occurred in PBS were more stable than those initiated by dry processes. The formation of active groups on the surface of PS can be controlled by adsorption of bovine serum albumin or thermal annealing of PS before PBS treatment. This approach provides a simple and efficient method for the surface modification of PS for biomedical applications. Copyright © 2011. Published by Elsevier Inc.

  2. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    PubMed

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Surface modification agents for lithium batteries

    DOEpatents

    Chen, Zonghai; Amine, Khalil; Belharouak, Ilias

    2015-06-23

    A method includes modifying a surface of an electrode active material including providing a solution or a suspension of a surface modification agent; providing the electrode active material; preparing a slurry of the solution or suspension of the surface modification agent, the electrode active material, a polymeric binder, and a conductive filler; casting the slurry in a metallic current collector; and drying the cast slurry.

  4. Chemical modification of semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.

    1981-01-01

    Results of research on the chemical modification of TiO2 powders in the gas phase and the examination of the modified powders by infrared absorption spectroscopy are comprehensively summarized. The range of information obtainable by IR spectroscopy of chemically modified semiconductors, and a definition of the optimum reaction conditions for synthesizing a monolayer of methylsilanes using vapor phase reaction conditions were considered.

  5. Surface chemical modification of nanocrystals

    DOEpatents

    Helms, Brett Anthony; Milliron, Delia Jane; Rosen, Evelyn Louise; Buonsanti, Raffaella; Llordes, Anna

    2017-03-14

    Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.

  6. Surface Modification of Water Purification Membranes.

    PubMed

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described.

  7. Surface and interface modification science and technology.

    SciTech Connect

    Park, J.-H.

    1999-07-19

    Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.

  8. Chemical modification of surface properties

    SciTech Connect

    Koel, B.E.; Windham, R.G.

    1987-01-01

    Chemically tailoring materials to have new and unique surface properties has enormous potential in a wide variety of applications for interfacial phenomena in materials science and catalysis. Recent work from our laboratory on model systems designed to explain how changes in geometric and electronic structure of metal surfaces affect surface chemistry are discussed. Specifically, the influence of potassium and bismuth coadsorption with small molecules on a Pt(111) single crystal surface will be described. We will also discuss the chemical reactivity of palladium metal monolayers and thin films which have been recently reported to have dramatically altered geometric and electronic structure. 31 refs., 3 figs.

  9. Microscale surface modifications for heat transfer enhancement.

    PubMed

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  10. Gaseous phase coal surface modification

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  11. Selective Surface Modification on Lubricant Retention

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2016-11-01

    While surface patterns are effective in improving tribological properties, nevertheless they alter the surface wettability, which will in turn affect the surface-lubricant interactions. When there is a shortage of lubricant on a patterned surface, the lubricant stored inside the cavities will be extracted to compensate the surface lubricant dissipation. Additionally, the lubricant retention effect provided by the cavities is competing with the release of the lubricant. With weak surface-lubricant interaction, the retention is limited. Therefore, the lubrication will have a sudden failure, giving a dramatic transition to abrasive wear. To improve the performance of polar lubricants on hydrophobic polymer surfaces, both topographical and selective surface modifications were incorporated on injection molded polypropylene surfaces. Distinctive lubrication improvement was observed when the surface structure density for the lubricant storage was high, and the release of the lubricant was controlled by the interaction with the selectively modified surfaces.

  12. Impact of Dental Implant Surface Modifications on Osseointegration

    PubMed Central

    Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max

    2016-01-01

    Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833

  13. Nanofibrillated Cellulose Surface Modification: A Review

    PubMed Central

    Missoum, Karim; Belgacem, Mohamed Naceur; Bras, Julien

    2013-01-01

    Interest in nanofibrillated cellulose (NFC) has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key factor to achieve a better compatibility with matrices. In order to increase the compatibility in different matrices or to add new functions, surface chemical modification of NFC appears to be the prior choice to conserve its intrinsic nanofibre properties. In this review, the authors have proposed for the first time an overview of all chemical grafting strategies used to date on nanofibrillated cellulose with focus on surface modification such as physical adsorption, molecular grafting or polymer grafting. PMID:28809240

  14. Functionalized polymers by chemical surface modification

    NASA Astrophysics Data System (ADS)

    Moloney, Mark G.

    2008-09-01

    Surface-modified polymers are of substantial importance in many diverse aspects of modern technology, and whilst there are a number of existing physical and chemical methods for surface modification of polymers, the frequent requirement for significant infrastructure, harsh reaction conditions and limitation to specific polymer types led us to consider alternative chemical methods. A desirable alternative would be that amenable to a large range of polymers, permitting direct chemical modification under mild conditions and using inexpensive reagents. We report here that functionalized diarylcarbenes are excellent reactive intermediates suitable for direct surface modification of a range of organic and inorganic materials, and we have illustrated that this can be used for the introduction of visible and fluorescent chromophores, biocidal and biocompatible function.

  15. Surface Modification of Nanocellulose Substrates

    NASA Astrophysics Data System (ADS)

    Zoppe, Justin Orazio

    Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo

  16. EDITORIAL: Novel applications of surface modification

    NASA Astrophysics Data System (ADS)

    Truman, C. E.

    2008-09-01

    This cluster issue of Journal of Physics D: Applied Physics arises from the Novel Applications of Surface Modification Conference (NASM 2007) held at Southampton University during 18-20 September 2007. It contains a collection of six papers based on both invited and contributed presentations at the conference. The NASM 2007 conference was organized by the Applied Physics and Technology Division of the Institute of Physics, and was co-sponsored by the Institute of Materials, Minerals and Mining, the Institution of Mechanical Engineers and the British Vacuum Council. The modification of the surface of a material allows the production of far superior products in terms of reduced wear, increased corrosion resistance, better biocompatibility, improved optical properties and altered electrical/electronic properties. Clearly, as surface modification methods improve, there are many more possible applications of such surface tailoring methods. The NASM 2007 Conference was planned so that scientists, engineers and manufacturers in different fields could come together to appraise the present applications of surface modification, establish where opportunities lie, identify the most significant challenges and address how problems should be tackled. The six papers contained within the cluster illustrate the diversity and breadth of the conference. The papers describe state-of-the-art research on a wide cross-section of topics, all unified by the overall theme of novel applications of surface modification. Specifically, papers are presented which consider nanoimprint lithography, statistical distributions of the coefficient of friction, the sliding drop method for optimizing surface energies for patterning in a roll-to-roll process, shakedown of residual stresses in titanium alloys, functionalized polymers and the determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes. The papers are authored by both academics and industrialists, further

  17. Surface modification of PLGA microspheres.

    PubMed

    Müller, M; Vörös, J; Csúcs, G; Walter, E; Danuser, G; Merkle, H P; Spencer, N D; Textor, M

    2003-07-01

    Microspheres made of poly(lactic-co-glycolic acid) (PLGA) are biocompatible and biodegradable, rendering them a promising tool in the context of drug delivery. However, nonspecific adsorption of plasma proteins on PLGA micro- and nanospheres is a main limitation of drug targeting. Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), physisorbed on flat metal oxide surfaces, has previously been shown to suppress protein adsorption drastically. The goal of our work was to characterize the efficiency of the protein repellent character of PLL-g-PEG on PLGA microspheres and to show the feasibility of introducing functional groups on the PLGA microspheres via functionalized PLL-g-PEG. To quantify the adsorbed amount of protein, a semiquantitative method that uses confocal laser scanning microscopy (CLSM) was applied. The first part of the experiment confirms the feasibility of introducing specific functional groups on PLL-g-PEG-coated PLGA microspheres. In the second part of the experiment, PLL-g-PEG-coated PLGA microspheres show a drastic decrease of adsorbed proteins by two orders of magnitude in comparison to uncoated PLGA microspheres. Low protein-binding, functionalizable microspheres provide a fundamental basis for the design of drug delivery and biosensor systems. Copyright 2003 Wiley Periodicals, Inc.

  18. Surface property modification of silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1984-01-01

    The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.

  19. Surface modification using TEMPO and its derivatives.

    PubMed

    Megiel, Elżbieta

    2017-09-20

    This article provides an overview of the methods for surface modification based on the use of stable radicals: 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives. Two approaches are discussed. The first relies on the immobilization of TEMPO moieties on the surface of various materials including silicon wafers, silica particles, organic polymers as well as diverse nanomaterials. Applications of such materials with spin labeled surface/interface, in (electro)catalysis, synthesis of novel hybrid nanostructures and nanocomposites as well as in designing of organic magnets and novel energy storage devices are also included in the discussion. The second approach utilizes TEMPO and its derivatives for the grafting of polymer chains and polymer brushes formation on flat and nanostructure surfaces via Nitroxide Mediated Radical Polymerization (NMRP). The influence of such polymer modification on surface/interface physicochemical properties is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Surface modification: how nanoparticles assemble to molecular imaging probes

    NASA Astrophysics Data System (ADS)

    Tan, Huilong; Yu, Lun; Gao, Feng; Liao, Weihua; Wang, Wei; Zeng, Wenbin

    2013-12-01

    Nanomaterials have attracted widespread attention due to their unique chemical and physical properties, such as size-dependent optical, magnetic, or catalytic properties, thus have the great potential application, especially in the fields of new materials and devices. The emergence of nanoparticle-based probe has led to important innovations in molecular imaging field. Several types of nanoparticles have been employed for molecular imaging application, including Au/Ag nanoparticles, upconversion nanoparticles (UCNPs), quantum dots, dye-doped nanoparticles, magnetic nanoparticles (MNPs), etc. The preparation of nanoparticle-based probe for molecular imaging routinely includes three steps: synthesis, surface modification, and bioconjugation, among which surface modification plays an important role for the whole procedure. Surface modification usually possesses the safety, biocompatibility, stability, hydrophilicity, and terminal functional groups for further conjugation. This review aims to outline the surface modification of how nanoparticles assemble to probes, focusing on the developments of two widely used nanoparticles, UCNPs and MNPs. Recent advances of different types of linkers, a core component for surface modification, are summarized. It shows the intimate relationship between chemistry and nanoscience. Finally, perspectives and challenges of nanoparticle-based probe in the field of molecular imaging are expected.

  1. Excimer laser surface modification: Process and properties

    SciTech Connect

    Jervis, T.R.; Nastasi, M.; Hirvonen, J.P.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  2. Surface modification: advantages, techniques, and applications

    SciTech Connect

    Natesan, K.

    2000-03-01

    Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliability of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.

  3. Surface modification of magnetic nanoparticles in biomedicine

    NASA Astrophysics Data System (ADS)

    Chu, Xin; Yu, Jing; Hou, Yang-Long

    2015-01-01

    Progress in surface modification of magnetic nanoparticles (MNPs) is summarized with regard to organic molecules, macromolecules and inorganic materials. Many researchers are now devoted to synthesizing new types of multi-functional MNPs, which show great application potential in both diagnosis and treatment of disease. By employing an ever-greater variety of surface modification techniques, MNPs can satisfy more and more of the demands of medical practice in areas like magnetic resonance imaging (MRI), fluorescent marking, cell targeting, and drug delivery. Project supported by the National Natural Science Foundation of China (Grant Nos. 51125001 and 51172005), the Natural Science Foundation of Beijing,China (Grant No. 2122022), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 81421004), and the Doctoral Program of the Education Ministry of China (Grant No. 20120001110078).

  4. Nanoindentation for surface modification of nanofilms

    NASA Astrophysics Data System (ADS)

    Luchenko, A. I.; Melnichenko, M. M.

    2015-08-01

    In the work it is shown practical use of a scanning tunneling microscope for indentation in the continuous micro- and nano-range. A maximum load of 2.64 cN (and 0.4 cN minimum) was applied on a piezo-scanner to achieve the indentation. The relaxation changes of modified surface by contact method was investigated. It is shown that within a few hours of modification there is clear evidence of inevitable loss of information about the morphology of initially modified area. The possibility of modifying the sample surface by tunneling current was shown. This may enable preparation of the surface for subsequent applications in which it is necessary to reduce the average irregularities of the surface. Nano-objects on the surface of the experimental samples were created by using the developed method.

  5. Combined surface modification of commercial aluminum

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu; Lopatin, I.; Akhmadeev, Yu; Petrikova, E.; Teresov, A.; Shugurov, V.; Tolkachev, O.; Koval, N.

    2017-01-01

    The paper analyzes research data on the structure and properties of surface layers of commercially pure A7-grade aluminum subjected to treatment that combines deposition of a thin metal film, intense pulsed electron beam irradiation, and nitriding in low-pressure arc plasma. The analysis shows that the combined method of surface modification provides the formation of a multilayer structure with submicro- and nano-sized phases in the material through a depth of up to 40 μm, allowing a manifold increase in its surface microhardness and wear resistance (up to 4 and 9 times, respectively) compared to the material core. The main factors responsible for the high surface strength are the saturation of the aluminum lattice with nitrogen atoms and the formation of nano-sized particles of aluminum nitride and iron aluminides.

  6. Recent Progress in Surface Modification of Polyvinyl Chloride

    PubMed Central

    Asadinezhad, Ahmad; Lehocký, Márian; Sáha, Petr; Mozetič, Miran

    2012-01-01

    Surface modification of polymers has become a vibrant field of research on account of a myriad of rationales which stimulated numerous efforts. The current paper serves as a condensed survey of the advances made through different approaches adopted for tuning the surface properties of polyvinyl chloride as a homopolymer extensively used on a large scale. Though it does not address all challenges involved, this paper communicates and highlights, through concise discussion, the findings of the efforts undertaken in recent decades. It is ultimately concluded with a perspective of the huge capacities and promising future directions.

  7. Surface layer modification of ion bombarded HDPE

    NASA Astrophysics Data System (ADS)

    Bielinski, D.; Lipinski, P.; Slusarski, L.; Grams, J.; Paryjczak, T.; Jagielski, J.; Turos, A.; Madi, N. K.

    2004-08-01

    Press-moulded, high density polyethylene (HDPE) samples were subjected to ion bombardment and effects of the modification studied. He + ions of energy 100 keV or Ar + ions of energy 130 keV were applied in the range of dose 1-30 × 10 15/cm 2 or 1-100 × 10 14/cm 2, respectively. This paper has been focused on structural changes of the surface layer. The consequences of the modification were studied with TOF-SIMS and FTIR-IRS techniques. The results point on two mechanisms taking place simultaneously: ionization of polymer macromolecules and chain scission--resulting in creation of macroradicals. Both of them produce oxidation and lead to significant release of hydrogen. The former diminishes for the highest ion doses, however, creation of molecular oxygen cannot be excluded. The latter in the case of Ar + ion bombardment is reflected by prevailing degradation of the surface layer of HDPE. Contrary to the effect of heavy ions, He + ion bombardment was found to produce significant increase of the material hardness, which was explained by crosslinking of polyethylene. A mechanism of polyacetylene formation, proceeding finally to cross-polymerization of the polymer was proposed. Apart from structural changes, the modification revealed additionally a possibility to improve the wettability of the polymer.

  8. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  9. Surface modification of polypropylene based particle foams

    NASA Astrophysics Data System (ADS)

    Schreier, P.; Trassl, C.; Altstädt, V.

    2014-05-01

    This paper deals with the modification of the surface properties of expanded polypropylene (EPP). EPP is a semi-hard to soft elastic thermoplastic foam. The characteristic surface of EPP shows process-related steam nozzle imprints and gussets. Therefore EPP does not satisfy the quality requirements for visible automotive applications. In order to meet these demands, plastic surfaces are usually enhanced with functional or decorative coatings, e.g. textiles, plastic films or paint. The coating of plastics with low surface energies such as PP often leads to adhesion problems by reason of the missing polar and functional groups. This paper gives an evaluation of activation and pre-treatment methods of EPP, with the aim to identify the most suitable pre-treatment method. For this purpose five typical surface treatment methods - flame treatment, corona, fluorination, atmospheric and low-pressure plasma - were performed on EPP samples. As a comparison criterion the maximum increase in the adhesion force between a polyurethane-based coating and the modified EPP substrate was selected. Moreover the influence of the selected pre-treatment method on the increase in the total surface energy and its polar component was investigated by the drop shape analysis method. The results showed that the contact angle measurement is a suitable method to determine the polar and disperse fractions of the surface tension of EPP. Furthermore, all performed methods increased the adhesion of EPP.

  10. Electric Field Induced Surface Modification of Au

    SciTech Connect

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  11. Advanced Surface Flux Parameterization

    DTIC Science & Technology

    2001-09-30

    within PE 0602435N are BE-35-2-18, for the Mesoscale Modeling of the Atmos- phere and Aerosols, BE-35-2-19, and for the Exploratory Data Assimilation ... Methods . Related project at NPS is N0001401WR20242 for Evaluating Surface Flux and Boundary Layer Parameterizations in Mesoscale Models Using

  12. Femtosecond laser-induced surface wettability modification of polystyrene surface

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  13. Software modifications to the Demonstration Advanced Avionics Systems (DAAS)

    NASA Technical Reports Server (NTRS)

    Nedell, B. F.; Hardy, G. H.

    1984-01-01

    Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.

  14. Nanoscale Surface Modification of Layered Materials

    NASA Astrophysics Data System (ADS)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  15. Surface treatment and modification of metals to add biofunction.

    PubMed

    Hanawa, Takao

    2017-09-26

    To add biocompatibility or biofunction to metal surface, an intelligent interface between metals and tissues must be acquired. Tremendous surface modification techniques are currently studied to create the intelligent interface. In particular, bone formation or bone bonding is major purpose of the surface modifications. Time transient of surface modification techniques are summarized and the importance of roughened or porous surface to combine materials with bone tissue is demonstrated. As an example of surface modification, electrodeposition of poly(ethylene glycol) to inhibit biofilm formation is introduced. A dual-functional surface is formed on titanium by micro arc oxidation. In addition, the effect of topography on the elongation and differentiation of human mesenchymal stem cells was confirmed on the hybrid micrometer-level and nanometer-level grooves of titanium surface. Metal surface is possibly biofunctionalized by various surface modification techniques.

  16. Surface modifications of Nitinol for biomedical applications.

    PubMed

    Sun, F; Sask, K N; Brash, J L; Zhitomirsky, I

    2008-11-15

    Cathodic electrophoretic deposition (EPD) has been utilized for the fabrication of composite films for the surface modification of NiTi shape memory alloys (Nitinol). In the proposed method, chitosan (CH) was used as a matrix for the incorporation of other functional materials, such as heparin, hydroxyapatite and bioglass. Chitosan-heparin films were deposited from solutions of non-stoichiometric chitosan-heparin complexes. It was found that the addition of anionic heparin to the solutions of cationic chitosan resulted in a significant increase in the cathodic deposition rate. The thickness of the films prepared by this method varied in the range of 0.1-3 microm. The ability of the chitosan-heparin films to bind antithrombin, as measured by binding of (125)I-radiolabeled antithrombin, was much greater than that of pure chitosan films. Composite chitosan-hydroxyapatite films, with thickness of 1-30 microm, were obtained as monolayers or laminates, containing chitosan-hydroxyapatite layers, separated by layers of pure chitosan. The hydroxyapatite nanoparticles showed preferred orientation in the chitosan matrix with the c-axis parallel to the substrate surface. The films showed corrosion protection of the Nitinol substrates in Ringer's physiological solutions. The feasibility of the fabrication of composite films containing hydroxyapatite and bioglass in the chitosan matrix has been demonstrated. The method offers the advantages of room temperature processing. The deposition mechanisms and possible applications of the films are discussed.

  17. Surface modification using ionic liquid ion beams

    NASA Astrophysics Data System (ADS)

    Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

    2014-12-01

    We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A+) or an anion (B-) was attached to an IL cluster (AB)n, resulting in the formation of positive cluster ions (AB)nA+ or negative cluster ions (AB)nB-, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF6 cluster ion beams.

  18. Organic light emitting diode with surface modification layer

    DOEpatents

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  19. A comparative study of biomolecule and polymer surface modifications by a surface microdischarge

    NASA Astrophysics Data System (ADS)

    Bartis, Elliot A. J.; Luan, Pingshan; Knoll, Andrew J.; Graves, David B.; Seog, Joonil; Oehrlein, Gottlieb S.

    2016-02-01

    Cold atmospheric plasma (CAP) sources are attractive sources of reactive species with promising industrial and biomedical applications, but an understanding of underlying surface mechanisms is lacking. A kHz-powered surface microdischarge (SMD) operating with N2/O2 mixtures was used to study the biological deactivation of two immune-stimulating biomolecules: lipopolysaccharide (LPS) and peptidoglycan (PGN), found in bacteria such as Escherichia coli and Staphylococcus aureus, respectively. Model polymers were also studied to isolate specific functional groups. Changes in the surface chemistry were measured to understand which plasma-generated species and surface modifications are important for biological deactivation. The overall goal of this work is to determine which effects of CAP treatment are generic and which bonds are susceptible to attack. CAP treatment deactivated biomolecules, oxidized surfaces, and introduced surface bound NO3. These effects can be controlled by the N2 fraction in O2 and applied voltage and vary among different target surfaces. The SMD was compared with an Ar/O2/N2-fed kHz-powered atmospheric pressure plasma jet and showed much higher surface modifications and surface chemistry tunability compared to the jet. Possible mechanisms are discussed and findings are compared with recent computational investigations. Our results demonstrate the importance of long-lived plasma-generated species and advance an atomistic understanding of CAP-surface interactions.

  20. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    SciTech Connect

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process

  1. Analysis and modification of surfaces using molecular ions in the ambient environment.

    PubMed

    Espy, Ryan D; Badu-Tawiah, Abraham; Cooks, R Graham

    2011-10-01

    The analysis and modification of surfaces in their native conditions can be performed using new mass spectrometric methods. Ambient ionization sources, including desorption electrospray ionization (DESI), have been implemented for the rapid analysis of unmodified biological surfaces including whole plant material, tissue sections, algae, and bacterial colonies. Recent advances have shown promise for in vivo and high-throughput clinical analysis. Additionally, the recent development of ambient ion soft landing (SL) allows polyatomic ions to be deposited onto surfaces in open air. Ambient SL offers speed, control, and flexibility for surface reactions and modification.

  2. Recent advances in dynamic m6A RNA modification

    PubMed Central

    Cao, Guangchao; Yin, Zhinan

    2016-01-01

    The identification of m6A demethylases and high-throughput sequencing analysis of methylated transcriptome corroborated m6A RNA epigenetic modification as a dynamic regulation process, and reignited its investigation in the past few years. Many basic concepts of cytogenetics have been revolutionized by the growing understanding of the fundamental role of m6A in RNA splicing, degradation and translation. In this review, we summarize typical features of methylated transcriptome in mammals, and highlight the ‘writers’, ‘erasers’ and ‘readers’ of m6A RNA modification. Moreover, we emphasize recent advances of biological functions of m6A and conceive the possible roles of m6A in the regulation of immune response and related diseases. PMID:27249342

  3. Surface Modification of PDMS and Plastics with Zwitterionic Polymers.

    PubMed

    Tanaka, Mutsuo; Kurosawa, Shigeru

    2017-07-01

    Surface modification of PDMS, polycarbonate, and acrylic resin was examined using various methacryl polymers bearing sulfobetaine, phosphoryl choline, and oligoethylene glycol units. We have found that zwitterionic polymers are adsorbed on the PDMS surface treated with plasma. The surface of PDMS is stable to keep high hydrophilicity after a month of the modification. On the other hand, one of sulfobetaine polymers showed distinguished adsorption behavior in the case of polycarbonate surface treated with plasma. Suppression effect for nonspecific adsorption of BSA was evaluated using polycarbonate and acrylic resin modified with the polymers. The modified surfaces showed suppression effect for nonspecific adsorption of BSA compared with the surface only treated with plasma.

  4. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  5. Gaseous phase surface modification of coal

    SciTech Connect

    Pinion, J.; Okoh, J.M.

    1990-01-01

    The enhancement of the surface hydrophobicity of coal is essential in coal cleaning processes such as froth flotation or selective agglomeration. Friedel-Crafts reaction results in the formation of alkyl groups on the coal surface. Using various chemical reagents (alkenes, alcohols and catalyst) the surface hydrophobicity of the coal was enhanced. Comparative surface studies using treated and untreated coal showed as increase in the contact angle of untreated coal form 41{degrees} originally to 74{degrees} after treatment. The effects of the chemical treatment on the coal surface was subsequently confirmed in flotation tests. Using Illinois {number sign}6 coal, floatability was increased from 28.91% to 72.15% in 18 seconds, while the work of adhesion was decreased from 91.80 to 71.97 Joule/m{sup 2}. Enhanced hydrophobicity is correlated with the degree of coal surface alkylation. 7 figs.

  6. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  7. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  8. Surface chemical modification of waxy maize starch nanocrystals.

    PubMed

    Angellier, Hélène; Molina-Boisseau, Sonia; Belgacem, Mohamed Naceur; Dufresne, Alain

    2005-03-15

    The surface of waxy maize starch nanocrystals obtained from sulfuric acid hydrolysis of native waxy maize starch granules was chemically modified using two different reagents, namely, alkenyl succinic anhydride and phenyl isocyanate. The occurrence of chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies. Contact angle measurements from which the surface energy of the materials under investigation was deduced showed that chemical modification led to more hydrophobic particles. Chemical modification altered the morphology of particles, as shown by observation by transmission electron microscopy, but not their crystallinity (X-ray diffraction analysis).

  9. Spectroelectrochemical analysis of HOPG surface controlled modification

    NASA Astrophysics Data System (ADS)

    Franceschini, Esteban A.; Lacconi, Gabriela I.

    2017-04-01

    In situ Raman spectroscopy is used to characterize the changes induced by electrochemical oxidation and silver electrodeposition at the step-edge and terrace sites of highly-oriented pyrolytic graphite (HOPG) surfaces. Ag crystallites are observed to become preferentially deposited onto previously oxidized step edges, thereby leading to an enhancement of the Raman active modes of the HOPG surface. Ex situ Raman spectra recorded after HOPG oxidation exhibit clear differences for both terrace and step-edge areas of the surface. An increase of D and D´ band intensity and two well-defined D-band contributions, D1 (at 1324 cm-1) and D2 (at 1344 cm-1), are the main features observed after oxidation. This effect can be correlated with the presence of step-edge sites on the surface, and are found to be strongly dependent on the pH of the solution used in the surface electrochemical oxidation experiments.

  10. Surface modifications with Lissajous trajectories using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Yao, Nan

    2015-09-01

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  11. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Safonov, V.; Zykova, A.; Smolik, J.; Rogovska, R.; Donkov, N.; Goltsev, A.; Dubrava, T.; Rassokha, I.; Georgieva, V.

    2012-03-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  12. Surface Modifications by Field Induced Diffusion

    PubMed Central

    Olsen, Martin; Hummelgård, Magnus; Olin, Håkan

    2012-01-01

    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages. PMID:22253894

  13. Surface modification of tribological components in transportation

    SciTech Connect

    Fenske, G.R.

    1992-11-01

    This paper reviews a number of programs funded through the Engineered Tribological Interfaces (ETI) Task area of the Tribology Program that utilize energetic beams of atoms to enhance the mechanical and microstructural properties of near-surface regions to improve the tribological performance of critical components. The processes used in these programs include techniques based on chemical vapor deposition, physical vapor deposition, and ion implantation. A common feature of these techniques is their ability to produce dense and adherent modified surfaces without need for subsequent grinding/polishing treatments. Another feature of these techniques is their ability to introduce a wide range of elements into near-surface regions.

  14. Practical applications of plasma surface modification

    SciTech Connect

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  15. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Luchkin, A. G.; Hakki, A.; Rahimov, N. F.; Sadikov, K. G.; Luchkin, G. S.

    2017-01-01

    Low-temperature plasma modification of LiYF4 crystal surface in Helium atmosphere caused microhardness decreasing and increasing of roughness of crystal surface. The change of microhardness and morphology is a possible result of Fluorine outgoing from material structure due to heating of surface and plasma chemical reactions and ingoing of Oxygen. As a result of exchange and diffusion processes crystal surface structure become more crumbly, its morphology and mechanical properties change.

  16. Surface modification by subsurface pressure induced diffusion

    NASA Astrophysics Data System (ADS)

    Zimmermann, Claus G.

    2012-01-01

    Polycrystalline Ag, covered with a nm thin siloxane layer, was irradiated with ultraviolet light in vacuum at 500 K. Ag particles of different aspect ratios, 50-1000 nm in size, formed on the surface, including a small fraction of nanorods. Pressurized water vapor bubbles are created in the subsurface region by hydrogen radicals photo-chemically released by the siloxane layer. They provide the driving force for a diffusive material flux along grain boundaries to the surface. This mechanism was modeled and found to agree with the experimental timescale: approximately 300 h are required for a 1000 nm particle to form.

  17. Surface modification by subsurface pressure induced diffusion

    SciTech Connect

    Zimmermann, Claus G.

    2012-01-23

    Polycrystalline Ag, covered with a nm thin siloxane layer, was irradiated with ultraviolet light in vacuum at 500 K. Ag particles of different aspect ratios, 50-1000 nm in size, formed on the surface, including a small fraction of nanorods. Pressurized water vapor bubbles are created in the subsurface region by hydrogen radicals photo-chemically released by the siloxane layer. They provide the driving force for a diffusive material flux along grain boundaries to the surface. This mechanism was modeled and found to agree with the experimental timescale: approximately 300 h are required for a 1000 nm particle to form.

  18. Magellan - Initial analysis of Venus surface modification

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Baker, V. R.; Elachi, C.; Saunders, R. S.; Wood, J. A.

    1991-04-01

    Images of the Venus surface provided by the Magellan mission make it possible to see the fine-scale features diagnostic of weathering, erosion, and deposition. These include ejecta deposits extending up to 1000 km to the west of several impact craters, windblown deposits, features containing both obstacles and a source of particulate material, and evidence for degradation by atmosphere-surface interactions and mass movements. Initial Magellan observations pertaining to the nature, rate, and history of surficial processes are analyzed. Emphasis is placed on radar imaging, but results from radiometry and altimetry observations are also discussed.

  19. Status of surface modification techniques for artificial hip implants

    PubMed Central

    Ghosh, Subir; Abanteriba, Sylvester

    2016-01-01

    Abstract Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants. PMID:28228866

  20. Status of surface modification techniques for artificial hip implants.

    PubMed

    Ghosh, Subir; Abanteriba, Sylvester

    2016-01-01

    Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants.

  1. Surface modification and characterization Collaborative Research Center at ORNL

    SciTech Connect

    Not Available

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing.

  2. A general strategy for the ultrafast surface modification of metals

    NASA Astrophysics Data System (ADS)

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  3. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  4. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Astrophysics Data System (ADS)

    Spalvins, T.

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  5. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Astrophysics Data System (ADS)

    Spalvins, T.

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  6. A general strategy for the ultrafast surface modification of metals

    PubMed Central

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments. PMID:27924909

  7. A general strategy for the ultrafast surface modification of metals.

    PubMed

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-07

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  8. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  9. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  10. Surface modification of nanosheet oxide photocatalysts

    NASA Astrophysics Data System (ADS)

    Blair, Victoria L.; Nichols, Eric J.; Liu, Jian; Misture, Scott T.

    2013-03-01

    A range of Aurivillius oxides of the form Bi2An-1BnO3n+3 were evaluated for photodegradation of methylene blue dye. Variants included 2-, 3-, and 4-layered materials with B = Ti, Nb, or Ta and A = alkaline earths, alkali and rare earths. All phases were tested as their parent oxides and after acid-exchange to form stacked protonated nanosheets. Several high-activity catalysts were identified and improvements in the photodegradation rates were achieved both by milling to increase surface area and separately by acid protonation followed by dehydration. Both processes yielded marked improvements in the photodegradation rates, some with more than 3 times improvement. The improvement is attributed to improved adsorption after the surface reconstruction that occurs with acid treatment and dehydration.

  11. Surface Modification by Physical Vapour Deposition,

    DTIC Science & Technology

    1983-07-13

    effect of the rare-earth metals is to form a stable oxide at the surface, or to form stable perovskites such as CaTiO3 or EuTiO3 , and thus prevent...Bunshah, "High Rate Deposition Of Hafnium By Activated Reactive Evaporation", Thin Solid Films, 63, 327, (1979). 5 B.E. Jacobson, R. Nimuagadda, R.F

  12. Carbon Surface Modification for Enhanced Corrosion Resistance

    DTIC Science & Technology

    2008-01-01

    LTCSS-treated 316L SS, representing a sig- nificant increase in surface hardness over the substrate material (Vickers 300 HV). To give some perspective...behavior of particular interest to the Navy. Comparison of crevice corrosion resistance for untreated 316L SS and LTCSS- treated 316L is presented in...Fig. 2. Crevice corrosion damage on an untreated 316L coupon following one week of crevice exposure is shown in the center of the figure. LTCSS

  13. Modification of Aerodynamic Surfaces Using Plasma

    DTIC Science & Technology

    2005-07-01

    slading discharge (Task 3) ……………………………………………………………………..…………...35 § 2.1. Development of discharge physical model. General properties of sliding discharge...be called for solution of plasma aerodynamic problems. A sliding discharge possess a number of unique properties (simplicity of realization...investigation of sub-layer material effect on the discharge properties . 6. Test experiments on sliding discharge’s forming at a curvilinear surface

  14. Analytic investigation of advancing blade drag reduction by tip modifications

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.

    1978-01-01

    Analytic techniques were applied to study the effect on the performance of the nonlifting advancing blade when the outboard 5% of the blade is modified to reduce drag. The tip modifications studied consisted of reducing airfoil thickness, sweepback, and planform taper. The reductions in instantaneous drag and torque were calculated for tip speed ratios from about 0.19 to 0.30, corresponding to advancing blade tip Mach numbers of 0.855 to 0.936, respectively. Approximations required in the analysis introduce uncertainties into the computed absolute values of drag and torque; however, the differences in the quantities should be a fairly reliable measure of the effect of changing tip geometry. For example, at the highest tip speed, instantaneous drag, and torque were reduced by 20% and 24%, respectively, for tip sweep of 40 deg on a blade using an NACA 0010 airfoil and by comparable amounts for 30-deg sweep on a blade having an NACA 0012 airfoil section. The present method should prove to be a useful, inexpensive technique for identifying promising configurations for additional study and testing.

  15. The Modification of Ferroelectric Surfaces for Catalysis

    NASA Astrophysics Data System (ADS)

    Herdiech, Matthew William

    Ferroelectrics are a class of materials in which a net dipole can be associated with each repeat unit, resulting in a potentially large electric field through the material. The ability to reversibly switch the polarization direction by applying an external electric field distinguishes ferroelectrics from polar orientations of ordinary materials. Recent studies exploring the reactivity of ferroelectric surfaces toward polar molecules have shown that the heats of adsorption for these molecules are polarization dependent, but the surfaces tend to be unreactive. Despite the inertness of ferroelectric surfaces, their use as supports for catalytically active materials could yield novel reactivity. As even metal oxides that are generally considered inert can influence the catalytic properties of supported layers, a ferroelectric support may offer the opportunity to modulate catalytic activity since charge compensation of the polar surfaces might include chemical and electronic reconstructions of the active layer. In this thesis, the fabrication of active layers with polarization dependent properties was investigated by coating ferroelectric substrates with catalytically active oxides that are likely to grow in a layer-by-layer manner. Two systems in particular were explored: chromium oxide on ferroelectric lithium niobate (Cr2O3/LiNbO3), and ruthenium oxide on ferroelectric lead zirconate titanate (RuO2/Pb(Zr0.2Ti0.8)O 3). The chromium oxide and ruthenium oxide films were characterized with X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and reflection high energy electron diffraction (RHEED). Additionally, the chromium oxide films were characterized with X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements, and the ruthenium oxide films were characterized with ion scattering spectroscopy (ISS) measurements. The reactivity of the films was investigated using temperature programmed desorption (TPD) measurements. In particular

  16. Coating Methods for Surface Modification of Ammonium Nitrate: A Mini-Review

    PubMed Central

    Elzaki, Baha I.; Zhang, Yue Jun

    2016-01-01

    Using ammonium nitrate (AN) as a propellant oxidizer is limited due to its hygroscopicity. This review consolidated the available information of various issues pertaining to the coating methods of the surface modification of ammonium nitrate for reducing its hygroscopicity. Moreover this review summarizes the recent advances and issues involved in ammonium nitrate surface modification by physical, chemical and encapsulation coating methods to reduce the hygroscopicity. Furthermore, coating materials, process conditions, and the hygroscopicity test conditions are extensively discussed along, with summaries of the advantages and disadvantages of each coating method. Our findings indicated that the investigation and development of anti-hygroscopicity of AN, and the mechanisms of surface modification by coating urgently require further research in order to further reduce the hygroscopicity. Therefore, this review is useful to researchers concerned with the improvement of ammonium salts’ anti-hygroscopicity. PMID:28773625

  17. Quantitative characterization of physical processes during nanometer surface modification

    NASA Astrophysics Data System (ADS)

    McBride, S. E.; Wetsel, G. C., Jr.

    1990-12-01

    A scanning tunneling microscope developed for microscopy, spectroscopy, and lithography has been used for modification of metallic surfaces exposed to the atmosphere. We report here the first quantitative characterization of a submicrometer area of a metallic sample before and after pulsing the tip-sample voltage using both tunneling spectroscopy determination of the apparent mean barrier potential (φ) and imaging of the area in constant tunneling current mode. The before and after images show that the form of the created features ranges from craters to mounds. The current wave form recorded during a surface modification is indicative of the form of the feature. Diminution of the contamination layer often associated with surfaces exposed to the atmosphere is inferred from the values of φ before and after modification. Analysis of the results indicates that the observed features were caused by high electric fields and not by high temperatures.

  18. Surface modification of implants in long bone.

    PubMed

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  19. Comprehensive characterization of well-defined silk fibroin surfaces: Toward multitechnique studies of surface modification effects.

    PubMed

    Amornsudthiwat, Phakdee; Nitschke, Mirko; Zimmermann, Ralf; Friedrichs, Jens; Grundke, Karina; Pöschel, Kathrin; Damrongsakkul, Siriporn; Werner, Carsten

    2015-06-21

    The study aims at a comprehensive surface characterization of untreated and oxygen plasma-treated silk fibroin with a particular focus on phenomena relevant to biointeraction and cell adhesion. For that purpose, a range of advanced surface diagnostic techniques is employed to thoroughly investigate well-defined and especially clean silk fibroin samples in a comparable setting. This includes surface chemistry and surface charges as factors, which control protein adsorption, but also hydration and swelling of the material as important parameters, which govern the mechanical stiffness at the interface with aqueous media. Oxygen plasma exposure of silk fibroin surfaces reveals that material ablation strongly predominates over the introduction of functional groups even for mild plasma conditions. A substantial increase in mechanical stiffness is identified as the most prominent effect upon this kind of plasma treatment. Regarding the experimental approach and the choice of techniques, the work goes beyond previous studies in this field and paves the way for well-founded investigations of other surface-selective modification procedures that enhance the applicability of silk fibroin in biomedical applications.

  20. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  1. Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification

    NASA Astrophysics Data System (ADS)

    Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.

    Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.

  2. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes

    PubMed Central

    Zhou, Xin

    2016-01-01

    Polydopamine (PDA) prepared in the form of a layer of polymerized dopamine (DA) in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration. PMID:27595097

  3. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    NASA Astrophysics Data System (ADS)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng

    2016-09-01

    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  4. Heterogeneous polymer modification: Polyolefin maleation in supercritical carbon dioxide and amorphous fluoropolymer surface modification

    NASA Astrophysics Data System (ADS)

    Hayes, Heather J.

    1999-11-01

    Three distinct heterogeneous polymer modification reactions are explored in this work. The first is a bulk reaction commonly conducted on polyolefins---the free radical addition of maleic anhydride. This reaction was run using supercritical carbon dioxide (SC CO2) as the solvent. The second was the chemical surface modification of an amorphous fluorocopolymer of tetrafluoroethylene and a perfluorodioxole monomer (Teflon AF). Several reactions were explored to reduce the surface of the fluorocopolymer for the enhancement of wettability. The last modification was also on Teflon AF and involved the physical modification of the surface through the transport polymerization of xylylene in order to synthesize a novel bilayer membrane. The bulk maleation of poly-4-methyl-1-pentene (PMP) was the focus of the first project. SC CO2 was utilized as both solvent and swelling agent to promote this heterogeneous reaction and led to successful grafting of anhydride groups on both PMP and linear low density polyethylene. Varying the reaction conditions and reagent concentrations allowed optimization of the reaction. The grafted anhydride units were found to exist as single maleic and succinic grafts, and the PMP became crosslinked upon maleation. The surface of a fluoropolymer can be difficult to alter. An examination of three reactions was made to determine the reactivity of Teflon AF: sodium naphthalenide treatment (Na-Nap), aluminum metal modification through deposition and dissolution, and mercury/ammonia photosensitization. The fluorocopolymer with the lower perfluorodioxole percentage was found to be more reactive towards modification with the Na-Nap treatment. The other modification reactions appeared to be nearly equally reactive toward both fluorocopolymers. The functionality of the Na-Nap-treated surface was examined in detail with the use of several derivatization reactions. In the final project, an asymmetric gas separation membrane was synthesized using Teflon AF as

  5. Surface modification of polymeric materials by cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

    2014-09-01

    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  6. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    NASA Astrophysics Data System (ADS)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of <2°. Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  7. Ceramic surface modifications induced by pulsed laser treatment

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Montozzi, M.; Pandolfi, L.

    2000-02-01

    Technical polycrystalline sintered Al 2O 3 (90%) substrates have been irradiated, in a vacuum chamber, at grazing incident angles (˜30°), with pulsed ArF ( λ=193 nm, hν=6.4 eV) excimer laser, at different fluences and numbers of pulses, to modify the structure and morphology of the surface. Vacuum, inert gas and oxygen atmospheres, at different substrate temperatures, ˜25°C and ˜700°C, have been used to study surface chemistry and morphology modifications induced by laser energy. Surface chemistry has been analysed by XPS spectroscopy. Morphological modifications have been studied by SEM/EDS microscopy. Changes in surface roughness have been quantified by a standard profilometer.

  8. Printing-assisted surface modifications of patterned ultrafiltration membranes

    SciTech Connect

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.; Gilbert, Jack A.; Arnusch, Christopher J.

    2016-10-17

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  9. Printing-assisted surface modifications of patterned ultrafiltration membranes

    DOE PAGES

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...

    2016-10-17

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less

  10. Norepinephrine: material-independent, multifunctional surface modification reagent.

    PubMed

    Kang, Sung Min; Rho, Junsung; Choi, Insung S; Messersmith, Phillip B; Lee, Haeshin

    2009-09-23

    A facile approach for material-independent surface modification using norepinephrine was investigated. pH-induced oxidative polymerization of norepinephrine forms adherent films on vastly different types of material surfaces of noble metals, metal oxides, semiconductors, ceramics, shape-memory alloys, and synthetic polymers. Secondary biochemical functionalizations such as immobilization of proteins and growth of biodegradable polyester on the poly(norepinephrine) films were demonstrated.

  11. Surface modification for interaction study with bacteria and preosteoblast cells

    NASA Astrophysics Data System (ADS)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  12. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  13. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  14. Effect of surface modification on semiconductor nanocrystal fluorescence lifetime.

    PubMed

    Ruedas-Rama, Maria J; Orte, Angel; Hall, Elizabeth A H; Alvarez-Pez, Jose M; Talavera, Eva M

    2011-04-04

    Semiconductor nanocrystals, namely, quantum dots (QDs), present a set of unique photoluminescence properties, which has led to increased interest in using them as advantageous alternatives to conventional organic dyes. Many applications of QDs involve surface modification to enhance the solubility or biocompatibility of the QDs. One of the least exploited properties of QDs is the very long photoluminescence lifetime that usually has complex kinetics owing to the effect of quantum confinement. Herein, we describe the effect of different surface modifications on the photoluminescence decay kinetics of QDs. The different surface modifications were carefully chosen to provide lipophilic or water-soluble QDs with either positive or negative surface net charges. We also survey the effect on the QD lifetime of several ligands that interact with the QD surface, such as organic chromophores or fluorescent proteins. The results obtained demonstrate that time-resolved fluorescence is a useful tool for QD-based sensing to set the basis for the development of time-resolved-based nanosensors.

  15. Ultralow energy ion beam surface modification of low density polyethylene.

    PubMed

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  16. Surface Modification of Polymer Substrates for Biomedical Applications.

    PubMed

    Neděla, Oldřich; Slepička, Petr; Švorčík, Václav

    2017-09-21

    While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces-mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  17. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.

    2016-01-01

    Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.

  18. Advances in genetic modification of pluripotent stem cells.

    PubMed

    Fontes, Andrew; Lakshmipathy, Uma

    2013-11-15

    Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential. Choosing the right platform based on preferred length, strength, and context of transgene expression is a critical step. Random integration of the transgene into the genome can be complicated due to silencing or altered regulation of expression due to genomic effects. An alternative to this are site-specific methods that target transgenes followed by screening to identify the genomic loci that support long-term expression with stem cell proliferation and differentiation. A highly precise and accurate editing of the genome driven by homology can be achieved using traditional methods as well as the newer technologies such as zinc finger nuclease, TAL effector nucleases and CRISPR. In this review, we summarize the different genetic engineering methods that have been successfully used to create modified embryonic and induced pluripotent stem cells. © 2013. Published by Elsevier Inc. All rights reserved.

  19. Surface modification of biphasic calcium phosphate bioceramic powders

    NASA Astrophysics Data System (ADS)

    Yang, W. Z.; Zhou, D. L.; Yin, G. F.; Li, G. D.

    2008-11-01

    Biphasic calcium phosphate (BCP)/poly L-lactide (PLLA) biocomposite is proven to be a promising bone graft material or scaffold for bone tissue engineering. To improve the interfacial compatibility of BCP bioceramic with biopolymer-PLLA, BCP powders were surface-modified in different condition to graft polymer groups onto the surface of the BCP powders. L-lactide and L-lactic acid (LA) oligomer were used to modify the BCP surface with stannous octanoate (Sn(Oct) 2) and stannous chloride (SnCl 2) as catalyst, respectively. Results show that the surface modification effect is obvious and the amount of grafted organic group is above 6.5 wt.%. Sn(Oct) 2 and SnCl 2 are the optimal catalysts for the surface grafting reaction of L-lactide and L-LA oligomer, respectively. The surface grafting slightly increase the particle size of BCP powders and reduce the tendency for their agglomeration.

  20. Surface Modification of Nitinol by Chemical and Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Yang, Zhendi; Wei, Xiaojin; Cao, Peng; Gao, Wei

    2013-07-01

    In this paper, Nitinol, an equiatomic binary alloy of nickel and titanium, was surface modified for its potential biomedical applications by chemical and electrochemical etching. The main objective of the surface modification is to reduce the nickel content on the surface of Nitinol and simultaneously to a rough surface microstructure. As a result, better biocompatibility and better cell attachment would be achieved. The effect of the etching parameters was investigated, using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometry (EDX) and X-ray photoelectron spectrometry (XPS). The corrosion property of modified Nitinol surfaces was investigated by electrochemical work station. After etching, the Ni content in the surface layer has been reduced and the oxidation of Ti has been enhanced.

  1. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  2. Laser surface and subsurface modification of sapphire using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Eberle, G.; Schmidt, M.; Pude, F.; Wegener, K.

    2016-08-01

    Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  3. Role of water in polymer surface modification using organosilanes

    NASA Astrophysics Data System (ADS)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - ‘Silanization’ - is an attractive approach to alter surface properties without altering the polymer’s desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  4. Modification of W surfaces by exposure to hollow cathode plasmas

    NASA Astrophysics Data System (ADS)

    Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G.

    2017-10-01

    In this work, we assess the surface modifications induced on W samples following exposure to He and He/H2 radiofrequency plasmas in hollow cathode discharge configuration. Our study addresses issues that relate to the use of W in next-generation fusion reactors and, therefore, the investigation of W surface degradation following exposure and heating by plasmas to temperatures above 1000 °C is of practical importance. For these experiments, we used commercially available tungsten samples having areas of 30 × 15 mm and 0.1 mm thickness. The hollow cathode plasma was produced using a radiofrequency (RF) generator (13.56 MHz) between parallel plate electrodes. The W samples were mounted as one of the electrodes. The He and He/H2 plasma discharges had a combined effect of heating and bombardment of the W surfaces. The surface modifications were studied for discharge powers between 200 and 300 W, which resulted in the heating of the samples to temperatures between 950 and 1230 °C, respectively. The samples were weighed prior and after plasma exposure, and loss of mass was measured following plasma exposure times up to 90 min. The analysis of changes in surface morphology was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, optical emission spectra of the respective plasmas were recorded from the region localized inside the hollow cathode gap. We discuss the influence of experimental parameters on the changes in surface morphology.

  5. Surface Topographical Modification of Coronary Stent: A Review

    NASA Astrophysics Data System (ADS)

    Tan, C. H.; Muhamad, N.; Abdullah, M. M. A. B.

    2017-06-01

    Driven by the urge of mediating the inflammatory response from coronary stent implant to improve patency rates of the current coronary stent, concern has been focusing on reducing the risk of in-stent restenosis and thrombosis for long-term safety. Surface modification approach has been found to carry great potential due to the surface is the vital parts that act as a buffer layer between the biomaterial and the organic material like blood and vessel tissues. Nevertheless, manipulating cell response in situ using physical patterning is very complex as the exact mechanism were yet elucidated. Thus, the aim of this review is to summarise the recent efforts on modifying the surface topography of coronary stent at the micro- and nanometer scale with the purpose of inducing rapid in situ endothelialization to regenerate a healthy endothelium layer on biomaterial surface. In particular, a discussion on the surface patterns that have been investigated on cell selective behaviour together with the methods used to generate them are presented. Furthermore, the probable future work involving the surface modification of coronary stent were indicated.

  6. Surface chemical modification of fullerene by mechanochemical treatment

    NASA Astrophysics Data System (ADS)

    Todorović Marković, B.; Jokanović, V.; Jovanović, S.; Kleut, D.; Dramićanin, M.; Marković, Z.

    2009-06-01

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C 60 after surface functionalization.

  7. Adsorption and Chemical Modification of Phenols on a Silver Surface.

    PubMed

    Sánchez-Cortés; García-Ramos

    2000-11-01

    The adsorption of phenols of different natures on silver colloidal particles is studied here by surface-enhanced Raman spectroscopy (SERS). The studied compounds can be classified in three groups: (a) cinnamic acic derivatives: caffeic and isoferulic acids; (b) catechol; and (c) the phenols derived from benzoic acid: m- and p-hydroxybenzoic acids and salicylic, vanillic, and gallic acids. The interest of these compounds lies in the fact that they are naturally occurring molecules with significant importance in relation to plant metabolism, soil chemistry, and vegetal food stability. In addition, many of these compounds have antioxidant properties derived from their high affinity toward atmospheric oxygen. They exhibit high reactivity that may be enhanced in the presence of a metal surface such as those employed for SERS spectroscopy. From the SERS results it can be deduced that a clear chemical change of caffeic and gallic acid and catechol occurred. The chemical modification consists mainly of polymerization connected to existence in the molecule of o-diphenol moieties. In the case of m-hydroxybenzoic acid the chemical change may occur at low pH at which a reorientation of the molecule on the surface takes place, while in the o-hydroxybenzoic acid the only chemical change seems to be the internal H bond breakdown induced by the complexation with the metal. Finally, isoferulic and p-hydroxybenzoic acids do not show any chemical modification upon adsorption on the metal, which takes place through the carboxylate group adopting the molecule a standing up orientation. The case of vanillic acid is not so clear, although possible chemical modification is also possible for this adsorbate. From the results found in this work it can be inferred that the factors influencing possible chemical modification are the chemical structure of the adsorbate and its orientation and interaction with the surface. Copyright 2000 Academic Press.

  8. Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification

    SciTech Connect

    Aronov, D.; Rosenman, G.; Karlov, A.; Shashkin, A.

    2006-04-17

    Hydroxyapatite is known as a substrate for effective adhesion of various biological cells and bacteria as well implantable biomimetic material replacing defective bone tissues. It is found that low energy electron irradiation induces its strong surface potential variation and gives rise to pronounced wettability modification. The found electron-modulation method of the hydroxyapatite wettability enables both wettability switching and its microscopic patterning, which may be used for fabrication of spatially arrayed hydroxyapatite for biological cells immobilization, gene transfer, etc.

  9. Surface Modification of the Conducting Polymer, Polypyrrole, via Affinity Peptide**

    PubMed Central

    Nickels, Jonathan D.; Schmidt, Christine E.

    2012-01-01

    A novel strategy for affinity-based surface modification of the conducting polymer, polypyrrole, (PPy), has been developed. A 12-amino acid peptide (THRTSTLDYFVI, hereafter denoted T59) was previously identified via the phage display technique. This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole (PPyCl). Studies have previously shown that conductive polymers have promising application in neural electrodes, sensors, and for improving regeneration and healing of peripheral nerves and other tissues. Thus, the strong and specific attachment of bio-active molecules to the surface of PPy using the T59 affinity peptide is an exciting new approach to enhance the bioactivity of electrically active materials for various biomedical applications. We demonstrate this by using T59 as a tether to modify PPyCl with the laminin fragment IKVAV to enhance cell interactions, as well as with the so-called stealth molecule poly(ethylene glycol; PEG) to decrease cell interactions. Using these two modification strategies, we were able to control cell attachment and neurite extension on the PPy surface, which is critical for different applications (i.e., the goal for tissue regeneration is to enhance cell interactions, whereas the goal for electrode and sensor applications is to reduce glial cell interactions and thus decrease scarring). Significantly, the conductivity of the PPyCl surface was unaffected by this surface modification technique, which is not the case with other methods that have been explored to surface modify conducting polymers. Finally, using subcutaneous implants, we confirmed that the PPyCl treated with the T59 peptide did not react in vivo differently than untreated PPyCl. PMID:23129217

  10. Surface modification of the conducting polymer, polypyrrole, via affinity peptide.

    PubMed

    Nickels, Jonathan D; Schmidt, Christine E

    2013-05-01

    A novel strategy for affinity-based surface modification of the conducting polymer, polypyrrole, (PPy), has been developed. A 12-amino acid peptide (THRTSTLDYFVI, hereafter denoted T59) was previously identified via the phage display technique. This peptide noncovalently binds to the chlorine-doped conducting polymer polypyrrole (PPyCl). Studies have previously shown that conductive polymers have promising application in neural electrodes, sensors, and for improving regeneration and healing of peripheral nerves and other tissues. Thus, the strong and specific attachment of bioactive molecules to the surface of PPy using the T59 affinity peptide is an exciting new approach to enhance the bioactivity of electrically active materials for various biomedical applications. We demonstrate this by using T59 as a tether to modify PPyCl with the laminin fragment IKVAV to enhance cell interactions, as well as with the so-called stealth molecule poly(ethylene glycol; PEG) to decrease cell interactions. Using these two modification strategies, we were able to control cell attachment and neurite extension on the PPy surface, which is critical for different applications (i.e., the goal for tissue regeneration is to enhance cell interactions, whereas the goal for electrode and sensor applications is to reduce glial cell interactions and thus decrease scarring). Significantly, the conductivity of the PPyCl surface was unaffected by this surface modification technique, which is not the case with other methods that have been explored to surface modify conducting polymers. Finally, using subcutaneous implants, we confirmed that the PPyCl treated with the T59 peptide did not react in vivo differently than untreated PPyCl. Copyright © 2012 Wiley Periodicals, Inc.

  11. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  12. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    SciTech Connect

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulated patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.

  13. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    SciTech Connect

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulated patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.

  14. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    DOE PAGES

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less

  15. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-02-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle ( θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low- k to high- k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  16. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-01-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle (θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low-k to high-k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  17. Ultrahydrophobic surface modification of polymeric fibers and inorganic substrates

    NASA Astrophysics Data System (ADS)

    Ramaratnam, Karthik

    The wettability of a solid surface is a very important property, and is governed by both the chemical composition and the geometrical microstructure of the surface. Wettability and repellency are important properties of solid surfaces from both fundamental and practical aspects. The wettability of the solid surface is a characteristic property of materials and strongly depends on both the surface energy and the surface roughness. These properties may be approached by mimicking hydrophobic structures created by nature on lotus leaf surface. The lotus effect is based on surface roughness caused by different microstructures together with the hydrophobic properties of the epicuticular wax. The present study investigates the basic principles involved in the fabrication of lotus-like materials on both fibrous and inorganic substrates utilizing the two essential requirements, surface roughness and hydrophobicity. The surface roughness was created either by a porous or a bumpy profile while the hydrophobicity was achieved by grafting a non-fluorinated hydrophobic polymer. For the porous profiles, polymer blend systems showing phase separation were utilized whereas the bumpy profiles were achieved using nanoparticles such as calcium carbonate, silver, or silica particles. In the last part of the research, functionalization of silica nanoparticles was investigated and the development of a universal modification step to obtain the ultrahydrophobic property is reported. In this approach, the adsorption of the polymer and the nanoparticles to fibers has been optimized and the self-cleaning effect of these fabrics modified with silica nanoparticles has also been demonstrated.

  18. Mechanical durability of superhydrophobic surfaces: The role of surface modification technologies

    NASA Astrophysics Data System (ADS)

    Zhi, Jing-Hui; Zhang, Li-Zhi; Yan, Yuying; Zhu, Jie

    2017-01-01

    Various surface modification technologies have been used to develop superhydrophobic surface, however their durability has been recognized as the major obstacle for the real applications. Here a quantitative investigation was conducted to evaluate the effects of different surface modification methods on the surfaces' mechanical durability. The superhydrophobic surfaces were prepared by the combination of two surface roughing methods (etching and sandblasting) with chemical modifications with four low surface energy materials: silica sol (SS), octadecanoic acid (OA), heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane (HDFS) and hexadecyltriethoxysilane (HTS). XPS was used to analyze the elements composition and AFM was used to measure the roughness of the surfaces. The durability of these surfaces was tested by a sandpaper abrasion experiment. The collective results showed that the low surface energy materials had significant effects on the surface roughness, which would then play an important role in the durability of these rough surfaces. The SS modified rough surfaces possessed higher roughness and better durability than the surfaces modified by other three low surface energy materials. SS modified rough surfaces could bear 60 cycles of abrasion with 10 g weights on 1500 CW sandpaper.

  19. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.

    PubMed

    Yuan, Wenjie; Feng, Yakai; Wang, Heyun; Yang, Dazhi; An, Bo; Zhang, Wencheng; Khan, Musammir; Guo, Jintang

    2013-10-01

    The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P=0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Work function modifications of graphite surface via oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  1. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  2. Controlling modulus and morphology of hydrogel tubes through surface modification.

    PubMed

    Enescu, Cristina; Shoichet, Molly S

    2004-01-01

    Crosslinked, porous poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) tubes were prepared in cylindrical glass molds using a new centrifugal casting process developed in our group. The resulting hydrogel tubes have a bi-phasic wall structure, with a spongy inner layer and a gel-like outer layer, the latter of which provides mechanical strength to the tube. While many factors influence wall morphology and, thus, mechanical properties, we focused on the effect of the surface properties of the glass mold in which tubes are synthesized. Specifically, we investigated the impact of a diverse set of silane modifications of the glass mold on tube morphology, elastic modulus and mold release. We treated activated glass surfaces with one of three alkoxysilanes having either ethoxy, amine or fluorocarbon end-groups. Silane-modified glass surfaces were found to be more hydrophobic than the unmodified glass mold, with the most hydrophobic surface being that of the fluorocarbon-terminated silane. The presence of the silane layer on the mold was confirmed by X-ray photoelectron spectroscopy and the stability of this modification was confirmed by examining the surface chemistry of the hydrogel tubes. The biphasic hydrogel tube wall structure was observed for all tubes, yet those tubes synthesized in unmodified molds had a cracked outer morphology, whereas those synthesized in silane-modified molds had a smooth outer morphology. This influenced the mechanical properties of the tubes where tubes synthesized in silane-modified molds had a significantly greater elastic modulus than those tubes synthesized in unmodified molds. Release from the molds was easiest with ethoxy- and amine-functionalized silane mold modifications.

  3. Modification of polymeric substrates using surface-grafted nanoscaffolds

    NASA Astrophysics Data System (ADS)

    Thompson, Kimberlee Fay

    Surface grafting and modification of poly(acrylic acid) (PAA) were performed on nylon 6,6 carpet fibers to achieve permanent stain and soil resistance. PAA was grafted to nylon and modified with 1H, 1H-pentadecafluorooctyl amine (PDFOA) using an amidation agent, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). The first goal was to optimize acrylamide modification of PAA in solution. Aqueous reactions with taurine, hydroxyethyl amine, and butyl amine progressed ˜100%, while PDFOA reactions in MeOH progressed ˜80%. Reaction products precipitated at 77% butyl or 52% PDFOA acrylamide contents. The second goal was to optimize the PAA grafting process. First, PAA was adsorbed onto nylon 6,6 films. Next, DMTMM initiated grafting of adsorbed PAA. PAA surface coverage was ˜78%, determined by contact angle analysis of the top 0.1--1 nm and x-ray photoelectron spectroscopy (XPS) analysis of the top 3--10 nm. The third goal was to modify PAA grafted nylon films with butyl amine and PDFOA. Randomly methylated beta-cyclodextrin (RAMEB) solubilized PDFOA in water. Contact angle detected ˜100% surface reaction for each amine, while XPS detected ˜77% butyl amine (H2O) and ˜50% for PDFOA (MeOH or H2O pH = 7) reactions. In H2O pH = 12, the PDFOA reaction progressed ˜89%, perhaps due to greater efficiency, access and solubility. The fourth goal was to perform surface depth profiling via angle-resolved XPS analysis (ARXPS). The PAA surface coverage from contact angle and XPS was confirmed. Further, adsorbed PAA was thicker than grafted PAA, supporting the theory that PAA adsorption occurs in thick layers onto nylon followed by DMTMM-activated spreading and grafting of thinner PAA layers across the surface. The PDFOA reaction in McOH produced a highly fluorinated but thin exterior and an unreacted PAA interior. The PDFOA reaction in H 2O pH = 12 produced a completely fluorinated exterior and highly fluorinated interior. Thus surface modification levels

  4. Nanostructure modification to carbon nanowall surface employing hydrogen peroxide solution

    NASA Astrophysics Data System (ADS)

    Shimoeda, Hironao; Kondo, Hiroki; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2014-04-01

    Carbon nanowalls (CNWs), which are three-dimensional carbon nanomaterials consisting of stacks of graphene sheets vertically standing on substrates, possess a mazelike architecture containing high-density graphene edges and large-area plane surfaces. A selective morphological modification technique for the surfaces of CNWs after their growth has been developed employing hydrogen peroxide (H2O2) solution. It was found that oxidative radicals in H2O2 solution formed characteristic nanometer-scale asperities on the CNW surface without etching from the top edges. Photoelectron spectra indicate that hydroxyl adsorption and subsequent reactions at the edge and plane of graphene contribute to the selective morphological change on the CNW surface.

  5. Modification of mandibular advancement osteotomy in a patient with Hanhart syndrome.

    PubMed

    Uğurlu, Kemal; Sevim, Kamuran Zeynep; Akcal, Arzu; Karsidag, Semra

    2013-11-01

    The oromandibular limb hypogenesis syndrome is a group of anomalies affecting the mandible, tongue, and maxilla with or without reductive limb anomalies. It was first described by Hanhart in 1950. In severe syndromic cases of mandibular hypoplasia, a number of techniques have been described for mandibular advancement including sagittal split osteotomies, segmental osteotomies, or distraction osteogenesis just to name a few. A 25-year-old male patient presented to our clinic with symptoms including difficulty in speech and eating, disability in opening the mouth, together with hand and foot abnormalities; we want to describe a modification in the technique of mandibular advancement and the patient's late postoperative results. The design of the step osteotomy is modified by softening the angles of the steps and elongating the horizontal segment of the step to approximately 25 mm to allow for a more efficient advancement of the mandible. The postoperative period was uneventful, with no signs of inferior alveolar nerve disturbance. The patient showed an increase of the mouth opening distance immediately after surgery. We believe that this tongue-in-groove-like modified mandibular step osteotomy technique is a good alternative in patients where advancement greater than 15 mm is required, preserving the nerve and achieving solid bony intact surfaces.

  6. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces.

    PubMed

    Rupp, F; Scheideler, L; Olshanska, N; de Wild, M; Wieland, M; Geis-Gerstorfer, J

    2006-02-01

    Roughness-induced hydrophobicity, well-known from natural plant surfaces and intensively studied toward superhydrophobic surfaces, has currently been identified on microstructured titanium implant surfaces. Studies indicate that microstructuring by sandblasting and acid etching (SLA) enhances the osteogenic properties of titanium. The undesired initial hydrophobicity, however, presumably decelerates primary interactions with the aqueous biosystem. To improve the initial wettability and to retain SLA microstructure, a novel surface modification was tested. This modification differs from SLA by its preparation after acid etching, which was done under protective gas conditions following liquid instead of dry storage. We hypothesized that this modification should have increased wettability due to the prevention of contaminations that occurs during air contact. The main outcome of dynamic wettability measurements was that the novel modification shows increased surface free energy (SFE) and increased hydrophilicity with initial water contact angles of 0 degrees compared to 139.9 degrees for SLA. This hydrophilization was kept even after any drying. Reduced hydrocarbon contaminations were identified to play a possible role in altered surface thermodynamics. Such surfaces aim to retain the hydrophilicity and natural high surface energy of the Ti dioxide surface until surgical implants' insertion and are compared in this in vitro study with structural surface variants of titanium to compare roughness and chemically induced wettability.

  7. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after

  8. Silane surface modification for improved bioadhesion of esophageal stents

    PubMed Central

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-01-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability. PMID:25663731

  9. Surface modification by alkali and heat treatments in titanium alloys.

    PubMed

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-05

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  10. Silane surface modification for improved bioadhesion of esophageal stents

    NASA Astrophysics Data System (ADS)

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-08-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability.

  11. Temperature dependent surface modification of silica spheres with methacrylate

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun; Kim, Byoung-Ju; Jo, Dong-Hyun; Lim, Sae-Han; Park, Jin-Young; Kim, Do-gyun

    2014-09-01

    Surface modification of silica spheres with 3-(Trimethoxysilyl)propylmethacrylate (TMSPM) has been performed at ambient condition. However, the FTIR spectra and field emission scanning electron microscope (FESEM) images show no evidence of the surface modification. The reaction temperatures were varied from 60 to 80 °C with various reaction periods. Small absorption shoulder of the C=O stretching vibration was at 1700 cm-1, and slightly increased with the increase of the reaction time at 60 °C. The clear absorption peak appeared at 1698 cm-1 for the spheres reacted for 80 min at 70 °C and shifted toward 1720 cm-1 with the increase the reaction time. Strong absorption peak showed at 1698 cm-1 and shifted toward 1725 cm-1 with the increase of the reaction time at 80 °C. The spheres were dispersed to methanol and added photoinitiator (Irgacure-184). The solution was poured to a patterned glass substrate and exposed to the 254 nm UV-light during a self-assembly process. A large area and crack-free silica sphere film was formed. To increase the mechanical stability, a cellulose acetate solution was spin-coated to the film. The film was lift-off from the glass substrate to analyze the surface nanostructures. The surface nanostructures were maintained, and the film is stable enough to use as a mold to duplicate the nanopattern and flexible.

  12. Modification of Silicon Oxide Surfaces with Thermally Annealed Polystyrene Films

    NASA Astrophysics Data System (ADS)

    Kalan, Steven; Cavicchi, Kevin; Karim, Alamgir

    2011-03-01

    The modification of silicon with a native oxide surface has been accomplished by annealing thin films of anionically polymerized polystyrene spun-coat from solution at elevated temperature followed by dissolving the film in solvent to leave a thin layer of adsorbed polymer that persisted even after prolonged desorbing in solvent even at elevated temperature. It was found by water contact angle analysis of the samples after washing with organic solvent that annealing is a key step to adsorption of a thin layer of polystyrene on the film surface. X-ray reflectivity analysis also demonstrated that the thickness of the adsorbed layer is proportional to the molecular weight of the polymer. However, the contact angle showed a non-monotonic dependence on molecular weight. The further modification of these surfaces by ultraviolet/ozone treatment will be discussed. This is a novel surface treatment method as it performed with a polystyrene polymer without any additional chemical functionality through straight-forward vacuum annealing and washing with organic solvent.

  13. Advancing Sustainable Catalysis with Magnetite Surface ...

    EPA Pesticide Factsheets

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heterogeneous catalysis is highlighted. Use of an oxide of earth-abundant iron for various applications in catalysis and environmental remediation.

  14. Advancing Sustainable Catalysis with Magnetite Surface ...

    EPA Pesticide Factsheets

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heterogeneous catalysis is highlighted. Use of an oxide of earth-abundant iron for various applications in catalysis and environmental remediation.

  15. Chemical modification of the cocoa shell surface using diazonium salts.

    PubMed

    Fioresi, Flavia; Vieillard, Julien; Bargougui, Radhouane; Bouazizi, Nabil; Fotsing, Patrick Nkuigue; Woumfo, Emmanuel Djoufac; Brun, Nicolas; Mofaddel, Nadine; Le Derf, Franck

    2017-05-15

    The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  17. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    NASA Astrophysics Data System (ADS)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  18. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; Tardy, Blaise L; Dagastine, Raymond; Orbell, John D; Schutz, Jürg A; Duke, Mikel C

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  19. 76 FR 8330 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification to Advance Notification Period...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-BA58 Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification to Advance Notification Period for Fishery Closures...

  20. Recent advances in the chemical modification of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  1. Recent advances in the chemical modification of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  2. Computer simulation of surface modification with ion beams

    NASA Astrophysics Data System (ADS)

    Insepov, Z.; Hassanein, A.; Swenson, D.; Terasawa, M.

    2005-12-01

    Interactions of energetic ions with various solid targets including silicon and a few metal surfaces were studied by computer simulation and verified by experiment. Surface sputtering and modification for collisions of Arn (n ∼ 100) cluster ions, with kinetic energies of 12-54 eV/atom, and slow highly charged ions (HCI), with potential energies of 80-3500 eV, have been simulated. Various energy transfer mechanisms of the ion energy into the solid target, such as shock wave generation, hollow atom formation, Coulomb explosion, charge screening and neutralization were studied. Atomistic molecular dynamics (MD), as well as a phenomenological surface dynamics methods were employed and the results of the simulations were compared with the experimental data.

  3. [Surface grafting modification and stabilization of Kevlar fiber].

    PubMed

    Zheng, Yu-ying; Fu, Ming-lian; Wang, Can-yao; Wang, Liang-en

    2005-11-01

    Chemical disposal was used to bring the activity group onto the surface of Kevlar fiber for the purpose of surface grafting modification. The interfacial constitution of the grafting of toluene-2,4-diisocyanate (TDI) onto Kevlar fiber was determined by Fourier transform infrared spectroscopy. In the mean time, hexyl-lactam stabilization and poly-glycol (400, PEG) stabilization on the grafted product were also studied. The effects of different nTDI:nPEG ratios on the production's interfacial constitution was analysed. It is concluded that the stabilization took place on the surface. The intensity of the bands relented at about 3300 cm(-1) and was reinforced at about 1700-1720 cm(-1) when the ratio of nTDI:nPEG = 1:3, but when the ratio is 1:1 and 1:2, the bands at about 3 300 and 1700-1720 cm(-1) are almost the same.

  4. Rational surface silane modification for immobilizing glucose oxidase.

    PubMed

    Tian, Feibao; Guo, Yi; Lin, Feifei; Zhang, Yumei; Yuan, Qipeng; Liang, Hao

    2016-06-01

    Glucose oxidase (GOx) has many significant applications in biosensor and biocatalysis. In this study, we firstly quantitatively analyzed the binding efficiency of (3-aminopropyl) trimethoxysilane (APTES) modified onto the surface of GOx. It was found that the contents of the grafted silane did not significantly influence the relative activities and tertiary structures of all surface modified GOxs. Immobilization ratio and relative activity of all instances of APTES modified GOx increased, compared with those of native enzyme. However, good stability of immobilized GOx at extreme pH and high temperature could only be obtained when modified protein with low binding silane content. At pH 2.0, the immobilized GOx with low binding content showed a more than 600% activity, compared to the free enzyme. Therefore, rational surface modification would be beneficial to improving the activity and stability of immobilized enzyme as well as increasing loading amount. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Surface modification of ceramic matrix composites induced by laser treatment

    NASA Astrophysics Data System (ADS)

    Costil, S.; Lukat, S.; Langlade, C.; Coddet, C.

    2008-12-01

    Ceramics or ceramic composites present many advantages (hardness, chemical resistance, low density, etc.) which induce some more and more important applications particularly from the industrial point of view. The evolution of technology can also be beneficial to enlarge their global application areas. This is particularly the aim of this work which consists in applying a laser beam on the ceramic in order to clean its surface. A Nd:YAG laser has been used to study the basic mechanism roughening the surface of silicon carbide composite (ceramic matrix composite (CMC)). Investigations on different surfaces (two chemical compositions) show a strong influence of the nature of the material on the development of a characteristic conic structure. Microscopic studies (SEM) and elementary analyses (EDS and RMS) demonstrated the formation of a regular cone-like structure with a kinetic and a chemical modification specific to each material.

  6. Surface modification of multilayer graphene using Ga ion irradiation

    SciTech Connect

    Wang, Quan; Shao, Ying; Ge, Daohan; Ren, Naifei; Yang, Qizhi

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  7. Laser surface modification of stainless steels for cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Kwok, Chi Tat

    1999-12-01

    Austenitic stainless steel UNS S31603 (Fe -17.6Cr -11.2Ni -2.5Mo -1.4Mn -0.4Si -0.03C) has higher pitting corrosion resistance but lower cavitation erosion resistance than that of UNS S30400. This is because of its lower tendency for strain induced martensitic transformation and higher stacking fault energy as compared with those of UNS S30400. In order to improve its cavitation erosion resistance, surface modification of S31603 was performed by laser surface melting and laser surface alloying using a 2-kW CW Nd-YAG laser and a 3-kW CW CO2 laser. For laser surface melting, austenitic stainless steel UNS S30400, super duplex stainless steel UNS S32760 and martensitic stainless steel UNS S42000 were also investigated for comparison purpose. For laser surface alloying, alloying materials including various elements (Co, Cr, Ni, Mo, Mn, Si & C), alloys (AlSiFe & NiCrSiB), ceramics (Si3N 4, SiC, Cr3C2, TiC, CrB & Cr2O 3) and alloys-ceramics (Co-WC, Ni-WC, Ni-Al2O3, Ni-Cr2C3) were used to modify the surface of S31603. The alloyed surface was achieved first by flame spraying or pre-placing of the alloy powder on the S31603 surface and then followed by laser surface remelting. The cavitation erosion characteristics of laser surface modified specimens in 3.5% NaCl solution at 23°C were studied by means of a 20-kHz ultrasonic vibrator at a peak-to-peak amplitude of 30 mum. In addition, their pitting corrosion behaviour was evaluated by electrochemical techniques. The microstructures, compositions, phase changes and damage mechanisms under cavitation erosion were investigated by optical microscopy, SEM, EDAX and X-ray diffractometry. Mechanical properties such as microhardness profile were also examined. The cavitation erosion resistance Re (reciprocal of the mean depth of penetration rate) of laser surface melted S31603 was found to be improved by 22% and was attributed to the existence of tensile residual stress. Improvement on the Re of S42000 was found to be 8.5 times

  8. In vitro modifications of the scala tympani environment and the cochlear implant array surface.

    PubMed

    Kontorinis, Georgios; Scheper, Verena; Wissel, Kirsten; Stöver, Timo; Lenarz, Thomas; Paasche, Gerrit

    2012-09-01

    To investigate the influence of alterations of the scala tympani environment and modifications of the surface of cochlear implant electrode arrays on insertion forces in vitro. Research experimental study. Fibroblasts producing neurotrophic factors were cultivated on the surface of Nucleus 24 Contour Advance electrodes. Forces were recorded by an Instron 5542 Force Measurement System as three modified arrays were inserted into an artificial scala tympani model filled with phosphate-buffered saline (PBS). The recorded forces were compared to control groups including three unmodified electrodes inserted into a model filled with PBS (unmodified environment) or Healon (current practice). Fluorescence microscopy was used before and after the insertions to identify any remaining fibroblasts. Additionally, three Contour Advance electrodes were inserted into an artificial model, filled with alginate/barium chloride solution at different concentrations, while insertion forces were recorded. Modification of the scala tympani environment with 50% to 75% alginate gel resulted in a significant decrease in the insertion forces. The fibroblast-coated arrays also led to decreased forces comparable to those recorded with Healon. Fluorescence microscopy revealed fully cell-covered arrays before and partially covered arrays after the insertion; the fibroblasts on the arrays' modiolar surface remained intact. Modifications of the scala tympani's environment with 50% to 75% alginate/barium chloride and of the cochlear implant electrode surface with neurotrophic factor-producing fibroblasts drastically reduce the insertion forces. As both modifications may serve future intracochlear therapies, it is expected that these might additionally reduce possible insertion trauma. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  9. Surface modification of substrates for bacteria and cell culture.

    NASA Astrophysics Data System (ADS)

    Baede, Tom; Sladek, Raymond; Stoffels, Eva

    2006-10-01

    The plasma needle is a medical device that consists of a tungsten wire placed in a tube through which helium flows. A RF voltage frequency of 13.05 MHz is applied to the wire to produce the plasma. The device has a non-thermal effect and is therefore suited for both organic and inorganic surfaces. It was designed to manipulate tissues, but can also be used to modify the bacterial adhesion properties of material surfaces. The surface modification has a number of applications, most notably cell culture and the preventive treatment of caries. The research consists of two sets of experiments. In the first experiments the effect of the plasma treatment on the wettability was studied by means of contact angle measurements. The wettability quantifies the hydrophilic behavior of a surface. Plasma treatment with the plasma needle significantly increased the wettability of the studied materials. The persistence of the wettability change was also examined. For some materials the effect was only temporary. Bacteria are very particular about the surfaces they adhere to and the wettability of the surface plays an important role in their preference. The next set of experiments dealt with the effect of plasma treatment on bacterial adhesion. This effect was measured by comparing the growth rates of E. coli and S. mutans bacteria that were cultured on both plasma and non-treated surfaces. The effect appears to be species specific.

  10. Surface modification of purified fly ash and application in polymer.

    PubMed

    Yang, Yu-Fen; Gai, Guo-Sheng; Cai, Zhen-Fang; Chen, Qing-Ru

    2006-05-20

    With the growing general concern about the pollution by fly ash (FA), there has been global interest in its utilization. Purified FA or FA micro-beads are suitable as polymer filling materials because of their density, good dispersity and fluidity of globular particles. However, FA as a filler has not been widely used up to now on account of low whiteness values and low friction of untreated FA surface. In order to improve the FA quality, a surface modification method by using isothermal heating is proposed in this paper. Preparation of composite fly ash (CFA) in the Ca(OH)(2)-H(2)O-CO(2) system is described. Good coating results on FA surfaces can be achieved under suitable operating parameters. The characteristics of CFA are discussed and analyzed based on data from X-ray diffraction, scanning electron microscopy (SEM), infrared spectra, and BET multiple-point nitrogen adsorption method. Feedstocks with less than 45 microm grain size, 2.86 m(2) g(-1) specific surface area, and 36.68 whiteness value revealed an increase in specific surface area ranging from 8.69 to 10.01 m(2) g(-1) and an increase in whiteness values ranging from 63.67 to 73.13 after coating. A SEM study allowed a detailed determination of the morphology of the surface roughness. Filling tests also show that a rough surface of the CFA enhances contact opportunities and improves the interface between polymer and CFA blended with polypropylene (PP).

  11. Characterization and Applications of Affinity Based Surface Modification of Polypyrrole

    NASA Astrophysics Data System (ADS)

    Nickels, Jonathan D.

    I present the characterization and applications of a technique to modify the surface of the conducting polymer, polypyrrole, via a novel, 12-amino acid peptide, THRTSTLDYFVI (T59). This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole, allowing it to be used in tethering molecules to polypyrrole for uses such as a scaffold for the treatment of peripheral nerve injury or in surface coatings of neural recording electrodes. I have quantified the binding of this peptide as well as investigating the mechanism of the binding. The equilibrium constant of the binding interaction of PPyCl and the T59 peptide was found through a binding assay to be 92.6 nM, and the off rate was found to be approximately 2.49 s-1, via AFM force spectroscopy. The maximum observed surface density of the peptide was 1.27 +/- 0.42 femtomoles/cm2. Furthermore, my studies suggest that the eighth residue, aspartic acid, is the main contributor of the binding, by interacting with the partially positive charge on the backbone of polypyrrole. I have demonstrated practical applications of the technique in the successful modification of a PPyCl surface with the laminin fragment IKVAV, as well as the so-called stealth molecule poly(ethylene glycol) (PEG). A subcutaneous implant study was performed to confirm that the T59 peptide did not induce any significant reaction in vivo. Significantly, the conductivity of a PPyCl surface was unaffected by this surface modification technique.

  12. Gold nanoparticles surface modification using BSA and cysteine

    NASA Astrophysics Data System (ADS)

    Cardoso-Avila, P. E.; Pichardo-Molina, J. L.; Upendra Kumar, K.; Barbosa-Sabanero, G.; Barbosa-Garcia, O.

    2011-08-01

    Metal nanometer-size particles show intriguing optical properties which depend on their shape, size and local environment. For these reasons, these materials have received a lot of attention in different scientific areas, and several applications can be found, for example: fabrication of bio-sensor, electronic devices, catalysis and new drugs. However, in the case of biomedical applications, metallic nanoparticles need to satisfy several requirements: bio-compatibility, stability and functionality. To satisfy these requirements, metallic nanoparticles need to be modified in their surfaces. In this work we report the synthesis and the modification of gold nanoparticles (GNPs) surface. GNPs were fabricated following the Turkevich's method, and the bio-conjugation (surface modification) was done using cysteine and bovine serum albumin (BSA). Our results of Uv-vis spectroscopy show that BSA and cysteine permit to increase the stability of GNPs in presence of NaCl, the stability is function of BSA concentration. Also to verify the bio-conjugation we used Raman spectroscopy and gel electrophoresis.

  13. Excimer laser induced surface chemical modification of polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Révész, K.; Hopp, B.; Bor, Z.

    1997-02-01

    Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.

  14. Nanotubular surface modification of metallic implants via electrochemical anodization technique

    PubMed Central

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility. PMID:25258532

  15. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    PubMed

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P < 0.01). The OD value of XO-P was also much lower than that of XO after incubation with P. aeruginosa (P < 0.01). Colony-forming unit counting revealed that a significantly lower number of bacterial colonies attached to the XO-P versus XO lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P < 0.01). Fewer bacterial colonies attached to the XO-P versus XO lenses incubated with P. aeruginosa (P < 0.01). Further, scanning electron microscopy suggested different bacterial adhesion morphology on plasma-treated versus control lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.

  16. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    PubMed

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  17. Microwave absorption by nanoresonator vibrations tuned with surface modification

    NASA Astrophysics Data System (ADS)

    Krivosudský, Ondrej; Cifra, Michal

    2016-08-01

    Elucidating the physical and chemical parameters that govern viscous damping of nanoresonator vibrations and their coupling to electromagnetic radiation is important for understanding the behavior of matter at the nanoscale. Here we develop an analytical model of microwave absorption of a longitudinally oscillating and electrically polar rod-like nanoresonator embedded in a viscoelastic fluid. We show that the slip length, which can be tuned via surface modifications, controls the quality factor and coupling of nanoresonator vibration modes to microwave radiation. We demonstrate that the larger slip length brings the sharper frequency response of the nanoresonator vibration and electromagnetic absorption. Our findings contribute to design guidelines of fluid embedded nanoresonator devices.

  18. Regolith Advanced Surface Systems Operations Robot Excavator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  19. Development of Methods for Surface Modification of Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Marsh, David A.

    The surfaces of a material become increasingly more influential when the dimensions are reduced, because a larger percentage of the atoms are exposed on the surface. The surface environment of nanostructured materials dictates both physical properties and function, but is synthetically challenging to control. Although the desired functionality is commonly introduced via post-synthetic modification, it would be advantageous to minimize the number of synthetic steps by having specific function installed in the precursor. This work describes efforts to investigate new precursor complexes for the synthesis of nanoparticles, in addition to electrochemical studies on single monolayer films for electrocatalysis. Chapter 2 focuses on the preparation of magnetic nanoaparticles, and the synthesis of a polymerizable surfactant, stacac, to be used to generate composite materials. Although an iron complex of stacac could be used as a precursor for magnetic nanoparticles, favorable composite materials could only be produced by introduction of stacac after isolation of magnetic nanoparticles. Chapter 3 describes the synthesis of Au(I) complexes with various thiourea-based ligands, to be used as precursors for gold nanoparticles. The experimental conditions were varied and parameters were found where addition of a reducing agent generated solution-stable gold nanoparticles in a reproducible manner. It was determined that only aggregated gold nanoparticles were produced when Au(I) complexes were generated in situ and the use of crystalline precursors resulted in soluble gold nanoparticles. Chapter 4 discusses the preparation of electrocatalysts for the oxidation of water with a focus on accurately determining the active surface area. A monolayer of cobalt was prepared on a gold electrode by underpotential deposition and used as an electrocatalyst for water oxidation. Because the surface area of gold can be measured directly, deposition of a single monolayer produced negligible

  20. Surface Modification of Conventional Polymers by Depositing Plasma Polymers of Trimethylsilane and of Trimethylsilane + O2.

    PubMed

    Weikart; Miyama; Yasuda

    1999-03-01

    The static wetting properties of TMS (trimethylsilane) and TMS + O2 plasma deposited films on eleven low energy conventional polymers were investigated using the sessile droplet method. The static advancing contact angle is an excellent indication of the change in surface state properties from plasma surface modification. However, traditional contact angle measuring techniques possess a methodological limitation, which can leave a water droplet on the substrate surface for up to 3 min before a measurement is obtained. The static "advancing" contact angles of different size water droplets on teflon and nylon surfaces were observed to change significantly in 2 min while equilibrating with the surface and surroundings. A new quick image-capturing device enables static contact angle measurement 2 to 4 s after contact with the substrate. This technique virtually eliminates the time dependent effects of evaporation and surface state change, which are believed to be responsible for the change in static advancing contact angles. Furthermore, static contact angles independent of droplet volume and contact time may be taken as a surface characteristic property, which is denoted as the intrinsic static contact angle, θS. The static "advancing" contact angle, measured in this fashion, indicated that the wetting properties of TMS and TMS + O2 plasma polymer deposition on 10 conventional polymers were modified virtually independent of the underlying substrate. The average advancing contact angles on TMS and TMS + O2 modified polymers are θS = 94 +/- 2.2 (cos θS = -0.0645) and θS = 32 +/- 6.9 (cos θS = 0.8452), respectively. Copyright 1999 Academic Press.

  1. Surface assessment and modification of concrete using abrasive blasting

    NASA Astrophysics Data System (ADS)

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to

  2. Swelling and surface modification of ultrathin chitosan films

    NASA Astrophysics Data System (ADS)

    Murray, Chris

    2005-03-01

    Chitosan is a biodegradable polysaccharide derived from seashell waste products. The high water absorbency and biocompatibility of chitosan have enabled its use as a hydrogel in specialty biomedical applications. We present the results of several experiments focused on characterizing properties of ultrathin films of chitosan critical to their use in techniques such as wound dressings, medical implants and drug delivery systems. Uniform thin films with thicknesses of 15 to 600 nm and rms roughness of the order of 1 nm were prepared using techniques previously developed in our research group. The swelling of these films in the presence of high humidity has been characterized using reflection ellipsometry, atomic force microscopy and quartz crystal microbalance techniques. The effects of exposure to elevated temperature and UV/ozone (a common surface modification technique) on the surface properties such as hydrophobicity are described.

  3. Directly thiolated modification onto the surface of detonation nanodiamonds.

    PubMed

    Hsu, Ming-Hua; Chuang, Hong; Cheng, Fong-Yu; Huang, Ying-Pei; Han, Chien-Chung; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Wu, Dian-Syue; Chu, Hsueh-Liang; Chang, Chia-Ching

    2014-05-28

    An efficient method for modifying the surface of detonation nanodiamonds (5 and 100 nm) with thiol groups (-SH) by using an organic chemistry strategy is presented herein. Thiolated nanodiamonds were characterized by spectroscopic techniques, and the atomic percentage of sulfur was analyzed by elemental analysis and X-ray photoelectron spectroscopy. The conjugation between thiolated nanodiamonds and gold nanoparticles was elucidated by transmission electron microscopy and UV-vis spectrometry. Moreover, the material did not show significant cytotoxicity to the human lung carcinoma cell line and may prospectively be applied in bioconjugated technology. The new method that we elucidated may significantly improve the approach to surface modification of detonation nanodiamonds and build up a new platform for the application of nanodiamonds.

  4. Surface Modification of Medical Polyurethane by Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Li, Dejun; Zhao, Jie; Gu, Hanqing; Lu, Mozhu; Ding, Fuqing; Hu, Jianfang

    1992-02-01

    The wettability and surface structure of plasma treatment on medical polyurethane were studied. Two kinds of gas, N2, Ar, were used to create the low-temperature plasma under low pressure. The wettability was investigated by means of the sessile drop method using water, the results show that the contact angle of water decreases from 78.8° to 61.9° as the treatment time increases. The results of electron spectroscopy for chemical analysis indicate that original chemical bonds were broken up after plasma treatment, which was the main reason for the surface modification. At same time, the results of electron spinning resonance show that the amounts of radicals did not increase significantly after treatment, which is advantageous to clinical practice of polyurethane.

  5. Surface modification by ion implantation and ion beam mixing

    NASA Astrophysics Data System (ADS)

    Rivière, J. P.

    1992-05-01

    After its successful applications in the semiconductor industry, ion implantation is being employed for other technical applications. The main process in ion implantation is the introduction of additive elements to change the composition and properties of the surface region of a material. We present results demonstrating the important improvement of the wear resistance and friction in a NiTi alloy implanted with nitrogen. The formation of hard TiN precipitates embedded in an amorphous layer is responsible for such modifications. The generation of many atomic displacements in collision cascades during implantation can be also employed as a modification process itself. For instance, the chemical disordering in an implanted Fe60Al40 alloy induces a para- to ferromagnetic transition. The formation of an amorphous surface alloy by ion irradiation at a temperature of 15 K has been shown in Ni50Al50 by in situ RBS, channelling and TEM. The new method of dynamic ion mixing (DIM) combines ion bombardment with simultaneous material deposition and allows thicker adherent coatings to be built up, this is shown for both metallic Cu50Ni50 and ceramic TiB2 coatings. Recent results demonstrating a significant increase in fatigue lifetime of a coated 316 L stainless steel are also reported and discussed.

  6. Surface modification of piezoelectric aluminum nitride with functionalizable organosilane adlayers

    NASA Astrophysics Data System (ADS)

    Chan, Edmund; Jackson, Nathan; Mathewson, Alan; Galvin, Paul; Alamin Dow, Ali B.; Kherani, Nazir P.; Blaszykowski, Christophe; Thompson, Michael

    2013-10-01

    The world of biosensors is expanding at a rapid pace with an ever-increasing demand for more sensitive miniaturized devices. Acoustic wave biosensors are not spared from this trend. In this domain, the search for enhanced sensitivity is increasingly oriented toward the rational design of new piezoelectric materials with superior properties to substitute for prevalent quartz. With respect to surface chemistry, construction of the biorecognition element, more often than not, requires the use of bifunctional molecules that can spontaneously assemble on the substrate and form organic surfaces readily biofunctionalizable in a subsequent, ideally single step. In this context, we present herein the surface modification of aluminum nitride (AlN) with alkyltrichlorosilane cross-linking molecules bearing a functionalizable benzenethiosulfonate moiety. This latter feature is next demonstrated through the straightforward, preactivation-free immobilization of thiolated biotin probes. To date, AlN has only received little attention in the field of piezoelectric biosensors despite its many attractive properties and the perspective to operate devices at ultra-high frequencies (GHz) with unprecedented sensitivity. To our knowledge, this work describes one of the first examples of direct surface derivatization of AlN with bifunctional trichlorosilane molecules. It also constitutes a first step toward the development of electrodeless GHz piezoelectric biosensing platforms based on AlN and trichlorosilane surface chemistry.

  7. Green aqueous surface modification of polypropylene for novel polymer nanocomposites.

    PubMed

    Thakur, Vijay Kumar; Vennerberg, Danny; Kessler, Michael R

    2014-06-25

    Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications.

  8. Atmospheric Microplasma Application for Surface Modification of Biomaterials

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo; Fukunaga, Hodaka; Tatematsu, Shigeki; Blajan, Marius

    2012-11-01

    Atmospheric microplasma has been intensively studied for applications in various fields, since in this technology the generated field is only 1 kV (approx) under atmospheric pressure and a dielectric barrier discharge gap of 10 to 100 µm. A low discharge voltage atmospheric plasma process is an economical and effective solution for various applications such as indoor air control including sterilization, odor removal, and surface treatment, and would be suitable for medical applications in the field of plasma life sciences. In this paper, we present the application of microplasma for the surface treatment of materials used in medical fields. Moreover, a biomaterial composed of L-lactic acid is used in experiments, which can be biodecomposed in the human body after medical operations. The surface modification process was carried out with active species generated between the microplasma electrodes, which were observed by emission spectrometry. Microplasma treatment of a polymer sheet using Ar as the process gas decreased the contact angle of a water droplet at the surface of the polymer from 78.3 to 45.6° in 10 s, indicating improved surface adhesive characteristics.

  9. Surface charging, discharging and chemical modification at a sliding contact

    SciTech Connect

    Singh, S. V.; Kusano, Y.; Morgen, P.; Michelsen, P. K.

    2012-04-15

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X-ray photoelectron spectroscopy (XPS). The experiments were performed on the disk surface of a ball-on-rotating-disk apparatus; using a glass disk and a Teflon (polytetrafluoroethylene) ball arrangement, and a polyester disks and a diamondlike carbon (DLC) coated steel ball arrangement. The capacitive probe is designed to perform highly resolved measurements, which is sensitive to relative change in charge density on the probed surface. For glass and Teflon arrangement, electrical measurements show that the ball track acquires non-uniform charging. Here not only the increase in charge density, but interestingly, increase in number of highly charged regions on the ball track was resolved. Threefold increase in the number of such highly charged regions per cycle was detected immediately before the gas breakdown-like incidences compared to that of other charge/discharge incidences at a fixed disk rotation speed. We are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly indicate that the wear and friction (sliding without charging) on the surface can be discarded from inducing such a deoxidation effect.

  10. Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods.

    PubMed

    Duque Sánchez, Lina; Brack, Narelle; Postma, Almar; Pigram, Paul J; Meagher, Laurence

    2016-11-01

    The development of electrospun ultrafine fibres from biodegradable and biocompatible polymers has created exciting opportunities for biomedical applications. Fibre meshes with high surface area, suitable porosity and stiffness have been produced. Despite desirable structural and topographical properties, for most synthetic and some naturally occurring materials, the nature of the fibre surface chemistry has inhibited development. Hydrophobicity, undesirable non-specific protein adsorption and bacterial attachment and growth, coupled with a lack of surface functionality in many cases and an incomplete understanding of the myriad of interactions between cells and extracellular matrix (ECM) proteins have impeded the application of these systems. Chemical and physical treatments have been applied in order to modify or control the surface properties of electrospun fibres, with some success. Chemical modification using controlled radical polymerization, referred to here as reversible-deactivation radical polymerization (RDRP), has successfully introduced advanced surface functionality in some fibre systems. Atom transfer radical polymerization (ATRP) and reversible addition fragmentation chain transfer (RAFT) are the most widely investigated techniques. This review analyses the practical applications of electrospinning for the fabrication of high quality ultrafine fibres and evaluates the techniques available for the surface modification of electrospun ultrafine fibres and includes a detailed focus on RDRP approaches.

  11. Facile and innovative method for bioglass surface modification: Optimization studies.

    PubMed

    Lopes, João Henrique; Fonseca, Emanuella Maria Barreto; Mazali, Italo O; Magalhães, Alviclér; Landers, Richard; Bertran, Celso Aparecido

    2017-03-01

    In this work it is presented a facile and novel method for modification of bioglass surface based on (Camolten salt bath(2+)|Naglass(+)) ion exchange by immersion in molten salt bath. This method allows changing selectively the chemical composition of a surface layer of glass, creating a new and more reactive bioglass in a shell that surrounds the unchanged bulk of the original BG45S5 bioglass (core-shell type system). The modified bioglass conserves the non-crystalline structure of BG45S5 bioglass and presents a significant increase of surface reactivity in comparison with BG45S5. Melt-derived bioactive glasses BG45S5 with the nominal composition of 46.1mol% SiO2, 24.4mol% Na2O, 26.9mol% CaO, and 2.6mol% P2O5 have been subjected to ion exchange at 480°C in molten mixture of Ca(NO3)2 and NaNO3 with molar ratio of 70:30 for different time periods ranging from 0 to 60min. The optimization studies by using XRF and XRD showed that ion exchange time of 30min is enough to achieve higher changes on the glass surface without alters its non-crystalline structure. The chemical composition, morphology and structure of BG45S5 and bioglass with modified surface were studied by using several analytical techniques. FTIR and O1s XPS results showed that the modification of glass surface favors the formation of Si-ONBO groups at the expense of SiOBOSi bonds. (29)Si MAS-NMR studies showed that the connectivity of SiQ(n) species decreases from cross-linked SiQ(3) units to chain-like SiQ(2) units and finally to depolymerized SiQ(1) and SiQ(0) units after ion exchange. This result is consistent with the chemical model based on the enrichment with calcium ions of the bioglass surface such that the excess of positive charges is balanced by depolymerization of silicate network. The pH changes in the early steps of reaction of bioactive glasses BG45S5 and BG45Ca30, in deionized water or solutions buffered with HEPES were investigated. BG45Ca30 bioactive glass exhibited a significant

  12. Recent advances in genetic modification systems for Actinobacteria.

    PubMed

    Deng, Yu; Zhang, Xi; Zhang, Xiaojuan

    2017-03-01

    Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.

  13. Celiac Disease – Advances in Treatment via Gluten Modification

    PubMed Central

    Stoven, Samantha; Murray, Joseph A; Marietta, Eric

    2013-01-01

    Celiac Disease (CD) is an autoimmune enteropathy which occurs in genetically susceptible individuals carrying the prerequisite genetic markers HLA DQ2 or DQ8. These genetic markers are present in approximately 30% of the population, and the worldwide prevalence of CD is estimated to be approximately 1-2%. Currently a gluten-free diet is the only treatment for CD, but novel therapies aimed at gluten modification are underway. This review will discuss gluten based therapies including wheat alternatives and wheat selection, enzymatic alteration of wheat, oral enzyme supplements, and polymeric binders as exciting new therapies for treatment of Celiac Disease. PMID:22728383

  14. Chemical modification of sputtered amorphous-carbon surfaces

    NASA Astrophysics Data System (ADS)

    Leezenberg, Pieter B.; Johnston, William H.; Tyndall, George W.

    2001-03-01

    Methods to chemically passivate the surfaces of amorphous-carbon films (a-C) produced by dc magnetron sputtering were studied. The chemical composition of carbon surfaces produced via sputtering are dependent upon the environment to which the carbon is exposed immediately following deposition. When the sputtered film is vented to ambient conditions, free radicals produced at the surface during the deposition process are quenched by reaction with oxygen and/or water to form an oxidized, hydrophilic surface. If the sputtered carbon film is, however, exposed to a reactive gas prior to venting to ambient, the chemical nature of the resulting surface can be modified substantially. Specifically, a less highly oxidized and much more hydrophobic carbon surface is produced when the surface free radicals are quenched via either an addition reaction (demonstrated with a fluorinated olefin) or a hydrogen abstraction reaction (demonstrated with two alkyl amines). Chemical modification of amorphous-carbon films can also be accomplished by performing the sputtering in a reactive plasma formed from mixtures of argon with molecular hydrogen, amines, and perfluorocarbons. The elemental composition of these films, and the relative reactivity of the surfaces formed, were investigated via x-ray photoelectron spectroscopy and contact-angle goniometry, respectively. In the case of sputtering with a mixture of argon and hydrogen, increasing the hydrogen flow results in an increase in the amount of hydrogen incorporated into the carbon film and a decrease in the surface free energy. Sputtering in diethylamine produces an amorphous-carbon film into which nitrogen is incorporated. The free energies of the a-C:N surfaces produced in this process are similar to those of the a-C:H films. Sputtering in a fluorocarbon vapor results in the incorporation of fluorine into the film structure and the formation of very low free-energy surfaces. Increasing the concentration of the fluorocarbon in the

  15. Carbon quantum dots: recent progresses on synthesis, surface modification and applications.

    PubMed

    Farshbaf, Masoud; Davaran, Soodabeh; Rahimi, Fariborz; Annabi, Nasim; Salehi, Roya; Akbarzadeh, Abolfazl

    2017-09-21

    Generally, carbon nanoparticles with a size of 10 nm (or less) are called carbon quantum dots (CQDs, C-dots or CD), which have created huge excitement due to their advantages in chemical inertness, high water solubility, excellent biocompatibility, resistance to photobleaching and various optical superiority. In this article, we describe the recent advancements in the area of CQDs; concentrating on their synthesis techniques, size control, surface modification approaches, optical properties, luminescent mechanism, and their applications in bioimaging, biosensing, drug delivery and catalysis.

  16. Roles of the reproductive tract in modifications of the sperm membrane surface

    PubMed Central

    KUO, Yu-Wen; LI, Sheng-Hsiang; MAEDA, Kei-Ichiro; GADELLA, Bart M.; TSAI, Pei Shiue J.

    2016-01-01

    Successful fertilization requires viable and functional spermatozoa to recognize and fuse with the oocyte. In most mammalian species, mature spermatozoa are not capable of fertilizing the oocytes immediately after ejaculation. However, unlike somatic cells, spermatozoa, after leaving the testis, are transcriptionally and translationally silent; therefore, upon completion of spermiogenesis, spermatozoa carry only a minimal amount of essential proteins on their membranes as well as within their restricted volume of cytoplasm. To develop into a fully functional and competent sperm that is capable of successful fertilization, modifications of the sperm membrane surface during its transit in the reproductive tracts is critical. These post-spermatogenesis modifications advance the maturation of epididymal spermatozoa. In addition, components secreted into the lumen of the reproductive tracts that are later added onto the sperm membrane surface also regulate (inhibit or activate) the functions of the spermatozoa. This acquisition of additional proteins from the reproductive tracts may compensate for the inactivity of morphologically mature spermatozoa. In this review, we discuss the contributions of the male and female genital tracts to modifications of the sperm membrane surface at different stages of fertilization. PMID:27009019

  17. Surface modification of closed plastic bags for adherent cell cultivation

    NASA Astrophysics Data System (ADS)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  18. XPS analysis of lithium surface and modification of surface state for uniform deposition of lithium

    SciTech Connect

    Kanamura, K.; Shiraishi, S.; Takehara, Z.

    1995-12-31

    The surface modification of lithium deposited at various current densities in propylene carbonate containing 1.0 ml dm{sup {minus}3} LiClO{sub 4} was performed by addition of various amounts of HF into the electrolyte, in order to investigate the effect of the HF addition on the surface reaction of lithium. XPS and SEM analyses showed that the surface state of lithium was influenced by the concentration of HF and the electrodeposition current. These two parameters are related to the chemical reaction rate of the lithium surface with HF and the electrodeposition rate of lithium, respectively. The surface modification was highly effective in suppressing lithium dendrite formation when the chemical reaction rate with HF was greater than the electrochemical deposition rate of lithium.

  19. Asbestos surface provides a niche for oxidative modification.

    PubMed

    Nagai, Hirotaka; Ishihara, Toshikazu; Lee, Wen-Hua; Ohara, Hiroki; Okazaki, Yasumasa; Okawa, Katsuya; Toyokuni, Shinya

    2011-12-01

    Asbestos is a potent carcinogen associated with increased risks of malignant mesothelioma and lung cancer in humans. Although the mechanism of carcinogenesis remains elusive, the physicochemical characteristics of asbestos play a role in the progression of asbestos-induced diseases. Among these characteristics, a high capacity to adsorb and accommodate biomolecules on its abundant surface area has been linked to cellular and genetic toxicity. Several previous studies identified asbestos-interacting proteins. Here, with the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry, we systematically identified proteins from various lysates that adsorbed to the surface of commercially used asbestos and classified them into the following groups: chromatin/nucleotide/RNA-binding proteins, ribosomal proteins, cytoprotective proteins, cytoskeleton-associated proteins, histones and hemoglobin. The surfaces of crocidolite and amosite, two iron-rich types of asbestos, caused more protein scissions and oxidative modifications than that of chrysotile by in situ-generated 4-hydroxy-2-nonenal. In contrast, we confirmed the intense hemolytic activity of chrysotile and found that hemoglobin attached to chrysotile, but not silica, can work as a catalyst to induce oxidative DNA damage. This process generates 8-hydroxy-2'-deoxyguanosine and thus corroborates the involvement of iron in the carcinogenicity of chrysotile. This evidence demonstrates that all three types of asbestos adsorb DNA and specific proteins, providing a niche for oxidative modification via catalytic iron. Therefore, considering the affinity of asbestos for histones/DNA and the internalization of asbestos into mesothelial cells, our results suggest a novel hypothetical mechanism causing genetic alterations during asbestos-induced carcinogenesis.

  20. Surface Modification of Polymer Substrates by Oxygen Ion Irradiation

    SciTech Connect

    Takaoka, G. H.; Ryuto, H.; Araki, R.; Yakushiji, T.

    2008-11-03

    Oxygen cluster ions and/or monomer ions were used for the sputtering and the surface modification of polymers such as polycarbonate (PC) and polyethylene terephthalate (PET). For the case of oxygen cluster ion irradiation, the sputtered depth increased with increase of the acceleration voltage, and the sputtering yield was much larger than that by the monomer ion irradiation. The sputtered particles represented the polymer structure, which indicated that the bond scission by the cluster ion irradiation resulted in an ejection of monomer molecule through the intermolecular collision. On the other hand, for the oxygen monomer ion irradiation, the implanted depth increased with increase of the acceleration voltage, and the bond scission occurred at the deep region through the binary collision with the high energetic ions. Therefore, the sputtering yield for the polymer surfaces decreased, and the sputtering effect became very small. Furthermore, the simultaneous use of oxygen cluster and monomer ions was more effective for oxidation of the PET surfaces rather than the monomer ion irradiation or the cluster ion irradiation. As a result, the contact angle measurement showed that the wettability of the PET surfaces irradiated by the simultaneous use of oxygen cluster and monomer ions was much enhanced.

  1. Surface Modification of Polymer Substrates by Oxygen Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Takaoka, G. H.; Ryuto, H.; Araki, R.; Yakushiji, T.

    2008-11-01

    Oxygen cluster ions and/or monomer ions were used for the sputtering and the surface modification of polymers such as polycarbonate (PC) and polyethylene terephthalate (PET). For the case of oxygen cluster ion irradiation, the sputtered depth increased with increase of the acceleration voltage, and the sputtering yield was much larger than that by the monomer ion irradiation. The sputtered particles represented the polymer structure, which indicated that the bond scission by the cluster ion irradiation resulted in an ejection of monomer molecule through the intermolecular collision. On the other hand, for the oxygen monomer ion irradiation, the implanted depth increased with increase of the acceleration voltage, and the bond scission occurred at the deep region through the binary collision with the high energetic ions. Therefore, the sputtering yield for the polymer surfaces decreased, and the sputtering effect became very small. Furthermore, the simultaneous use of oxygen cluster and monomer ions was more effective for oxidation of the PET surfaces rather than the monomer ion irradiation or the cluster ion irradiation. As a result, the contact angle measurement showed that the wettability of the PET surfaces irradiated by the simultaneous use of oxygen cluster and monomer ions was much enhanced.

  2. Surface modification of multiwall carbon nanotubes by sulfonitric treatment

    NASA Astrophysics Data System (ADS)

    Gómez, Sofía; Rendtorff, Nicolás M.; Aglietti, Esteban F.; Sakka, Yoshio; Suárez, Gustavo

    2016-08-01

    Carbon nanotubes are widely used for electronic, mechanical, and optical devices due to their unique structural and quantum characteristics. The species generated by oxidation on the surface of these materials permit binding new reaction chains, which improves the dispersibility, processing and compatibility with other materials. Even though different acid treatments and applications of these CNT have been reported, relatively few research studies have focused on the relationship between the acid treatment and the formation of nanodefects, specific oxidized species or CNT surface defects. In this work, multiwall carbon nanotube (MWCNT) oxidation at 90 °C was characterized in order to determine the acid treatment effect on the surface. It was found that oxidized species are already present in MWCNT without an acid treatment, but there are not enough to cause water-based dispersion. The species were identified and quantified by infrared spectroscopy and X-ray photoelectron spectroscopy. Also, transmission electron microscopy observations showed not only modifications of the oxidized species, but also morphological damage on the surfaces of MWCNT after being subjected to the acid treatment. This effect was also confirmed by Raman spectroscopy. The acid treatment generates higher oxidized species, decreasing the zeta potential in the whole pH range.

  3. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces.

  4. Surface Properties of Fluorosilicone Copolymers and Their Surface Modification Effects on PVC Film.

    PubMed

    Kim; Lee; Doh

    1998-09-15

    The fluorosilicone copolymers were synthesized using a fluorine-containing monomer and silicone-containing monomers by free-radical random copolymerization, and their surface properties and surface modification ability were investigated. The fluorine-containing monomer used was perfluoroalkyl ethyl acrylate (FA), and the silicone-containing monomers used were 3-[tris(trimethylsilyloxy)silyl]propyl methacrylate (SiMA), vinyltrimethoxy silane (VTMS), and vinyltriethoxy silane (VTES). The surface free energies of the fluorosilicone copolymers prepared were estimated from the contact angle data measured by sessile-drop method. And, the surface free energies of poly(vinyl chloride) (PVC) films modified by the fluorosilicone copolymers were also analyzed using the contact angle data. The fluorosilicone copolymers exhibit the surface free energies of about 8-23 dyn/cm dependent on the molecular weight of the fluorosilicone copolymers. The surface free energies of the fluorosilicone copolymers decrease with increasing molecular weight in the range of 2,000-10,000 (Mw). Among the fluorosilicone copolymers prepared in this study, PFA-r-PSiMA was found to be the most effective as a surface modification agent for PVC film. The inherent surface free energy of PFA-r-PSiMA was estimated to be about 9.0 dyn/cm. The desirable molecular weight of PFA-r-PSiMA seems to be more than 4,000 (Mw). However, it is expected that the fluorosilicone copolymers having the molecular weight of much higher than 10,000 (Mw) may not be suitable as surface modification additives because their compatibility with other polymers will decrease with the molecular weight. The optimum concentration of PFA-r-PSiMA added to PVC film is about 1.0 wt.%. PFA-r-PSiMA is expectedto be an effective additive for surface modification of PVC films. Copyright 1998 Academic Press.

  5. Surface modification of SKD-61 steel by ion implantation technique

    SciTech Connect

    Wen, F. L.; Lo, Y.-L.; Yu, Y.-C.

    2007-07-15

    The purpose of this study is to investigate how ion implantation affects the surface characteristics and nitrogenizing depth of the thin film by the use of a NEC 9SDH-2 3 MV Pelletron accelerator that implants nitrogen ions into SKD-61 tool steels for surface modification. Nitrogen ions were implanted into the surface layer of materials so that the hardness of modified films could be improved. Also, the nitride film stripping problems of the traditional nitrogenizing treatment could be overcome by a new approach in surface process engineering. As nitrogen ions with high velocity impacted on the surface of the substrate, the ions were absorbed and accumulated on the surface of the substrate. The experiments were performed with two energies (i.e., 1 and 2 MeV) and different doses (i.e., 2.5x10{sup 15}, 7.5x10{sup 15}, and 1.5x10{sup 16} ions/cm{sup 2}). Nitrogen ions were incorporated into the interface and then diffused through the metal to form a nitride layer. Analysis tools included the calculation of stopping and range of ions in matter (SRIM), the detection of a secondary ion mass spectrometry (SIMS), and nanoindentation testing. Through the depth analysis of SIMS, the effects of the ion-implanted SKD-61 steels after heating at 550 deg. C in a vacuum furnace were examined. The nanoindenting results indicate the variation of hardness of SKD-61 steels with the various ion doses. It reaches two to three times the original hardness of SKD-61 steels.

  6. A bioinspired strategy for surface modification of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Tian, Jianwen; Zhang, Haoxuan; Liu, Meiying; Deng, Fengjie; Huang, Hongye; Wan, Qing; Li, Zhen; Wang, Ke; He, Xiaohui; Zhang, Xiaoyong; Wei, Yen

    2015-12-01

    Silica nanoparticles have become one of the most promising nanomaterials for a vast of applications. In this work, a novel strategy for surface modification of silica nanoparticles has been developed for the first time via combination of mussel inspired chemistry and Michael addition reaction. In this procedure, thin polydopamine (PDA) films were first coated on the bare silica nanoparticles via self-polymerization of dopamine in alkaline condition. And then amino-containing polymers were introduced onto the PDA coated silica nanoparticles through Michael addition reaction, that are synthesized from free radical polymerization using poly(ethylene glycol) methyl methacrylate (PEGMA) and N-(3-aminopropyl) methacrylamide (NAPAM) as monomers and ammonium persulfate as the initiator. The successful modification of silica nanoparticles was evidenced by a series of characterization techniques. As compared with the bare silica nanoparticles, the polymers modified silica nanoparticles showed remarkable enhanced dispersibility in both aqueous and organic solution. This strategy is rather simple, effective and versatile. Therefore, it should be of specific importance for further applications of silica nanoparticles and will spark great research attention of scientists from different fields.

  7. Surface modifications of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fu, L. J.; Liu, H.; Li, C.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q.

    2006-02-01

    Since the birth of the lithium ion battery in the early 1990s, its development has been very rapid and it has been widely applied as power source for a lot of light and high value electronics due to its significant advantages over traditional rechargeable battery systems. Recent research demonstrates the importance of surface structural features of electrode materials for their electrochemical performance, and in this paper the latest progress on this aspect is reviewed. Electrode materials are either anodic or cathodic ones. The former mainly include graphitic carbons, whose surfaces can be modified by mild oxidation, deposition of metals and metal oxides, coating with polymers and other kinds of carbons. Through these modifications, the surface structures of the graphitic carbon anodes are improved, and these improvements include: (1) smoothing the active edge surfaces by removing some reactive sites and/or defects on the graphite surface, (2) forming a dense oxide layer on the graphite surface, and (3) covering active edge structures on the graphite surface. Meanwhile, other accompanying changes occur: (1) production of nanochannels/micropores, (2) an increase in the electronic conductivity, (3) an inhibition of structural changes during cycling, (4) a reduction of the thickness of the SEI (solid-electrolyte-interface) layer, and (5) an increase in the number of host sites for lithium storage. As a result, the direct contact of graphite with the electrolyte solution is prevented, its surface reactivity with electrolytes, the decomposition of electrolytes, the co-intercalation of the solvated lithium ions and the charge-transfer resistance are decreased, and the movement of graphene sheets is inhibited. When the surfaces of cathode materials, mainly including LiCoO 2, LiNiO 2 and LiMn 2O 4, are coated with oxides such as MgO, Al 2O 3, ZnO, SnO 2, ZrO 2, Li 2Oṡ2B 2O 3 glass and other electroactive oxides, the coating can prevent their direct contact with the

  8. CARBOSURF™ Surface Modification Technology for Charge Dissipative and Radio-Transparent GEO Durable Space Polymers

    NASA Astrophysics Data System (ADS)

    Iskanderova, Zelina; Kleiman, Jacob I.; Issoupov, Vitali; Bussieres, François

    2009-01-01

    A new surface modification technology has been developed to make the surface of a number of advanced thin polymer films charge dissipative and, at the same time, RF transmissive, with or without influence on the thermal optical properties, as required for specific applications. This ion beam treatment for surface carbonization technology, tentatively named CARBOSURF™, has been successfully applied to hydrocarbon thin space polymer films, Kapton HN polyimide and Upilex S, as well as tried for space-related partially fluorinated polymers CP-1, clear and filled with white pigment. Ground-based simulation testing has been conducted on selected pristine and surface-modified space-related thin polymer film specimens to estimate the space life of those materials in GEO space conditions. Combined proton, electron, and UV exposure has been used for GEO simulating testing. The performed GEO simulated testing has shown high stability of the CARBOSURF™-treated polymer films for multi-year applications in GEO environment. The treatment was achieved using moderate-energy and low-energy intensive technological ion beam sources of noble gases and was shown to be transferrable for industrial implementation and scale-up. The developed ion beam treatment surface modification technology has a number of strong innovative components, and the treated space polymer films may be used in many space applications.

  9. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2014-05-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell-material interaction.

  10. Advanced Materials for Neural Surface Electrodes.

    PubMed

    Schendel, Amelia A; Eliceiri, Kevin W; Williams, Justin C

    2014-12-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.

  11. Advanced Materials for Neural Surface Electrodes

    PubMed Central

    Schendel, Amelia A.; Eliceiri, Kevin W.; Williams, Justin C.

    2015-01-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development. PMID:26392802

  12. Advancing Sustainable Surface Engineering: Challenges & Future Opportunities

    DTIC Science & Technology

    2014-11-01

    2013 Noblis , Inc. Advancing Sustainable Surface Engineering: Challenges & Future Opportunities Dr. Jeffrey Marqusee Chief Scientist...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Noblis Inc,3150 Fairview Park Drive,Falls Church,VA...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 © 2013 Noblis , Inc

  13. Upconversion Nanoparticles: Synthesis, Surface Modification, and Biological Applications

    PubMed Central

    Wang, Meng; Abbineni, Gopal; Clevenger, April; Mao, Chuanbin; Xu, Shukun

    2011-01-01

    New generation fluorophores, also termed upconversion nanoparticles (UCNPs), have the ability to convert near infrared radiations with lower energy into visible radiations with higher energy via a non-linear optical process. Recently, these UCNPs have evolved as alternative fluorescent labels to traditional fluorophores, showing great potential for imaging and biodetection assays in both in vitro and in vivo applications. UCNPs exhibit unique luminescent properties, including high penetration depth into tissues, low background signals, large Stokes shifts, sharp emission bands, and high resistance to photo-bleaching, making UCNPs an attractive alternative source for overcoming current limitations in traditional fluorescent probes. In this review, we discuss the recent progress in the synthesis and surface modification of rare earth doped UCNPs with a specific focus on their biological applications. PMID:21419877

  14. Modification of Wyoming montmorillonite surfaces using a cationic surfactant.

    PubMed

    Xi, Yunfei; Frost, Ray L; He, Hongping; Kloprogge, Theo; Bostrom, Thor

    2005-09-13

    Surfaces of Wyoming SWy-2-Na-montmorillonite were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Changes in the surfaces and structure were characterized using X-ray diffraction (XRD), thermal analysis (TG), and electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Three different molecular environments for surfactants within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Both XRD patterns and TEM images demonstrate that SWy-2-Na-montmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant reduces the clay particle size and aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic impurities from aqueous media.

  15. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization.

    PubMed

    Abednejad, Atiye Sadat; Amoabediny, Ghasem; Ghaee, Azadeh

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H2 and O2 plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37°C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Inhibition of biofilm formation on ventilation tubes by surface modification.

    PubMed

    Song, Jae-Jun; Noh, Insup; Chae, Sung-Won

    2012-01-01

    The purpose of this study was to modify the surface characteristics of a ventilation tube (VT) with polyethylene glycol (PEG) coating and to evaluate the effect on biofilm formation. VTs made of polyethylene were coated with PEG. Streptococcus pneumonia R6 strain was used and a crystal violet assay was carried out to measure the in vitro and in vivo biofilm formation of rats bearing VTs. In the in vitro experiment, the optical density of the uncoated VT was 0.34±0.09 and the optical density of the PEG-grafted VT was 0.22±0.06 (p<0.05). In the in vivo experiment, the optical density of the uncoated VT was 0.54±0.12 and that of the PEG-grafted VT was 0.32±0.13 (p<0.05). Scanning electron microscopy showed that surface modification, roughness and hydrophilic characteristics improved and biofilm formation decreased. The reduced biofilm formation on the VT may be explained by the alteration of surface tension and roughness induced by PEG coating.

  17. Module for dielectric surfaces modification by fast neutral particles beams

    NASA Astrophysics Data System (ADS)

    Barchenko, V. T.; Lisenkov, A. A.; Babinov, N. A.

    2014-11-01

    In this paper, we describe the module for dielectric and wide-gap semiconductor surfaces modification by fast neutral beam. The module can be used for cleaning, etching or assisting of films deposition. The surface proceeding by neutral beam can prevent an accumulation of surface charge without using current compensation by inserting electrons to the beam or RF power supply. The module beside cathode and anode contains an electrode with floating potential. Insertion of the additional electrode causes electron retention in an electrostatic trap resulting the reducing of the module operating pressure. Moreover, the electrode with floating potential allows increasing the current efficient of the module. An important feature of the module is that neutralization of the ions extracted from the plasma occurs in the cathode potential well. Thereby ions that have not neutralized cannot leave nearcathode region and there are no fast ions in the output beam. Module does not contain sources of the magnetic fields or elements heated by external sources. Module operates with free cooling. Thus, the module does not need water cooling and can be freely moved in the vacuum chamber.

  18. Nanoparticle-Based Surface Modifications for Microtribology Control and Superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Hurst, Kendall Matthew

    2010-11-01

    contact" between two contacting surfaces. The studies found that AuNP thin films produced using the lowest initial concentrations of nanoparticles in solution produced estimated real contact areas of around 1%, reducing the adhesion of oxidized Si (100) surfaces from about 37 mJ/m2 down to 0.02 mJ/m 2. In addition, the reducing in real contact area effectively reduced the coefficient of static friction between silicon-based surfaces due to the extremely high dependence of stiction on friction and wear at the microscale. This work also investigated methods of permanently immobilizing AuNP-based films on the silicon surfaces of microstructures in order to create more mechanically robust coatings. The use of organic self-assembled monolayers (SAMs) functionalized with tail-groups known to bond to metallic surfaces were effective in producing much more durable coatings as opposed to non-immobilized AuNP films. Chemical vapor deposition (CVD) techniques were also used to coat rough AuNP films with very thin films of silica (SiO2) to create a robust, rough surface. This method was also very effective in creating a durable coating which is capable of reducing the adhesion energy and friction between two microscale surfaces for extended periods of time. Similar CVD techniques were also used to begin investigating the production of alumina nanoparticle-based superhydrophobic films for use in consumer electronics. Overall, the work presented in this dissertation illustrates that engineered nanoparticle-based surface modifications can be extremely effective in the reduction of the inherent interfacial phenomena that exist on microfabricated systems. This work is can potentially lead us into a new age of the miniaturization of mechanical and electronic devices.

  19. Protein adsorption to graphene surfaces controlled by chemical modification of the substrate surfaces.

    PubMed

    Kamiya, Yasutaka; Yamazaki, Kenji; Ogino, Toshio

    2014-10-01

    We have investigated effects of the support substrate surfaces on properties of the attached graphene flakes by observing protein adsorption to the graphene surfaces on SiO2/Si substrates that are modified with self-assembled monolayers to control their hydrophilicity. Using atomic force microscopy operated in aqueous environment, we found that high-density clusters of agglomerated avidin molecules form on the graphene flakes in the areas supported by a hydrophobic substrate surface, whereas very low density of large avidin clusters form at the edge of graphene flakes in the area supported by a hydrophilic surface. These results demonstrate that hydrophilicity of the support surface affects hydrophilicity of the graphene surface also in aqueous environment and that surface modification of the support substrate is a useful technique to control protein adsorption phenomena on graphene surfaces for realization of high sensitive graphene biosensors.

  20. Nanoscale surface modification of Mt. Etna volcanic ashes

    NASA Astrophysics Data System (ADS)

    Barone, G.; Mazzoleni, P.; Corsaro, R. A.; Costagliola, P.; Di Benedetto, F.; Ciliberto, E.; Gimeno, D.; Bongiorno, C.; Spinella, C.

    2016-02-01

    Ashes emitted during volcanic explosive activity present peculiar surface chemical and mineralogical features related in literature to the interaction in the plume of solid particles with gases and aerosols. The compositional differences of magmas and gases, the magnitude, intensity and duration of the emission and the physical condition during the eruption, strongly influence the results of the modification processes. Here we report the characterization of the products emitted during the 2013 paroxysmal activity of Mt. Etna. The surface features of the ash particles were investigated through X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM) allowing the analysis at nanometer scale. TEM images showed on the surface the presence of composite structures formed by Ca, Mg and Na sulphates and halides and of droplets and crystals of chlorides; nanometric magnesioferrite and metallic iron dendrites are observable directly below the surface. From the chemical point of view, the most external layer of the volcanic glassy particles (<5 nm), analysed by XPS, presents depletion in Si, Mg, Ca, Na and K and strong enrichment in volatile elements especially F and S, with respect to the inner zone, which represents the unaltered counterpart. Below this external layer, a transition glassy shell (thick 50-100 nm) is characterized by Fe, Mg and Ca enrichments with respect to the inner zone. We propose that the ash particle surface composition is the result of a sequence of events which start at shallow depth, above the exsolution surface, where gas bubbles nucleate and the interfaces between bubbles and melt represent proto-surfaces of future ash particles. Enrichment of Ca, Mg and Fe and halides may be due to the early partition of F and Cl in the gas phase and their interaction with the melt layer located close to the bubbles. Furthermore the formation of volatile SiF4 and KF explain the observed depletion of Si and K. The F enrichment in the

  1. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  2. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  3. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    SciTech Connect

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-17

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO{sub 2} slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 {mu}m and 150 {mu}m. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 {mu}m. The maximum hardness achieved was between 728 and 905 HV{sub 0.1}. These findings are significant to modern development of hard coatings for wear resistant applications.

  4. Surface Modification of a Nanoporous Carbon Photoanode upon Irradiation.

    PubMed

    Gomis-Berenguer, Alicia; Velo-Gala, Inmaculada; Rodríguez-Castellón, Enrique; Ania, Conchi O

    2016-11-23

    The photocorrosion of a nanoporous carbon photoanode, with low surface functionalization and high performance towards the photoelectrochemical oxidation of water using simulated solar light, was investigated. Two different light configurations were used to isolate the effect of the irradiation wavelength (UV and visible light) on the textural and chemical features of the carbon photoanode, and its long-term photocatalytic performance for the oxygen evolution reaction. A complete characterization of the carbon showed that the photocorrosion of carbon anodes of low functionalization follows a different pathway than highly functionalized carbons. The carbon matrix gets slightly oxidized, with the formation of carboxylic and carbonyl-like moieties in the surface of the carbon anode after light exposure. The oxidation of the carbon occurred due to the photogeneration of oxygen reactive species upon the decomposition of water during the irradiation of the photoanodes. Furthermore, the photoinduced surface reactions depend on the nature of the carbon anode and its ability to photogenerate reactive species in solution, rather than on the wavelength of the irradiation source. This surface modification is responsible for the decreased efficiency of the carbon photoanode throughout long illumination periods, due to the effect of the oxidation of the carbon matrix on the charge transfer. In this work, we have corroborated that, in the case of a low functionalization carbon material, the photocorrosion also occurs although it proceeds through a different pathway. The carbon anode gets gradually slightly oxidized due to the photogeneration of O-reactive species, being the incorporation of the O-groups responsible for the decreased performance of the anode upon long-term irradiation due to the effect of the oxidation of the carbon matrix on the electron transfer.

  5. [Recent advance on blood group antigen modification of porcine erythrocytes].

    PubMed

    Wang, Jie-Xi; Zhang, Yang-Pei

    2002-06-01

    Advances in the field of xenotransplantation raise the intriguing possibility of using porcine red blood cells (pRBCs) as an alternative source for blood transfusion. Serologically, pRBCs share a number of characteristics with human red blood cells (RBCs), so pRBCs are considered the most likely donor for xenotransfusion. However, xenoantigens on porcine erythrocytes play major roles in antibody-mediated RBC destruction. Although the alphaGal epitope (Galalpha1, 3Galbeta1, 4GalNAc-R) is the major xenoantigen on porcine erythrocytes and is responsible for the binding of the majority of human natural antibodies, other non-alphaGal xenoantigens have been identified. The importance of these non-alphaGal xenoantigens in binding human natural antibodies and subsequently triggering immunological responses cannot be underestimated.

  6. Surface Modification and Heat Generation of FePt Nanoparticles

    PubMed Central

    Wei, Da-Hua; Pan, Ko-Ying; Tong, Sheng-Kai

    2017-01-01

    The chemical reduction of ferric acetylacetonate (Fe(acac)3) and platinum acetylacetonate (Pt(acac)2) using the polyol solvent of phenyl ether as an agent as well as an effective surfactant has successfully yielded monodispersive FePt nanoparticles (NPs) with a hydrophobic ligand and a size of approximately 3.8 nm. The present FePt NPs synthesized using oleic acid and oleylamine as the stabilizers under identical conditions were achieved with a simple method. The surface modification of FePt NPs by using mercaptoacetic acid (thiol) as a phase transfer reagent through ligand exchange turned the NPs hydrophilic, and the FePt NPs were water-dispersible. The hydrophilic NPs indicated slight agglomeration which was observed by transmission electron microscopy images. The thiol functional group bond to the FePt atoms of the surface was confirmed by Fourier transform infrared spectroscopy (FTIR) spectra. The water-dispersible FePt NPs employed as a heating agent could reach the requirement of biocompatibility and produce a sufficient heat response of 45 °C for magnetically induced hyperthermia in tumor treatment fields. PMID:28772541

  7. Surface modification of nickel based alloys for improved oxidation resistance

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.

    2005-02-01

    The present research is aimed at the evaluation of a surface modification treatment to enhance the high temperature stability of nickel-base superalloys. A low Coefficient Thermal Expansion (CTE ~12.5x10-6/°C) alloy based on the composition (in weight %) of Ni-22Mo-12.5Cr was produced by Vacuum Induction Melting and Vacuum Arc Melting and reduced to sheet by conventional thermal-mechanical processing. A surface treatment was devised to enhance the oxidation resistance of the alloys at high temperature. Oxidation tests (in dry and wet air; treated and untreated) were conducted 800°C to evaluate the oxidation resistance of the alloys. The results were compared to the behavior of Haynes 230 (Ni-22Cr) in the treated and untreated conditions. The treatment was not very effective for Haynes 230, as this alloy had similar oxidation behavior in both the treated and untreated conditions. However, the treatment had a significant effect on the behavior of the low CTE alloy. At 800°C, the untreated Ni-12.5Cr alloy was 5 times less oxidation resistant than Haynes 230. However, in the treated condition, the Ni-12.5Cr alloy had comparable oxidation resistance to the Haynes 230 alloy.

  8. Climate change due to anthropogenic surface albedo modification

    SciTech Connect

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Ellis, J.S.; Luther, F.M.

    1980-02-01

    Using a statistical dynamic climate model with more realistic surface albedo changes than used in previous experiments, we have conducted a numerical experiment combining desertification of the Sahara and deforestation of the tropical rain forest. Over an area of 9 x 10/sup 6/ km/sup 2/ at 20/sup 0/N the desert albedo was increased from 0.16 to 0.35 and over 7 x 10/sup 6/ km/sup 2/ at the equator and 10/sup 0/S the rain forest albedo was increased from 0.07 to 0.16. While the most significant direct climatic responses were observed in the modified zones, high northern latitudes exhibited the greatest cooling through activation of the ice-albedo feedback process. In contrast to Sagan et al., this experiment suggests that anthropogenic modification of surface albedo over the past few thousand years has had an impact on global climate which is likely quite small and probably undetectable.

  9. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization.

    PubMed

    Chao, Cong; Liu, Jindun; Wang, Jingtao; Zhang, Yanwu; Zhang, Bing; Zhang, Yatao; Xiang, Xu; Chen, Rongfeng

    2013-11-13

    Halloysite nanotubes (HNTs) have been proposed as a potential support to immobilize enzymes. Improving enzyme loading on HNTs is critical to their practical applications. Herein, we reported a simple method on the preparation of high-enzyme-loading support by modification with dopamine on the surface of HNTs. The modified HNTs were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses. The results showed that dopamine could self-polymerize to adhere to the surface of HNTs and form a thin active coating. While the prepared hybrid nanotubes were used to immobilize enzyme of laccase, they exhibited high loading ability of 168.8 mg/g support, which was greatly higher than that on the pristine HNTs (11.6 mg/g support). The immobilized laccase could retain more than 90% initial activity after 30 days of storage and the free laccase only 32%. The immobilized laccase could also maintain more than 90% initial activity after five repeated uses. In addition, the immobilized laccase exhibited a rapid degradation rate and high degradation efficiency for removal of phenol compounds. These advantages indicated that the new hybrid material can be used as a low-cost and effective support to immobilize enzymes.

  10. Photochemical modification and patterning of polymer surfaces by surface adsorption of photoactive block copolymers.

    PubMed

    Pan, F; Wang, P; Lee, K; Wu, A; Turro, N J; Koberstein, J T

    2005-04-12

    We report a simple photolithographic approach for the creation and micropatterning of chemical functionality on polymer surfaces by use of surface-active block copolymers that contain protected photoactive functional groups. The block copolymers self-assemble at the substrate-air interface to generate a surface that is initially hydrophobic with low surface tension but that can be rendered hydrophilic and functional by photodeprotection with UV radiation. The block copolymer employed, poly(styrene-b-tert butyl acrylate), segregates preferentially to the surface of a polystyrene substrate because of the low surface tension of the polyacrylate blocks. The strong adsorption of block copolymers causes a bilayer structure to form presenting a photoactive polyacrylate layer at the surface. In the example described, the tert-butyl ester groups on the polyacrylate blocks are deprotected by exposure to UV radiation in the presence of added photoacid generators to form surface carboxylic acid groups. Surface micropatterns of carboxylic acid groups are generated by UV exposure through a contact mask. The success of surface chemical modification and pattern formation is demonstrated by X-ray photoelectron spectroscopy and contact angle measurements along with imaging by optical and fluorescence microscopy methods. The resultant chemically patterned surfaces are then used to template patterns of various biomolecules by means of selective adsorption, covalent bonding and molecular recognition mechanisms. The surface modification/patterning concept can be applied to virtually any polymeric substrate because protected functional groups have intrinsically low surface tensions, rendering properly designed block copolymers surface active in almost all polymeric substrates.

  11. Design of Surface Modifications for Nanoscale Sensor Applications

    PubMed Central

    Reimhult, Erik; Höök, Fredrik

    2015-01-01

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges. PMID:25594599

  12. Novel surface modification techniques to enhance biocompatibility of metallic materials for medical implants

    NASA Astrophysics Data System (ADS)

    Shayan, Mahdis

    was used to create various microscale features in thin film nitinol. The micropatterned thin film nitinol effectively captured the embolic particles dislodged from the carotid artery stenosis in vitro model. Besides, the micropatterned thin film nitinol has significantly enhanced endothelial cell adhesion and growth. Therefore, four surface modification techniques showed advancement in cellular behavior with the various metallic biomaterials used in treating critical diseases.

  13. Advances in mechanisms and modifications for rendering yeast thermotolerance.

    PubMed

    Gao, Liman; Liu, Yueqin; Sun, Hun; Li, Chun; Zhao, Zhiping; Liu, Guiyan

    2016-06-01

    Thermotolerant Saccharomyces cerevisiae is widely regarded as an attractive strain with which to accomplish the coupling of enzyme saccharification, ethanol fermentation and ethanol distillation in non-grain fuel bioethanol fermentation systems, and it has many advantages for increasing the ethanol yield and reducing production costs. This review provided an overview of the yeast heat-resistant mechanisms from six aspects, including gene expression responses, heat shock proteins, trehalose, ATPase, the ubiquitin-proteasome pathway and heat-induced antioxidant defenses. Innovative methods, such as random and rational strategies for improving yeast thermotolerance, were further discussed, and several special cases were provided. To rationally engineer thermotolerance in yeast, the advances in employing heat-resistant mechanisms of thermophiles were particularly discussed. By designing and constructing heat-resistant devices consists of heat-resistant parts from thermophiles to yeast, a superior thermotolerance of S. cerevisiae has been achieved, providing a new system with important applications for research regarding the improvement of the robustness of microbes.

  14. Microcantilever surface modification for chem-/bio-sensing

    NASA Astrophysics Data System (ADS)

    Du, Hongwei

    One focus of the microcantilever (MCL) sensing area is to develop a novel surface modification approach to increase the microcantilever bending amplitudes and thus further improve sensitivities. In this dissertation, enzyme incorporated using the Layer by-Layer (LbL) process, LbL deposition of micro-, nano-hydrogel particles and electrophoretic deposition (EPD) of micro-, nano-hydrogel particles were applied to prepare a multilayer or thin hydrogel films on the surface of microcantilevers. Prior to applying to the microcantilevers, LbL and electrophoretic deposition techniques were also applied to gold coated silicon wafer surfaces to investigate the feasibility and deposition behavior using these techniques. The multilayers prepared through self-assembling of poly(styrenesulfonate) (PSS), poly(ethylenimine) (PEI), and organophosphorus hydrolase (OPH), responded to organic phosphorus compounds such as paraoxon, parathion, and dimethyl phosphate at different bending amplitudes and bending rates. The bending mechanism investigation suggested that the conformational change of the OPH might be the primary contributor of the MCL bending. The micro-, nano- hydrogel particle deposition on the silicon wafer and microcantilever through LbL process was investigated and discussed based on the observation and characterization using optical microscope, SEM and AFM techniques. A pseudo-3D mechanism was promoted to explain the hydrogel particle deposition process. The research on the EPD demonstrated that the technique was a convenient and reliable approach to deposit a uniform and continuous hydrogel thin film on the microcantilever devices. The bending responses of hydrogel coated microcantilever correlated with changes in environmental pH, demonstrating the feasibility of this hydrogel film for micro-sensor development.

  15. ATF (Advanced Toroidal Facility) flux surfaces and related plasma effects

    SciTech Connect

    Colchin, R.J.; England, A.C.; Harris, J.H.; Hillis, D.L.; Jernigan, T.C.; Murakami, M.; Neilson, G.H.; Rome, J.A.; Saltmarsh, M.J.; Anderson, F.S.B.

    1989-01-01

    Flux surfaces in the Advanced Toroidal Facility (ATF) were mapped using an electron beam which was incident on a fluorescent screen. Islands were found at r/a greater than or equal to 0.6, indicating the existence of field errors. Failure of the island size to scale with magnetic field indicated that the islands were intrinsic to the coils. The source of the field errors was found to be uncompensated dipoles in the helical coil feeds. The electron temperature was observed to be very low in the vicinity of the islands. Modifications were made to the helical field buswork to eliminate the field errors, and the flux surfaces were again checked using an electron beam. Islands at r/a greater than or equal to 0.6 were found to be greatly reduced in size, with the residual island at /tau/ = 1/2 scaling to 1 cm at B = 1 T. Initial experiments indicate that the plasma operating space has been extended since the buswork modifications. 4 refs., 3 figs.

  16. Powerful tools for genetic modification: Advances in gene editing.

    PubMed

    Roesch, Erica A; Drumm, Mitchell L

    2017-09-27

    Recent discoveries and technical advances in genetic engineering, methods called gene or genome editing, provide hope for repairing genes that cause diseases like cystic fibrosis (CF) or otherwise altering a gene for therapeutic benefit. There are both hopes and hurdles with these technologies, with new ideas emerging almost daily. Initial studies using intestinal organoid cultures carrying the common, F508del mutation have shown that gene editing by CRISPR/Cas9 can convert cells lacking CFTR function to cells with normal channel function, providing a precedent that this technology can be harnessed for CF. While this is an important precedent, the challenges that remain are not trivial. A logistical issue for this and many other genetic diseases is genetic heterogeneity. Approximately, 2000 mutations associated with CF have been found in CFTR, the gene responsible for CF, and thus a feasible strategy that would encompass all individuals affected by the disease is particularly difficult to envision. However, single strategies that would be applicable to all subjects affected by CF have been conceived and are being investigated. With all of these approaches, efficiency (the proportion of cells edited), accuracy (how often other sites in the genome are affected), and delivery of the gene editing components to the desired cells are perhaps the most significant, impending hurdles. Our understanding of each of these areas is increasing rapidly, and while it is impossible to predict when a successful strategy will reach the clinic, there is every reason to believe it is a question of "when" and not "if." © 2017 Wiley Periodicals, Inc.

  17. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties

    NASA Astrophysics Data System (ADS)

    Garcia-Torres, Jose; Sylla, Dioulde; Molina, Laura; Crespo, Eulalia; Mota, Jordi; Bautista, Llorenç

    2014-06-01

    Surface chemical modification of cellulose-based substrates has been carried out by atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) of acrylic acid. The structure/properties relationship of the samples was studied as a function of the plasma experimental conditions. Acrylic acid monomer/helium ratio and treatment speed clearly influences the wettability properties of the paper substrate: advancing contact angle values were reduced to the half if compare to non-treated paper. Surface morphology of the films did not greatly vary at short polymerization times but fibers were covered by a poly(acrylic acid) film at longer times. FTIR and XPS techniques allowed detecting the retention of carboxylic acid groups/moieties. The possibility to quickly design architectures with tunable carboxylic functions by modifying the plasma processing parameters is shown.

  18. Advanced surface design for logistics analysis

    NASA Astrophysics Data System (ADS)

    Brown, Tim R.; Hansen, Scott D.

    The development of anthropometric arm/hand and tool models and their manipulation in a large system model for maintenance simulation are discussed. The use of Advanced Surface Design and s-fig technology in anthropometrics, and three-dimensional graphics simulation tools, are found to achieve a good balance between model manipulation speed and model accuracy. The present second generation models are shown to be twice as fast to manipulate as the first generation b-surf models, to be easier to manipulate into various configurations, and to more closely approximate human contours.

  19. Surface modifications of silicon nitride for cellular biosensor applications.

    PubMed

    Gustavsson, Johan; Altankov, George; Errachid, Abdelhamid; Samitier, Josep; Planell, Josep A; Engel, Elisabeth

    2008-04-01

    Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

  20. Surface modifications of the Sima de los Huesos fossil humans.

    PubMed

    Andrews, P; Fernandez Jalvo, Y

    1997-01-01

    The sample of fossil human bones from the Sima de los Huesos, Atapuerca, has been analysed to trace parts of its taphonomic history. The work reported here is restricted to analysis of the skeletal elements preserved and their surface modifications. Preliminary plans of specimen distribution published 6 years ago indicate that the skeletal elements are dispersed within the cave, but more recent data are not yet available. Most of the fossils are broken, with some breakage when the bone was fresh and some when already partly mineralized, both types showing some rounding. There are few longitudinal breaks on shafts of long bones and so very few bone splinters. All skeletal elements are preserved but in unequal proportions, with elements like femora, humeri and mandibles and teeth with greater structural density being best represented. There is no evidence of weathering or of human damage such as cut marks on any of the human assemblage, but trampling damage is present on most bones. Carnivore damage is also common, with some present on more than half the sample, but it is mostly superficial, either on the surfaces of shafts and articular ends or on the edges of spiral breaks. The sizes and distribution of the carnivore pits indicate extensive canid activity, and this is interpreted as scavenging of the bones in place in the cave. Indications of tooth marks from a larger carnivore indicate the activity possibly of a large felid: the marks are too large to be produced by small canids, with the larger marks concentrated on spiral breaks on the more robust bones, and there is no evidence of bone crushing and splintering in the manner of hyaenas. The nature of the SH human assemblage is also consistent with accumulation by humans, the evidence for this being the lack of other animals, especially the lack of herbivorous animals, associated with the humans, and the high number of individuals preserved.

  1. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyong; Gong, Yongfeng; Suo, Xinkun; Huang, Jing; Liu, Yi; Li, Hua

    2015-11-01

    Here we report a simple and cost-effective technical route for constructing superhydrophobic surfaces with excellent abrasion resistance on various substrates. Rough surface structures were fabricated by thermal spray deposition of a variety of inorganic materials, and further surface modification was made by applying a thin layer of polytetrafluoroethylene. Results show that the Al, Cu, or NiCrBSi coatings with the surface roughness of up to 13.8 μm offer rough surface profile to complement the topographical morphology in micro-/nano-scaled sizes, and the hydrophobic molecules facilitate the hydrophobicity. The contact angles of water droplets of ∼155° with a sliding angle of up to 3.5° on the samples have been achieved. The newly constructed superhydrophobic coatings tolerate strong abrasion, giving clear insight into their long-term functional applications.

  2. Surface modification of silicon and PTFE by laser surface treatment: improvement of wettability

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Yong; Lee, Kyoung-cheol; Lee, Cheon

    2003-11-01

    Laser surface treatment was used to modify the surface of silicon and PTFE (polytetrafluoroethylene). This method is in order to improve its wettability and adhesion characteristics. Using a 4th harmonic Nd:YAG pulse laser (λ = 266 nm, pulse), we determined the wettability and the adhesion characteristics of silicon and PTFE surfaces developed by the laser irradiation. Particularly, surface treatment of PTFE was only effective when the irradiated interface was in contact with the triethylamine photoreagent. We investigated laser surface treatment of materials by the surface energy modification. By using the sessile drop technique with distilled water, we determined that the wettability of silicon and PTFE after the irradiation showed a decrease in the contact angle and a change in the surface chemical composition. In case of the laser-treated materials surface, laser direct writing of copper lines was achieved through pyrolytic decomposition of copper formate films by using a focused argon ion laser beam (λ = 514.5 nm, cw) on silicon and PTFE substrates. The deposited patterns and the surface chemical compositions were measured by using energy dispersive X-ray, scanning electron microscopy, X-ray photoelectron spectroscopy, and surface profiler to examine cross section of the deposited copper lines.

  3. PREFACE Surface Modifications of Diamond and Related Materials (Session D, E-MRS Spring Meeting)

    NASA Astrophysics Data System (ADS)

    Nebel, Christoph E.

    2010-11-01

    This special issue contains selected papers which were presented at the E-MRS Symposium BIOMATERIALS, SENSORS & SURFACES, D: 'Surface modifications of diamond and related materials' which was held on 7-9 June 2010 in Strasbourg (France). With about 54 oral and poster presentations given from teams all over the world it was a very interesting, dense and lively meeting. The symposium focused on chemical modifications applied to graft surfaces of diamond, nano-diamond particles, diamond-like carbon, graphene, graphite and carbon nano-tubes with linker molecular layers for realization of bio-sensors, bio-markers, separation techniques, and switchable chemical links. Presented techniques span spontaneous bonding to photo-chemical attachment, electrochemical modifications, to Suzuki-coupling of aryl molecules. Special attention was drawn to mechanisms driving bonding kinetics such as electron transfer reactions, hydrogen cleavage reactions by nucleophilic molecules and growths schemas which vary from correlated two-dimensional chain reactions to three-dimensional cross polymerization. Hydrogen terminations, surface defects, surface roughness and atomic arrangements of surface carbon atoms were of interest to elucidate bonding mechanisms. In addition, bonding stability, either of linker molecules or of complex functionalized surfaces with DNA, proteins and enzymes was discussed by several speakers as well as details of the electronic interfaces between solid transducers and bio-layers. Here the characterization of surface and interface defect densities, of Fermi level pinning and of electron transfer rates was a major topic. Miniaturization of sensor area and application of new detection schemas was discussed. Diamond nano-particles which are increasingly used as biomarkers in drug delivery experiments also attracted attention. The organizers express our gratitude to the international members of the scientific committee who actively contributed to ensure an attractive

  4. Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors.

    PubMed

    Zhang, Qiang; Xue, Chenyang; Yuan, Yanling; Lee, Junyang; Sun, Dong; Xiong, Jijun

    2012-01-01

    Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

  5. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    NASA Astrophysics Data System (ADS)

    Moraczewski, Krzysztof; Stepczyńska, Magdalena; Malinowski, Rafał; Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian

    2016-07-01

    The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  6. Integrating advanced mobility into lunar surface exploration

    NASA Astrophysics Data System (ADS)

    Schlutz, Juergen; Messerschmid, Ernst

    2012-06-01

    With growing knowledge of the lunar surface environment from recent robotic missions, further assessment of human lunar infrastructures and operational aspects for surface exploration become possible. This is of particular interest for the integration of advanced mobility assets, where path planning, balanced energy provision and consumption as well as communication coverage grow in importance with the excursion distance. The existing modeling and simulation tools for the lunar surface environment have therefore been revisited and extended to incorporate aspects of mobile exploration. An extended analysis of the lunar topographic models from past and ongoing lunar orbital missions has resulted in the creation of a tool to calculate and visualize slope angles in selected lunar regions. This allows for the identification of traversable terrain with respect to the mobile system capabilities. In a next step, it is combined with the analysis of the solar illumination conditions throughout this terrain to inform system energy budgets in terms of electrical power availability and thermal control requirements. The combination of the traversability analysis together with a time distributed energy budget assessment then allows for a path planning and optimization for long range lunar surface mobility assets, including manned excursions as well as un-crewed relocation activities. The above mentioned tools are used for a conceptual analysis of the international lunar reference architecture, developed in the frame of the International Architecture Working Group (IAWG) of the International Space Exploration Coordination Group (ISECG). Its systems capabilities are evaluated together with the planned surface exploration range and paths in order to analyze feasibility of the architecture and to identify potential areas of optimization with respect to time-based and location-based integration of activities.

  7. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Jayaraman

    studies involved making functionalized, thickness-controlled, wettability-controlled multilayers on hydrophobic substrates and the adsorption of carboxylic acid-terminated poly(styrene-b-isoprene) on alumina/silica substrates. Poly(vinyl alcohol) has been shown to adsorb onto hydrophobic surfaces irreversibly due to hydrophobic interactions. This thin semicrystalline coating is chemically modified using acid chlorides, butyl isocyanate and butanal to form thicker and hydrophobic coatings. The products of the modification reactions allow adsorption of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized. This 2-step (adsorption/chemical modification) allows layer-by-layer deposition to prepare coatings with thickness, chemical structure and wettability control on any hydrophobic surface. Research on adsorption characteristics of carboxylic acid-terminated poly(styrene-b-isoprene) involved syntheses of block copolymers with the functional group present at specific ends. Comparative adsorption studies for carboxylic acid-terminated and hydrogen-terminated block copolymers was carried out on alumina and silica substrates.

  8. Surface modification and antimicrobial properties of cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Bespalova, Yulia A.

    Surface modification of cellulose nanocrystals (CNC) was performed by acetylation and subsequent reaction with various tertiary amines with different lengths of alkyl groups. Chloroacetic anhydride (95%) was used for acetylation. The acetylation of CNC was confirmed using IR spectroscopy. The bands associated with C=0 stretching (1740 cm-1) and C-Cl stretching (793 cm -1) was present in the acetylated CNC but they were absent in the neat CNC. It has been suggested that the primary hydroxyl groups of CNC are substituted by chloro acetyl groups during acetylation reaction. Subsequent reaction of chloro acetylated CNC with N, N - Dimethyl ethylamine, N, N - Dimethyl hexylamine, N, N - Dimethyl dodecylamine, N, N - Dimethyl hexadecylamine and N, N - Dimethyl decylamine formed quaternary ammonium salts. These quaternary ammonium salts were characterized by FTIR and solid state13C NMR spectroscopy. FTIR spectra of five types of quaternary ammonium salts of CNC are similar and they showed infrared bands at 2905 -1 and 2850 cm-1, attributed to symmetrical and unsymmetrical C-H stretching vibration. The absence of C-Cl band at 793 cm-1 proves that quaternary salt formation was successful. The 13C NMR spectrum of quaternary ammonium modified CNC with N, N - Dimethyl dodecylamine shows several additional resonances ranging from 14.5 ppm to 58.0 ppm when compared to 13C NMR spectrum of pure CNC. This evidence proves that long alkyl chains have been added to the pure CNC. The disc diffusion method confirmed that quaternary ammonium modified CNCs with a chain longer than ten carbons are effective antimicrobial agents against Staphylococcus aureus and E. coli bacteria. Pure CNC and quaternary ammonium modified CNCs with an alkyl chain length of ten or less were not able to inhibit bacteria growth.

  9. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  10. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    PubMed

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  11. Surface modification of biomaterials using plasma immersion ion implantation and deposition

    PubMed Central

    Lu, Tao; Qiao, Yuqin; Liu, Xuanyong

    2012-01-01

    Although remarkable progress has been made on biomaterial research, the ideal biomaterial that satisfies all the technical requirements and biological functions is not available up to now. Surface modification seems to be a more economic and efficient way to adjust existing conventional biomaterials to meet the current and ever-evolving clinical needs. From an industrial perspective, plasma immersion ion implantation and deposition (PIII&D) is an attractive method for biomaterials owing to its capability of treating objects with irregular shapes, as well as the control of coating composition. It is well acknowledged that the physico-chemical characteristics of biomaterials are the decisive factors greatly affecting the biological responses of biomaterials including bioactivity, haemocompatibility and antibacterial activity. Here, we mainly review the recent advances in surface modification of biomaterials via PIII&D technology, especially titanium alloys and polymers used for orthopaedic, dental and cardiovascular implants. Moreover, the variations of biological performances depending on the physico-chemical properties of modified biomaterials will be discussed. PMID:23741609

  12. Various novel erythromycin derivatives obtained by different modifications: recent advance in macrolide antibiotics.

    PubMed

    Ma, C; Ma, S

    2010-04-01

    The rapid emergence of drug resistance intensified the search for new antimicrobial agents, leading to lots of novel derivatives obtained from 14- and 15-membered macrolides by chemical modifications. Many of them exhibited enhanced antibacterial activity and expanded antibacterial spectrum. Especially some of them were found to be potent for the treatment of multi-drug-resistant bacterial infections. Besides, the other biological effects of macrolide derivatives were also found. In this article, we reviewed the recent advance in the novel macrolide derivatives designed by different structural modifications on erythronolide skeleton, cladinose and desosamine in the structures.

  13. Advanced Bayesian Method for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Center, Julian

    2015-01-01

    Autonomous Exploration, Inc., has developed an advanced Bayesian statistical inference method that leverages current computing technology to produce a highly accurate surface navigation system. The method combines dense stereo vision and high-speed optical flow to implement visual odometry (VO) to track faster rover movements. The Bayesian VO technique improves performance by using all image information rather than corner features only. The method determines what can be learned from each image pixel and weighs the information accordingly. This capability improves performance in shadowed areas that yield only low-contrast images. The error characteristics of the visual processing are complementary to those of a low-cost inertial measurement unit (IMU), so the combination of the two capabilities provides highly accurate navigation. The method increases NASA mission productivity by enabling faster rover speed and accuracy. On Earth, the technology will permit operation of robots and autonomous vehicles in areas where the Global Positioning System (GPS) is degraded or unavailable.

  14. Surface plasmon resonance biosensors: advances and applications

    NASA Astrophysics Data System (ADS)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  15. Surface EMG in advanced hand prosthetics.

    PubMed

    Castellini, Claudio; van der Smagt, Patrick

    2009-01-01

    One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.

  16. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis.

    PubMed

    Chen, Yiping; Xianyu, Yunlei; Jiang, Xingyu

    2017-02-21

    As one of the major tools for and by chemical science, biochemical analysis is becoming increasingly important in fields like clinical diagnosis, food safety, environmental monitoring, and the development of chemistry and biochemistry. The advancement of nanotechnology boosts the development of analytical chemistry, particularly the nanoparticle (NP)-based approaches for biochemical assays. Functional NPs can greatly improve the performance of biochemical analysis because they can accelerate signal transduction, enhance the signal intensity, and enable convenient signal readout due to their unique physical and chemical properties. Surface chemistry is a widely used tool to functionalize NPs, and the strategy for surface modification is of great significance to the application of NP-mediated biochemical assays. Surface chemistry not only affects the quality of NPs (stability, monodispersity, and biocompatibility) but also provides functional groups (-COO(-), -NH3(+), -CHO, and so on) or charges that can be exploited for bioconjugation or ligand exchange. Surface chemistry also dictates the sensitivity and specificity of the NP-mediated biochemical assays, since it is vital to the orientation, accessibility, and bioactivity of the functionalized ligands on the NPs. In this Account, we will focus on surface chemistry for functionalization of gold nanoparticles (AuNPs) with small organic molecules for biochemical analysis. Compared to other NPs, AuNPs have many merits including controllable synthesis, easy surface modification and high molar absorption coefficient, making them ideal probes for biochemical assays. Small-molecule functionalized AuNPs are widely employed to develop sensors for biochemical analysis, considering that small molecules, such as amino acids and sulfhydryl compounds, are more easily and controllably bioconjugated to the surface of AuNPs than biomacromolecules due to their less complex structure and steric hindrance. The orientation and

  17. Statistical modification analysis of helical planetary gears based on response surface method and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Guo, Fan

    2015-11-01

    Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.

  18. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    PubMed

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  19. Charge-directed fiber surface modification by molecular assemblies of functional polysaccharides.

    PubMed

    Vega, Beatriz; Wondraczek, Holger; Zarth, Cíntia Salomão Pinto; Heikkilä, Elina; Fardim, Pedro; Heinze, Thomas

    2013-11-05

    Molecular assemblies, namely, polyelectrolyte complexes (PECs) composed of negatively charged xylan-based derivatives and a novel positively charged cellulose derivative (CN(+)), were used for interfacial modification of wood fibers by charge directed self-assembly. The adsorption process was studied using polyelectrolyte titration and elemental analysis. X-ray spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used as advanced techniques for the characterization of the modified fiber surfaces. The measurements revealed an intense interaction between the pulp fibers and PECs, and provided essential information for a better understanding of the adsorption process. The information gathered on this paper might contribute to the basis for the development of new value added products by the use of underutilized biomass.

  20. Pain perception description after advanced surface ablation

    PubMed Central

    Sobas, Eva M; Videla, Sebastián; Vázquez, Amanda; Fernández, Itziar; Maldonado, Miguel J; Pastor, José-Carlos

    2017-01-01

    Purpose The objective of this study was to characterize the evolution of ocular pain after advanced surface ablation (ASA) to improve strategies in postoperative pain management. Methods This was a multicenter, prospective, descriptive, cohort study. The inclusion criteria were healthy individuals ≥18 years old receiving bilateral alcohol-assisted surface ablation with epithelial removal. Pain intensity was evaluated with the visual analog scale (VAS) and the numeric pain rating scale before and after surgery. Comorbidities (photophobia, burning, tearing, and foreign body sensation) and Hospital Anxiety and Depression (HAD) questionnaire were evaluated before and at 6 hours after surgery. Postoperative treatments included cold patch, topical cold antibiotics, topical steroids, and benzodiazepines. Results Thirty-two consecutive patients having similar profiles of postoperative pain evolution were included. At 0.5 hour after ASA, the pain score by VAS was 37±20 mm, and the maximum pain, 61±31 mm, occurred at 24 hours. Afterward, it decreased progressively until 72 hours after surgery (19±20 mm). Most patients (81%) scored >60 mm, and 44% required rescue medication. Among the comorbidities, all patients had photophobia and 84% had burning sensation. At 6 hours, the HAD score was 5.4±3.9, within the range of values considered as normal. Conclusion Postoperative acute ocular pain after ASA showed a characteristic evolution over time. Recognition of the pattern could be important for improving the acceptance of ASA and for improving strategies in pain management in the postoperative period. PMID:28435216

  1. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    NASA Astrophysics Data System (ADS)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  2. Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification.

    PubMed

    Wang, Jiong; Ouyang, Wanlu

    2017-02-01

    Inefficient mitigation of excessive heat is attributed to the discrepancy between the scope of climate research and conventional planning practice. This study approaches this problem at both domains. Generally, the study, on one hand, claims that the climate research of the temperature phenomenon should be at local scale, where implementation of planning and design strategies can be more feasible. On the other hand, the study suggests that the land surface factors should be organized into zones or patches, which conforms to the urban planning and design manner. Thus in each zone, the land surface composition of those excessively hot places can be compared to the zonal standard. The comparison gives guidance to the modification of the land surface factors at the target places. Specifically, this study concerns the Land Surface Temperature (LST) in Wuhan, China. The land surface is classified into Local Thermal Zones (LTZ). The specifications of temperature sensitive land surface factors are relative homogeneous in each zone and so is the variation of the LST. By extending the city scale analysis of Urban Heat Island into local scale, the Local Surface Urban Heat Islands (LSUHIs) are extracted. Those places in each zone that constantly maintain as LSUHI and exceed the homogenous LST variation are considered as target places or hotspots with higher mitigation or adaptation priority. The operation is equivalent to attenuate the abnormal LST variation in each zone. The framework is practical in the form of prioritization and zoning, and mitigation strategies are essentially operated locally.

  3. Phosphate filtering characteristics of a hybridized porous Al alloy prepared by surface modification.

    PubMed

    Seo, Young Ik; Lee, Young Jung; Hong, Ki Ho; Chang, Duk; Kim, Dae-Gun; Lee, Kyu Hwan; Kim, Young Do

    2010-01-15

    In this study, a porous Al alloy filter was designed for water purification systems. The combination of higher permeability for fluid flow and excellent filtering characteristics for removing pollutants is required for water purification. The filter's macropore structure was controlled by a powder metallurgical process using granulated powders for high permeability and its micropore structure was generated by alkali surface modification on the macroporous sintered body for enhanced filtration efficiency. After surface modification, the specific surface area was increased by 10 times over the as-sintered specimen. Phosphate filtering characteristic was noticeably improved by a ligand exchange between phosphate and aluminum hydroxide formed by alkali surface modification.

  4. Surface chemical and physical modification in stent technology for the treatment of coronary artery disease.

    PubMed

    Nazneen, Feroze; Herzog, Grégoire; Arrigan, Damien W M; Caplice, Noel; Benvenuto, Pasquale; Galvin, Paul; Thompson, Michael

    2012-10-01

    Coronary artery disease (CAD) kills millions of people every year. It results from a narrowing of the arteries (stenosis) supplying blood to the heart. This review discusses the merits and limitations of balloon angioplasty and stent implantation, the most common treatment options for CAD, and the pathophysiology associated with these treatments. The focus of the review is heavily placed on research efforts geared toward the modification of stent surfaces for the improvement of stent-vascular compatibility and the reduction in the occurrence of related pathophysiologies. Such modifications may be chemical or physical, both of which are surveyed here. Chemical modifications may be passive or active, while physical modification of stent surfaces can also provide suitable substrates to manipulate the responses of vascular cells (endothelial, smooth muscle, and fibroblast). The influence of micro- and nanostructured surfaces on the in vitro cell response is discussed. Finally, future perspectives on the combination of chemical and physical modifications of stent surfaces are also presented.

  5. Polymer Thin Films and Surface Modification by Chemical Vapor Deposition: Recent Progress.

    PubMed

    Chen, Nan; Kim, Do Han; Kovacik, Peter; Sojoudi, Hossein; Wang, Minghui; Gleason, Karen K

    2016-06-07

    Chemical vapor deposition (CVD) polymerization uses vapor phase monomeric reactants to synthesize organic thin films directly on substrates. These thin films are desirable as conformal surface engineering materials and functional layers. The facile tunability of the films and their surface properties allow successful integration of CVD thin films into prototypes for applications in surface modification, device fabrication, and protective films. CVD polymers also bridge microfabrication technology with chemical and biological systems. Robust coatings can be achieved via CVD methods as antifouling, anti-icing, and antihydrate surfaces, as well as stimuli-responsive or biocompatible polymers and novel nanostructures. Use of low-energy input, modest vacuum, and room-temperature substrates renders CVD polymerization compatible with thermally sensitive substrates and devices. Compared with solution-based methods, CVD is particularly useful for insoluble materials, such as electrically conductive polymers and controllably crosslinked networks, and has the potential to reduce environmental, health, and safety impacts associated with solvents. This review discusses the relevant background and selected applications of recent advances by two methods that display and use the high retention of the organic functional groups from their respective monomers, initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization.

  6. A novel liposome surface modification agent that prolongs blood circulation and retains surface ligand reactivity.

    PubMed

    Ishihara, Atsushi; Yamauchi, Masahiro; Tsuchiya, Tomoko; Mimura, Yukiteru; Tomoda, Yutaka; Katagiri, Ayato; Kamiya, Masaaki; Nemoto, Hisao; Suzawa, Toshiyuki; Yamasaki, Motoo

    2012-01-01

    Liposomes are recognized as potentially useful drug carriers but many problems preclude practical medical application. Liposomes bind with serum proteins (opsonization) and are captured by the reticuloendothelial system cells in the liver and spleen, which limits their ability to deliver drugs to other target sites. Modification of lipids with flexible, hydrophilic polymers such as poly(ethylene glycol) (PEG) to yield sterically stabilized liposomes is one approach to improve liposome blood circulation and tissue distribution properties. In this study, we examined liposomes prepared using lipids modified with a new branched oligoglycerol (BGL) moiety for steric stabilization. This novel BGL comprised 14 glycerol units (termed BGL014) connected with flexible ether linkages, resulting in a branched cascade-like structure that is highly expanded in aqueous solution. BGL014 was coupled to 1,2-distearoylphosphatidylethanolamine to yield BGL014-modified lipids. Incorporation of BGL014 into liposomes (BGL014L) resulted in long blood circulation times, despite a much thinner fixed aqueous layer thickness compared to PEG formulations. BGL014 produced a liposome surface coating that appears to function through steric inhibition of non-specific protein binding without strong interference of specific protein-binding reactions. Liposome structure and functionality was maintained following BGL014-modification, as the incorporation ratio of drug remained high. These results suggest that the BGL014 modification of liposomes is a promising approach to produce stable and long circulating drug carriers capable of selective binding to specific proteins.

  7. Mitigation of sub-surface crack propagation in railroad rails by laser surface modification

    SciTech Connect

    DiMelfi, R.J.; Sanders, P.G.; Hunter, B.; Eastman, J.A.; Leong, K.; Kramer, J.M.; Sawley, K.J.

    1997-10-01

    The authors address the mitigation of sub-surface crack propagation in railroad rails via laser surface modification. The goal is to reduce the shear forces from rail-wheel friction, which contribute significantly to the nucleation and propagation of cracks in the sub-surface region at rail gage corners. Microhardness scans and tensile tests were performed on samples from cross-sections of unused and heavily used rail heads. The results of these tests indicate that the severe cyclic plastic deformation that occurs at the gage corners, during service, significantly hardens the sub-surface region there, which leads to cracking. Laser glazing, the rapid melting and rapid solidification of a thin surface layer, was used to reduce the friction coefficient of rail steel. The advantages of this process are that specific regions of the rail surface can be targeted; the treatment does not wash away as the currently used liquid lubricants do; it is more environmentally sound than liquid lubricants; and it can be applied in service, during re-work or during rail fabrication. A number of laser treatments were conducted on AISI 1080 steel plates, similar to rail steel, from which friction samples were extracted. Static block-on-ring friction experiments performed on a variety of laser treated surfaces showed reductions in the friction coefficient by about 25% relative to untreated surfaces at loads corresponding to prototypic rail service loads. The authors laser-glazed two areas on the top surface of a 6-ft length of rail with multiple pass treatments, one with adjacent passes overlapping, and one with adjacent passes separated by 1 mm. Friction measurements were made after they were subjected to 20,000 run-in cycles. The laser treatments remained intact after these cycles. Reductions of friction coefficient of ca. 40%, relative to untreated surfaces, were observed, corresponding to a reduction in the calculated mixed mode crack propagation rate by ca. 79%.

  8. Correlation of photon emission with electric-field-initiated nanometer-scale surface modification

    NASA Astrophysics Data System (ADS)

    Strozewski, K. J.; McBride, S. E.; Wetsel, G. C., Jr.

    1996-06-01

    Photon emission during electric-field-initiated material transfer has been measured using a scanning tunneling microscope configured for surface modification. The instrument has been integrated with a photon-counting system that measures the emission originating from the tip-sample junction under both quiescent and transient conditions. The transient photon emission recorded during nanometer-scale surface modification of gold samples is correlated with the type of feature formed on the sample surface.

  9. A new method for inner surface modification by plasma source ion implantation (PSII)

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Liu, Chizi; Cheng, Dajung; Zhang, Guling; He, Rui; Yang, Si-Ze

    2001-12-01

    A new method for inner surface modification, named grid-enhanced inner surface modification by plasma source ion implantation (PSII), was proposed and demonstrated in this paper. By introducing an RF plasma core, which is produced between a central cathode and a coaxial grid electrode, and sputtering the cathode, uniform ion implantation and film deposition on the inner surface of a tubular sample can be realized based upon the PSII technique.

  10. One-Step Modification of Superhydrophobic Surfaces by a Mussel-Inspired Polymer Coating

    PubMed Central

    Kang, Sung Min; You, Inseong; Cho, Woo Kyung; Shon, Hyun Kyong; Lee, Tae Geol; Choi, Insung S.; Karp, Jeffery M.; Lee, Haeshin

    2010-01-01

    A bio-inspired approach for superhydrophobic surface modification was investigated. Hydrophilic conversion of the superhydrophobic surface was easily achieved through this method, and the superhydrophobic-hydrophilic alternating surface was generated by the method combined with soft-lithography. The resulting patterned surface showed high water adhesion property in addition to superhydrophobic property. PMID:21031386

  11. Polymer surface chemistry: Surface mixtures, supported polyelectrolyte multilayers and heterogeneous chemical modification

    NASA Astrophysics Data System (ADS)

    Phuvanartnuruks, Vipavee

    This dissertation is divided into three parts that summarize three discrete projects that are related only in their overall objective of using chemistry to rationally control polymer surface structure and properties. Each part involves polymer surface modification, but the three employ very different techniques to effect surface-chemical changes. The first part (Chapter 1) involves the preparation of surfaces containing controllable mixtures of two functionalities (alcohol/ester or hydrocarbon ester/fluorocarbon ester) from alcohol-functionalized poly(chlorotrifluoroethylene) (PCTFE-OH) and the studies of their wetting behavior as a function of composition and structure. Contact angle analyses indicate that sequential and competitive esterifications yield mixed surfaces consisting of the two functional groups distributed randomly, while compositionally similar, patchy mixed surfaces can be prepared by partial hydrolysis/re-esterification under some specific conditions. Greater contact angle hysteresis was observed on the patchy surfaces. The second part (Chapter 2) describes the layer-by-layer deposition of cationic (polyallylamine hydrochloride (PAH)) and anionic (polysodium styrenesulfonate (PSS)) polyelectrolytes onto the PCTFE-OH substrate. XPS and contact angle data indicate that the assembled layers are stratified even though the individual layers are extremely thin (0.3-4.1 A). This thickness depends both on the charge density of the first layer of PAH (controlled using pH) and the ionic strength of the PSS adsorption solution. The stoichiometry of the assembly process also varies with the ionic strength of the PSS adsorption solution. The third part (Chapter 3) involves the heterogeneous (gas-solid) chemical modification of poly(trifluoroethylene) (PFsb3E). Chlorination of PFsb3E is a surface-selective reaction and the extent of chlorination can be controlled by time and light intensity. The fluorination of PFsb3E carried out using 5% Fsb2/Nsb2 yields

  12. Clay exfoliation in polymer nanocomposites: Specific chemical reactions and exchange of specialty modifications on clay surface

    NASA Astrophysics Data System (ADS)

    Mittal, Vikas

    2010-06-01

    Due the synergistic improvement in properties, which are better than the individual constituents, polymer nanocomposites have been the subject of intensive research. Surface modification of the filler is necessary to enhance its compatibility with the polymer phase and, hence, achieve nanoscale delamination in the polymer matrix. However, conventional alkyl ammonium surface modifications are only suitable for polar polymers and do not lead to exfoliated nanocomposites with non-polar polymers, such as polyolefins. In the absence of any positive interaction between the filler and polyolefin matrices, it is only the higher basal plane spacing of the filler which can lead to its delamination during shearing with the polymer. However, it is not easy to achieve very high basal plane spacing using conventional surface modifications. It requires specific methods or specialty surface modifications, which can lead to a higher amount of organic matter in the clay interlayers and, thus, higher basal plane spacing or reduced forces of attraction. These include synthesis of long chain length surface modifications, chemical reactions with the reactive surface modifications on the filler surface or polymerization reactions on the filler surface to graft polymer chains, etc. In addition, physical adsorption of the polymer chains or other organic molecules on the surface of pre-modified clay can also lead to its uniform organophilization, which again reduces the forces of attraction between the clay platelets.

  13. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. )

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  14. RASSOR - Regolith Advanced Surface Systems Operations Robot

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (<100 kg) robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  15. Resistive memory for harsh electronics: immunity to surface effect and high corrosion resistance via surface modification.

    PubMed

    Huang, Teng-Han; Yang, Po-Kang; Lien, Der-Hsien; Kang, Chen-Fang; Tsai, Meng-Lin; Chueh, Yu-Lun; He, Jr-Hau

    2014-03-18

    The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics.

  16. Resistive Memory for Harsh Electronics: Immunity to Surface Effect and High Corrosion Resistance via Surface Modification

    NASA Astrophysics Data System (ADS)

    Huang, Teng-Han; Yang, Po-Kang; Lien, Der-Hsien; Kang, Chen-Fang; Tsai, Meng-Lin; Chueh, Yu-Lun; He-Hau, Jr.

    2014-03-01

    The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics.

  17. Resistive Memory for Harsh Electronics: Immunity to Surface Effect and High Corrosion Resistance via Surface Modification

    PubMed Central

    Huang, Teng-Han; Yang, Po-Kang; Lien, Der-Hsien; Kang, Chen-Fang; Tsai, Meng-Lin; Chueh, Yu-Lun; He, Jr-Hau

    2014-01-01

    The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics. PMID:24638086

  18. Interaction of soft x-ray laser pulse radiation with aluminum surface: Nano-meter size surface modification

    SciTech Connect

    Ishino, Masahiko; Faenov, Anatoly; Tanaka, Momoko; Hasegawa, Noboru; Nishikino, Masaharu; Tamotsu, Satoshi; Pikuz, Tatiana; Inogamov, Nail; Zhakhovsky, Vasily; Skobelev, Igor; Fortov, Vladimir; Khohlov, Viktor; Shepelev, Vadim; Ohba, Toshiyuki; Kaihori, Takeshi; Ochi, Yoshihiro; Imazono, Takashi; Kawachi, Tetsuya

    2012-07-11

    Interaction of soft x-ray laser radiation with material and caused modification of the exposed surface has both physical and practical interests. We irradiated the focusing soft x-ray laser (SXRL) pulses having a wavelength of 13.9 nm and the duration of 7 ps to aluminum (Al) surface. After the SXRL irradiation process, the irradiated Al surface was observed with a scanning electron microscope. The surface modifications caused by SXRL single pulse exposure were clearly seen. In addition, it was found that the conical structures having around 100 nm in diameters were formed in the shallow features. The nano-meter size modified structures at Al surface induced by SXRL pulse is interesting as the newly surface structure. Hence, the SXRL beam would be a candidate for a tool of micromachining. We also provide a thermomechanical modeling of SXRL interaction with Al briefly to explain the surface modification.

  19. The effect of surface modification on initial ice formation on aluminum surfaces

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Afshari, A.; Fojan, P.; Gurevich, L.

    2015-11-01

    One of the most promising energy saving methods in cold climate areas is heat recovery in ventilation system by using air-to-air heat exchangers. However, due to a higher humidity in the exhaust air, there is a risk of ice formation on the heat exchanger fins at subzero temperatures. Since the main material of heat exchanger fins is aluminum, this paper focuses on the effect of aluminum wettability on the initial stages of ice formation. The ice growth was studied on bare as well as hydrophilically and hydrophobically modified surfaces of aluminum (8011A) sheets, commonly used in heat exchangers, at different psychrometric parameters. The obtained results show that the surface modification of aluminum plays a crucial role in the ice formation. We demonstrated that flat hydrophobic surfaces exhibit slower ice growth and denser ice layers, hence making this type of treatment preferable for aluminum heat exchangers. Furthermore we provide an explanation for a commonly observed phenomenon that bare aluminum surfaces are characterized by a faster ice growth and less dense ice layer as compared to both hydrophilically and hydrophobically modified surfaces.

  20. Rapid, metal-free hydrosilanisation chemistry for porous silicon surface modification.

    PubMed

    Sweetman, M J; McInnes, S J P; Vasani, R B; Guinan, T; Blencowe, A; Voelcker, N H

    2015-07-07

    Here, we report a novel surface modification for porous silicon (pSi). Hydroxyl-terminated pSi surfaces are modified with a hydrosilane via Si-H activation using the Lewis acid catalyst tris(pentafluorophenyl) borane. This surface reaction is fast and efficient at room temperature, and leads to a surface stabilised against hydrolytic attack in aqueous media. The resulting surface shows promise as a substrate for surface-assisted laser desorption/ionisation mass spectrometry.

  1. On Modifications of the Zakharov Equation for Surface Gravity Waves.

    DTIC Science & Technology

    1983-07-01

    finite water depth (in section 2) and show its relations to the cubic Schr - dinger equation and to Hasselmann’s nonlinear interaction model (in section 3...on a modification of the nonlinear Schr { dinger equation for waves moving over an uneven bottom. Progress Report, Department of Civil Eng. Technion...7th Conf. of Coastal Engineering, Vol. 1, 184-196. Stiassnie, M. 1983 Note on the modified nonlinear Schr ~ dinger equation for deep water waves. Wave

  2. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    NASA Astrophysics Data System (ADS)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  3. Surface modification of EPDM rubber by plasma treatment.

    PubMed

    Grythe, Kai Frode; Hansen, Finn Knut

    2006-07-04

    The effect of argon, oxygen, and nitrogen plasma treatment of solvent cast EPDM rubber films has been investigated by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface energy measurements. Plasma treatment leads to changes in the surface energy from 25 to 70 mN/m. Treatment conditions influenced both the changes in surface energy and the stability, and it became more difficult to obtain good contact angle measurements after longer (> ca. 4 min) treatment times, probably because of an increasingly uneven surface structure. XPS analyses revealed that up to 20 at. % oxygen can be easily incorporated and that variations of approximately 5% can be controlled by the plasma conditions. Oxygen was mainly found in hydroxyl groups, but also as carbonyl and carboxyl. XPS analyses showed more stable surfaces than expected from contact angles, probably because XPS analysis is less surface sensitive than contact angle measurements. AFM measurements revealed different surface structures with the three gases. The surface roughness increased generally with treatment time, and dramatic changes could be observed at longer times. At short times, surface energy changes were much faster than the changes in surface structure, showing that plasma treatment conditions can be utilized to tailor both surface energies and surface structure of EPDM rubber.

  4. Surface chemical deposition of advanced electronic materials

    NASA Astrophysics Data System (ADS)

    Bjelkevig, Cameron

    The focus of this work was to examine the direct plating of Cu on Ru diffusion barriers for use in interconnect technology and the substrate mediated growth of graphene on boron nitride for use in advanced electronic applications. The electrodeposition of Cu on Ru(0001) and polycrystalline substrates (with and without pretreatment in an iodine containing solution) has been studied by cyclic voltammetry (CV), current--time transient measurements (CTT), in situ electrochemical atomic force microscopy (EC-AFM), and X-ray photoelectron spectroscopy (XPS). The EC-AFM data show that at potentials near the OPD/UPD threshold, Cu crystallites exhibit pronounced growth anisotropy, with lateral dimensions greatly exceeding vertical dimensions. XPS measurements confirmed the presence and stability of adsorbed I on the Ru surface following pre-treatment in a KI/H2SO4 solution and following polarization to at least -200 mV vs. Ag/AgCl. CV data of samples pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD peak. The kinetics of the electrodeposited Cu films was investigated by CTT measurements and applied to theoretical models of nucleation. The data indicated that a protective I adlayer may be deposited on an airexposed Ru electrode as the oxide surface is electrochemically reduced, and that this layer will inhibit reformation of an oxide during the Cu electroplating process. A novel method for epitaxial graphene growth directly on a dielectric substrate of systematically variable thickness was studied. Mono/multilayers of BN(111) were grown on Ru(0001) by atomic layer deposition (ALD), exhibiting a flat (non-nanomesh) R30(✓3x✓3) structure. BN(111) was used as a template for growth of graphene by chemical vapor deposition (CVD) of C2H4 at 1000 K. Characterization by LEED, Auger, STM/STS and Raman indicate the graphene is in registry with the BN substrate, and exhibits a HOPG-like 0 eV bandgap density

  5. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    SciTech Connect

    Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

    2012-05-01

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  6. Enzyme-catalyzed modification of PES surfaces: reduction in adsorption of BSA, dextrin and tannin.

    PubMed

    Nady, Norhan; Schroën, Karin; Franssen, Maurice C R; Fokkink, Remco; Mohy Eldin, Mohamed S; Zuilhof, Han; Boom, Remko M

    2012-07-15

    Poly(ethersulfone) (PES) can be modified in a flexible manner using mild, environmentally benign components such as 4-hydroxybenzoic acid and gallic acid, which can be attached to the surface via catalysis by the enzyme laccase. This leads to grafting of mostly linear polymeric chains (for 4-hydroxybenzoic acid, and for gallic acid at low concentration and short modification time) and of networks (for gallic acid at high concentration and long exposure time). The reaction is stopped at a specific time, and the modified surfaces are tested for adsorption of BSA, dextrin and tannin using in-situ reflectometry and AFM imaging. At short modification times, the adsorption of BSA, dextrin and tannin is significantly reduced. However, at longer modification times, the adsorption increases again for both substrates. As the contact angle on modified surfaces at short modification times is reduced (indicative of more hydrophilic surfaces), and keeps the same low values at longer modification times, hydrophilicity is not the only determining factor for the measured differences. At longer modification times, intra-layer reactivity will increase the amount of cross-linking (especially for gallic acid), branching (for 4-hydroxybenzoic acid) and/or collapse of the polymer chains. This leads to more compact layers, which leads to increased protein adsorption. The modifications were shown to have clear potential for reduction of fouling by proteins, polysaccharides, and polyphenols, which could be related to the surface morphology.

  7. Advancing dental implant surface technology--from micron- to nanotopography.

    PubMed

    Mendonça, Gustavo; Mendonça, Daniela B S; Aragão, Francisco J L; Cooper, Lyndon F

    2008-10-01

    Current trends in clinical dental implant therapy include use of endosseous dental implant surfaces embellished with nanoscale topographies. The goal of this review is to consider the role of nanoscale topographic modification of titanium substrates for the purpose of improving osseointegration. Nanotechnology offers engineers and biologists new ways of interacting with relevant biological processes. Moreover, nanotechnology has provided means of understanding and achieving cell specific functions. The various techniques that can impart nanoscale topographic features to titanium endosseous implants are described. Existing data supporting the role of nanotopography suggest that critical steps in osseointegration can be modulated by nanoscale modification of the implant surface. Important distinctions between nanoscale and micron-scale modification of the implant surface are presently considered. The advantages and disadvantages of nanoscale modification of the dental implant surface are discussed. Finally, available data concerning the current dental implant surfaces that utilize nanotopography in clinical dentistry are described. Nanoscale modification of titanium endosseous implant surfaces can alter cellular and tissue responses that may benefit osseointegration and dental implant therapy.

  8. Chemical modification of graphite surfaces using chitosan as a mediator

    SciTech Connect

    Hatley, M.E.; Albahadily, F.N.

    1995-12-01

    Several techniques for modifying graphite surfaces have been utilized the last two decades. Some of these techniques have a few limitations which include monolayer coverage and nonspecific binding to the graphite surfaces. In this report, we describe a novel approach to modify graphite surfaces using chitosan. The graphite is coated with an acidic chitosan solution. After drying, a chitosan film is formed on the graphite surfaces. Glutaraldehyde is attached to the chitosan through an amide linkage. The desired modifiers which contain amine groups are then attached to the free end of the glutaraldehyde. Utilization of the modified graphite surfaces in paste electrodes will be discussed.

  9. Advanced Technologies for Determination of Surface Cleanliness

    NASA Astrophysics Data System (ADS)

    Kudlacek, Jan; Chabera, Petr

    2014-12-01

    For high utility value of products is significant quality of surface treatment. Among the processes that most affect the quality of surface treatment are mainly surface pretreatment processes, namely processes of cleaning (degreasing). This article is devoted to quality control after surface pre-treatment. It mainly deals with the modern method for detecting surface contamination grease based on fluorescence methods. Impurities such as grease, oil and other have characteristic fluorescence after illumination by UV source. This principle can be used to determine the purity of the substrate surface, thereby ensuring the quality of the surface. Surface cleanliness is very important factor for the correct application of subsequent technological processes.

  10. Surface Modifications and Their Effects on Titanium Dental Implants

    PubMed Central

    Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.

    2015-01-01

    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097

  11. Surface Modifications and Their Effects on Titanium Dental Implants.

    PubMed

    Jemat, A; Ghazali, M J; Razali, M; Otsuka, Y

    2015-01-01

    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants.

  12. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  13. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    SciTech Connect

    Sakudo, N.; Ikenaga, N.; Ikeda, F.; Nakayama, Y.; Kishi, Y.; Yajima, Z.

    2011-01-07

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

  14. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Sakudo, N.; Ikenaga, N.; Ikeda, F.; Nakayama, Y.; Kishi, Y.; Yajima, Z.

    2011-01-01

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

  15. [Research on surface modification and bio-tribological properties of artificial joint].

    PubMed

    Pan, Yusong; Wang, Jing; Ding, Guoxin

    2012-06-01

    The bio-tribological properties of an artificial joint can be obviously improved by surface modification technologies. In this paper, the benefits and disadvantages of various surface modification methods-such as surface coating, plasma treatment, surface texture and surface grafting modification-are discussed. The aim of surface coating and/or plasma treatment is to improve the surface hardness of the materials, thus enhancing the wear resistance of artificial joints. However, these technologies do not effectively alleviate stress concentration of material in the short times in which artificial joints bear physiological impact load, resulting in easy fracture. Surface texture serves mainly to improve the lubrication properties through micro-concavities on the material surface for storage lubricant. Surface texturing can realize improvements in bio-tribological properties, but it does not enhance the impact resistance of the joint. Surface grafting modification is implemented mainly by grafting hydrophilic or other specific functional groups to improve the surface hydrophilicity and wetability, thus enhancing lubricating performance and reducing the coefficient of friction.

  16. Modification of fracture surfaces by dissolution. Part II

    SciTech Connect

    Johnson, B.

    1983-01-01

    This study focuses upon how and to what extent dissolution related fluid/rock interactions modify the morphology and roughness of surfaces on Sioux Quartzite. Dissolution experiments consisted of reacting small discs of Sioux Quartzite in sealed gold capsules containing either distilled water or 0.05 N to 4.0 N aqueous solutions of Na/sub 2/CO/sub 3/. Samples were reacted at 200/sup 0/C and 20 to 30 MPa fluid pressures for 2 to 5 days. Two markedly different starting surface textures were used: polished, optically flat surfaces and tensile fracture surfaces. An exploratory experiment also was performed to assess the occurrence of a pressure solution phenomenon on a polished quartzite surface at contact regions of indenting quartz sand grains. Scanning electron microscopy studies indicate progressive increases in the amount of dissolution produced significant changes of surface roughness for both initial surface textures. Surface roughness increased measurably, with the initially polished surfaces exhibiting the more dramatic changes. The pressure solution experiments did not produce definite results, but several surface features are suggestive of dissolution enhancement at load carrying contacts. 9 refs., 10 figs.

  17. New research progressing of surface modification of medical 316L stainless steels

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Ba, Dechun; Wang, Qing; Guo, Deyu

    2013-12-01

    316L stainless steels are widely used in clinical and medical fields because of their comprehensive performance. This paper analyses the current development situation and major existing problems of medical 316L stainless steels. The new methods and research achievement of surface modification in recent years are described in detail. It indicates that surface modification is an effective way to solve clinical application problems, and provides new opportunities for medical 316L stainless steels in medical applications.

  18. Surface modification of polymeric materials by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Fu, Ricky K. Y.; Cheung, I. T. L.; Mei, Y. F.; Shek, C. H.; Siu, G. G.; Chu, Paul K.; Yang, W. M.; Leng, Y. X.; Huang, Y. X.; Tian, X. B.; Yang, S. Q.

    2005-08-01

    Polymer surfaces typically have low surface tension and high chemical inertness and so they usually have poor wetting and adhesion properties. The surface properties can be altered by modifying the molecular structure using plasma immersion ion implantation (PIII). In this work, Nylon-6 was treated using oxygen/nitrogen PIII. The observed improvement in the wettability is due to the oxygenated and nitrogen (amine) functional groups created on the polymer surface by the plasma treatment. X-ray photoelectron spectroscopy (XPS) results show that nitrogen and oxygen plasma implantation result in C-C bond breaking to form the imine and amine groups as well as alcohol and/or carbonyl groups on the surface. The water contact angle results reveal that the surface wetting properties depend on the functional groups, which can be adjusted by the ratio of oxygen-nitrogen mixtures.

  19. Modification of Surface Density of a Porous Medium

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M. (Inventor); Espinoza, Christian (Inventor)

    2016-01-01

    A method for increasing density of a region of a porous, phenolic bonded ("PPB") body adjacent to a selected surface to increase failure tensile strength of the adjacent region and/or to decrease surface recession at elevated temperatures. When the surface-densified PPB body is brought together with a substrate, having a higher failure tensile strength, to form a composite body with a PPB body/substrate interface, the location of tensile failure is moved to a location spaced apart from the interface, the failure tensile strength of the PPB body is increased, and surface recession of the material at elevated temperature is reduced. The method deposits and allows diffusion of a phenolic substance on the selected surface. The PPB body and the substrate may be heated and brought together to form the composite body. The phenolic substance is allowed to diffuse into the PPB body, to volatilize and to cure, to provide a processed body with an increased surface density.

  20. Novel photoreactive surface modification technology for fabricated devices.

    PubMed

    Matsuda, T; Inoue, K

    1990-01-01

    A novel surface process technology was developed to improve biocompatibility of fabricated devices, such as artificial blood pumps. The developed technology is based on photochemistry of a phenyl azide group, which is capable of covalently binding a synthetic polymer or protein to substrate surfaces upon ultraviolet (UV) irradiation. The photoreactive co-polymers or proteins, which were grafted or modified with phenyl azide groups, were successfully chemically fixed to surfaces. Photoreactive, hydrophilic copolymers with poly(dimethyl acrylamide) and albumin, both of which were chemically fixed on surfaces, were found effective for blood compatible surfaces; a fibronectin-bound surface was suitable for providing tissue compatibility. The quartz optical fiber guided UV irradiation system enables one to provide desired biocompatibility to a specific part of a fabricated device.

  1. Nanoscale Surface Modifications of Orthopaedic Implants: State of the Art and Perspectives

    PubMed Central

    Staruch, RMT; Griffin, MF; Butler, PEM

    2016-01-01

    Background: Orthopaedic implants such as the total hip or total knee replacement are examples of surgical interventions with postoperative success rates of over 90% at 10 years. Implant failure is associated with wear particles and pain that requires surgical revision. Improving the implant - bone surface interface is a key area for biomaterial research for future clinical applications. Current implants utilise mechanical, chemical or physical methods for surface modification. Methods: A review of all literature concerning the nanoscale surface modification of orthopaedic implant technology was conducted. Results: The techniques and fabrication methods of nanoscale surface modifications are discussed in detail, including benefits and potential pitfalls. Future directions for nanoscale surface technology are explored. Conclusion: Future understanding of the role of mechanical cues and protein adsorption will enable greater flexibility in surface control. The aim of this review is to investigate and summarise the current concepts and future directions for controlling the implant nanosurface to improve interactions. PMID:28217214

  2. Modification of surface properties of copper-refractory metal alloys

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  3. Ammonia modification of oxide-free Si(111) surfaces

    NASA Astrophysics Data System (ADS)

    Chopra, Tatiana Peixoto; Longo, Roberto C.; Cho, Kyeongjae; Chabal, Yves J.

    2016-08-01

    Amination of surfaces is useful in a variety of fields, ranging from device manufacturing to biological applications. Previous studies of ammonia reaction on silicon surfaces have concentrated on vapor phase rather than wet chemical processes, and mostly on clean Si surfaces. In this work, the interaction of liquid and vapor-phase ammonia is examined on three types of oxide-free surfaces - passivated by hydrogen, fluorine (1/3 monolayer) or chlorine - combining infrared absorption spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations. The resulting chemical composition highly depends on the starting surface; there is a stronger reaction on both F- and Cl-terminated than on the H-terminated Si surfaces, as evidenced by the formation of Si-NH2. Side reactions can also occur, such as solvent reaction with surfaces, formation of ammonium salt by-products (in the case of 0.2 M ammonia in dioxane solution), and nitridation of silicon (in the case of neat and gas-phase ammonia reactions for instance). Unexpectedly, there is formation of Si-H bonds on hydrogen-free Cl-terminated Si(111) surfaces in all cases, whether vapor phase of neat liquid ammonia is used. The first-principles modeling of this complex system suggests that step-edge surface defects may play a key role in enabling the reaction under certain circumstances, despite the endothermic nature for Si-H bond formation.

  4. Analysis of the Effect of Surface Modification on Polyimide Composites Coated with Erosion Resistant Materials

    NASA Technical Reports Server (NTRS)

    Ndalama, Tchinga; Hirschfeld, Deidre; Sutter, James K. (Technical Monitor)

    2003-01-01

    The aim of this research is to enhance performance of composite coatings through modification of graphite-reinforced polyimide composite surfaces prior to metal bond coat/ hard topcoat application for use in the erosive and/or oxidative environments of advanced engines. Graphite reinforced polyimide composites, PMR-15 and PMR-II-50, formed by sheet molding and pre-pregging will be surface treated, overlaid with a bond coat and then coated with WC-Co. The surface treatment will include cleaning, RF plasma or ultraviolet light- ozone etching, and deposition of SiO(x) groups. These surface treatments will be studied in order to investigate and improve adhesion and oxidation resistance. The following panels were provided by NASA-Glenn Research Center(NASA-GRC): Eight compression molded PMR-II-50; 6 x 6 x 0.125 in. Two vacuum-bagged PMR-II-50; 12 x 12 x 0.125 in. Eight compression molded PMR-15; 6 x 6 x 0.125 in. One vacuum-bagged PMR-15; 12 x 12 x 0.125 in. All panels were made using a 12 x 12 in. T650-35 8HS (3K-tow) graphite fabric. A diamond-wafering blade, with deionized water as a cutting fluid, was used to cut PMR-II-50 and PMR-15 panels into 1 x 1 in. pieces for surface tests. The panel edges exhibiting delamination were used for the preliminary surface preparation tests as these would be unsuitable for strength and erosion testing. PMR-15 neat resin samples were also provided by NASA GRC. Surface profiles of the as-received samples were determined using a Dektak III Surface profile measuring system. Two samples of compression molded PMR-II-50 and PMR-15, vacuum-bagged PMR-II-50 and PMR-15 were randomly chosen for surface profile measurement according to ANSI/ASME B46.1. Prior to each measurement, the samples were blasted with compressed air to remove any artifacts. Five 10 mm-long scans were made on each sample. The short and long wavelength cutoff filter values were set at 100 and 1000 m, diamond stylus radius was 12.5 microns. Table 1 is a summary of the

  5. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering.

    PubMed

    Hao, Jumin; Han, Mei-Juan; Li, Jinwei; Meng, Xiaoguang

    2012-07-01

    Surface-enhanced Raman scattering (SERS), as one of the most sensitive spectroscopic analysis methods, has been investigated extensively for the detection of environmental contaminants in recent years. In this work, we reported the new development of robust SERS substrates for rapid and sensitive sensing of aqueous perchlorate, a widespread environmental contaminant. The fabrication of the substrates consisted of two simple steps: (a) formation of Ag nanofilms on Cu and surface-roughened Cu foils (Ag/Cu and Ag/rCu nanofilms) using a controllable and inexpensive one-step electroless plating process, and (b) surface modification of the Ag nanofilms with cysteamine (Cys) self-assembly monolayer (SAM) (Cys-Ag/Cu and Cys-Ag/rCu substrates). Due to the strong affinity of -NH(3)(+) groups of the Cys molecules for perchlorate ions, the rapid SERS detection of perchlorate has been realized with a limit of detection (LOD) down to 5 μg L(-1) (ppb) for aqueous samples without need for drying. Various calibration curves with good linear relationships were obtained, indicating the quantification potential of SERS analysis of perchlorate using these new substrates. It was found that the neutral pH yielded the maximum SERS signals, and 85% of original sensitivity was remained in 5 days of storage time in the air, indicating the substrates are fairly stable. Within 10 regeneration-reuse cycles, the SERS signals of perchlorate kept in the range of 85-105% of the original value, verifying its reusability.

  6. Surface modification of tube inner wall by transferred atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Chen, Faze; Liu, Shuo; Liu, Jiyu; Huang, Shuai; Xia, Guangqing; Song, Jinlong; Xu, Wenji; Sun, Jing; Liu, Xin

    2016-12-01

    Tubes are indispensable in our daily life, mechanical engineering and biomedical fields. However, the practical applications of tubes are sometimes limited by their poor wettability. Reported herein is hydrophilization of the tube inner wall by transferred atmospheric pressure plasma (TAPP). An Ar atmospheric pressure plasma jet (APPJ) is used to induce He TAPP inside polytetrafluoroethylene (PTFE) tube to perform inner wall surface modification. Optical emission spectrum (OES) is used to investigate the distribution of active species, which are known as enablers for surface modification, along the TAPP. Tubes' surface properties demonstrate that after TAPP treatment, the wettability of the tube inner wall is well improved due to the decrease of surface roughness, the removal of surface fluorine and introduction of oxygen. Notably, a deep surface modification can significantly retard the aging of the obtained hydrophilicity. The results presented here clearly demonstrate the great potential of TAPP for surface modification of the inner wall of tube or other hollow bodies, and thus a uniform, effective and long-lasting surface modification of tube with any length can be easily realized by moving the tube along its axis.

  7. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    NASA Astrophysics Data System (ADS)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  8. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Treesearch

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  9. Surface modifications of nitrogen-plasma-treated stainless steels

    NASA Astrophysics Data System (ADS)

    Gröning, P.; Nowak, S.; Schlapbach, L.

    1993-03-01

    Using X-ray photoelectron spectroscopy (XPS) and optical microscopy we have investigated the chemical composition and the morphology of stainless steel surfaces after low-pressure nitrogen-plasma treatment. AISI 440C and AISI 316L steels were treated at room temperature and at 600°C in an electron cyclotron resonance (ECR)N 2 plasma with different negative RF-bias potentials (in the range of 0 to 200 V). The formation of CrN on the steel surface was observed at high treatment temperature as well as at room temperature. Already at room temperature, a bias higher than 20 V results in preferential Fe sputtering and the formation of a surface rich in CrN. At high temperature ( T = 600°C) treatment the N 2 plasma changes the morphology of the steel surface completely, etching in some crystallographic orientation increases the roughness of the surface dramatically. The segregation of Cr, Mo, Mn, and Si forms a top surface layer with practically no Fe. To obtain pure CrN on the steel surface a negative bias is necessary to remove Mn and Si compounds from the surface. Since CrN has a NaCl structure like TiN with a lattice mismatch of only 2.1%, we believe that a N 2 plasma treatment improves the adhesion of TiN coatings on stainless steels, by the formation of a CrN interface compound.

  10. Cost-effective surface modification for Galinstan® lyophobicity.

    PubMed

    Kadlaskar, Shantanu Shrikant; Yoo, Jun Hyeon; Abhijeet; Lee, Jeong Bong; Choi, Wonjae

    2017-04-15

    In this paper we investigate the feasibility of using a cost-effective fabrication method based on sandblasting, chemical etching and spray coating processes, to render common surfaces to be non-wettable by Galinstan®. Although Galinstan® is a non-toxic liquid metal alternative to mercury, the viscoelastic and extremely wetting characteristics of Galinstan® have been the major bottleneck limiting the wide applicability of the gallium-based liquid metal. This paper tries to accomplish non-wettability to Galinstan® by combining surface texture and chemistry with the unique property of Galinstan®, that is, its high surface tension and yield strength that prevent the penetration of the liquid metal into surface asperities. Fabricated surfaces resemble traditional superhydrophobic (water-repellent) surfaces, and exhibit a superior non-wettability to Galinstan® as quantified by high static and dynamic contact angles, small hysteresis, as well as impact resistance. Reported fabrication method based on sandblasting, etching and spray coating is easily applicable to various surfaces ranging from metals, ceramics, to plastics and is scalable to large surfaces. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Damage-free polymer surface modification employing inward-type plasma

    NASA Astrophysics Data System (ADS)

    Kanou, Ryo; Suga, Hiroshi; Utsumi, Hideyuki; Takahashi, Satoshi; Shirayama, Yuya; Watanabe, Norimichi; Petit, Stèphane; Shimizu, Tetsuo

    2017-08-01

    Inward-type plasmas, which spread upstream against the gas flow in the capillary tube where the gas is discharged, can react with samples placed near the entrance of such a capillary tube. In this study, surface modification of polymer surfaces is conducted using inward plasma. The modification is also done by conventional microplasma jet, and the modified surfaces with two plasma techniques are characterized by contact angle measurement, X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM). Although inward-plasma-treated surfaces are less hydrophilic than conventional plasma-treated ones, they are still sufficiently hydrophilic for surface coatings. In addition, it turns out that the polymer surfaces irradiated with the inward plasma yield much smoother surfaces than those treated with the conventional plasma jet. Thus, the inward plasma treatment is a viable technique when the surface flatness is crucial, such as for the surface coating of plastic lenses.

  12. Effect of plasma surface modification on the biocompatibility of UHMWPE.

    PubMed

    Kaklamani, G; Mehrban, N; Chen, J; Bowen, J; Dong, H; Grover, L; Stamboulis, A

    2010-10-01

    In this paper active screen plasma nitriding (ASPN) is used to chemically modify the surface of UHMWPE. This is an unexplored and new area of research. ASPN allows the homogeneous treatment of any shape or surface at low temperature; therefore, it was thought that ASPN would be an effective technique to modify organic polymer surfaces. ASPN experiments were carried out at 120 °C using a dc plasma nitriding unit with a 25% N(2) and 75% H(2) atmosphere at 2.5 mbar of pressure. UHMWPE samples treated for different time periods were characterized by nanoindentation, FTIR, XPS, interferometry and SEM. A 3T3 fibroblast cell line was used for in vitro cell culture experiments. Nanoindentation of UHMWPE showed that hardness and elastic modulus increased with ASPN treatment compared to the untreated material. FTIR spectra did not show significant differences between the untreated and treated samples; however, some changes were observed at 30 min of treatment in the range of 1500-1700 cm(-1) associated mainly with the presence of N-H groups. XPS studies showed that nitrogen was present on the surface and its amount increased with treatment time. Interferometry showed that no significant changes were observed on the surfaces after the treatment. Finally, cell culture experiments and SEM showed that fibroblasts attached and proliferated to a greater extent on the plasma-treated surfaces leading to the conclusion that ASPN surface treatment can potentially significantly improve the biocompatibility behaviour of polymeric materials.

  13. Surface modification on polyethylene terephthalate films with 2-methacryloyloxyethyl phosphorylcholine.

    PubMed

    Zheng, Zhiwen; Ren, Li; Zhai, Zhichen; Wang, Yingjun; Hang, Fei

    2013-07-01

    In this study, the surface of polyethylene terephthalate (PET) was modified to improve the protein and cell adhesion behavior with low temperature ammonia plasma treatment followed by 2-methacryloyloxyethyl phosphorylcholine (MPC) grafting. The x-ray photoelectron spectroscopy (XPS) results showed that the -COO(-), -N-C=O and -P-O-H groups were successfully incorporated onto the sample surface after MPC grafting. Furthermore, formation of new bonds, -N= and N-H on the sample surface grafted with MPC was recorded by Fourier transform infrared spectroscopy (FTIR). A large number of spherical particles at submicron to nanometer scale were also observed on the surface by atomic force microscopy (AFM). The cell adhesion experiments on PET film surfaces were evaluated and the highly hydrophilic surfaces could not promote cell adhesion and spreading. All results achieved in this study have clearly indicated that the method combining low temperature ammonia plasma treatment and MPC grafting is an effective way of producing a suitably hydrophilic PET surface with the capability of weakening the protein adsorption greatly.

  14. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.

  15. The impact of surface chemistry modification on macrophage polarisation.

    PubMed

    Rostam, Hassan M; Singh, Sonali; Salazar, Fabian; Magennis, Peter; Hook, Andrew; Singh, Taranjit; Vrana, Nihal E; Alexander, Morgan R; Ghaemmaghami, Amir M

    2016-11-01

    Macrophages are innate immune cells that have a central role in combating infection and maintaining tissue homeostasis. They exhibit remarkable plasticity in response to environmental cues. At either end of a broad activation spectrum are pro-inflammatory (M1) and anti-inflammatory (M2) macrophages with distinct functional and phenotypical characteristics. Macrophages also play a crucial role in orchestrating immune responses to biomaterials used in the fabrication of implantable devices and drug delivery systems. To assess the impact of different surface chemistries on macrophage polarisation, human monocytes were cultured for 6 days on untreated hydrophobic polystyrene (PS) and hydrophilic O2 plasma-etched polystyrene (O2-PS40) surfaces. Our data clearly show that monocytes cultured on the hydrophilic O2-PS40 surface are polarised towards an M1-like phenotype, as evidenced by significantly higher expression of the pro-inflammatory transcription factors STAT1 and IRF5. By comparison, monocytes cultured on the hydrophobic PS surface exhibited an M2-like phenotype with high expression of mannose receptor (MR) and production of the anti-inflammatory cytokines IL-10 and CCL18. While the molecular basis of such different patterns of cell differentiation is yet to be fully elucidated, we hypothesise that it is due to the adsorption of different biomolecules on these surface chemistries. Indeed our surface characterisation data show quantitative and qualitative differences between the protein layers on the O2-PS40 surface compared to PS surface which could be responsible for the observed differential macrophage polarisation on each surface.

  16. Enhancing the osteoblastic differentiation through nanoscale surface modifications.

    PubMed

    Silva-Bermudez, Phaedra; Almaguer-Flores, Argelia; Garcia, Victor I; Olivares-Navarrete, Rene; Rodil, Sandra E

    2017-02-01

    Human mesenchymal stem cells (MSCs) showed larger differentiation into osteoblasts on nanoscale amorphous titanium oxide (TiO2 ) coatings in comparison to polycrystalline TiO2 coatings or native oxide layers. In this article, we showed that the subtle alterations in the surface properties due to a different atomic ordering of titanium oxide layers could substantially modify the osteoblastic differentiation of MSCs. Amorphous (a) and polycrystalline (c) TiO2 coatings were deposited on smooth (PT) and microstructured sandblasted/acid-etched (SLA) Ti substrates using a magnetron sputtering system. The surface roughness, water contact angle, structure, and composition were measured using confocal microscopy, drop sessile drop, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The ∼70-nm-thick coatings presented a well-passivated and uniform TiO2 (Ti(4+) ) surface composition, while the substrates (native oxide layer) showed the presence of Ti atoms in lower valence states. The polycrystalline TiO2 -coated surfaces (cPT and cSLA) showed the same cell attachment as the uncoated metallic surfaces (PT and SLA), and in both cases, it was lower on the rough than on the smooth surfaces. However, attachment and differentiation were significantly increased on the amorphous TiO2 -coated surfaces (aPT and aSLA). The amorphous coated Ti surfaces presented the highest expression of integrins and production of osteogenic proteins in comparison to the uncoated and crystalline-coated Ti surfaces. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 498-509, 2017. © 2016 Wiley Periodicals, Inc.

  17. Method for chemical surface modification of fumed silica particles

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  18. Method for chemical surface modification of fumed silica particles

    DOEpatents

    Grabbe, A.; Michalske, T.A.; Smith, W.L.

    1999-05-11

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating. 11 figs.

  19. Surface modification and characterization of aramid fibers with hybrid coating

    NASA Astrophysics Data System (ADS)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang

    2014-12-01

    Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO2/shape memory polyurethane (SiO2/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO2/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special "pizza-like" structure on the fiber surface.

  20. Electron beam surface modifications in reinforcing and recycling of polymers

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.; Hargitai, H.

    1997-08-01

    Thermoplastic polymers can be fiber-reinforced in the recycling step through a reactive modification of the interface between the polymer matrix and fiber. Recollected automobile bumpers made of polypropylene copolymers have been reinforced during the reprocessing with eight different types of high-strength fibers, with waste cord-yarns of the tire industry. A thin layer reactive interface of acrylic oligomers has been applied and activated through low energy (175 keV) electron beam (EB). The upcycling (upgrading recycling) resulted in a series of extrudable and injection-mouldable, fiber-reinforced thermoplastic of enhanced bending strength, increased modulus of elasticity and acceptable impact strength. EB treatment has been compared with conventional methods.

  1. Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.

    PubMed

    Pinto, S; Alves, P; Santos, A C; Matos, C M; Oliveiros, B; Gonçalves, S; Gudiña, E; Rodrigues, L R; Teixeira, J A; Gil, M H

    2011-09-15

    Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these compounds affect the PDMS surface properties. BSs isolated from four probiotic strains (Lactococcus lactis, Lactobacillus paracasei, Streptococcus thermophilus A, and Streptococcus thermophilus B) were used. Bare PDMS and PDMS coated with BSs were characterized by contact angle measurements, infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The influence of the surface modifications on the materials blood compatibility was studied through thrombosis and hemolysis assays. The cytotoxicity of these materials was tested against rat peritoneal macrophages. AFM results demonstrated the successful coating of the surfaces. Also, by contact angle measurements, an increase of the coated surfaces hydrophilicity was seen. Furthermore, XPS analysis indicated a decrease of the silicon content at the surface, and ATR-FTIR results showed the presence of BS characteristic groups as a consequence of the modification. All the studied materials revealed no toxicity and were found to be nonhemolytic. The proposed approach for the modification of PDMS surfaces was found to be effective and opens new possibilities for the application of these surfaces in the biomedical field.

  2. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    NASA Astrophysics Data System (ADS)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu

    2016-12-01

    In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Sisbnd Osbnd Mg) were formed by the reaction between Sisbnd OC2H5 or Sisbnd OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  3. Laser surface modification of 316L stainless steel.

    PubMed

    Balla, Vamsi Krishna; Dey, Sangeetha; Muthuchamy, Adiyen A; Janaki Ram, G D; Das, Mitun; Bandyopadhyay, Amit

    2017-02-28

    Medical grade 316L stainless steel was laser surface melted (LSM) using continuous wave Nd-YAG laser in argon atmosphere at 1 and 5 mm/s. The treated surfaces were characterized using electron backscatter diffraction to study the influence of top surface crystallographic orientation and type of grain boundaries on corrosion resistance, wettability, and biocompatibility. The laser scan velocity was found to have a marginal influence on the surface roughness and the type of grain boundaries. However, the crystal orientation density was found to be relatively high in 1 mm/s samples. The LSM samples showed a higher concentration of {101} and {123} planes parallel to the sample surface as well as a higher fraction of low-angle grain boundaries. The LSM samples were found to exhibit better surface wettability and enhanced the viability and proliferation of human fetal osteoblast cells in vitro when compared to the untreated samples. Further, the corrosion protection efficiency of 316L stainless steel was improved up to 70% by LSM in as-processed condition. The increased concentration of {101} and {123} planes on surfaces of LSM samples increases their surface energy, which is believed to be responsible for the improved in vitro cell proliferation. Further, the increased lattice spacing of these planes and high concentration of low-energy grain boundaries in LSM samples would have contributed to the better in vitro corrosion resistance than untreated 316L stainless steel. Our results indicate that LSM can be a potential treatment option for 316L stainless steel-based biomedical devices to improve biocompatibility and corrosion resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  4. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    NASA Astrophysics Data System (ADS)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-11-01

    The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  5. Metal ceramic alloy structure and surface layer modification during electron-ion-plasma irradiation of its surface

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, Yu. F.; Shilko, E. V.; Mokhovikov, A. A.; Baohai, Yu; Tianyng, Xiong; Hua, Xu Yun; Lisheng, Zhong

    2016-11-01

    The paper presents research findings on the problems of electron-beam irradiation in noble gases plasma with different indexes of ionizing energy and atomic weight, and a surface layer structure modification versus a surface layer microhardness, wear and bending resistances and corrosion stability of 50% TiC/50% (Ni + 20% Cr) metal ceramic alloy samples. Discussions on the issues of the ways impulse electron-beam irradiation in the conditions of various types of noble gas plasma influences the mechanism of a metal ceramic alloy surface layer structure-phase state modification has been also presented.

  6. Atomic and molecular layer deposition for surface modification

    SciTech Connect

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  7. Effects of Weak Surface Modification on Co/SiO2 Catalyst for Fischer-Tropsch Reaction

    PubMed Central

    Ning, Wensheng; Shen, Hehong; Jin, Yangfu; Yang, Xiazhen

    2015-01-01

    A weak surface modification is applied to Co/SiO2 catalyst by hydrothermal treatment at 180°C for 5 h. Aluminum is introduced to Co/SiO2 catalysts during the surface modification. The effects of surface modification on Co/SiO2 catalyst are studied by changing the operating sequences of surface modification and cobalt impregnation in the catalyst preparation. Surface modification before cobalt impregnation makes Co3O4 particle small and dispersed into the deep part of enlarged pore in SiO2, while surface modification after cobalt impregnation does not obviously change the particle size of Co3O4. The improved amplitude of catalytic activity is similar for the two kinds of catalysts, but they are benefited from different factors. The content of iso-hydrocarbons in the products is increased by the surface modifications. PMID:25938725

  8. Effects of Weak Surface Modification on Co/SiO2 Catalyst for Fischer-Tropsch Reaction.

    PubMed

    Ning, Wensheng; Shen, Hehong; Jin, Yangfu; Yang, Xiazhen

    2015-01-01

    A weak surface modification is applied to Co/SiO2 catalyst by hydrothermal treatment at 180°C for 5 h. Aluminum is introduced to Co/SiO2 catalysts during the surface modification. The effects of surface modification on Co/SiO2 catalyst are studied by changing the operating sequences of surface modification and cobalt impregnation in the catalyst preparation. Surface modification before cobalt impregnation makes Co3O4 particle small and dispersed into the deep part of enlarged pore in SiO2, while surface modification after cobalt impregnation does not obviously change the particle size of Co3O4. The improved amplitude of catalytic activity is similar for the two kinds of catalysts, but they are benefited from different factors. The content of iso-hydrocarbons in the products is increased by the surface modifications.

  9. Plasma modification of HEMA and EOEMA surface properties

    NASA Astrophysics Data System (ADS)

    Svorcik, V.; Kolarova, K.; Dvorankova, B.; Michalek, J.; Krumbholcova, E.; Hnatowicz, V.

    2006-01-01

    Process of plasma etching of poly(2-hydroxyethylmethacrylate) (HEMA) and poly(2-ethyloxyethyl methacrylate) (EOEMA) in Ar atmosphere at room temperature was studied. Ablation of the samples exposed to the plasma was determined by gravimetry, surface wettability by goniometry, chemical structure by FTIR spectroscopy and surface morphology by Scanning Electron (SEM) microscopy. Adhesion and proliferation of 3T3 mouse fibroblasts was studied in vitro in order to determine biological activity of plasma-modified HEMA and EOEMA substrates. It was demonstrated that the plasma etching leads to oxidation of HEMA and to an increase of its wettability. More estheric structures are produced in EOEMA. For both polymers, a surface layer similar to 2 mu m thick is ablated after plasma etching for 400 s. The etching changes the sample surface morphology and its biological activity. The surface becomes smoother after etching. The results obtained after 3T3 cells cultivation show that the plasma etching decreases cell adhesion and increases cell proliferation in comparison with pristine polymers.

  10. Study on Glow Discharge Plasma Used in Polyester Surface Modification

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Lei, Xiao; Zhao, Qiang

    2016-01-01

    To achieve an atmospheric pressure glow discharge (APGD) in air and modify the surface of polyester thread using plasma, the electric field distribution and discharge characteristics under different conditions were studied. We found that the region with a strong electric field, which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure, provided the initial electron for the entire discharge process. Thus, the discharge voltage was reduced. The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons. Thus, the transient current pulse discharge was reduced significantly, and an APGD in air was achieved. We designed double layer line-line contact electrodes, which can generate the APGD on the surface of a material under treatment directly. A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope (SEM). Two electrode structures - the multi-row line-line and double-helix line-line contact electrodes - were designed. A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes. This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.

  11. Surface modification of UHMWPE with infrared femtosecond laser

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Naranjo-León, S.; Morenza, J. L.; Serra, P.

    2012-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a polymer with mechanical and corrosion properties, which make it appropriate for using in biomedical devices such as hip and knee prostheses. The surface morphology and chemistry of UHMWPE influence its biocompatibility. A laser with wavelength at 1027 nm delivering 450 fs pulses at a repetition rate of 1 kHz is used to modify the surface of UHMWPE samples with 0.45 μm root mean square surface roughness. Micrometric resolution is achieved with the use of a focusing lens of 0.25 NA and pulse energies of few microjoules. The study focuses in the influence of different pulse energies and pulse overlaps on the laser-induced surface roughness and ablation yield. Confocal microscopy is used to characterize changes in the morphology of the irradiated surfaces, and their chemical structure is analyzed by attenuated total reflectance infrared and Raman spectroscopies. The roughness increases as the pulse energy increases until it reaches a maximum. The ablation yield increases with the pulse energy and pulse overlap. However, the ablation yield per pulse is lower for higher pulse overlap. Pulses of 6 μJ have the highest ablation efficiency. Infrared and Raman spectra of samples irradiated with low energy pulses are similar to those of the pristine sample. However, some Cdbnd C and Cdbnd O bonds can be detected after irradiation with the highest pulse energies.

  12. Novel beta-emitting poly(ethylene terephthalate) surface modification.

    PubMed

    Qu, X; Weinberger, J

    2000-12-05

    Restenosis after percutaneous interventions in coronary and peripheral arteries leads to repeat procedures and surgery in a significant number of patients. We have previously demonstrated that irradiation of an arterial site using an endovascular source (brachytherapy) is highly effective in preventing the restenotic process. To this end, a novel beta radiation delivery system was developed, based on the adsorption of (32)P (o-phosphoric acid) by pH-sensitive chitosan hydrogel on a poly(ethylene terephthalate) (PET) balloon surface. The PET balloon surface was treated with oxygen plasma and coated with chitosan hydrogel. Covalent bonds, ionic bonds, and hydrogen bonds all contribute to the adhesion between chitosan hydrogel and PET. In the aqueous phosphoric acid (PA) solution, the -NH(2) groups of chitosan were protonated by PA and the adsorption of PA occurred at the same time. The effect of PA concentration and temperature on adsorption efficiency and kinetics were studied. More than 70% PA was adsorbed on the sample surface in 0.2 mM PA solution. The surface of samples was also investigated by attenuated total reflection-Fourier transform infrared spectroscopy and scanning electron microscopy. PET surface may be modified to carry high activity beta emitters; such materials may be useful in a therapeutic setting

  13. Controlled mechnical modification of manganite surface with nanoscale resolution.

    PubMed

    Kelly, Simon J; Kim, Yunseok; Eliseev, Eugene; Morozovska, Anna; Jesse, Stephen; Biegalski, Michael D; Mitchell, J F; Zheng, H; Aarts, J; Hwang, Inrok; Oh, Sungtaek; Choi, Jin Sik; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Maksymovych, Peter

    2014-11-28

    We investigated the surfaces of magnetoresistive manganites, La(1-x)Ca(x)MnO3 and La(2-2x)Sr(1+2x)Mn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ∼0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.

  14. Controlled mechnical modification of manganite surface with nanoscale resolution

    DOE PAGES

    Kelly, Simon J.; Kim, Yunseok; Eliseev, Eugene; ...

    2014-11-07

    We investigated the surfaces of magnetoresistive manganites, La1-xCaxMnO3 and La2-2xSr1+2xMn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ~0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitantmore » changes of the electronic properties.« less

  15. Effect of ITO surface modification on the OLED device lifetime.

    PubMed

    Yu, Szu-Yen; Chang, Jung-Hung; Wang, Po-Sheng; Wu, Chi-I; Tao, Yu-Tai

    2014-07-01

    Pretreatment of the indium tin oxide (ITO) surface is generally adopted to improve the charge injection and device performance in the fabrication of organic light-emitting diodes (OLEDs). For the common approaches of surface treatment, such as oxygen plasma treatment, self-assembled monolayer (SAM) adsorption, and the PEDOT:PSS coating, different effects on the device lifetime were observed. A distinctly different driving voltage change with device operation time was obtained and was correlated with the device lifetime. The fast increase in driving voltage for devices based on oxygen-plasma-treated ITO is attributed to the work function change as a result of the change in the composition of the interface with device operation, whereas a rather stable work function for SAM-modified ITO is suggested due to the permanent dipoles associated with the monolayer and the protecting effect of the covalently bound monolayer on the surface composition.

  16. Controlled mechnical modification of manganite surface with nanoscale resolution

    SciTech Connect

    Kelly, Simon J.; Kim, Yunseok; Eliseev, Eugene; Morozovska, Anna; Jesse, Stephen; Biegalski, Michael D.; Mitchell, J. F.; Zheng, H.; Aarts, J.; Hwang, Inrok; Oh, Sungtaek; Sik Choi, Jin; Choi, Taekjib; Ho Park, Bae; Kalinin, Sergei V.; Maksymovych, Peter

    2014-11-07

    We investigated the surfaces of magnetoresistive manganites, La1-xCaxMnO3 and La2-2xSr1+2xMn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ~0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.

  17. Effects of cementation surface modifications on fracture resistance of zirconia.

    PubMed

    Srikanth, Ramanathan; Kosmac, Tomaz; Della Bona, Alvaro; Yin, Ling; Zhang, Yu

    2015-04-01

    To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Effects of cementation surface modifications on fracture resistance of zirconia

    PubMed Central

    Srikanth, Ramanathan; Kosmac, Tomaz; Bona, Alvaro Della; Yin, Ling; Zhang, Yu

    2015-01-01

    Objectives To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Methods Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 mm or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2 mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Results Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. Significance While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. PMID:25687628

  19. Advances in Surface-Enhanced Fluorescence

    PubMed Central

    Lakowicz, Joseph R.; Geddes, Chris D.; Gryczynski, Ignacy; Malicka, Joanna; Gryczynski, Zygmunt; Aslan, Kadir; Lukomska, Joanna; Matveeva, Evgenia; Zhang, Jian; Badugu, Ramachandram; Huang, Jun

    2009-01-01

    We report recent achievements in metal-enhanced fluorescence from our laboratory. Several fluorophore systems have been studied on metal particle-coated surfaces and in colloid suspensions. In particular, we describe a distance dependent enhancement on silver island films (SIFs), release of self-quenching of fluorescence near silver particles, and the applications of fluorescence enhancement near metalized surfaces to bioassays. We discuss a number of methods for various shaped silver particle deposition on surfaces. PMID:15617385

  20. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    NASA Astrophysics Data System (ADS)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the

  1. Reducing ZnO nanoparticle cytotoxicity by surface modification

    NASA Astrophysics Data System (ADS)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N.; Martin, Lisandra L.; Hughes, Anthony E.; Wright, Paul F. A.; Turney, Terence W.

    2014-05-01

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than

  2. Surface modification of nonviral nanocarriers for enhanced gene delivery.

    PubMed

    Fortier, Charles; Durocher, Yves; De Crescenzo, Gregory

    2014-01-01

    Biomedical nanotechnology has given a new lease of life to gene therapy with the ever-developing and ever-diversifying nonviral gene delivery nanocarriers. These are designed to pass a series of barriers in order to bring their nucleic acid cargo to the right subcellular location of particular cells. For a given application, each barrier has its dedicated strategy, which translates into a physicochemical, biological and temporal identity of the nanocarrier surface. Different strategies have thus been explored to implement adequate surface identities on nanocarriers over time for systemic delivery. In that context, this review will mainly focus on organic nanocarriers, for which these strategies will be described and discussed.

  3. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    SciTech Connect

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  4. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    NASA Astrophysics Data System (ADS)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok; Park, Jong-Chul

    2013-08-01

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH2 (399.70 eV) was increased significantly and -N=CH (400.80 eV) and -NH3+ (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  5. FAMA project: Channel upgrade for the modification of surface materials

    NASA Astrophysics Data System (ADS)

    Alexandrov, V.; Bogomolov, S.; Kazarinov, N.; Shevtsov, V.; Belichev, P.; Neshkovich, N.; Dobrosavlevich

    2012-07-01

    The FAMA project is related to the construction of the low energy part of the TESLA accelerator installation (TAI) at the Vin a Institute of Nuclear Sciences (Belgrade, Serbia) and is intended for the modification and analysis of materials by ion beams. FAMA includes three machines and six experimental channels. The machines are a heavy-ion source (M1 machine), a light-ion source (M2 machine), and a small isochronous cyclotron (M3 machine). Calculations to optimize the low-energy channels are carried out. Optimum modes of transportation of the ion beams generated by sources M1 and M2 are selected. It is proposed to limit currents from the M2 ion source for the purpose of reducing the losses on the channel. It is also proposed to use the solenoid and a doublet of quadrupoles instead of a triplet in order to increase the intensity at the target of beams from the M1 ion source. It has been proven necessary to mask the heavy ion beams. The efficiency of transportation in all significant cases is found to be close to 100%.

  6. Ion beam induced optical and surface modification in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-01

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  7. Surface modification of layered zirconium phosphate with PNIPAM.

    PubMed

    Wang, Xuezhen; Zhao, Di; Medina, Ilse B Nava; Diaz, Agustin; Wang, Huiliang; Clearfield, Abraham; Mannan, M Sam; Cheng, Zhengdong

    2016-04-04

    A new method was reported to modify layered zirconium phosphate (ZrP) with thermoresponsive polymer PNIPAM (poly N-isopropylacrylamide). PNIPAM was proved to be covalently grafted onto ZrP. (60)Co γ-rays irradiation produced peroxide groups on the surface which, upon heating, initiated free radical polymerization and subsequent attachment of PNIPAM.

  8. SHI induced surface modification studies of HOPG using STM

    NASA Astrophysics Data System (ADS)

    Tripathi, A.; Khan, S. A.; Kumar, M.; Baranwal, V.; Krishna, R.; Pandey, A. C.

    2006-03-01

    The highly oriented pyrolytic graphite (HOPG) samples (Grade ZYB with grain size ∼1 mm) are irradiated with 150 MeV Au beam with fluences varying from 1 × 1011 ions/cm2 to 2 × 1013 ions/cm2. The surface topography and the I-V characteristics are studied using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) at Nuclear Science Centre, New Delhi. The formation of hillocks is observed for the samples irradiated with fluences of 1 × 1011 ions/cm2, 1 × 1012 ions/cm2 and 1 × 1013 ions/cm2 with typical diameters of 6.2, 2.2 and 1.5 nm, respectively. No hillocks are observed for the sample irradiated with fluence of 2 × 1013 ions/cm2, though the formation of small craters at some places are observed. The formation of hillocks is attributed to nuclear energy loss induced collision cascades near the surface. The reduction in hillocks size and formation of craters at higher fluence is attributed to the electronic sputtering from the surface. The STS studies of I-V characteristics show an increasing ohmic behavior with fluence which is attributed to increasing metallic state for HOPG surface due to irradiation induced increase of carbon bond lengths.

  9. Modification of polyvinyl alcohol surface properties by ion implantation

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Kurzina, I. A.; Savkin, K. P.; Laput, O. A.; Oks, E. M.

    2017-05-01

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (sbnd Cdbnd O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  10. Surface Modification of Porous Titanium Granules for Improving Bioactivity.

    PubMed

    Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab

    The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.

  11. Some environmental problems and their satellite monitoring. [anthropogenic modifications of earth surface

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    Anthropogenic modification of the earth's surface is discussed in two problem areas: (1) land use changes and overgrazing, and how it affects albedo and land surface-atmosphere interactions, and (2) water and land surface pollution, especially oil slicks. A literature survey evidences the importance of these problems. The need for monitoring is stressed, and it is suggested that with some modifications to the sensors, ERTS (Landsat) series satellites can provide approximate monitoring information. The European Landsat receiving station in Italy will facilitate data collection for the tasks described.

  12. Some environmental problems and their satellite monitoring. [anthropogenic modifications of earth surface

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    Anthropogenic modification of the earth's surface is discussed in two problem areas: (1) land use changes and overgrazing, and how it affects albedo and land surface-atmosphere interactions, and (2) water and land surface pollution, especially oil slicks. A literature survey evidences the importance of these problems. The need for monitoring is stressed, and it is suggested that with some modifications to the sensors, ERTS (Landsat) series satellites can provide approximate monitoring information. The European Landsat receiving station in Italy will facilitate data collection for the tasks described.

  13. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    PubMed

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Recent advances in designing superhydrophobic surfaces.

    PubMed

    Celia, Elena; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frédéric

    2013-07-15

    The interest in superhydrophobic surfaces has grown exponentially over recent decades. Since the lotus leaf dual hierarchical structure was discovered, researchers have investigated the foundations of self-cleaning behavior. Generally, surface micro/nanostructuring combined with low surface energy of materials leads to extreme anti-wetting properties. The great number of papers on this subject attests the efforts of scientists in mimicking nature to generate superhydrophobicity. Besides the thirst for knowledge, scientists have been driven by the many possible industrial applications of superhydrophobic materials in several fields. Many methods and techniques have been developed to fabricate superhydrophobic surfaces, and the aim of this paper is to review the recent progresses in preparing manmade superhydrophobic surfaces.

  15. Influence of surface modifications to titanium on oral bacterial adhesion in vitro.

    PubMed

    Yoshinari, M; Oda, Y; Kato, T; Okuda, K; Hirayama, A

    2000-11-01

    The influence of surface modifications to titanium on the initial adherence of Porphyromonas gingivalis ATCC33277 and Actinobacillus actinomycetemcomitans ATCC43718 was evaluated. Surface modifications were performed with dry processes including ion implantation (Ca(+), N(+), F(+)), oxidation (anode oxidation, titania spraying), ion plating (TiN, alumina), and ion beam mixing (Ag, Sn, Zn, Pt) with Ar(+) on polished pure titanium plates. Comparatively large amounts of P. gingivalis and A. actinomycetemcomitans adhered to polished titanium plates. The degree of P. gingivalis adhesion showed a positive correlation with surface energy and the amount of calcium-ion adsorption. Adherence of both P. gingivalis and A. actinomycetemcomitans increased on calcium-implanted surfaces compared with polished titanium surfaces, whereas adherence of P. gingivalis was remarkably decreased on alumina-coated surfaces. These findings indicate that titanium implants exposed to the oral cavity require surface modification to inhibit the adherence of oral bacteria, and that surface modification with a dry process is useful in controlling the adhesion of oral bacteria as well as ensuring resistance against wear. Copyright 2000 John Wiley & Sons, Inc.

  16. Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting

    USDA-ARS?s Scientific Manuscript database

    Surface modification of flat sheet ultrafiltration membranes, polyethersulfone (PES) was investigated to improve the hydrophilicity of the membrane surface thereby reducing adsorption of the proteins onto the membrane. Grafting of hydrophilic polymers onto UV/ozone treated PES was used to improve t...

  17. Modification of silicon nitride surfaces with GOPES and APTES for antibody immobilization: computational and experimental studies

    NASA Astrophysics Data System (ADS)

    Dien To, Thien; Nguyen, Anh Tuan; Nhat Thanh Phan, Khoa; Thu Thi Truong, An; Doan, Tin Chanh Duc; Mau Dang, Chien

    2015-12-01

    Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES.

  18. [Research development of surface hydrophilicity and lubrication modification of interventional guide wire].

    PubMed

    Zhao, Bing; Liu, Xiaohong; Yuan, Ting

    2015-01-01

    Surface lubricity is one of the important performance criteria for interventional guide wire. In this paper, a review of the methods of surface hydrophilicity and lubrication modification of interventional guide wire is presented, including their fundamental principles, effects and some relative applications. These methods all have their own advantages and disadvantages, therefore, limitations of experimental conditions need to be taken into account.

  19. Chitosan- and polypropylene-oriented surface modification using excimer laser and their biocompatibility study.

    PubMed

    Khaledian, Mohammad; Jiroudhashemi, Faeze; Biazar, Esmaeil

    2017-02-01

    Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polymers (chitosan and polypropylene) were modified to laser at different features (oriented and non-oriented) to create a vast range of physicochemical characteristics on the surface of polymers and investigate their effects on biocompatibility of treated surfaces. Atomic force microscope (AFM) was applied to study the morphology of treated samples in comparison with those of the untreated PS. Contact angle analyses were used to evaluate the wettability and surface energy of the treated films. AFM studies showed that after laser treatment, some distinctive nanostructures are created on the surface of polymers. The data from contact angle measurements demonstrated that laser irradiation created surfaces with a vast range of properties in the wettability point of view. The cellular results revealed that after surface modification by laser irradiation, biocompatibility of polymeric films, especially oriented films was enhanced.

  20. Plasma-assisted surface modification and radical diagnostics

    NASA Astrophysics Data System (ADS)

    Sugai, H.; Yamage, M.; Hikosaka, Y.; Nakano, T.; Toyoda, H.

    1993-05-01

    Plasma-assisted deposition and etching have widely been applied to microelectronics devices in industries as well as to huge vacuum devices in nuclear fusion. A more detailed understanding of plasma processing is essential for development of new techniques for small-scale ( < {1}/{4} μm ) etching and large-scale ( >10 m) deposition. A scaling law for uniformity of large-scale deposition was found in a simulation experiment of boron coating of fusion devices, using a less hazardous boride B 10H 14 (decaborane). Moreover, boron etching by a fluorocarbon plasma was demonstrated along with a new modeling of surface-coverage effects. Appearance mass spectrometry which is a powerful tool for neutral radical detection, has successfully been applied to a CF 4 containing RF plasma for semiconductor etching. Addition of a small amount of H 2 into CF 4 drastically modified the kinetics of CF 2 and CF 3 radicals as a result of surface processes.

  1. Surface modification of carbon fuels for direct carbon fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhu, Zhonghua; Chen, Jiuling; De Marco, Roland; Dicks, Andrew; Bradley, John; Lu, Gaoqing

    The direct carbon fuel cell (DCFC) is a promising power-generation device that has much higher efficiency (80%) and less emissions than conventional coal-fired power plants. Two commercial carbons (activated carbon and carbon black) pre-treated with HNO 3, HCl or air plasma are tested in a DCFC. The correlation between the surface properties and electrochemical performance of the carbon fuels is explored. The HNO 3-treated carbon fuels have the highest electrochemical reactivity in the DCFC due to the largest degree of surface oxygen functional groups. The overall effect on changing the electrochemical reactivity of carbon fuels is in the order HNO 3 > air plasma ≈ HCl. Product gas analysis indicates that complete oxidation of carbon to CO 2 can be achieved at 600-700 °C.

  2. Surface modification of UHMWPE for use in total joint replacements.

    PubMed

    Zhang, Min; James, Susan P; King, Richard; Beauregard, Guy

    2004-01-01

    To create a hydrophilic, lubricious, more wear-resistant UHMWPE bearing, a novel hyaluronan (HA) derivative and novel UHMWPE-hyaluronan composite were developed. HA was silylated to increase its hydrophobicity and compatibility with UHMWPE. The sily1 HA rapidly diffused into the connected pores of UHMWPE preforms in xylenes solution, and fixed within UHMWPE and on its surface after crosslinking. A micro-composite was obtained after hot-pressing the porous preform. The presence of HA film on the composite surface has been demonstrated through X-Ray photoelectron spectroscopy (XPS) analysis and Toluidine Blue O (TBO) dye assay. The aqueous contact angles of micro-composite samples were significantly lower compared with UHMWPE control samples, and the samples processed with hydrolysis prior to final molding were superior to those processed with hydrolysis after molding.

  3. Surface Modification of Magnetic Nanoparticles Using Gum Arabic

    NASA Astrophysics Data System (ADS)

    Williams, Darryl N.; Gold, Katie A.; Holoman, Tracey R. Pulliam; Ehrman, Sheryl H.; Wilson, Otto C.

    2006-10-01

    Magnetite nanoparticles were synthesized and functionalized by coating the particle surfaces with gum arabic (GA) to improve particle stability in aqueous suspensions (i.e. biological media). Particle characterization was performed using transmission electron microscopy (TEM) and dynamic light scattering (DLS) to analyze the morphology and quantify the size distribution of the nanoparticles, respectively. The results from DLS indicated that the GA-treated nanoparticles formed smaller agglomerates as compared to the untreated samples over a 30-h time frame. Thermogravimetric analyses indicated an average weight loss of 23%, showing that GA has a strong affinity toward the iron oxide surface. GA most likely contributes to colloid stability via steric stabilization. It was determined that the adsorption of GA onto magnetite exhibits Langmuir behavior.

  4. Surface modification of ZnO nanorods with Hamilton receptors.

    PubMed

    Zeininger, Lukas; Klaumünzer, Martin; Peukert, Wolfgang; Hirsch, Andreas

    2015-04-13

    A new prototype of a Hamilton receptor suitable for the functionalization of inorganic nanoparticles was synthesized and characterized. The hydrogen bonding receptor was coupled to a catechol moiety, which served as anchor group for the functionalization of metal oxides, in particular zinc oxide. Synthesized zinc oxide nanorods [ZnO] were used for surface functionalization. The wet-chemical functionalization procedure towards monolayer-grafted particles [ZnO-HR] is described and a detailed characterization study is presented. In addition, the detection of specific cyanurate molecules is demonstrated. The hybrid structures [ZnO-HR-CA] were stable towards agglomeration and exhibited enhanced dispersability in apolar solvents. This observation, in combination with several spectroscopic experiments gave evidence of the highly directional supramolecular recognition at the surface of nanoparticles.

  5. Surface modification by electron irradiation for improved immunoassay

    NASA Astrophysics Data System (ADS)

    Safrany, Agnes; Deelder, André

    1999-08-01

    Polystyrene microtitration (ELISA) plates modified by electron beam irradiation were used for a monoclonal antibody based sandwich immunoassay for quantitation of circulating anodic antigen levels in Schistosoma-infected individuals. The plates irradiated with 15 kGy showed 2-4-fold lower detection level compared to untreated plates, and a 10-fold lower antibody coating concentration than usually used was still detectable. These results were reproducible and the modified surfaces were stable even after 2 years when kept at room temperature.

  6. Reduction-induced surface modification of human hair.

    PubMed

    Kamath, Yash K; Ruetsch, Sigrid B

    2010-01-01

    A microfluorometric method has been developed to characterize lipid removal or "delipidation" of the human hair cuticula during light exposure and chemical grooming processes such as oxidation (bleaching) and reduction. In the case of photochemical and chemical oxidation, lipid removal ("delipidation" of the F-layer or lipid-layer) from the outer beta-layer of the exposed scale faces and generation of cysteic acid groups occurs. This "delipidation," which ultimately results in "acidification" of the scale faces, leading to a change in surface chemistry from hydrophobic to hydrophilic, can be detected and quantified by microfluorometry by tagging, e.g., with the cationic fluorochrome Rhodamine B. In the case of reduction, similar tagging of the acid sites on the scale faces is possible, but this time, Rhodamine B reacts with the mixed disulfide containing a carboxyl group that will be ionized above a pH of about 4. In addition to this, we have shown by microfluorometric scanning that the negative charges generated in the cuticle surface can be used to bind low-molecular-weight quaternary conditioners. This process can be considered as "relipidation" or "refatting" of the scale faces. We have shown in earlier studies (1) that this entire process of oxidation-induced "delipidation" and subsequent "relipidation" of the acidic scale faces with a cationic conditioning molecule can also be reliably quantified by X-ray photoelectron spectroscopy (XPS). Furthermore, single-fiber wettability scanning using the Wilhelmy technique, which is highly sensitive to any changes in surface chemistry, is well-suited to detect and characterize treatment-induced changes in the chemical nature of the hair surface from hydrophobic to hydrophilic.

  7. Mussel inspired protein-mediated surface modification to electrospun fibers and their potential biomedical applications.

    PubMed

    Xie, Jingwei; Michael, Praveesuda Lorwattanapongsa; Zhong, Shaoping; Ma, Bing; MacEwan, Matthew R; Lim, Chwee Teck

    2012-04-01

    Mussel inspired proteins have been demonstrated to serve as a versatile biologic adhesive with numerous applications. The present study illustrates the use of such Mussel inspired proteins (polydopamine) in the fabrication of functionalized bio-inspired nanomaterials capable of both improving cell response and sustained delivery of model probes. X-ray photoelectron spectroscopy analysis confirmed the ability of dopamine to polymerize on the surface of plasma-treated, electrospun poly(ε-caprolactone) (PCL) fiber mats to form polydopamine coating. Transmission electron microscopy images demonstrated that self-polymerization of dopamine was induced by pH shift and that the thickness of polydopamine coating was readily modulated by adjusting the concentration of dopamine and reaction time. Polydopamine coatings were noted to affect the mechanical properties of underlying fiber mats, as mechanical testing demonstrated a decrease in elasticity and increase in stiffness of polydopamine-coated fiber mats. Polydopamine coatings were also utilized to effectively immobilize extracellular matrix proteins (i.e., fibronectin) on the surface of polydopamine-coated, electrospun fibers, resulting in enhancement of NIH3T3 cell attachment, spreading, and cytoskeletal development. Comparison of release rates of rhodamine 6G encapsulated in coated and uncoated PCL fibers also confirmed that polydopamine coatings modulate the release rate of loaded payloads. The authors further demonstrate the significant difference of rhodamine 6G adsorption kinetics in water between PCL fibers and polydopamine-coated PCL fibers. Taken together, polydopamine-mediated surface modification to electrospun fibers may be an effective means of fabricating a wide range of bio-inspired nanomaterials with unique properties for use in tissue engineering, drug delivery, and advanced biomedical applications. Copyright © 2012 Wiley Periodicals, Inc.

  8. Gaseous phase coal surface modification. Final technical report

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  9. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.

    PubMed

    Tan, Dongsheng; Liu, Liuxu; Li, Zhen; Fu, Qiang

    2015-08-01

    To improve blood compatibility of polyurethane (PU), phospholipids grafted carbon nanotubes (CNTs) were prepared through zwitterion-mediated cycloaddition reaction and amide condensation, and then were added to the PU as fillers via solution mixing to form biomimetic surface. The properties of phospholipids grafted CNTs (CNT-PC) were investigated by thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance ((1) H NMR). The results indicated that the phospholipids were grafted onto CNTs in high efficiency, and the hydrophilicity and dispersibility of the modified CNTs were improved effectively. The structures and properties of composites containing CNT-PC were investigated by optical microscope, XPS, and water contact angles. The results indicated that phospholipids were enriched on the surface with addition of 0.1 wt % of CNT-PC, which significantly reduced protein adsorption and platelet adhesion. The method of carrying phospholipids on the nanofiller to modify polymers has provided a promising way of constructing biomimetic phospholipid membrane on the surface to improve blood compatibility.

  10. Multifunctional Indium Tin Oxide Electrode Generated by Unusual Surface Modification

    PubMed Central

    Bouden, Sarra; Dahi, Antoine; Hauquier, Fanny; Randriamahazaka, Hyacinthe; Ghilane, Jalal

    2016-01-01

    The indium tin oxide (ITO) material has been widely used in various scientific fields and has been successfully implemented in several devices. Herein, the electrochemical reduction of ITO electrode in an organic electrolytic solution containing alkali metal, NaI, or redox molecule, N-(ferrocenylmethyl) imidazolium iodide, was investigated. The reduced ITO surfaces were investigated by X-ray photoelectron spectroscopy and grazing incident XRD demonstrating the presence of the electrolyte cation inside the material. Reversibility of this process after re-oxidation was evidenced by XPS. Using a redox molecule based ionic liquid as supporting electrolyte leads to fellow electrochemically the intercalation process. As a result, modified ITO containing ferrocenyl imidazolium was easily generated. This reduction process occurs at mild reducing potential around −1.8 V and causes for higher reducing potential a drastic morphological change accompanied with a decrease of the electrode conductivity at the macroscopic scale. Finally, the self-reducing power of the reduced ITO phase was used to initiate the spontaneous reduction of silver ions leading to the growth of Ag nanoparticles. As a result, transparent and multifunctional active ITO surfaces were generated bearing redox active molecules inside the material and Ag nanoparticles onto the surface. PMID:27857192

  11. Multifunctional Indium Tin Oxide Electrode Generated by Unusual Surface Modification

    NASA Astrophysics Data System (ADS)

    Bouden, Sarra; Dahi, Antoine; Hauquier, Fanny; Randriamahazaka, Hyacinthe; Ghilane, Jalal

    2016-11-01

    The indium tin oxide (ITO) material has been widely used in various scientific fields and has been successfully implemented in several devices. Herein, the electrochemical reduction of ITO electrode in an organic electrolytic solution containing alkali metal, NaI, or redox molecule, N-(ferrocenylmethyl) imidazolium iodide, was investigated. The reduced ITO surfaces were investigated by X-ray photoelectron spectroscopy and grazing incident XRD demonstrating the presence of the electrolyte cation inside the material. Reversibility of this process after re-oxidation was evidenced by XPS. Using a redox molecule based ionic liquid as supporting electrolyte leads to fellow electrochemically the intercalation process. As a result, modified ITO containing ferrocenyl imidazolium was easily generated. This reduction process occurs at mild reducing potential around ‑1.8 V and causes for higher reducing potential a drastic morphological change accompanied with a decrease of the electrode conductivity at the macroscopic scale. Finally, the self-reducing power of the reduced ITO phase was used to initiate the spontaneous reduction of silver ions leading to the growth of Ag nanoparticles. As a result, transparent and multifunctional active ITO surfaces were generated bearing redox active molecules inside the material and Ag nanoparticles onto the surface.

  12. Photoresponsive cellulose fibers by surface modification with multifunctional cellulose derivatives.

    PubMed

    Grigoray, Olga; Wondraczek, Holger; Heikkilä, Elina; Fardim, Pedro; Heinze, Thomas

    2014-10-13

    Eucalyptus bleached kraft pulp fibers were modified by adsorption of novel bio-based multifunctional cellulose derivatives in order to generate light responsive surfaces. The cellulose derivatives used were decorated with both cationic groups (degree of substitution, DS of 0.34) and photoactive groups (DS of 0.11 and 0.37). The adsorption was studied by UV-vis spectroscopy, surface plasmon resonance (SPR) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The adsorption isotherms followed the Freundlich model and it turned out that the main driving force for the adsorption was electrostatic interaction. Moreover, strong indications for hydrophobic interactions between the fibers and the derivatives and the derivatives themselves were found. ToF-SIMS imaging revealed an even distribution of the derivatives on the fiber surfaces. The modified fibers underwent fast photocrosslinking under UV-irradiation as demonstrated by light absorbance and fluorescence measurements. Thus, our results proved that the modified fibers exhibited light-responsive properties and can potentially be used for the manufacture of smart bio-based materials.

  13. Electronic structure tuning via surface modification in semimetallic nanowires

    NASA Astrophysics Data System (ADS)

    Sanchez-Soares, Alfonso; O'Donnell, Conor; Greer, James C.

    2016-12-01

    Electronic structure properties of nanowires (NWs) with diameters of 1.5 and 3 nm based on semimetallic α -Sn are investigated by employing density functional theory and perturbative GW methods. We explore the dependence of electron affinity, band structure, and band-gap values with crystallographic orientation, NW cross-sectional size, and surface passivants of varying electronegativity. We consider four chemical terminations in our study: methyl (CH3), hydrogen (H ), hydroxyl (OH ), and fluorine (F ). Results suggest a high degree of elasticity of Sn-Sn bonds within the Sn NWs' cores with no significant structural variations for nanowires with different surface passivants. Direct band gaps at Brillouin-zone centers are found for most studied structures with quasiparticle corrected band-gap magnitudes ranging from 0.25 to 3.54 eV in 1.5-nm-diameter structures, indicating an exceptional range of properties for semimetal NWs below the semimetal-to-semiconductor transition. Band-gap variations induced by changes in surface passivants indicate the possibility of realizing semimetal-semiconductor interfaces in NWs with constant cross-section and crystallographic orientation, allowing the design of novel dopant-free NW-based electronic devices.

  14. Radioiodination of cell-surface glycoproteins by carbohydrate modification

    SciTech Connect

    Wall, K.A.

    1986-05-01

    Mild oxidation of cell-surface sialic acid residues followed by reduction with sodium /sup 3/H-borohydride is a common method of radiolabeling glycoproteins. In many cases it is desirable to incorporate into glycoproteins a label of higher specific activity such as /sup 125/I. Incorporation of modified amino compounds into oxidized, isolated glycoproteins by reductive amination has been demonstrated by several investigators. They have determined the conditions for the application of this approach to radioiodination of intact cells. Cells are oxidized by exposure to 1 mM sodium periodate. Tyrosine or a tyrosine derivative, radiolabeled to high specific activity with Iodogen and carrier-free Na/sup 125/I, is added, followed by 1 mM sodium cyanoborohydride. Labeled cell-surface proteins are analyzed by SDS-gel electrophoresis of cell lysates. The addition of excess carrier glycoprotein, such as fetuin, is necessary to prevent degradation of the labeled product in the cell lysate. The incorporation of radiolabel can approach that of direct iodination of cell-surface tyrosyl residues, about 100 dpm/cell. The labeling procedure has been applied to the analysis of murine lymphocyte glycoproteins.

  15. Hydrophobic to superhydrophobic surface modification using impacting particulate sprays

    NASA Astrophysics Data System (ADS)

    Lau, Chun Yat; Vuong, Thach; Wang, Jingming; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah

    2014-08-01

    The roughening or structuring of inherently hydrophobic surfaces to possess microscopic and nanoscopic features can transform them to exhibit superhydrophobicity. The use of impacting particulate sprays here eschews specialized reagents and equipments; is simple, inexpensive, and rapid to implement; creates highly repeatable outcomes; and permits selective region transformation via simple masking. With PTFE, the contact angle transforms from 90° to 150°, in which SEM examination reveals erosive wear mechanisms that are dependent on the impingement angle. The process tends to cause the sample to bulge upwards from the treated surface due to elongation there, and can be mitigated by using lower impingement angles in the particulate spray. A finite element model created enables this characteristic to be related to the action of locked-in surface traction forces. The use of adhesive bonding to a rigid base is shown to be an alternative method to reduce the bulging. A second finite model developed allows knowledge of the right adhesive needed for this. In developing substrates for biochemical analysis, the approach offers very small possibilities for unintended synergistic interactions.

  16. The surface modification of clay particles by RF plasma technique

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Keol

    In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.

  17. Surface modification of polymers by atomic oxygen using ECR plasma

    NASA Astrophysics Data System (ADS)

    Abdul majeed, Riyadh M. A.; Datar, A.; Bhoraskar, S. V.; Bhoraskar, V. N.

    2007-05-01

    Polyimide (PI) and fluorinated ethylene propylene (FEP) samples were exposed to atomic oxygen ions of average energy ˜12 eV and flux ˜5 × 10 13 ions cm -2 s -1, produced in an ECR plasma. The fluence of the oxygen ions was varied from sample to sample over a range from ˜5 × 10 16 to 2 × 10 17 ions cm -2. The pre- and the post-irradiated samples were characterized by the contact angle, AFM and XPS techniques. The results indicate that the surface roughness of the polyimide increased from ˜7 to ˜65 nm, that of the FEP from ˜5 to ˜28 nm and the surface regions of both polyimide and FEP changed from hydrophobic to hydrophilic after exposure to atomic oxygen ions. The XPS results reveal that the concentrations of carbon, fluorine and oxygen changed even at a fluence of ˜10 17 ions cm -2 of the atomic oxygen ions. The results of the present study reveal that significant changes have been induced in the surface morphology and adhesion properties of polyimide and FEP after exposure to atomic oxygen ions.

  18. Modification of the dentin surface by using carbon nanotubes.

    PubMed

    Akasaka, Tsukasa; Nakata, Keiko; Uo, Motohiro; Watari, Fumio

    2009-01-01

    Recent studies have shown that carbon nanotubes (CNTs) can be used as biomedical materials because of their unique properties. CNTs effect nucleation of hydroxyapatite, because of which considerable interest has been generated regarding the use of CNTs in dentistry. However, there are only a few reports on the use of CNTs as dental materials. In this study, we investigated the changes induced in the surfaces of tooth slices by the application of a coating of CNTs by observing CNT-coated tooth slices both macroscopically as well as under a scanning electron microscope. Further, we investigated the effect of CNT coating on the tensile bond strength of dentin adhesives. CNTs adhered easily to the tooth surfaces when tooth slices were suspended in a CNT-dispersed solution. Interestingly, it was observed that CNTs selectively adhered to the surfaces of dentin and cementum, possibly by adhering to their exposed collagen fibers. In addition, the CNT coating did not affect the tensile bond strength of dentin adhesives. These results indicate that coating of the teeth with CNTs can be a possible application of CNTs as dental materials.

  19. Chemical modification of the inner and outer surfaces of Tobacco Mosaic Virus (TMV).

    PubMed

    Bruckman, Michael A; Steinmetz, Nicole F

    2014-01-01

    Viral nanoparticles derived from tobacco mosaic virus (TMV) find applications in various fields. We report the purification and chemical modification of TMV which is a hollow rod-shaped plant viral nanoparticle with modifiable interior and exterior surfaces. We describe methods to isolate TMV from its tobacco plant host for spatially controlled interior and exterior chemical modification and to characterize the resulting TMV hybrid materials.

  20. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    NASA Astrophysics Data System (ADS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-11-01

    Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH2) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such zwitterion modified PP surface.

  1. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    PubMed

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  2. Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??

    PubMed Central

    Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga

    2015-01-01

    The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease. PMID:25713635

  3. Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??

    PubMed

    Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga

    2015-01-01

    The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease.

  4. Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid.

    PubMed

    Ma, Fengcang; Chen, Sai; Liu, Ping; Geng, Fang; Li, Wei; Liu, Xinkuan; He, Daihua; Pan, Deng

    2016-05-01

    Poly-L-lactide (PLLA) is a biodegradable polymer and used widely. Incorporation of beta tricalcium phosphate (β-TCP) into PLLA can enhance its osteoinductive properties. But the interfacial layer between β-TCP particles with PLLA matrix is easy to be destroyed due to inferior interfacial compatibility of the organic/inorganic material. In this work, a method of β-TCP surface modification with stearic acid was investigated to improve the β-TCP/PLLA biomaterial. The effects of surface modification on the β-TCP were investigated by FTIR, XPS, TGA and CA. It was found that the stearic acid reacted with β-TCP and oxhydryl was formed during the surface modification. Hydrophilicity of untreated or modified β-TCP/PLLA composite was increased by the addition of 10 wt.% β-TCP, but it decreased as the addition amount increased from 10 wt.% to 20 wt.%. Two models were suggested to describe the effect of β-TCP concentration on CA of the composites. Mechanical properties of β-TCP/PLLA composites were tested by bending and tensile tests. Fractures of the composites after mechanical test were observed by SEM. It was found that surface modification with stearic acid improved bending and tensile strengths of the β-TCP/PLLA composites obviously. The SEM results indicated that surface modification decreased the probability of interface debonding between fillers and matrix under load.

  5. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    NASA Astrophysics Data System (ADS)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  6. Plasma Surface Modification of Polyaramid Fibers for Protective Clothing

    NASA Astrophysics Data System (ADS)

    Widodo, Mohamad

    2011-12-01

    The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the

  7. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    NASA Astrophysics Data System (ADS)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  8. The effect of polymer surface modification on polymer-protein interaction via interfacial polymerization and hydrophilic polymer grafting

    USDA-ARS?s Scientific Manuscript database

    Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...

  9. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization.

    PubMed

    Saengdee, Pawasuth; Chaisriratanakul, Woraphan; Bunjongpru, Win; Sripumkhai, Witsaroot; Srisuwan, Awirut; Jeamsaksiri, Wutthinan; Hruanun, Charndet; Poyai, Amporn; Promptmas, Chamras

    2015-05-15

    Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2 surface. In addition, the SiO2 surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4 surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    PubMed Central

    2011-01-01

    Polymethylmethacrylate (PMMA) microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC) film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization) through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices. PMID:21711936

  11. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    EPA Science Inventory

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  12. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    EPA Science Inventory

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  13. Preparation of high porosity xerogels by chemical surface modification.

    DOEpatents

    Deshpande, Ravindra; Smith, Douglas M.; Brinker, C. Jeffrey

    1996-01-01

    This invention provides an extremely porous xerogel dried at vacuum-to-below supercritical pressures but having the properties of aerogels which are typically dried at supercritical pressures. This is done by reacting the internal pore surface of the wet gel with organic substances in order to change the contact angle of the fluid meniscus in the pores during drying. Shrinkage of the gel (which is normally prevented by use of high autoclave pressures, such that the pore fluid is at temperature and pressure above its critical values) is avoided even at vacuum or ambient pressures.

  14. Surface modification of polytetrafluoroethylene by excimer-laser radiation

    SciTech Connect

    Nishii, M.; Sugimoto, S.; Shimizu, Y.; Suzuki, N.; Kewanishi, S.; Nagese, T.; Endo, M.; Eguchi, Y.

    1993-12-31

    The adhesive strength of polytetrafluoroethylene (PTFE) films was enhanced remarkably by KrF-laser irradiation in air when a small amount of aromatic polymers such as aromatic polyester, polyetheretherketone and polyimide were blended with PTFE. From the surface analysis of the laser-irradiated PTFE by an X-ray photoelectron spectroscopy and a scanning electron microscopy, it was found that the enhancement in the adhesive properties was attributable to both the chemical effect owing to the formation of the polar groups such as carbonyl group and ethylene linkage and the physical one owing to the formation of the uneveness by the KrF-laser irradiation.

  15. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  16. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  17. Surface modification of investment cast-316L implants: microstructure effects.

    PubMed

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase.

  18. Inexpensive laser-induced surface modification in bismuth thin films

    NASA Astrophysics Data System (ADS)

    Contreras, A. Reyes; Hautefeuille, M.; García, A. Esparza; Mejia, O. Olea; López, M. A. Camacho

    2015-05-01

    In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD-DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  19. Surface property modification of coatings via self-stratification

    NASA Astrophysics Data System (ADS)

    Pieper, Robert Joseph

    Biological fouling occurs everywhere in the marine environment and is a significant problem for marine vessels. Anti-fouling coatings have been used effectively to prevent fouling; however, these coatings harm non-targeted sea-life. Fouling-release coatings (FRC) appear to be an alternative way to combat fouling. FRC do not necessarily prevent the settlement of marine organisms but rather allow their easy removal with application of shear to the coatings surface. These coatings must be non-toxic, non-leaching, have low surface energy, low modulus, and durability to provide easy removal of marine organisms. Here the goal is to develop FRC based on thermosetting siloxane-polyurethane, amphiphilic polyurethane, and zwitterionic/amphiphilic polyurethane systems. A combinatorial high-throughput approach has been taken in order to explore the variables that may affect the performance of the final coatings. Libraries of acrylic polyols were synthesized using combinatorial high-throughput techniques by either batch or semi-batch processes. The design of the experiments for the batch and semi-batch processes were done combinatorially to explore a range of compositions and various reaction process variables that cannot be accomplished or are not suitable for single reaction experiments. Characterization of Rapid-GPC, high-throughput DSC, and gravimetrically calculated percent solids verified the effects of different reaction conditions on the MW, glass transition temperatures, and percent conversion of the different compositions of acrylic polyols. Coatings were characterized for their surface energy, pseudobarnacle pull-off adhesion, and were subjected to bioassays including marine bacteria, algae, and barnacles. From the performance properties results the acrylic polyol containing 20% hydroxyethyl acrylate and 80% butyl acrylate was selected for further siloxane-polyurethane formulations and were subjected to the same physical, mechanical, and performance testing

  20. Modifications and lithography on iridovirus surface using amplitude modulated nanolithography

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei; Paramonov, Pavel; Mayevska, Olga; Umemura, Kazuo; Vaia, Richard; Juhl, Shane; Waterhouse, Lynn

    2004-04-01

    The usage of electrostatic force on nanoscale proved to be very effective for pattering nanostructures in 20-30-nm thin polymer films using biased atomic force microscope tip (AFM) [1,2]. Similar approach can be applied to biological objects of several hundred nanometers size deposited on a smooth conductive substrate. This study demonstrates the first attempt modifying an iridovirus surface using amplitude-modulated nanolithography (AF-AFMEN) [2]. With this technique we mark an individual virus capsule by applying -10-30 V to an AFM conductive tip tapping the virus. The marks on the virus surface represent raises of 1-5 nm height. Similar to polymer molecules, the dense layer of iridovirus was subjected to AF-AFMEN technique producing distinct nanostructures (10-50 nm wide) formed of virus electrostatically attracted to the tip. Several physical reasons responsible for the virus manipulation and marking will be discussed. 1. S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, Nature Materials 2, 468 (2003) 2. S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, and S. Juhl, Appl. Phys. Lett. 83, 4405 (2003)

  1. Surface Modification of Polymer Photoresists in Fluorocarbon Plasma Etching

    NASA Astrophysics Data System (ADS)

    Wang, Mingmei; Kushner, Mark

    2009-10-01

    In plasma etching of high aspect ratio (AR), nm sized features, erosion of polymer photoresist (PR) can perturb the feature profile (e.g., bowing). Although cross-linking of PR due to ion and VUV fluxes could make it more resistive to etching, typically the PR etch rate is too high to maintain the pattern when the AR is large (> 20). In dielectric plasma etching using fluorocarbon gases, one strategy to prevent PR erosion is to deposit a (CxFy)n polymer on its surface. This process may be enhanced in dc-augmented capacitively coupled plasmas (CCPs) by sputtering of Si and CxFy from the dc biased electrode. Dangling bonds generated on the PR surface by ion, photon or electron bombardment trap Si and CxFy radicals forming Si-C and C-C bonds. Sputtered Si atoms can also react with CxFy radicals to produce more reactive CxFy-1 radicals which are more easily incorporated into the PR. In this talk we discuss scaling laws for radical production derived from a computational investigation of a dc-augmented dual frequency CCP reactor sustained in Ar/C4F8/O2. Fluxes of Si radicals are produced by sputtering of the dc electrode. Rates of polymer deposition on and sputtering of PR, and consequences of PR erosion (and deposition) on feature profiles will be discussed.

  2. Interfacing biomembrane mimetic polymer surfaces with living cells Surface modification for reliable bioartificial liver

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yasuhiko; Takami, Utae; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2008-11-01

    The surface design used for reducing nonspecific biofouling is one of the most important issues for the fabrication of medical devices. We present here a newly synthesized a carbohydrate-immobilized phosphorylcholine polymer for surface modification of medical devices to control the interface with living cells. A random copolymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), and 2-lactobionamidoethyl methacrylate (LAMA) was synthesized by conventional radical polymerization. The monomer feeding ratio in the copolymer was adjusted to 24/75/1 (MPC/BMA/LAMA). The copolymer (PMBL1.0) could be coated by solvent evaporation from an ethanol solution. Cells of the human hepatocellular liver carcinoma cell line (HepG2) having asialoglycoprotein receptors (ASGPRs) were seeded on PMBL1.0 or poly(BMA) (PBMA)-coated PET plates. On PBMA, many adherent cells were observed and were well spread with monolayer adhesion. HepG2 adhesion was observed on PMBL1.0 because the cell has ASGPRs. Furthermore, some of the cells adhering to PMBL1.0 had a spheroid formation and similarly shaped spheroids were scattered on the surface. According to confocal laser microscopic observation after 96 h cultivation, it was found that albumin production preferentially occurred in the center of the spheroid. The albumin production of the cells that adhered to PBMA was sparse. The amount of albumin production per unit cell that adhered to PMBL1.0 was determined by ELISA and was significantly higher than that which adhered to PBMA. Long-term cultivation of HepG2 was also performed using hollow fiber mini-modules coated with PMBL1.0. The concentration of albumin produced from HepG2 increased continuously for one month. In the mini-module, the function of HepG2 was effectively preserved for that period. On the hollow fiber membrane, spheroid formation of HepG2 cells was also observed. In conclusion, PMBL1.0 can provide a suitable surface for the cultivation of

  3. Advances in surfaces and osseointegration in implantology. Biomimetic surfaces

    PubMed Central

    Albertini, Matteo; Fernandez-Yague, Marc; Lázaro, Pedro; Herrero-Climent, Mariano; Bullon, Pedro; Gil, Francisco-Javier

    2015-01-01

    The present work is a revision of the processes occurring in osseointegration of titanium dental implants according to different types of surfaces -namely, polished surfaces, rough surfaces obtained from subtraction methods, as well as the new hydroxyapatite biomimetic surfaces obtained from thermochemical processes. Hydroxyapatite’s high plasma-projection temperatures have proven to prevent the formation of crystalline apatite on the titanium dental implant, but lead to the formation of amorphous calcium phosphate (i.e., with no crystal structure) instead. This layer produce some osseointegration yet the calcium phosphate layer will eventually dissolve and leave a gap between the bone and the dental implant, thus leading to osseointegration failure due to bacterial colonization. A new surface -recently obtained by thermochemical processes- produces, by crystallization, a layer of apatite with the same mineral content as human bone that is chemically bonded to the titanium surface. Osseointegration speed was tested by means of minipigs, showing bone formation after 3 to 4 weeks, with the security that a dental implant can be loaded. This surface can be an excellent candidate for immediate or early loading procedures. Key words:Dental implants, implants surfaces, osseointegration, biomimetics surfaces. PMID:25662555

  4. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  5. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    SciTech Connect

    Zakharov, A. M. Dvoichenkova, O. A.; Evsin, A. E.

    2015-12-15

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  6. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    NASA Astrophysics Data System (ADS)

    Zakharov, A. M.; Dvoichenkova, O. A.; Evsin, A. E.

    2015-12-01

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  7. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review.

    PubMed

    Wang, Jiali; Tang, Jian; Zhang, Peng; Li, Yangde; Wang, Jue; Lai, Yuxiao; Qin, Ling

    2012-08-01

    As a bioabsorbable metal with mechanical properties close to bone, pure magnesium or its alloys have great potential to be developed as medical implants for clinical applications. However, great efforts should be made to avoid its fast degradation in vivo for orthopedic applications when used for fracture fixation. Therefore, how to decease degradation rate of pure magnesium or its alloys is one of the focuses in Research and Development (R&D) of medical implants. It has been recognized that surface modification is an effective method to prevent its initial degradation in vivo to maintain its desired mechanical strength. This article reviews the recent progress in surface modifications for prevention of fast degradation of magnesium or its alloys using in vitro testing model, a fast yet relevant model before moving towards time-consuming and expensive in vivo testing. Pros and cons of various surface modifications are also discussed for the goal to design available products to be applied in clinical trials.

  8. Effects of different substrate surface modifications on the epitaxial ZnO/Si

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Jin, Changlian; Zhan, Huahan; Chen, Xiaohang; Xu, Fuchun; Zhou, Yinghui; Wang, Huiqiong; Kang, Junyong

    2013-09-01

    To produce high quality ZnO/Si for the applications in short wavelength optoelectronic devices, the effects of different silicon surface modifications on the overgrown ZnO thin film were investigated. Samples were grown by a plasma assistant molecular beam epitaxy at room temperature, avoiding the oxidation of the Si surface and the thermal stress caused by difference of the thermal expansion coefficients between ZnO and silicon. Different modifications on the Si(100) substrate surface including nitridation, oxidation, and depositions of Mg and Zn, were employed. The effects on the overgrown ZnO layers and the interlayer SiOx were investigated by atomic force microscopy, photoluminescence, X-ray diffraction and auger depth electron spectroscopy. All the modifications were effective in different degrees at reducing the SiOx amorphous layer. However, different mechanisms resulted in distinct performance in crystal structure and optical property.

  9. Ultraviolet curing for surface modification of textile fabrics.

    PubMed

    Ferrero, Franco; Periolatto, Monica

    2011-10-01

    In this study, cotton, polyester and polyamide fabrics were treated by radical or cationic ultraviolet curing of different commercial products conferring water and oil repellency. Moreover, radical ultraviolet curing of chitosan was applied to confer antimicrobial properties. The advantages of this technology are well known making it very interesting for industrial applications: energy savings, low environmental impact, simple, cheap and small equipment, high treatment speed. The polymerization was controlled through weight gain and gel content measurements, while the properties of hydro and oil repellency were determined in terms of contact angle, moisture adsorption and water vapor permeability. The polymer distribution on fabric surfaces was investigated by scanning electron microscopy and atomic force microscopy. However the fabrics treated with chitosan were subjected to the standard test for determining the antimicrobial activity. Finally the finished cotton samples were subjected to washing fastness tests.

  10. Surface modification for polystyrene colloidal particles with controlled charge densities.

    PubMed

    Lee, Jongman; Kwon, Oh-Sun; Shin, Kwanwoo; Song, Ju-Myung; Kim, Joon-Seop; Seo, Young-Soo; Tael, Giyoong; Jon, Sangyong

    2007-11-01

    A significant amount of polystyrene sulfonated acid (PSSA) and poly(styrene-ran-acrylic acid) (PSAA) random copolymer can be adsorbed by dispersion of PS particles via a swelling-quenching process. A THF-water mixed solvent was used in the swelling process and a large amount of pure water was used, to give a low concentration of THF% in quenching process. Our results showed that functional PSSA groups were randomly and tightly adsorbed to the PS particles. When the mol.% of charged segments was increased, the progressive adsorption of PSSA chains to the PS particles leads to an increase in the electrophoretic mobility and zeta-potential of aqueous dispersions. Thus, we were able to obtain well-distributed surface charge density on the PS particles.

  11. Modification of Turbulent Boundary Layer Flows by Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Gose, James W.; Golovin, Kevin; Barros, Julio; Schultz, Michael P.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.

    2016-11-01

    Measurements of near zero pressure gradient turbulent boundary layer (TBL) flow over several superhydrophobic surfaces (SHSs) are presented and compared to those for a hydraulically smooth baseline. The surfaces were developed at the University of Michigan as part of an ongoing research thrust to investigate the feasibility of SHSs for skin-friction drag reduction in turbulent flow. The SHSs were previously evaluated in fully-developed turbulent channel flow and have been shown to provide meaningful drag reduction. The TBL experiments were conducted at the USNA in a water tunnel with a test section 2.0 m (L) x 0.2 m (W) x 0.2 m (H). The free-stream speed was set to 1.26 m/s which corresponded to a friction Reynolds number of 1,500. The TBL was tripped at the test section inlet with a 0.8 mm diameter wire. The upper and side walls provided optical access, while the lower wall was either the smooth baseline or a spray coated SHS. The velocity measurements were obtained with a TSI FSA3500 two-component Laser-Doppler Velocimeter (LDV) and custom-designed beam displacer operated in coincidence mode. The LDV probe volume diameter was 45 μm (approx. one wall-unit). The measurements were recorded 1.5 m downstream of the trip. When the measured quantities were normalized using the inner variables, the results indicated a significant reduction in the near wall viscous and total stresses with little effect on the flow outside the inner layer.

  12. Surface modification of biodegradable magnesium and its alloys for biomedical applications

    PubMed Central

    Tian, Peng; Liu, Xuanyong

    2015-01-01

    Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization. PMID:26816637

  13. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering.

    PubMed

    Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo

    2012-10-01

    Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation.

    PubMed

    Inam Ul Ahad; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Korczyc, Barbara; Ciach, Tomasz; Brabazon, Dermot

    2014-09-01

    Polymeric biomaterials are being widely used for the treatment of various traumata, diseases and defects in human beings due to ease in their synthesis. As biomaterials have direct interaction with the extracellular environment in the biological world, biocompatibility is a topic of great significance. The introduction or enhancement of biocompatibility in certain polymers is still a challenge to overcome. Polymer biocompatibility can be controlled by surface modification. Various physical and chemical methods (e.g., chemical and plasma treatment, ion implantation, and ultraviolet irradiation etc.) are in use or being developed for the modification of polymer surfaces. However an important limitation in their employment is the alteration of bulk material. Different surface and bulk properties of biomaterials are often desirable for biomedical applications. Because extreme ultraviolet (EUV) radiation penetration is quite limited even in low density mediums, it could be possible to use it for surface modification without influencing the bulk material. This article reviews the degree of biocompatibility of different polymeric biomaterials being currently employed in various biomedical applications, the surface properties required to be modified for biocompatibility control, plasma and laser ablation based surface modification techniques, and research studies indicating possible use of EUV for enhancing biocompatibility.

  15. Study on the mechanism of surface modification of magnesium oxysulfate whisker

    NASA Astrophysics Data System (ADS)

    Dang, Li; Nai, Xueying; Zhu, Donghai; Jing, Yanwei; Liu, Xin; Dong, Yaping; Li, Wu

    2014-10-01

    Hydrophobic-lipophilic magnesium oxysulfate whisker (MOSw) was prepared by surface modification with lauric acid and the surface morphology of MOSw was examined with field emission scanning electron microscope (FESEM). X-ray powder diffraction (XRD) was used to characterize the crystalline degree of MOSw and modified MOSw (MOSw-LA). Both FESEM and XRD suggested that modification occurred on the surface of MOSw exclusively. The inexistence of physisorbed lauric acid was proved by Fouier transform infrared (FT-IR) spectroscopy. Thermogravimetric analyses ruled out the possibility that magnesium laurate (LA-Mg) physisorbed on the surface of MOSw-LA. Solid state 13C nuclear magnetic resonance (13C NMR) further verified the formation of COO-Mg< bonds based on the significant changes of chemical shift and decrease in intensity. Hence, we confirmed that the type of surface modification of MOSw with lauric acid was chemical adsorption taken place between lauric acid and Mg<. In order to study the dynamic state approach of this reaction, a pH meter was employed to monitor the reaction process synchronously, and then we proposed a reaction mechanism which was similar to the "acid-base neutralization". This research provides a detailed explanation for a kind of surface modification, which may be further used in the performance of whisker/polymer matrix composites.

  16. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  17. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment.

    PubMed

    Bazaka, Kateryna; Jacob, Mohan V; Crawford, Russell J; Ivanova, Elena P

    2011-05-01

    Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO2 nanofluids

    NASA Astrophysics Data System (ADS)

    Yan, Yong-Li; Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong

    2017-02-01

    Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water flooding. Meanwhile, the mechanisms of drag reduction and improving water injection operation induced from the modified core surface were uncovered. The present study will establish a fundamental understanding on the drag reduction at the core surface modified by nanofluids and its applications in more industries.

  19. Surface modification of graphene nanopores for protein translocation

    PubMed Central

    Shan, Y. P.; Tiwari, P. B.; Krishnakumar, P.; Vlassiouk, I.; Li, W.Z.; Wang, X.W.; Darici, Y.; Lindsay, S.M.; Wang, H. D.; Smirnov, S.; He, J.

    2014-01-01

    Studies of DNA translocation through graphene nanopores have revealed their potential for DNA sequencing. Here we report a study of protein translocation through chemically modified graphene nanopores. A transmission electron microscope (TEM) was used to cut nanopores with diameters between 5-20 nm in multilayer graphene prepared by chemical vapor deposition (CVD). After oxygen plasma treatment, the dependence of the measured ionic current on salt concentration and pH was consistent with a small surface charge induced by the formation of carboxyl groups. While translocation of gold nanoparticles (10 nm) was readily detected through such treated pores of a larger diameter, translocation of protein ferritin was not observed either for oxygen plasma treated pores, or for pores modified with mercaptohexadecanoic acid. Ferritin translocation events were reliably observed after the pores were modified with the phospholipid-PEG (DPPE-PEG750) amphiphile. The ion current signature of translocation events was complex, suggesting that a series of interactions between the protein and pore occur during the process. PMID:24231385

  20. Carbon spheres surface modification and dispersion in polymer matrix

    NASA Astrophysics Data System (ADS)

    Guo, Xingmei; Yang, Yongzhen; Zhao, Xuexia; Liu, Xuguang

    2012-11-01

    Polymer/carbon spheres (CSs) composite materials, in which polymer was used as continuous phase and CSs as dispersed phase, were synthesized by in situ bulk polymerization. In order to improve CSs dispersibility in polymer matrix and compatibility with polymer matrix, the functional double bonds were introduced onto the surface of CSs by covalent and non-covalent method. Covalent functionalization was accompolished through mixed acid oxidation and subsequent reaction with acryloyl chloride. Field-emission scanning electron microscopy, Fourier-transform Infrared spectrometry and thermogravimetry were used to characterize the morphology, structure and effect of functionalization of CSs. Vinyl-functionalized CSs by acryloyl chloride were well dispersed in organic solvents, such as DMF, acetone and chloroform. Non-covalent functionalization by surfactant was accompolished by electrostatic interaction. Covalent and non-covalent functionalization enabled CSs to be homogeneously dispersed in poly(methyl methacrylate) (PMMA) matrix with good compatibility. These studies lay the foundation of preparing the non-close packed three-dimensional carbon-based photonic crystals.

  1. Surface Modification of Nickel Foams by a Slurry Aluminizing Process

    SciTech Connect

    Omar, H.; Papanastasiou, N.; Psyllaki, P.; Stergioudi, F.; Tsipas, D. N.; Tsipas, S. A.; Michailidis, N.

    2010-01-21

    A novel slurry-based process for aluminizing nickel foams while improving the mechanical properties and conserving the excellent ductility is reported. Cellular unalloyed nickel foams with 92% porosity and uniform pore size and distribution were used as a starting material. Several slurries of different compositions were examined to investigate the possibility of developing an aluminide-nickel intermetallic coating on a Ni foam without considerably degrading the original ductile properties of the foam. The process temperature was varying from 400 to 850 deg. C and the process holding time was ranging between 2h to 6h. Scanning electron microscopy with an energy dispersive X-ray spectrometry and X-Ray diffraction were applied to assess the effectiveness of the aluminizing process and determine both the optimum parameters of the procedure (slurry composition, holding temperature and time) and the concentration profiles across the coating cross-section. The mechanical behavior of the aluminized Ni-foams was evaluated by the conduction of micro-tension tests. The resulting Ni-foams after aluminization retain the pore structure of original Ni-foams and present a thick outer surface layer which consists of a range of aluminide phases. The mechanical properties of the Ni-foams aluminized in low process temperature were insignificantly affected.

  2. Surface Modification of Block Copolymer Through Sulfur Containing Plasma Treatment.

    PubMed

    Choi, Sang Wook; Shin, Jae Hee; Jeon, Min Hwan; Mun, Jeong Ho; Kim, Sang Ouk; Yeom, Geun Young; Kim, Kyong Nam

    2015-10-01

    Some of the important issues of block copolymer (BCP) as an application to the potential low cost next generation lithography are thermal stability and deformation during pattern transfer process in addition to defect density, line edge/width roughness, etc. In this study, sulfur containing plasma treatment was used to modify the BCP and the effects of the plasma on the properties of plasma treated BCP were investigated. The polystyrene hole pattern obtained from polystyrene polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) was initially degraded when the polystyrene hole was annealed at 190 °C for 15 min. However, when the hole pattern was treated using sulfur containing plasmas using H2S or SF6 up to 2 min, possibly due to the sulfurization of the polystyrene hole surface, no change in the hole pattern was observed after the annealing even though there is a slight change in hole shapes during the plasma treatment. The optimized plasma treated polystyrene pattern showed the superior characteristics as the mask layer by showing better thermal stability, higher chemical inertness, and higher etch selectivity during plasma etching.

  3. Surface modification of activated carbons for CO 2 capture

    NASA Astrophysics Data System (ADS)

    Pevida, C.; Plaza, M. G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. J.

    2008-09-01

    The reduction of anthropogenic CO 2 emissions to address the consequences of climate change is a matter of concern for all developed countries. In the short term, one of the most viable options for reducing carbon emissions is to capture and store CO 2 at large stationary sources. Adsorption with solid sorbents is one of the most promising options. In this work, two series of materials were prepared from two commercial activated carbons, C and R, by heat treatment with gaseous ammonia at temperatures in the 200-800 °C range. The aim was to improve the selectivity and capacity of the sorbents to capture CO 2, by introducing basic nitrogen-functionalities into the carbons. The sorbents were characterised in terms of texture and chemical composition. Their surface chemistry was studied through temperature-programmed desorption tests and X-ray photoelectron spectroscopy. The capture performance of the carbons was evaluated by using a thermogravimetric analyser to record mass uptakes by the samples when exposed to a CO 2 atmosphere.

  4. Modifications in the land surface model ORCHIDEE and application in the Tarim basin

    NASA Astrophysics Data System (ADS)

    Zhou, Xudong; Polcher, Jan; Yang, Tao; Nguyen Quang, Trung; Hirabayashi, Yukiko

    2017-04-01

    Land surface modeling in regions mixing high mountains and arid deserts remains a great challenge due to the inadequate representations of physical processes in atmospheric forcings , runoff generation, evaporation and river routing. A few key improvements were analyzed within ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems) to better understand these limitations as well as quantify their influence on the water cycle over Tarim basin (TRB). The TRB is a representative endorheic basin in center Asia, with glacier and snow melting, limited precipitation but strong evaporation, high spatial heterogeneity and intensive human interference, thus challenging any land surface model. National observations on daily precipitation from China Meteorological Administration (CMA) were used to correct precipitation inputs on the basis of WATCH forcing datasets. The independent glacier melting simulation by HYOGA2 was added to the forcing to overcome the lack of glacier module in ORCHIDEE. Improvements in the snow scheme provided more accurate simulations of the soil temperature which restrict the infiltration process when the soil is frozen. In addition, a novel routing scheme with finer spatial resolution from 50km to 1km was developed based on HydroSHED map. It improves the descriptions of catchments boundaries, the flow direction and the water residence time within sub-basins that make significant difference especially for the mountainous area and flat plains. Model results with these modifications were compared through various atmospheric and hydrological variables (i.e. evaporation, soil moisture, runoff and discharge). In conclusion, the correction by the precipitation observations and involvement of glacier melting simulations increase the water input to the basin by 37.2% and 8.4% respectively, which in turn increases evaporation, soil moisture and runoff to different extents. The new snow and soil freezing scheme advance in time the spring high-water in

  5. Modification of biomaterials surface by mimetic cell membrane to improve biocompatibility

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Tan, Guo-Xin; Ning, Cheng-Yun

    2014-12-01

    Modification of biomaterials surface by mimetic cell membrane for improving biocompatibility, to imitate the excellent biological and physiological properties of the natural cell membrane, is an important research area in materials science. Numerous studies have been attempted to construct a mimetic cell membrane biointerface composed of phosphorylcholine (PC)-containing polymers or other phospholipid analogues on biomaterials surface. PC-containing biointerfaces show outstanding characteristics, especially in biological aspects such as blood compatibility and antifouling property. In this mini-review, the strategies of membrane mimetic modification of biomaterials and their antifouling applications are summarized.

  6. Tailoring of thermomechanical properties of thermoplastic nanocomposites by surface modification of nanoscale silica particles

    SciTech Connect

    Becker, C.; Krug, H.; Schmidt, H.

    1996-12-31

    Thermoplastic nanocomposites based on linear polymethacrylates as matrix materials and spherical silica particles as fillers have been synthesized using the in situ free radical polymerization technique of methacrylate monomers in presence of specially functionalized SiO{sub 2} nanoparticulate fillers. Uncoated monodisperse silica particles with particle sizes 100 nm and 10 nm were used as reference fillers. For surface modification, the alcoholic dispersions of the fillers were treated with appropriate amounts of methacryloxypropyltrimethoxysilane (MPTS) and acetoxypropyltrimethoxysilane (APTS). Transmission electron microscopy (TEM) was used to investigate dispersion behavior in dependence on surface modification. Dynamic mechanical properties were measured by dynamic mechanical thermal analysis (DMTA).

  7. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification.

    PubMed

    Li, Shi-Yan; Du, Min; Dolence, E Kurt; Fang, Cindy X; Mayer, Gabriele E; Ceylan-Isik, Asli F; LaCour, Karissa H; Yang, Xiaoping; Wilbert, Christopher J; Sreejayan, Nair; Ren, Jun

    2005-04-01

    Evidence suggests that aging, per se, is a major risk factor for cardiac dysfunction. Oxidative modification of cardiac proteins by non-enzymatic glycation, i.e. advanced glycation endproducts (AGEs), has been implicated as a causal factor in the aging process. This study was designed to examine the role of aging on cardiomyocyte contractile function, cardiac protein oxidation and oxidative modification. Mechanical properties were evaluated in ventricular myocytes from young (2-month) and aged (24-26-month) mice using a MyoCam system. The mechanical indices evaluated were peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (+/- dL/dt). Oxidative stress and protein damage were evaluated by glutathione and glutathione disulfide (GSH/GSSG) ratio and protein carbonyl content, respectively. Activation of NAD(P)H oxidase was determined by immunoblotting. Aged myocytes displayed a larger cell cross-sectional area, prolonged TR90, and normal PS, +/- dL/dt and TPS compared with young myocytes. Aged myocytes were less tolerant of high stimulus frequency (from 0.1 to 5 Hz) compared with young myocytes. Oxidative stress and protein oxidative damage were both elevated in the aging group associated with significantly enhanced p47phox but not gp91phox expression. In addition, level of cardiac AGEs was approximately 2.5-fold higher in aged hearts than young ones determined by AGEs-ELISA. A group of proteins with a molecular range between 50 and 75 kDa with pI of 4-7 was distinctively modified in aged heart using one- or two-dimension SDS gel electrophoresis analysis. These data demonstrate cardiac diastolic dysfunction and reduced stress tolerance in aged cardiac myocytes, which may be associated with enhanced cardiac oxidative damage, level of AGEs and protein modification by AGEs.

  8. Advanced Understanding of Convection Initiation and Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification over the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Behrendt, A.; Branch, O.; Schwitalla, T.

    2016-12-01

    A prerequisite for significant precipitation amounts is the presence of convergence zones. These are due to land surface heterogeneity, orography as well as mesoscale and synoptic scale circulations. Only, if these convergence zones are strong enough and interact with an upper level instability, deep convection can be initiated. For the understanding of convection initiation (CI) and optimal cloud seeding deployment, it is essential that these convergence zones are detected before clouds are developing in order to preempt the decisive microphysical processes for liquid water and ice formation. In this presentation, a new project on Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL) is introduced, which is funded by the United Arab Emirates Rain Enhancement Program (UAEREP). This project has two research components. The first component focuses on an improved detection and forecasting of convergence zones and CI by a) operation of scanning Doppler lidar and cloud radar systems during two seasonal field campaigns in orographic terrain and over the desert in the UAE, and b) advanced forecasting of convergence zones and CI with the WRF-NOAHMP model system. Nowcasting to short-range forecasting of convection will be improved by the assimilation of Doppler lidar and the UAE radar network data. For the latter, we will apply a new model forward operator developed at our institute. Forecast uncertainties will be assessed by ensemble simulations driven by ECMWF boundaries. The second research component of OCAL will study whether artificial modifications of land surface heterogeneity are possible through plantations or changes of terrain, leading to an amplification of convergence zones. This is based on our pioneering work on high-resolution modeling of the impact of plantations on weather and climate in arid regions. A specific design of the shape and location of plantations can lead to the formation of convergence zones, which can

  9. Primer and interviews: advances in targeted gene modification. Interview by Julie C. Kiefer.

    PubMed

    Caroll, Dana; Zhang, Bo

    2011-12-01

    Gene targeting in mice, first reported 25 years ago, has led to monumental advances in the understanding of basic biology and human disease. The ability to employ a similarly straightforward method for gene manipulation in other experimental organisms would make their already significant contributions all the more powerful. Here, we briefly outline the strengths and weaknesses of reverse genetics techniques in non-murine model organisms, ending with a more detailed description of two that promise to bring targeted gene modification to the masses: zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Dana Caroll, a forefather of zinc finger technology, and Bo Zhang, among the first to introduce TALEN-targeted mutagenesis to zebrafish, discuss their experience with these techniques, and speculate about the future of the field.

  10. Advanced glycation end products induce differential structural modifications and fibrillation of albumin

    NASA Astrophysics Data System (ADS)

    Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.

    2016-06-01

    Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.

  11. Modification of the Surface Properties of Polyimide Films using POSS Deposition and Oxygen Plasma Exposure

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Belcher, Marcus A.; Ghose, Sayata; Connell, John W.

    2008-01-01

    Topographically rich surfaces were generated by spray-coating organic solutions of a polyhedral oligomeric silsesquioxane, octakis (dimethylsilyloxy) silsesquioxane (POSS), on Kapton HN films and exposing them to radio frequency generated oxygen plasma. Changes in both surface chemistry and topography were observed. High-resolution scanning electron microscopy indicated substantial modification of the POSS-coated polyimide surface topographies as a result of oxygen plasma exposure. Water contact angles varied from 104 deg for unexposed POSS-coated surfaces to approximately 5 deg, for samples exposed for 5 h. Modulation of the dispersive and polar contributions to the surface energy was determined using van Oss Good Chaudhury theory.

  12. Surface modification for corrosion protection of steel pipes

    NASA Astrophysics Data System (ADS)

    Morshed, Ali

    Corrosion of carbon steel oil pipelines in the sweet environments has been a well- known problem in the oil industry all over the world and corrosion inhibitors of the film forming type have been widely used to combat this type of corrosion. In this project numerous effort has been made to devise a similar way of corrosion mitigation by producing an impermeable and protective coating made of precipitated iron carbonate scale. Based on the previous works it was suggested that iron carbonate scale as the corrosion product (of carbon steel and CO2) could to some extent offer protection to its substrate and reduce the corrosion rate effectively. However, precipitating an adherent and protective iron carbonate scale has not been an easy job. Our main objectives during this work have been firstly to define the favourable conditions under which an iron carbonate scale would precipitate in the system and then to investigate how the protective characteristics of the scale could be improved. The effects of several environmental variables like solution pH, solution temperature, additives (scale inhibitors), stirring and solution composition on the scale properties such as adhesion, surface coverage, stability and porosity (scale density) have been investigated. Simultaneously, the adverse effects of certain conditions or variables that tended to reduce the scale protectiveness or prevent its precipitation have been investigated and discussed. Some of the presented results are rather qualitative; nevertheless it is believed that they have contributed in the better understanding of the iron carbonate scale properties and its precipitation process. Based on the results and conclusions of this project few suggestions have been made at the end for the possible continuation of this work.

  13. Surface modifications induced by high fluxes of low energy helium ions.

    PubMed

    Tanyeli, İrem; Marot, Laurent; Mathys, Daniel; van de Sanden, Mauritius C M; De Temmerman, Gregory

    2015-04-28

    Several metal surfaces, such as titanium, aluminum and copper, were exposed to high fluxes (in the range of 10(23) m(-2) s(-1)) of low energy (<100 eV) Helium (He) ions. The surfaces were analyzed by scanning electron microscopy and to get a better understanding on morphology changes both top view and cross sectional images were taken. Different surface modifications, such as voids and nano pillars, are observed on these metals. The differences and similarities in the development of surface morphologies are discussed in terms of the material properties and compared with the results of similar experimental studies. The results show that He ions induced void growth and physical sputtering play a significant role in surface modification using high fluxes of low energy He ions.

  14. Surface Modifications Induced by High Fluxes of Low Energy Helium Ions

    PubMed Central

    Tanyeli, İrem; Marot, Laurent; Mathys, Daniel; van de Sanden, Mauritius C. M.; De Temmerman, Gregory

    2015-01-01

    Several metal surfaces, such as titanium, aluminum and copper, were exposed to high fluxes (in the range of 1023 m−2s−1) of low energy (<100 eV) Helium (He) ions. The surfaces were analyzed by scanning electron microscopy and to get a better understanding on morphology changes both top view and cross sectional images were taken. Different surface modifications, such as voids and nano pillars, are observed on these metals. The differences and similarities in the development of surface morphologies are discussed in terms of the material properties and compared with the results of similar experimental studies. The results show that He ions induced void growth and physical sputtering play a significant role in surface modification using high fluxes of low energy He ions. PMID:25919912

  15. The Quest for Nonthrombotic Surface Modifications to Achieve Hemocompatibility of Implantable Devices.

    PubMed

    Tchouta, Lise Nadine; Bonde, Pramod Narayan

    2015-01-01

    The use of blood-contacting implantable devices is limited by surface-induced thrombosis, which has led to the development of thromboresistant surfaces. Multidisciplinary efforts have promoted the development of surface modifications to minimize thrombosis by targeting surface-induced coagulation. To this date, no material has been identified that remains irrevocably hemocompatible with time but many options are now available with their own limitations. Essential to this review is the understanding of some of the challenges in this field and newer opportunities for hemocompatibility research. This report will also briefly review many of the achievements in the development of hemocompatible biomaterial coating, including surface modifications against protein adsorption and platelet adhesion, biomimetism, and endothelialization.

  16. Nanometer-scale surface modification of epoxy with carbon black and electromagnetic waves.

    PubMed

    Kim, Bu Gi; Lee, Dai Gil

    2010-05-07

    The surface morphology of polymers and polymer composites strongly influences both the adhesive bonding strength of composite structures and the electrical conduction through carbon fiber composites. Conventional surface modification techniques (such as mechanical abrading, chemical treatment, plasma treatment and flame treatment) not only damage the surfaces of polymers and polymer composites but also increase production cost. In this study, the surface of epoxy was modified by heating carbon black with electromagnetic waves in order to generate nanometer-sized grooves. A thermal transfer model was developed to investigate the generation mechanism of the grooves and the process variables. In the surface modification technique, electromagnetic waves and carbon black were used to improve both the bonding strength and the electrical conductivity of the composite in a fast and efficient way.

  17. Surface modification of magnetic recording media by filtered cathodic vacuum arc

    SciTech Connect

    Zhang, H.-S.; Komvopoulos, K.

    2009-11-01

    Surface modification of a magnetic recording medium was accomplished by filtered cathodic vacuum arc (FCVA). The carbon overcoat of thin-film disks was removed by Ar{sup +} ion sputter etching in vacuum to prevent oxidation of the exposed magnetic medium, which was then modified by FCVA carbon plasma under conditions of zero and -100 V pulsed substrate bias. Monte Carlo simulations performed with the T-DYN code, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and surface force microscopy (SFM) provided insight into carbon implantation profiles, surface chemical composition, roughness, and nanomechanical properties of the surface-treated magnetic medium. The dependence of surface modification on the FCVA treatment conditions is discussed in the context of T-DYN, XPS, AFM, and SFM results. The findings of this study demonstrate the potential of FCVA to provide overcoat-free magnetic recording media exhibiting oxidation resistance and enhanced nanomechanical properties.

  18. Advanced Techniques for Improving Laser Optical Surfaces

    DTIC Science & Technology

    1975-03-01

    methanol and permitting drops of the suspensions to dry on cleaned glass slides. The slides were coated with .00 angstrom aluminum films and...surface to be replicated, improper coating of it. or nonuniform re- moval of the film can cause artifacts in the replica which are difficult to interpret...difficult to coat uniformly and so act as defect sites in thin film coatings on the etched pieces. A second series of damage experiments which was

  19. Regolith Advanced Surface Systems Operations Robot (RASSOR)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Cox, Rachel E.; Schuler, Jason M.; Ebert, Tom; Nick, Andrew J.

    2012-01-01

    Regolith is abundant on extra-terrestrial surfaces and is the source of many resources such as oxygen, hydrogen, titanium, aluminum, iron, silica and other valuable materials, which can be used to make rocket propellant, consumables for life support, radiation protection barrier shields, landing pads, blast protection berms, roads, habitats and other structures and devices. Recent data from the Moon also indicates that there are substantial deposits of water ice in permanently shadowed crater regions and possibly under an over burden of regolith. The key to being able to use this regolith and acquire the resources, is being able to manipulate it with robotic excavation and hauling machinery that can survive and operate in these very extreme extra-terrestrial surface environments. In addition, the reduced gravity on the Moon, Mars, comets and asteroids poses a significant challenge in that the necessary reaction force for digging cannot be provided by the robot's weight as is typically done on Earth. Space transportation is expensive and limited in capacity, so small, lightweight payloads are desirable, which means large traditional excavation machines are not a viable option. A novel, compact and lightweight excavation robot prototype for manipulating, excavating, acquiring, hauling and dumping regolith on extra-terrestrial surfaces has been developed and tested. Lessons learned and test results will be presented including digging in a variety of lunar regolith simulant conditions including frozen regolith mixed with water ice.

  20. An experimental study of USB flap noise reduction through mean flow modification. [Upper Surface Blown

    NASA Technical Reports Server (NTRS)

    Joshi, M. C.; Yu, J. C.

    1979-01-01

    The effect of mean flow modification on the noise production of upper surface blown flaps has been studied experimentally. Mean velocity profile at the nozzle exit was modified from the usual 'top-hat' shape to 'Gamma' and 'L'-shaped profiles. The 'L'-modification caused noise reduction around and above the peak frequency of the 'top-hat' spectrum when compared on an equal thrust per exit area basis. Modification to 'Gamma'-shaped profile resulted in a shift of the spectrum to lower frequencies and a lower overall noise reduction. These modifications alter the development of the large scale disturbances in the upper shear layer and trailing edge wake of the wall jet geometry.

  1. Evaluation of surface modification techniques for PWR steam generator channel heads. Final report

    SciTech Connect

    Spalaris, C.N.

    1986-06-01

    Surface modification which were developed under a previous EPRI program and then applied to Boiling Water Reactor replacement piping, were modified for treating PWR steam generator channel head surfaces. Surface modifications have been shown to reduce out-of-core activity build up in BWR and thought to be equally effective in PWR circuits as well. Prototypical surface test specimens were used to develop techniques appropriate to PWR alloy substrates which were then applied to treat the surfaces of a spare, full size PWR channel head in a field demonstration. Modified surfaces cut from test specimens and pieces removed from the field demonstration were submitted to metallurgical investigations. No damage to the substrate alloys was detected as a result of the surface modification processes. Combination of mechanical and electropolishing action improved the as fabricated finish by at least a factor of 3 for the Inconel plate and factors of 20 for the stainless weld overlay. Field demonstration yielded a factor of 10 improvement in the weld overlay and 30 to 40% in the divider plate. Because these surfaces are known to be responsible for 57% of the area radioactivity in PWR steam generators in service, prepolishing is expected to reduce radiation fields substantially. 31 figs.

  2. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    PubMed

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  3. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    PubMed

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry.

  4. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I.; Pino, Gustavo A.; Ferrero, Juan C.; Rossa, Maximiliano

    2016-04-01

    This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  5. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    PubMed Central

    Nady, Norhan

    2016-01-01

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)—is presented. PMID:27096873

  6. Surface modification of corneal contact lens with phosphoryl choline by glow discharge.

    PubMed

    Sunny, M C; Sharma, C P

    1991-01-01

    Polymers like poly(methylmethacrylate) (PMMA) and poly(2-hydroxyethylmethacrylate) (PHEMA) are widely used in the development of hard and soft contact lenses. Cell adhesion and deposition of chemicals such as calcium, lipoproteins and mucin on the lens surface cause visual acuity which is the main problem in extended uses of contact ocular lenses. In order to minimise the cell adhesion and other type of depositions, a method of surface modification of lens involving the use of phosphoryl choline, a phospholipid and the glow discharge technique has been described. The power variation of the lenses after modification has been checked using Topcon lensometer. The possible power changes of the modified samples due to the exposure to the normal light in the laboratory, darkness, ultraviolet (U.V.) light or saline have been investigated by taking the visible and ultra violet spectra using Beckman spectrophotometer. Surface energy variations after modifications of the samples have been checked by sessile drop water contact angle measurements. Glow discharge treatment increases the hydrophilicity of the samples. It seems, the modifications do not affect the power of hard contact lens significantly. It is also observed that the exposure of samples to the normal light in the laboratory, darkness, U.V. light or saline make no significant change in the visible and ultraviolet spectra of the samples before and after modification.

  7. Novel Surface Modification Method for Ultrasupercritical Coal-Fired Boilers

    SciTech Connect

    Xiao, T. Danny

    2013-05-22

    US Department of Energy seeks an innovative coating technology for energy production to reduce the emission of SOx, NOx, and CO2 toxic gaseous species. To realize this need, Inframat Corporation (IMC) proposed an SPS thermal spray coating technique to produce ultrafine/nanocoatings that can be deposited onto the surfaces of high temperature boiler tubes, so that higher temperatures of boiler operation becomes possible, leading to significantly reduced emission of toxic gaseous species. It should be noted that the original PI was Dr. Xinqing Ma, who after 1.5 year conducting this project left Inframat in December, 2008. Thus, the PI was transferred to Dr. Danny Xiao, who originally co-authored the proposal with Dr. Ma, in order to carry the project into a completion. Phase II Objectives: The proposed technology has the following attributes, including: (1). Dispersion of a nanoparticle or alloyed particle in a solvent to form a uniform slurry feedstock; (2). Feeding of the slurry feedstock into a thermal spray flame, followed by deposition of the slurry feedstock onto substrates to form tenacious nanocoatings; (3). High coating performance: including high bonding strength, and high temperature service life in the temperature range of 760oC/1400oF. Following the above premises, our past Phase I project has demonstrated the feasibility in small scale coatings on boiler substrates. The objective of this Phase II project was to focus on scale-up the already demonstrated Phase I work for the fabrication of SPS coatings that can satisfy DOE's emission reduction goals for energy production operations. Specifically, they are: (1). Solving engineering problems to scale-up the SPS-HVOF delivery system to a prototype production sub-delivery system; (2). Produce ultrafine/nanocoatings using the scale-up prototype system; (3). Demonstrate the coated components using the scale-up device having superior properties. Proposed Phase II Tasks: In the original Phase II proposal, we have

  8. Advanced Face Gear Surface Durability Evaluations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  9. Advances on surface structural determination by LEED.

    PubMed

    Soares, Edmar A; de Castilho, Caio M C; de Carvalho, Vagner E

    2011-08-03

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail.

  10. Nanomaterial surface chemistry design for advancements in capillary electrophoresis modes.

    PubMed

    Ivanov, Michael R; Haes, Amanda J

    2011-01-07

    Tailored surface chemistry impacts nanomaterial function and stability in applications including in various capillary electrophoresis (CE) modes. Although colloidal nanoparticles were first integrated as colouring agents in artwork and pottery over 2000 years ago, recent developments in nanoparticle synthesis and surface modification increased their usefulness and incorporation in separation science. For instance, precise control of surface chemistry is critically important in modulating nanoparticle functionality and stability in dynamic environments. Herein, recent developments in nanomaterial pseudostationary and stationary phases will be summarized. First, nanomaterial core and surface chemistry compositions will be classified. Next, characterization methods will be described and related to nanomaterial function in various CE modes. Third, methods and implications of nanomaterial incorporation into CE will be discussed. Finally, nanoparticle-specific mechanisms likely involved in CE will be related to nanomaterial surface chemistry. Better understanding of surface chemistry will improve nanoparticle design for the integration into separation techniques.

  11. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method

    NASA Astrophysics Data System (ADS)

    Cao, Jiliang; Wang, Chaoxia

    2017-05-01

    Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.

  12. Surface modification of silicon oxide with trialkoxysilanes toward close-packed monolayer formation.

    PubMed

    Tanaka, Mutsuo; Sawaguchi, Takahiro; Kuwahara, Masashi; Niwa, Osamu

    2013-05-28

    In order to scrutinize potential of trialkoxysilanes to form close-packed monolayer, surface modification of silicon oxide was carried out with the trialkoxysilanes bearing a ferrocene moiety for analysis by electrochemical methods. As it was found that hydrogen-terminated silicon reacts with trialkoxysilane through natural oxidation in organic solvents, where the silicon oxide layer is thin enough to afford conductivity for electrochemical analysis, hydrogen-terminated silicon wafer was immersed in trialkoxysilane solution for surface modification without oxidation treatment. Cyclic voltammetry measurements to determine surface concentrations of the immobilized ferrocene-silane on silicon surface were carried out with various temperature, concentration, solvent, and molecular structure, while the blocking effect in the cyclic voltammogram was investigated to obtain insight into density leading to the close-packed layer. The results suggested that a monolayer modification tended to occur under milder conditions when the ferrocene-silane had a longer alkyl chain, and formation of a close-packed layer to show significant blocking effect was observed. However, the surface modification proceeded even when surface concentration of the immobilized ferrocene-silane was greater than that expected for the monolayer. On the basis of these tendencies, the surface of silicon oxide modified with trialkoxysilane is considered to be a partial multilayer rather than monolayer although a close-packed layer is formed. This result is supported by the comparison with carbon surface modified with ferrocene-diazonium, in which a significant blocking effect was observed when surface concentrations of the immobilized ferrocene moiety are lower than that for silicon oxide modified with ferrocene-silane.

  13. Influence of surface modifications to titanium on antibacterial activity in vitro.

    PubMed

    Yoshinari, M; Oda, Y; Kato, T; Okuda, K

    2001-07-01

    The antibacterial effect of surface modifications to titanium on Porphyromonas gingivalis ATCC 33277 and Actinobacillus actinomycetemcomitans ATCC 43718 was evaluated. Surface modifications were performed with dry processes including ion implantation (Ca+, N+, F+), oxidation (anode oxidation, titania spraying), ion plating (TiN, alumina), and ion beam mixing (Ag, Sn, Zn, Pt) with Ar+ on polished pure titanium plates. F+-implanted specimens significantly inhibited the growth of both P. gingivalis and A. actinomycetemcomitans than the polished titanium. The other surface-modified specimens did not exhibit effective antibacterial activity against both bacteria. No release of the fluorine ion was detected from F-implanted specimens under dissolution testing. This result and the characterization of the F+-implanted surfaces suggested that the possible antibacterial mechanism of the F+-implanted specimen was caused by the formation of a metal fluoride complex on the surfaces. In addition, F+-implanted surfaces did not inhibit the proliferation of fibroblast L929-cells. These findings indicate that surface modification by means of a dry process is useful in providing antibacterial activity of oral bacteria to titanium implants exposed to the oral cavity.

  14. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

    PubMed Central

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    2017-01-01

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding. PMID:28146083

  15. Advances in the Application of Surface Drifters

    NASA Astrophysics Data System (ADS)

    Lumpkin, Rick; Özgökmen, Tamay; Centurioni, Luca

    2017-01-01

    Surface drifting buoys, or drifters, are used in oceanographic and climate research, oil spill tracking, weather forecasting, search and rescue operations, calibration and validation of velocities from high-frequency radar and from altimeters, iceberg tracking, and support of offshore drilling operations. In this review, we present a brief history of drifters, from the message in a bottle to the latest satellite-tracked, multisensor drifters. We discuss the different types of drifters currently used for research and operations as well as drifter designs in development. We conclude with a discussion of the various properties that can be observed with drifters, with heavy emphasis on a critical process that cannot adequately be observed by any other instrument: dispersion in the upper ocean, driven by turbulence at scales from waves through the submesoscale to the large-scale geostrophic eddies.

  16. Advances in the Application of Surface Drifters.

    PubMed

    Lumpkin, Rick; Özgökmen, Tamay; Centurioni, Luca

    2017-01-03

    Surface drifting buoys, or drifters, are used in oceanographic and climate research, oil spill tracking, weather forecasting, search and rescue operations, calibration and validation of velocities from high-frequency radar and from altimeters, iceberg tracking, and support of offshore drilling operations. In this review, we present a brief history of drifters, from the message in a bottle to the latest satellite-tracked, multisensor drifters. We discuss the different types of drifters currently used for research and operations as well as drifter designs in development. We conclude with a discussion of the various properties that can be observed with drifters, with heavy emphasis on a critical process that cannot adequately be observed by any other instrument: dispersion in the upper ocean, driven by turbulence at scales from waves through the submesoscale to the large-scale geostrophic eddies.

  17. Recent advance in Mean Sea Surface estimates

    NASA Astrophysics Data System (ADS)

    Pujol, M. I.; Gerald, D.; Claire, D.; Raynal, M.; Faugere, Y.; Picot, N.; Guillot, A.

    2016-12-01

    Gridded Mean Sea Surface (MSS) estimate is an important issue for precise SLA computation along geodetic orbits. Previous studies emphasized that the error from MSS models older than Jason-1 GM was substantial: on average more than 10 to 15% of the SLA variance for wavelengths ranging from 30 to 150 km. Other MSS have been released this last 2 years, and they use geodetic missions such as CryoSat-2 and Jason-1 GM which strongly contribute to improve their resolution and accuracy.We evaluate in this paper the improvements of the recent MSS. This study, mainly based on spectral approach allows us to quantify the errors at various wavelengths. The use of new missions (e.g. SARAL-DP/AltiKa; Sentinel-3A) with low instrumental noise measurement levels (Ka, SAR) opens new perspectives to understand the MSS errors and improve MSS estimate for wavelengths lower than 100km.

  18. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.

    PubMed

    Wang, Lin; Sun, Bing; Ziemer, Katherine S; Barabino, Gilda A; Carrier, Rebecca L

    2010-06-15

    Polydimethylsiloxane (PDMS) silicone elastomer is extensively used in soft lithography processes to fabricate microscale or nano scale systems for microfluidic or cell culture applications. Though PDMS is biocompatible, it is not an ideal material for cell culture due to its poor cell adhesion properties. In this study, PDMS surfaces were modified to promote intestinal cell adhesion, in the interest of testing feasibility of using microfabricated PDMS systems for high throughput drug screening. Modification techniques included changing chemical composition of PDMS (i.e., varying curing to mixing agent ratio, and oxidization of PDMS surface by oxygen plasma), surface treatment of PDMS by coating with charged molecules (i.e., poly-D-lysine, L-alpha-phosphatidylcholine, and a layer bylayer coating), and deposition of extracellular matrix (ECM) proteins (i.e., laminin, fibronectin, and collagen). The influence of these modifications on PDMS properties, including elastic modulus and surface properties (wettability, chemical composition, topography, and protein adsorption) were characterized. Modification techniques were all found to change PDMS properties and influence the attachment and proliferation of Caco-2 cells over three days of culture to varying degrees. Generally, Caco-2 cells preferred to attach on collagen-coated, fibronectin-coated, and fibronectin-coated oxygen-plasma treated PDMS. The results highlight the importance of considering multiple physical and chemical factors that may be influenced by biomaterial modification and result in altered cell attachment to microfabricated systems, including surface hydrophobicity, chemical composition, stiffness, and topography. This study provides a foundation for further miniaturization, utilizing soft lithography techniques, of Caco-2 cell-based system for high-throughput screening of drug intestinal absorption during lead optimization in drug discovery. The understanding of different surface modifications on

  19. Influence of 30% hydrogen peroxide bleaching on compomers in their surface modifications and thermal expansion.

    PubMed

    Jung, Choong-Bo; Kim, Hyung-Il; Kim, Kyo-Han; Kwon, Yong Hoon

    2002-12-01

    The surface modifications and the coefficient of thermal expansion of compomers after treatment with a 30% hydrogen peroxide bleaching agent were investigated. Three compomers (Compoglass F, Elan and F2000) were nonbleached and bleached for 1 and 3 days. The surface modification and the coefficient of thermal expansion of each bleached compomer were evaluated using a scanning electron microscope and a thermomechanical analyzer, respectively. As a result, Compoglass F and Elan showed slight surface degradation, whereas F2000 showed many cracks on its surface and these cracks were not observed in Compoglass F and Elan. Bleached Elan and F2000 has changed to the extent where their the coefficient of thermal expansion increased compared with those of nonbleached specimens. In addition, bleached compomers showed a strong inverse correlation between the coefficient of thermal expansion and the volume percent of filler.

  20. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering.

    PubMed

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Surface modification of cast inconel 740 superalloy by heat-assisted friction stir processing

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Yeon; Jung, Woo-Sang; Lee, Won-Sik; Byeon, Jai-Won

    2016-07-01

    Cast In740 Ni-based alloy with large grains generally show remarkable high temperature strength. However, this alloy is still have insufficient surface microstructure-dependent properties. In this study, for improvement of surface properties, surface modification of a cast In740 Ni-based superalloy was successfully performed by friction stir processing using a conventional two-horsepower milling machine and by additional heating to facilitate plastic flow of the hard alloy. Without using a high-power heavy stirring machine, a notable reduction in grain size of 2.9 μm was achieved and a corresponding 30% increase in Vickers hardness was observed. The microstructure in the stir zone was analyzed in terms of the grain size and precipitate distribution. The result of the potential dynamic polarization test and in-situ acoustic emission monitoring show that electrochemical corrosion resistance was improved by this surface modification process.

  2. Efficient improvement of surface activity of tea saponin through Gemini-like modification by straightforward esterification.

    PubMed

    Feng, Jin; Chen, Ying; Liu, Xin; Liu, Songbai

    2015-03-15

    Novel strategy of Gemini-like modification has been applied in development of new nonionic surfactants, tea saponin esters, with enhanced surface activity by simple esterification. Tea saponin was treated with acyl chlorides of different chain length and different ratio of tea saponin and acyl chloride under alkaline condition. The structures of tea saponin esters were analysed and confirmed by FT-IR, NMR and ESI-MS. Surface activity investigation revealed that esterification with the chain length of C12 and C14 and the ratio of 1:4 to 1:6 produced superior surface activity compared with tea saponin. The exceptional surface activity of the new surfactants suggested their great potential application in food industry as green surfactants due to their environmental benign nature as well as simple and inexpensive preparation. The strategy of Gemini-like modification will facilitate development of green surfactants based on natural resources.

  3. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application.

    PubMed

    Reshak, A H; Shahimin, M M; Shaari, S; Johan, N

    2013-11-01

    The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping in the cell and increment of light absorption. The current work represent studies conducted in surface modification of single-crystalline silicon solar cells using wet chemical etching techniques. Two etching types are applied; alkaline etching (KOH:IPA:DI) and acidic etching (HF:HNO3:DI). The alkaline solution resulted in anisotropic profile that leads to the formation of inverted pyramids. While acidic solution formed circular craters along the front surface of silicon wafer. This surface modification will leads to the reduction of light reflectance via texturizing the surface and thereby increases the short circuit current and conversion rate of the solar cells.

  4. Proceedings of the 10th international symposium on polymer surface modification

    USDA-ARS?s Scientific Manuscript database

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...

  5. Specific surface modification of the acetylene-linked glycolipid vesicle by click chemistry.

    PubMed

    Ito, Hidehiro; Kamachi, Toshiaki; Yashima, Eiji

    2012-06-07

    A novel glycolipid with a terminal acetylene was synthesized and used to prepare unilamellar vesicles. Using these vesicles, a convenient method was developed for the specific modification of the vesicle surface using the photoresponsive copper complex [Cu(OH(2))(cage)] as the catalyst for a click reaction.

  6. Atmospheric Pressure Glow Discharge Plasma and Surface Modification of PET Textile by APGDP

    NASA Astrophysics Data System (ADS)

    Gu, Biao; Chen, Ru; Xu, Yin; Deng, Xiang; Shi, Qingjun

    2002-11-01

    Comparing with traditional chemistry method, surface modification of Polyethylene terephthalate (PET) fabrics by using of Atmospheric Pressure Glow Discharge Plasma (APGDP) has many advantages, such as low cost, low pollution and low energy consumption. So it has huge application in textile industry due to no requirement for vacuum system. In this paper, the generation and the characteristics of APGDP on a homemade device were investigated experimentally. The volt-ampere characteristic and the Lissajous figure demonstrated that, different from dielectric barrier discharge (DBD), there is no filaments appeared between electrodes. It is a glow discharge in one atmospheric pressure. Furthermore we investigated the surface modification of PET by APGDP. The relationship between PET characteristics (wettability, critical surface tension, timing-effect, dyeablity etc.) and various discharge parameters are discussed. At last, the measurements of ATR-FTIR (Attenuated Total Refraction-Fourier Transform Infarared Spectroscopy) and dyeing properties are demonstrated, and the mechanism of modification is analyzed basically. Key words: APGDP£¬Surface modification , PET

  7. Surface modification of PDMS microchips with poly(ethylene glycol) derivatives for μTAS applications.

    PubMed

    de Campos, Richard Piffer Soares; Yoshida, Inez Valeria Pagotto; da Silva, José Alberto Fracassi

    2014-08-01

    In this work is presented a method for the modification of native PDMS surface in order to improve its applicability as a substrate for microfluidic devices, especially in the analysis of nonpolar analytes. Therefore, poly(ethylene glycol) divinyl ether modified PDMS substrate was obtained by surface modification of native PDMS. The modified substrate was characterized by attenuated total reflectance infrared spectroscopy, water contact angle measurements, and by evaluating the adsorption of rhodamine B and the magnitude of the EOF mobility. The reaction was confirmed by the spectroscopic evaluation. The formation of a well-spread water film over the surface immediately after the modification was an indicative of the modified surface hydrophilicity. This characteristic was maintained for approximately ten days, with a gradual return to a hydrophobic state. Fluorescence assays showed that the nonpolar adsorption property of PDMS was significantly decreased. The EOF mobility obtained was 3.6 × 10(-4) cm(2) V(-1) s(-1) , higher than the typical values found for native PDMS. Due to the better wettability promoted by the modification, the filling of the microchannels with aqueous solutions was facilitated and trapping of air bubbles was not observed.

  8. Evaluation of surface sensible heat flux effects on the generation and modification of mesoscale circulations

    NASA Technical Reports Server (NTRS)

    Segal, M.; Pielke, R. A.; Mahrer, Y.

    1984-01-01

    Mesoscale thermal-induced circulations generated by horizontal gradients in surface characteristics as well as significant perturbations on land and sea breezes and mountain-valley winds due to substantial modifications in the thermal forcing are introduced. It is suggested that these types of mesoscale situations are generally ignored in forecasting but that they may have important implications in very short range predictions.

  9. Realization of Dirac Cones in Few Bilayer Sb(111) Films by Surface Modification.

    PubMed

    Pan, Hui; Wang, Xue-Sen

    2015-12-01

    We report the first-principle study on the recovery and linearization of Dirac cones in the electronic band structures of a few bilayer Sb(111) films (n-BL Sb) by surface modification. Due to the interaction between the surface states on the two surfaces of a free-standing film, the distorted Dirac cone in n-BL Sb(111) (n < 5) disappears. We demonstrate that the Dirac cone can be restored by functionalizing one surface with certain atoms including H, Ag, and Au, to reduce the inter-surface interaction. We further show that an ideal Dirac cone with linear dispersion of topological surface states near the zone center can be realized by functionalizing both surfaces of the film with oxygen, which enhances spin-orbital coupling. The realization of Dirac cone by surface functionalization shows promise for applications of topologic materials to spintronic devices and their operation in complicated conditions.

  10. Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation

    PubMed Central

    Wang, Bing; Wang, Xincai; Zheng, Hongyu; Lam, Yee Cheong

    2015-01-01

    The effect of laser irradiation on surface wettability of cyclic olefin polymer (COP) was investigated. Under different laser parameters, a superhydrophilic or a superhydrophobic COP surface with a water contact angle (WCA) of almost 0° or 163°, respectively, could be achieved by direct femtosecond laser irradiation. The laser power deposition rate (PDR) was found to be a key factor on the wettability of the laser-treated COP surface. The surface roughness and surface chemistry of the laser-irradiated samples were characterized by surface profilometer and X-ray photoelectron spectroscopy, respectively; they were found to be responsible for the changes of the laser-induced surface wettability. The mechanisms involved in the laser surface wettability modification process were discussed.

  11. Surface modification on polyurethanes by using bioactive carboxymethylated fungal glucan from Poria cocos.

    PubMed

    Wang, Yifeng; Xu, Wei; Chen, Yanjun

    2010-12-01

    In this work, a water-insoluble β-D-glucan (PCSG), isolated from Poria cocos, was carboxymethylated to create a water-soluble derivative named as CP. After free amino groups have been introduced, CP was covalently immobilized onto PU surface. The hydrophilicity and the concentration of carboxyl group on the modified PU surface were determined. The fibrinogen and albumin adsorption to the surface, in vitro blood compatibility, and antibacterial activity of the surface against Pseudomonas aeruginosa were evaluated. The water contact angle measurement indicated that the hydrophilicity of PU surface increased after modification. The fibrinogen adsorption of the modified PU surface decreased 51.5%, compared with control PU. CP immobilization could prolong the blood coagulation time was suggested by APTT experiment. Antibacterial activity experiments indicated that CP modified surface obviously suppressed the growth of P. aeruginosa. Thereby, CP immobilization improves blood compatibility of PU surface and introduces special antibacterial bioactivity.

  12. Effect of surface modifications on the thermal and moisture behavior of wool fabric

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhao, Yuan; Li, Wenbin; Wang, Hao

    2015-07-01

    Thermal and moisture behavior is crucial in determining the comfort of clothing. Surface modification of fibers brings new functions and properties to fibrous materials, but the comfort of the as-made clothing changes accordingly due to different thermal and moisture behaviors. In this study, physical and chemical modifications have been conducted to wool fabric to investigate their effects on the thermal and moisture behaviors of clothing. Surface wettability, wicking properties, thermal and moisture resistance together with surface temperature and humidity of the microclimate have been tested. It has been found that the wettability of wool fabric is greatly improved and wicking properties are granted to the fabric. Higher thermal and moisture resistance have been noticed for the treated wool fabric. The treated fabric shows longer moisture liberation process and the surface temperature and humidity varies in a different way compared with untreated fabric. Understanding the thermal and moisture behaviors of fabric after surface modification would benefit the further development of surface functionalizing technology and design of next to skin clothing.

  13. Baroclinic modification of midlatitude marine surface wind vectors observed by the NASA scatterometer

    NASA Astrophysics Data System (ADS)

    Foster, Ralph C.; Brown, R. A.; Enloe, Amy

    1999-01-01

    Baroclinic modification of surface wind vectors determined from satellite microwave radar data over the Northern Hemisphere midlatitude (30°-60°N) oceans is presented. The analysis uses data from the NASA scatterometer (NSCAT) collocated with operational surface analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) at synoptic times. A total of 71,769 NSCAT wind vector observations from the Northwest Pacific and Northeast Atlantic Oceans were used in this study. A statistically significant baroclinic modification of the surface wind is detectable in the NSCAT winds that accounts for 5-35% of the variance in wind speed and 5-20% of the variance in wind direction depending primarily on the thermal wind strength. The amplitude of the baroclinic wind speed modification can be much larger than the effects of stratification in the surface layer. For the maximum thermal wind strength considered here (7×10-3 s-1), the explained variances due to baroclinic effects were 59% for speed and 35% in direction. Because of data uncertainties these results probably underestimate the actual contribution of baroclinity to the surface wind variance. The NSCAT results are compared to ECMWF and to a theoretical model. The baroclinic modification of the NSCAT and ECMWF surface wind speed agree quite closely, but larger differences are seen in the cross-isobar angles. Reasons for these differences are discussed. These observations show that in addition to the primary surface wind data product, the scatterometer radar backscatter contains potentially useful information about the boundary layer temperature field.

  14. Covalent and stable CuAAC modification of silicon surfaces for control of cell adhesion.

    PubMed

    Vutti, Surendra; Buch-Månson, Nina; Schoffelen, Sanne; Bovet, Nicolas; Martinez, Karen L; Meldal, Morten

    2015-03-23

    Stable primary functionalization of metal surfaces plays a significant role in reliable secondary attachment of complex functional molecules used for the interfacing of metal objects and nanomaterials with biological systems. In principle, this can be achieved through chemical reactions either in the vapor or liquid phase. In this work, we compared these two methods for oxidized silicon surfaces and thoroughly characterized the functionalization steps by tagging and fluorescence imaging. We demonstrate that the vapor-phase functionalization only provided transient surface modification that was lost on extensive washing. For stable surface modification, a liquid-phase method was developed. In this method, silicon wafers were decorated with azides, either by silanization with (3-azidopropyl)triethoxysilane or by conversion of the amine groups of an aminopropylated surface by means of the azido-transfer reaction. Subsequently, D-amino acid adhesion peptides could be immobilized on the surface by use of Cu(I)-catalyzed click chemistry. This enabled the study of cell adhesion to the metal surface. In contrast to unmodified surfaces, the peptide-modified surfaces were able to maintain cell adhesion during significant flow velocities in a microflow reactor.

  15. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension

    NASA Astrophysics Data System (ADS)

    Janmanee, Pichai; Muttamara, Apiwat

    2012-07-01

    Surface modification by a titanium coating layer onto a tungsten carbide surface by electrical discharge coating (EDC) was studied by considering a titanium coating modification as well as the completeness of the tungsten carbide surface. This was carried out by electrical discharge machining (EDM). The tungsten carbide material was produced using a fluid dielectric oil, which was mixed with titanium powder. The current and duty cycles were varied resulting in a change in the titanium coating layer thickness. Also, an analysis of the chemical composition using energy dispersive spectroscopy (EDS) revealed that a titanium coating layer was formed causing the hardness of the titanium surface to be close to that of tungsten carbide. The completeness of the surface was evaluated using scanning electron microscopy (SEM) and a small number of microcracks were found on the surface since the microcracks were filled and substituted by titanium powder and carbon (a hydrocarbon) that decomposed from the dielectric that acted as a combiner (TiC). Also, the high concentration of carbon increased the amount of Ti and C combination and TiC was formed, which enhanced the surface hardness of the coated layer to 1750 HV. The surface roughness of the coated layer decreased and this reduced the formation of microcracks on the surface workpiece.

  16. Laser surface modification of AZ31B Mg alloy for bio-wettability.

    PubMed

    Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B

    2015-02-01

    Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Applications of Surface Modification Techniques in Enhancement of Phase Change Heat Transfer

    NASA Astrophysics Data System (ADS)

    Leu, Tzong-Shyng; Lin, Hung-Wen; Wu, Tseng-Hsin

    When saturated vapor passes over a colder substrate, liquid drops nucleate and grow by coalescence with surrounding drops. Typically speaking, nucleation and growth rates of water droplets are faster on a hydrophilic surface than on a hydrophobic surface. However, heat transfer efficiency degrades once surface becomes filmwise condensation. In this paper, vapor condensing on a gradient surface to prevent filmwise condensation is studied. New gradient surfaces are fabricated. It is demonstrated that 10% increase of condensation heat flux can be achieved on a silicon wafer with C = 1 mm gradient surface. The main mechanism for heat transfer enhancement is found to be that drops condensing on C = 1 mm gradient surface begin to move at a much smaller size compared with those on silicon wafer without modification.

  18. Upper-surface modifications for C sub l max improvement of selected NASA 6-series airfoils

    NASA Technical Reports Server (NTRS)

    Szelazek, C. A.; Hicks, R. M.

    1979-01-01

    The thickness of the upper surface of 64 airfoils was increased from the leading edge to the position of maximum thickness. The modifications were generated using a numerical optimization routine