Sample records for advanced surface reconstruction

  1. [The influences of the stress distribution on the condylar cartilage surface by Herbst appliance under various bite reconstruction--a three dimensional finite element analysis].

    PubMed

    Hu, L; Zhao, Z; Song, J; Fan, Y; Jiang, W; Chen, J

    2001-02-01

    The distribution of stress on the surface of condylar cartilage was investigated. Three-dimensional model of the 'Temporomandibular joint mandible Herbst appliance system' was set up by SUPER SAP software (version 9.3). On this model, various bite reconstruction was simulated according to specified advanced displacement and vertical bite opening. The distribution of maximum and minimum principal stress on the surface of condylar cartilage were computerized and analyzed. When Herbst appliance drove the mandible forward, the anterior condyle surface was compressed while the posterior surface was drawn. The trend of stress on the same point on the condyle surface was consistent in various reconstruction conditions, but the trend of stress on various point were different in same reconstruction conditions. All five groups of bite reconstruction (3-7 mm advancement, 4-2 mm vertical bite opening of the mandible) designed by this study can be selected in clinic according to the patient's capability of adaptation, the extent of malocclusion and the potential and direction of growth.

  2. Influence of Adsorbed Hydroxyl and Carbon Monoxide on Potential-Induced Reconstruction of Au(100) as Examined by Scanning Tunneling Microscopy

    DTIC Science & Technology

    1994-02-01

    years have witnessed substantial advances in our knowledge of metal reconstruction in electrochemical systems, primarily for low-index gold surfaces in...index gold surfaces, reconstruction can be formed or removed by applying electrode potentials corresponding to negative or positive electronic charge...potential and gold oxidation regions, for Au(100) in 0.1 M KOH, obtained in a conventional electrochemical cell (solid trace). The voltammetric

  3. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    PubMed

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  5. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-04-01

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e

  6. Nasofacial defect following fibrosarcoma excision and radiotherapy.

    PubMed

    Burget, G L; Panje, W R; Krause, C J

    1988-01-01

    For initial reconstruction, Dr. Burget suggests that he would have advanced the cheek flap medially toward the nasal septum and, subsequently, reconstructed the missing right half of the nose with a forehead flap and cartilage grafts. Dr. Panje suggested early prosthetic rehabilitation, while Dr. Krause's concepts were similar to Dr. Burget's, with forehead flap nasal reconstruction, after cheek reconstruction to the nasofacial and nasolabial lines with a medially advanced cheek flap. Dr. Panje recommended an immediate maxillary denture prosthesis, as did Dr. Krause (who supplemented this with foam rubber). Dr. Burget placed the prosthesis 3 weeks after tumor ablation. For skin grafts, Drs. Panje and Burget suggested split thickness grafts to all new surfaces to decrease wound contracture, while Dr. Krause used dermis grafts for the same purpose. Other reconstructive methods mentioned were the (1) cervical tubed flap, (2) free scapular flap, (3) Washio flap, (4) tissue expansion, and (5) nasolabial flap. Suggestions for isolated defects included: Lower eyelid--increase internal support by building up the prosthesis; release lower lid from deltopectoral flap and V-Y advancement; support graft or irradiated cartilage (1-2 mm sheet) under orbicularis oculi. Nasal ala--bring present ala down and insert cartilage graft; turn internal skin down and fill the resulting defect with a composite graft. Upper lip--multiple Z-plasty. Retrodisplacement of cheek due to maxillectomy--release buccal scar; skin graft the raw internal surface and build up prosthesis.

  7. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background

    PubMed Central

    Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan

    2015-01-01

    Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387

  8. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo.

    PubMed

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-05-07

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.

  9. Automated dynamic feature tracking of RSLs on the Martian surface through HiRISE super-resolution restoration and 3D reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.

    2017-09-01

    In this paper, we demonstrate novel Super-resolution restoration and 3D reconstruction tools developed within the EU FP7 projects and their applications to advanced dynamic feature tracking through HiRISE repeat stereo. We show an example with one of the RSL sites in the Palikir Crater took 8 repeat-pass 25cm HiRISE images from which a 5cm RSL-free SRR image is generated using GPT-SRR. Together with repeat 3D modelling of the same area, it allows us to overlay tracked dynamic features onto the reconstructed "original" surface, providing a much more comprehensive interpretation of the surface formation processes in 3D.

  10. Extensive Quaternary glaciations in eastern Turkey

    NASA Astrophysics Data System (ADS)

    Yeşilyurt, Serdar; Akçar, Naki; Doǧan, Uǧur; Yavuz, Vural; Ivy-Ochs, Susan; Vockenhuber, Christof; Schlunegger, Fritz; Schlüchter, Christian

    2016-04-01

    During cold periods in the Quaternary, global ice volume increased and as a result valley glaciers advanced and the vice versa occurred during the warm periods. Quaternary glacier fluctuations had been also recorded in the Turkish mountains. Recently, the chronology of Late Quaternary advances in the northern and western Turkish mountains was reconstructed by surface exposure dating. However, these advances in the eastern Turkey are not dated yet. In this study, we investigated paleoglaciations in Kavuşşahap Mountains, which is located to the south of Lake Van in eastern Turkey. These mountains are one of the extensively glaciated areas in Turkey. Glacial activity is evidenced by more than 20 U-shaped valleys. For instance, one of the prominent and well-preserved glacial landscapes of Turkey is situated in the Narlıca valley system. Lateral and terminal moraines in the valley system indicate more than 10 glacial advances. To build their chronology, 39 erratic carbonaceous boulders were sampled for surface exposure dating with cosmogenic 36Cl. We also reconstructed the ice margin reconstruction of the Narlıca paleoglacier using the accumulation area ratio and area-altitude balance ratio approaches. We estimated an equilibrium line altitude (ELA) of ca. 2900 m above sea level based on the maximum ice extend, which implied ca. 800 m decrease in the ELA during the Late Quaternary in comparison to the lower bound of the modern ELA estimate. The first results of the surface exposure dating will be presented.

  11. The Physical Character of the Au (001) Surface Reconstruction in the Presence of CO and O2

    NASA Astrophysics Data System (ADS)

    Loheac, Andrew; Pierce, Michael S.; Barbour, Andi; Komanicky, Vladimir; Zhu, Chenhui; You, Hoydoo

    2014-03-01

    The interaction of carbon monoxide and oxygen on Au (001) single crystal facets has been investigated using synchrotron based surface x-ray diffraction and scattering techniques. Preliminary experiments confirm the quasi-hexagonal surface reconstruction can be influenced by exposure to CO and O, and indicate that oxidation may be present. Subsequent surface x-ray scattering experiments included a residual gas analyzer (RGA) with isotopic CO to tag the chemical species. Both CO (by itself) and O (dissociated from molecular O2 by the x-rays) are capable of lifting the hexagonal surface reconstruction resulting in a disordered bulk truncated surface. A wide range of pressures (1 mTorr - 10 Torr) and temperatures (300 K - 900 K) have been explored. We have also adapted a system of coupled partial differential equations to model the absorption kinetics and surface reconstructions. This work and use of the Advanced Photon Source were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work at Safarik University was supported by Slovak grant VEGA 1/0782/12.

  12. Recent advances in 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun

    2015-11-01

    The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  14. Automating the implementation of an equilibrium profile model for glacier reconstruction in a GIS environment

    NASA Astrophysics Data System (ADS)

    Frew, Craig R.; Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Hughes, Philip D.; Ivy-Ochs, Susan; Lukas, Sven; Renssen, Hans; Ribolini, Adriano

    2014-05-01

    Reconstruction of glacier equilibrium line altitudes (ELAs) associated with advance stages of former ice masses is widely used as a tool for palaeoclimatic reconstruction. This requires an accurate reconstruction of palaeo-glacier surface hypsometry, based on mapping of available ice-marginal landform evidence. Classically, the approach used to define ice-surface elevations, using such evidence, follows the 'cartographic method', whereby contours are estimated based on an 'understanding' of the typical surface form of contemporary ice masses. This method introduces inherent uncertainties in the palaeoclimatic interpretation of reconstructed ELAs, especially where the upper limits of glaciation are less well constrained and/or the age of such features in relation to terminal moraine sequences is unknown. An alternative approach is to use equilibrium profile models to define ice surface elevations. Such models are tuned, generally using basal shear stress, in order to generate an ice surface that reaches 'target elevations' defined by geomorphology. In areas where there are no geomorphological constraints for the former ice surface, the reconstruction is undertaken using glaciologiaclly representative values for basal shear stress. Numerical reconstructions have been shown to produce glaciologically "realistic" ice surface geometries, allowing for more objective and robust comparative studies at local to regional scales. User-friendly tools for the calculation of equilibrium profiles are presently available in the literature. Despite this, their use is not yet widespread, perhaps owing to the difficult and time consuming nature of acquiring the necessary inputs from contour maps or digital elevation models. Here we describe a tool for automatically reconstructing palaeo-glacier surface geometry using an equilibrium profile equation implemented in ArcGIS. The only necessary inputs for this tool are 1) a suitable digital elevation model and 2) mapped outlines of the former glacier terminus position (usually a frontal moraine system) and any relevant geomorphological constraints on ice surface elevation (e.g. lateral moraines, trimlines etc.). This provides a standardised method for glacier reconstruction that can be applied rapidly and systematically to large geomorphological datasets.

  15. Assessing the performance of structure-from-motion photogrammetry and terrestrial lidar 1 at reconstructing soil surface microtopography of naturally vegetated plots

    USDA-ARS?s Scientific Manuscript database

    Soil microtopography or soil roughness is a property of critical importance in many earth surface processes but is often difficult to measure. Advances in computer vision technologies have made image-based 3D depiction of the soil surface or Structure-from-Motion (SfM) available to many scientists ...

  16. Studies of electrode structures and dynamics using coherent X-ray scattering and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, H.; Liu, Y.; Ulvestad, A.

    2017-08-01

    Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.

  17. 3D shape reconstruction of specular surfaces by using phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-10-01

    The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.

  18. Equilibrium Reconstruction on the Large Helical Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuel A. Lazerson, D. Gates, D. Monticello, H. Neilson, N. Pomphrey, A. Reiman S. Sakakibara, and Y. Suzuki

    Equilibrium reconstruction is commonly applied to axisymmetric toroidal devices. Recent advances in computational power and equilibrium codes have allowed for reconstructions of three-dimensional fields in stellarators and heliotrons. We present the first reconstructions of finite beta discharges in the Large Helical Device (LHD). The plasma boundary and magnetic axis are constrained by the pressure profile from Thomson scattering. This results in a calculation of plasma beta without a-priori assumptions of the equipartition of energy between species. Saddle loop arrays place additional constraints on the equilibrium. These reconstruction utilize STELLOPT, which calls VMEC. The VMEC equilibrium code assumes good nested fluxmore » surfaces. Reconstructed magnetic fields are fed into the PIES code which relaxes this constraint allowing for the examination of the effect of islands and stochastic regions on the magnetic measurements.« less

  19. Computed myography: three-dimensional reconstruction of motor functions from surface EMG data

    NASA Astrophysics Data System (ADS)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2008-12-01

    We describe a methodology called computed myography to qualitatively and quantitatively determine the activation level of individual muscles by voltage measurements from an array of voltage sensors on the skin surface. A finite element model for electrostatics simulation is constructed from morphometric data. For the inverse problem, we utilize a generalized Tikhonov regularization. This imposes smoothness on the reconstructed sources inside the muscles and suppresses sources outside the muscles using a penalty term. Results from experiments with simulated and human data are presented for activation reconstructions of three muscles in the upper arm (biceps brachii, bracialis and triceps). This approach potentially offers a new clinical tool to sensitively assess muscle function in patients suffering from neurological disorders (e.g., spinal cord injury), and could more accurately guide advances in the evaluation of specific rehabilitation training regimens.

  20. Ensemble Kalman filter for the reconstruction of the Earth's mantle circulation

    NASA Astrophysics Data System (ADS)

    Bocher, Marie; Fournier, Alexandre; Coltice, Nicolas

    2018-02-01

    Recent advances in mantle convection modeling led to the release of a new generation of convection codes, able to self-consistently generate plate-like tectonics at their surface. Those models physically link mantle dynamics to surface tectonics. Combined with plate tectonic reconstructions, they have the potential to produce a new generation of mantle circulation models that use data assimilation methods and where uncertainties in plate tectonic reconstructions are taken into account. We provided a proof of this concept by applying a suboptimal Kalman filter to the reconstruction of mantle circulation (Bocher et al., 2016). Here, we propose to go one step further and apply the ensemble Kalman filter (EnKF) to this problem. The EnKF is a sequential Monte Carlo method particularly adapted to solve high-dimensional data assimilation problems with nonlinear dynamics. We tested the EnKF using synthetic observations consisting of surface velocity and heat flow measurements on a 2-D-spherical annulus model and compared it with the method developed previously. The EnKF performs on average better and is more stable than the former method. Less than 300 ensemble members are sufficient to reconstruct an evolution. We use covariance adaptive inflation and localization to correct for sampling errors. We show that the EnKF results are robust over a wide range of covariance localization parameters. The reconstruction is associated with an estimation of the error, and provides valuable information on where the reconstruction is to be trusted or not.

  1. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Alemohammad, S. H.

    2018-04-01

    Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.

  2. A New Approach for 3D Ocean Reconstruction from Limited Observations

    NASA Astrophysics Data System (ADS)

    Xiao, X.

    2014-12-01

    Satellites can measure ocean surface height and temperature with sufficient spatial and temporal resolution to capture mesoscale features across the globe. Measurements of the ocean's interior, however, remain sparse and irregular, thus the dynamical inference of subsurface flows is necessary to interpret surface measurements. The most common (and accurate) approach is to incorporate surface measurements into a data-assimilating forward ocean model, but this approach is expensive and slow, and thus completely impractical for time-critical needs, such as offering guidance to ship-based observational campaigns. Two recently-developed approaches have made use of the apparent partial consistency of upper ocean dynamics with quasigeostrophic flows that take into account surface buoyancy gradients (i.e. the "surface quasigeostrophic" (SQG) model) to "reconstruct" the interior flow from knowledge of surface height and buoyancy. Here we improve on these methods in three ways: (1) we adopt a modal decomposition that represents the surface and interior dynamics in an efficient way, allowing the separation of surface energy from total energy; (2) we make use of instantaneous vertical profile observations (e.g. from ARGO data) to improve the reconstruction of eddy variables at depth; and (3) we use advanced statistical methods to choose the optimal modes for the reconstruction. The method is tested using a series of high horizontal and vertical resolution quasigeostrophic simulation, with a wide range of surface buoyancy and interior potential vorticity gradient combinations. In addtion, we apply the method to output from a very high resolution primitive equation simulation of a forced and dissipated baroclinic front in a channel. Our new method is systematically compared to the existing methods as well. Its advantages and limitations will be discussed.

  3. Technical note: 3D from standard digital photography of human crania-a preliminary assessment.

    PubMed

    Katz, David; Friess, Martin

    2014-05-01

    This study assessed three-dimensional (3D) photogrammetry as a tool for capturing and quantifying human skull morphology. While virtual reconstruction with 3D surface scanning technology has become an accepted part of the paleoanthropologist's tool kit, recent advances in 3D photogrammetry make it a potential alternative to dedicated surface scanners. The principal advantages of photogrammetry are more rapid raw data collection, simplicity and portability of setup, and reduced equipment costs. We tested the precision and repeatability of 3D photogrammetry by comparing digital models of human crania reconstructed from conventional, 2D digital photographs to those generated using a 3D surface scanner. Overall, the photogrammetry and scanner meshes showed low degrees of deviation from one another. Surface area estimates derived from photogrammetry models tended to be slightly larger. Landmark configurations generally did not cluster together based upon whether the reconstruction was created with photogrammetry or surface scanning technology. Average deviations of landmark coordinates recorded on photogrammetry models were within the generally allowable range of error in osteometry. Thus, while dependent upon the needs of the particular research project, 3D photogrammetry appears to be a suitable, lower-cost alternative to 3D imaging and scanning options. Copyright © 2014 Wiley Periodicals, Inc.

  4. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  5. A Computational/Experimental Platform for Investigating Three-Dimensional Puzzle Solving of Comminuted Articular Fractures

    PubMed Central

    Thomas, Thaddeus P.; Anderson, Donald D.; Willis, Andrew R.; Liu, Pengcheng; Frank, Matthew C.; Marsh, J. Lawrence; Brown, Thomas D.

    2011-01-01

    Reconstructing highly comminuted articular fractures poses a difficult surgical challenge, akin to solving a complicated three-dimensional (3D) puzzle. Pre-operative planning using CT is critically important, given the desirability of less invasive surgical approaches. The goal of this work is to advance 3D puzzle solving methods toward use as a pre-operative tool for reconstructing these complex fractures. Methodology for generating typical fragmentation/dispersal patterns was developed. Five identical replicas of human distal tibia anatomy, were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate), and were fractured using an instrumented drop tower. Pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native (non-fracture) surfaces to a pre-fracture template. The tibias were precisely reconstructed with alignment accuracies ranging from 0.03-0.4mm. This novel technology has potential to significantly enhance surgical techniques for reconstructing comminuted intra-articular fractures, as illustrated for a representative clinical case. PMID:20924863

  6. Conceptual issues of softcopy photogrammetric workstations

    NASA Technical Reports Server (NTRS)

    Schenk, Toni; Toth, Charles K.

    1992-01-01

    A conceptual approach to digital photogrammetry is presented. Automation of photogrammetric processes on digital photogrammetric workstations is considered with particular attention given to the automatic orientation and the surface reconstruction module. It is suggested that major progress toward autonomous softcopy workstations depends more on advances on the conceptual level rather than on refinement of system components such as hardware and algorithms.

  7. A randomized, controlled trial of in situ pediatric advanced life support recertification ("pediatric advanced life support reconstructed") compared with standard pediatric advanced life support recertification for ICU frontline providers*.

    PubMed

    Kurosawa, Hiroshi; Ikeyama, Takanari; Achuff, Patricia; Perkel, Madeline; Watson, Christine; Monachino, Annemarie; Remy, Daphne; Deutsch, Ellen; Buchanan, Newton; Anderson, Jodee; Berg, Robert A; Nadkarni, Vinay M; Nishisaki, Akira

    2014-03-01

    Recent evidence shows poor retention of Pediatric Advanced Life Support provider skills. Frequent refresher training and in situ simulation are promising interventions. We developed a "Pediatric Advanced Life Support-reconstructed" recertification course by deconstructing the training into six 30-minute in situ simulation scenario sessions delivered over 6 months. We hypothesized that in situ Pediatric Advanced Life Support-reconstructed implementation is feasible and as effective as standard Pediatric Advanced Life Support recertification. A prospective randomized, single-blinded trial. Single-center, large, tertiary PICU in a university-affiliated children's hospital. Nurses and respiratory therapists in PICU. Simulation-based modular Pediatric Advanced Life Support recertification training. Simulation-based pre- and postassessment sessions were conducted to evaluate participants' performance. Video-recorded sessions were rated by trained raters blinded to allocation. The primary outcome was skill performance measured by a validated Clinical Performance Tool, and secondary outcome was behavioral performance measured by a Behavioral Assessment Tool. A mixed-effect model was used to account for baseline differences. Forty participants were prospectively randomized to Pediatric Advanced Life Support reconstructed versus standard Pediatric Advanced Life Support with no significant difference in demographics. Clinical Performance Tool score was similar at baseline in both groups and improved after Pediatric Advanced Life Support reconstructed (pre, 16.3 ± 4.1 vs post, 22.4 ± 3.9; p < 0.001), but not after standard Pediatric Advanced Life Support (pre, 14.3 ± 4.7 vs post, 14.9 ± 4.4; p =0.59). Improvement of Clinical Performance Tool was significantly higher in Pediatric Advanced Life Support reconstructed compared with standard Pediatric Advanced Life Support (p = 0.006). Behavioral Assessment Tool improved in both groups: Pediatric Advanced Life Support reconstructed (pre, 33.3 ± 4.5 vs post, 35.9 ± 5.0; p = 0.008) and standard Pediatric Advanced Life Support (pre, 30.5 ± 4.7 vs post, 33.6 ± 4.9; p = 0.02), with no significant difference of improvement between both groups (p = 0.49). For PICU-based nurses and respiratory therapists, simulation-based "Pediatric Advanced Life Support-reconstructed" in situ training is feasible and more effective than standard Pediatric Advanced Life Support recertification training for skill performance. Both Pediatric Advanced Life Support recertification training courses improved behavioral performance.

  8. Accelerating Advanced MRI Reconstructions on GPUs

    PubMed Central

    Stone, S.S.; Haldar, J.P.; Tsao, S.C.; Hwu, W.-m.W.; Sutton, B.P.; Liang, Z.-P.

    2008-01-01

    Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA’s Quadro FX 5600. The reconstruction of a 3D image with 1283 voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%. PMID:21796230

  9. Accelerating Advanced MRI Reconstructions on GPUs.

    PubMed

    Stone, S S; Haldar, J P; Tsao, S C; Hwu, W-M W; Sutton, B P; Liang, Z-P

    2008-10-01

    Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA's Quadro FX 5600. The reconstruction of a 3D image with 128(3) voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%.

  10. Validation of a computer modelled forensic facial reconstruction technique using CT data from live subjects: a pilot study.

    PubMed

    Short, Laura J; Khambay, Balvinder; Ayoub, Ashraf; Erolin, Caroline; Rynn, Chris; Wilkinson, Caroline

    2014-04-01

    Human forensic facial soft tissue reconstructions are used when post-mortem deterioration makes identification difficult by usual means. The aim is to trigger recognition of the in vivo countenance of the individual by a friend or family member. A further use is in the field of archaeology. There are a number of different methods that can be applied to complete the facial reconstruction, ranging from two dimensional drawings, three dimensional clay models and now, with the advances of three dimensional technology, three dimensional computerised modelling. Studies carried out to assess the accuracy of facial reconstructions have produced variable results over the years. Advances in three dimensional imaging techniques in the field of oral and maxillofacial surgery, particularly cone beam computed tomography (CBCT), now provides an opportunity to utilise the data of live subjects and assess the accuracy of the three dimensional computerised facial reconstruction technique. The aim of this study was to assess the accuracy of a computer modelled facial reconstruction technique using CBCT data from live subjects. This retrospective pilot study was carried out at the Glasgow Dental Hospital Orthodontic Department and the Centre of Anatomy and Human Identification, Dundee University School of Life Sciences. Ten patients (5 male and 5 female; mean age 23 years) with mild skeletal discrepancies with pre-surgical cone beam CT data (CBCT) were included in this study. The actual and forensic reconstruction soft tissues were analysed using 3D software to look at differences between landmarks, linear and angular measurements and surface meshes. There were no statistical differences for 18 out of the 23 linear and 7 out of 8 angular measurements between the reconstruction and the target (p<0.05). The use of Procrustes superimposition has highlighted potential problems with soft tissue depth and anatomical landmarks' position. Surface mesh analysis showed that this virtual sculpture technique can be objectively assessed using the distance between the meshes. This study found that the percentage of faces with less than ±2.5mm error ranged from 56% to 90%. This may be improved if Procrustes superimposition could be applied to all the mesh points rather than specific landmarks. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    PubMed

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE.

    PubMed

    Zaretskaya, Natalia; Fischl, Bruce; Reuter, Martin; Renvall, Ville; Polimeni, Jonathan R

    2018-01-15

    Recent advances in MR technology have enabled increased spatial resolution for routine functional and anatomical imaging, which has created demand for software tools that are able to process these data. The availability of high-resolution data also raises the question of whether higher resolution leads to substantial gains in accuracy of quantitative morphometric neuroimaging procedures, in particular the cortical surface reconstruction and cortical thickness estimation. In this study we adapted the FreeSurfer cortical surface reconstruction pipeline to process structural data at native submillimeter resolution. We then quantified the differences in surface placement between meshes generated from (0.75 mm) 3 isotropic resolution data acquired in 39 volunteers and the same data downsampled to the conventional 1 mm 3 voxel size. We find that when processed at native resolution, cortex is estimated to be thinner in most areas, but thicker around the Cingulate and the Calcarine sulci as well as in the posterior bank of the Central sulcus. Thickness differences are driven by two kinds of effects. First, the gray-white surface is found closer to the white matter, especially in cortical areas with high myelin content, and thus low contrast, such as the Calcarine and the Central sulci, causing local increases in thickness estimates. Second, the gray-CSF surface is placed more interiorly, especially in the deep sulci, contributing to local decreases in thickness estimates. We suggest that both effects are due to reduced partial volume effects at higher spatial resolution. Submillimeter voxel sizes can therefore provide improved accuracy for measuring cortical thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  14. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  15. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  16. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  17. Advances in Bioprinting Technologies for Craniofacial Reconstruction.

    PubMed

    Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan

    2016-09-01

    Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelt, Daniël M.; Gürsoy, Dogˇa; Palenstijn, Willem Jan

    2016-04-28

    The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it ismore » shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy's standard reconstruction method.« less

  19. Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data

    PubMed Central

    Pelt, Daniël M.; Gürsoy, Doǧa; Palenstijn, Willem Jan; Sijbers, Jan; De Carlo, Francesco; Batenburg, Kees Joost

    2016-01-01

    The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it is shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy’s standard reconstruction method. PMID:27140167

  20. Additive manufacturing technology in reconstructive surgery.

    PubMed

    Fuller, Scott C; Moore, Michael G

    2016-10-01

    Technological advances have been part and parcel of modern reconstructive surgery, in that practitioners of this discipline are continually looking for innovative ways to perfect their craft and improve patient outcomes. We are currently in a technological climate wherein advances in computers, imaging, and science have coalesced with resulting innovative breakthroughs that are not merely limited to improved outcomes and enhanced patient care, but may provide novel approaches to training the next generation of reconstructive surgeons. New developments in software and modeling platforms, imaging modalities, tissue engineering, additive manufacturing, and customization of implants are poised to revolutionize the field of reconstructive surgery. The interface between technological advances and reconstructive surgery continues to expand. Additive manufacturing techniques continue to evolve in an effort to improve patient outcomes, decrease operative time, and serve as instructional tools for the training of reconstructive surgeons.

  1. The algorithm of central axis in surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhao, Bao Ping; Zhang, Zheng Mei; Cai Li, Ji; Sun, Da Ming; Cao, Hui Ying; Xing, Bao Liang

    2017-09-01

    Reverse engineering is an important technique means of product imitation and new product development. Its core technology -- surface reconstruction is the current research for scholars. In the various algorithms of surface reconstruction, using axis reconstruction is a kind of important method. For the various reconstruction, using medial axis algorithm was summarized, pointed out the problems existed in various methods, as well as the place needs to be improved. Also discussed the later surface reconstruction and development of axial direction.

  2. [Three-dimensional evaluation of condylar morphology remodeling after orthognathic surgery in mandibular retrognathism by cone-beam computed tomography].

    PubMed

    Chen, Shuo; Liu, Xiao-jing; Li, Zi-li; Liang, Cheng; Wang, Xiao-xia; Fu, Kai-yuan; Yi, Biao

    2015-08-18

    To evaluate the effect of orthognathic surgery on condylar morphology changes by comparing three-dimension surface reconstructions of condyles using cone-beam computed tomography (CBCT) data. In the study, 18 patients with mandible retrognathism deformities were included and CBCT data of 36 temporomandibular joints were collected before surgery and 12 months after surgery. Condyles were reconstructed and superimposed pre- and post-operatively to compare the changes of condylar surfaces. One-sample t test and χ2 test were performed for the analysis of three-dimension metric measurement and condylar head remodeling signs. P<0.05 was considered significant. The root-mean-square (RMS) of condylar surface changes before and after the surgery was (0.37±0.11) mm, which was significant statistically (P<0.05). The distribution of condylar remodeling signs showed significant difference (P<0.05). Bone resorption occurred predominantly in the posterior area of condylar head and bone formation occurred mainly in the anterior area. Three-dimension superimposition method based on CBCT data showed that condylar morphology had undergone remodeling after mandibular advancement.

  3. Te Monolayer-Driven Spontaneous van der Waals Epitaxy of Two-dimensional Pnictogen Chalcogenide Film on Sapphire.

    PubMed

    Hwang, Jae-Yeol; Kim, Young-Min; Lee, Kyu Hyoung; Ohta, Hiromichi; Kim, Sung Wng

    2017-10-11

    Demands on high-quality layer structured two-dimensional (2D) thin films such as pnictogen chalcogenides and transition metal dichalcogenides are growing due to the findings of exotic physical properties and potentials for device applications. However, the difficulties in controlling epitaxial growth and the unclear understanding of van der Waals epitaxy (vdWE) for a 2D chalcogenide film on a three-dimensional (3D) substrate have been major obstacles for the further advances of 2D materials. Here, we exploit the spontaneous vdWE of a high-quality 2D chalcogenide (Bi 0.5 Sb 1.5 Te 3 ) film by the chalcogen-driven surface reconstruction of a conventional 3D sapphire substrate. It is verified that the in situ formation of a pseudomorphic Te atomic monolayer on the surface of sapphire, which results in a dangling bond-free surface, allows the spontaneous vdWE of 2D chalcogenide film. Since this route uses the natural surface reconstruction of sapphire with chalcogen under vacuum condition, it can be scalable and easily utilized for the developments of various 2D chalcogenide vdWE films through conventional thin-film fabrication technologies.

  4. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    NASA Astrophysics Data System (ADS)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure. Preliminary simulation results will also be discussed.

  5. Atomic Mechanism of Hybridization-Dependent Surface Reconstruction with Tailored Functionality in Hexagonal Multiferroics.

    PubMed

    Deng, Shiqing; Cheng, Shaobo; Xu, Changsong; Ge, Binghui; Sun, Xuefeng; Yu, Rong; Duan, Wenhui; Zhu, Jing

    2017-08-16

    The broken symmetry along with anomalous defect structures and charging conditions at multiferroics surface can alter both crystal structures and electronic configurations, bringing in emergent physical properties. Extraordinary surface states are induced into original mutually coupled order parameters in such strongly correlated oxides, which flourish in diverse properties but remain less explored. Here, we report the peculiar surface ferroelectric states and reconfigurable functionalities driven by the relaxation of surface and consequent changes in O 2p and Y 4d orbital (p-d) hybridization within a representative hexagonal multiferroics, YMnO 3 . An unprecedented surface reconstruction is achieved by tailored p-d hybridization coupling with in-plane oxygen vacancies, which is atomically revealed on the basis of the advantages of state-of-the-art aberration-corrected (scanning) transmission electron microscopy. Further ab initio density functional theory calculations verify the key roles of in-plane oxygen vacancies in modulating polarization properties and electronic structure, which should be regarded as the atomic multiferroic element. This surface configuration is found to induce tunable functionalities, such as surface ferromagnetism and conductivity. Meanwhile, the controversial origin of improper ferroelectricity that is unexpectedly free from critical size has also been atomically unraveled. Our findings provide new insights into the design and implementation of surface chemistry devices by simply controlling the oxygen stoichiometry, greatly advance our understandings of surface science in strongly correlated oxides, and enable exciting innovations and new technological functionality paradigms.

  6. 3D reconstruction of cystoscopy videos for comprehensive bladder records

    PubMed Central

    Lurie, Kristen L.; Angst, Roland; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.

    2017-01-01

    White light endoscopy is widely used for diagnostic imaging of the interior of organs and body cavities, but the inability to correlate individual 2D images with 3D organ morphology limits its utility for quantitative or longitudinal studies of disease physiology or cancer surveillance. As a result, most endoscopy videos, which carry enormous data potential, are used only for real-time guidance and are discarded after collection. We present a computational method to reconstruct and visualize a 3D model of organs from an endoscopic video that captures the shape and surface appearance of the organ. A key aspect of our strategy is the use of advanced computer vision techniques and unmodified, clinical-grade endoscopy hardware with few constraints on the image acquisition protocol, which presents a low barrier to clinical translation. We validate the accuracy and robustness of our reconstruction and co-registration method using cystoscopy videos from tissue-mimicking bladder phantoms and show clinical utility during cystoscopy in the operating room for bladder cancer evaluation. As our method can powerfully augment the visual medical record of the appearance of internal organs, it is broadly applicable to endoscopy and represents a significant advance in cancer surveillance opportunities for big-data cancer research. PMID:28736658

  7. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing.

    PubMed

    Oh, Ji-Hyeon

    2018-12-01

    With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

  8. Paleoglacier reconstruction of the central massif of Gredos range during Last Glacial Maximum.

    NASA Astrophysics Data System (ADS)

    Campos, Néstor; Tanarro, Luis Miguel

    2017-04-01

    The accurate reconstruction of paleoglaciers require a well determined extent and morphology of them, one of the main problems is the absence of glacial geomorphic evidences which made possible the delimitation of the ice limits, for this reason physical-based models are useful for ice surface reconstruction in areas where geomorphological information is incomplete. A paleoglacier reconstruction during its maximum extension is presented for a high mountain area of the western part of the central massif of Gredos range, in the center of Iberian Peninsula, this area is located 30 km west of Almanzor (40˚ 14' 48? N; 5˚ 17' 52? W; 2596 m a.s.l.), the highest peak of Iberian Central System (ICS) and covers five gorges: La Nava, Taheña- Honda, La Vega, San Martín and Los Infiernos, the first three facing North, San Martin facing Northwest and Los Infiernos facing West. Despite the existence of some works analyzing the extension of paleoglaciers in the ICS during its maximum extension, there is still a need to improve the understanding of this zone, to provide a more detailed knowlegde of the evolution of the range and to know more in detail the full extent of paleoglaciers in this area. For delimitate the glaciated area the most distant frontal moraines with a larger geomorphological entity that indicates a great advance or a prolonged stay and stabilization which would presumably correspond with the maximum advance of the glaciers have been mapped, for that, photo interpretation of digital aerial photographs (25 cm resolution) has been done, in some areas where the location or limits of the moraines were not clear 3D images were used, all the work was complemented with detailed field surveys. Once the ice limits have been determined is necessary to estimate the topography of the paleoglaciers, for that purpose a simple steady-state models that assume a perfectly plastic ice rheology have been used, reconstructing the theoretical ice profiles and obtaining the extent of the paleoglaciers (based on the largest moraines of the front and sides of the valley as the main indicator of the LGM), in order to reconstruct the ice surface we calculated longitudinal profiles, with these reconstructed profiles a digital elevation model (DEM) of 5 m pixel size was created and combined with actual topography in order to obtain the ice thickness at the LGM. The combination of these physical-based models and geomorphological evidences has demonstrated to be a successful method to reconstruct the topography of paleoglaciers, the most distant frontal moraines of the studied area are located at different altitudes depending on the paleoglacier, the lower altitude of a frontal moraine is 1320 meters and the higher is located at 1570 meters, the preliminary results show that during the LGM, the studied paleoglaciers had a maximum ice thickness of 366 meters in La Vega gorge, with a total volume of 28.56 x 108 m3 and a mean paleoELA of 1940 meters. References: Benn, D.I., Hulton, N.R.J., 2010. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36, 605e610. Schilling, D.H., Hollin, J., 1981. Numerical reconstructions of valley glaciers and small ice caps. In: Denton, G.H., Hughes, T.J. (Eds.), The Last Great Ice Sheets. Willey, New York, USA, pp. 207e220. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain

  9. 3D Surface Reconstruction and Automatic Camera Calibration

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  10. Kinematic reconstruction in cardiovascular imaging.

    PubMed

    Bastarrika, G; Huebra Rodríguez, I J González de la; Calvo-Imirizaldu, M; Suárez Vega, V M; Alonso-Burgos, A

    2018-05-17

    Advances in clinical applications of computed tomography have been accompanied by improvements in advanced post-processing tools. In addition to multiplanar reconstructions, curved planar reconstructions, maximum intensity projections, and volumetric reconstructions, very recently kinematic reconstruction has been developed. This new technique, based on mathematical models that simulate the propagation of light beams through a volume of data, makes it possible to obtain very realistic three dimensional images. This article illustrates examples of kinematic reconstructions and compares them with classical volumetric reconstructions in patients with cardiovascular disease in a way that makes it easy to establish the differences between the two types of reconstruction. Kinematic reconstruction is a new method for representing three dimensional images that facilitates the explanation and comprehension of the findings. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Anthropometric body measurements based on multi-view stereo image reconstruction.

    PubMed

    Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui

    2013-01-01

    Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of the proposed system.

  12. Anthropometric Body Measurements Based on Multi-View Stereo Image Reconstruction*

    PubMed Central

    Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui

    2013-01-01

    Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting automatic anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of proposed system. PMID:24109700

  13. Investigation of Severe Craniomaxillofacial Battle Injuries Sustained by U.S. Service Members: A Case Series

    DTIC Science & Technology

    2012-11-05

    advancement flaps and reconstructive advancement of lower lip and a buccal mucosa advancement flap to reconstruct maxillary lip. (C) Incision markings for...Maxillofac Surg 2007;65:1215 1218 6 Clark N, Birely B, Manson PN, et al. High energy ballistic and avulsive facial injuries: classification, patterns, and

  14. The lobular transposition flap: a useful adjunct to reconstruct helical defects.

    PubMed

    Saleh, D B; Tan, J; Mohammed, P; Majumder, S

    2012-07-01

    We detail our adjunct to Antia and Buch's chondrocutaneous advancement flap for helical reconstruction. It is simple, reliable and negates the need for transfer of the defect to the lobule and/or V-Y advancement of the helical crus. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Local delivery of controlled-release simvastatin to improve the biocompatibility of polyethylene terephthalate artificial ligaments for reconstruction of the anterior cruciate ligament.

    PubMed

    Zhang, Peng; Han, Fei; Li, Yunxia; Chen, Jiwu; Chen, Tianwu; Zhi, Yunlong; Jiang, Jia; Lin, Chao; Chen, Shiyi; Zhao, Peng

    2016-01-01

    The Ligament Advanced Reinforcement System has recently been widely used as the primary graft of choice in anterior cruciate ligament (ACL) reconstruction. But the biological graft-bone healing still remains a problem. Previous studies have shown that simvastatin (SIM) stimulates bone formation. The objective of this study was to investigate whether surface coating with collagen containing low-dose SIM microsphere could enhance the surface biocompatibility of polyethylene terephthalate (PET) artificial ligaments to accelerate graft-to-bone healing. The in vitro studies demonstrated that bone marrow stromal cells on the collagen-coated PET scaffolds (COL/PET) and simvastatin/collagen-coated PET scaffolds (SIM/COL/PET) proliferated vigorously. Compared with the PET group and the COL/PET group, SIM could induce bone marrow stromal cells' osteoblastic differentiation, high alkaline phosphatase activity, more mineralization deposition, and more expression of osteoblast-related genes, such as osteocalcin, runt-related transcription factor 2, bone morphogenetic protein-2, and vascular endothelial growth factor, in the SIM/COL/PET group. In vivo, rabbits received ACL reconstruction with different scaffolds. Histological analysis demonstrated that graft-bone healing was significantly greater with angiogenesis and osteogenesis in the SIM/COL/PET group than the other groups. In addition, biomechanical testing at the eighth week demonstrated a significant increase in the ultimate failure load and stiffness in the SIM/COL/PET group. The low dose of SIM-sustained release from SIM/COL/PET promoted the graft-bone healing via its effect on both angiogenesis and osteogenesis. This study suggested that collagen containing low-dose SIM microsphere coating on the surface of PET artificial ligaments could be potentially applied for ACL reconstruction.

  16. Impact of reconstructive microsurgery in patients with advanced oral cavity cancers.

    PubMed

    Hanasono, Matthew M; Friel, Michael T; Klem, Christopher; Hsu, Patrick W; Robb, Geoffrey L; Weber, Randal S; Roberts, Dianna B; Chang, David W

    2009-10-01

    Our goal was to determine the impact of reconstructive microsurgery on the treatment of advanced oral cavity cancers. We reviewed 484 patients undergoing resection of T3-4 oral cavity squamous cell cancers from 1980 to 2004. To examine how reconstructive microsurgery affects outcomes, we compared 135 patients treated prior to the introduction of free tissue transfer and 349 patients treated after the introduction of free tissue transfer. Cancers treated after the introduction of free flaps included a significantly higher proportion of T4 compared to T3 lesions and significantly more advanced N classification lesions. Although cancers were more advanced, survival and recurrence rates were maintained and the rate of positive pathologic margins decreased significantly. In addition, fistula and tracheostomy dependence rates decreased and rates of intelligible speech increased. Reconstructive microsurgery contributes to improved oncologic outcomes in addition to better function and lower morbidity in oral cavity cancer treatment. (c) 2009 Wiley Periodicals, Inc.

  17. Feature-constrained surface reconstruction approach for point cloud data acquired with 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Sheng, Yehua; Lu, Guonian; Tian, Peng; Zhang, Kai

    2008-04-01

    Surface reconstruction is an important task in the field of 3d-GIS, computer aided design and computer graphics (CAD & CG), virtual simulation and so on. Based on available incremental surface reconstruction methods, a feature-constrained surface reconstruction approach for point cloud is presented. Firstly features are extracted from point cloud under the rules of curvature extremes and minimum spanning tree. By projecting local sample points to the fitted tangent planes and using extracted features to guide and constrain the process of local triangulation and surface propagation, topological relationship among sample points can be achieved. For the constructed models, a process named consistent normal adjustment and regularization is adopted to adjust normal of each face so that the correct surface model is achieved. Experiments show that the presented approach inherits the convenient implementation and high efficiency of traditional incremental surface reconstruction method, meanwhile, it avoids improper propagation of normal across sharp edges, which means the applicability of incremental surface reconstruction is greatly improved. Above all, appropriate k-neighborhood can help to recognize un-sufficient sampled areas and boundary parts, the presented approach can be used to reconstruct both open and close surfaces without additional interference.

  18. Challenges in Flying Quadrotor Unmanned Aerial Vehicle for 3d Indoor Reconstruction

    NASA Astrophysics Data System (ADS)

    Yan, J.; Grasso, N.; Zlatanova, S.; Braggaar, R. C.; Marx, D. B.

    2017-09-01

    Three-dimensional modelling plays a vital role in indoor 3D tracking, navigation, guidance and emergency evacuation. Reconstruction of indoor 3D models is still problematic, in part, because indoor spaces provide challenges less-documented than their outdoor counterparts. Challenges include obstacles curtailing image and point cloud capture, restricted accessibility and a wide array of indoor objects, each with unique semantics. Reconstruction of indoor environments can be achieved through a photogrammetric approach, e.g. by using image frames, aligned using recurring corresponding image points (CIP) to build coloured point clouds. Our experiments were conducted by flying a QUAV in three indoor environments and later reconstructing 3D models which were analysed under different conditions. Point clouds and meshes were created using Agisoft PhotoScan Professional. We concentrated on flight paths from two vantage points: 1) safety and security while flying indoors and 2) data collection needed for reconstruction of 3D models. We surmised that the main challenges in providing safe flight paths are related to the physical configuration of indoor environments, privacy issues, the presence of people and light conditions. We observed that the quality of recorded video used for 3D reconstruction has a high dependency on surface materials, wall textures and object types being reconstructed. Our results show that 3D indoor reconstruction predicated on video capture using a QUAV is indeed feasible, but close attention should be paid to flight paths and conditions ultimately influencing the quality of 3D models. Moreover, it should be decided in advance which objects need to be reconstructed, e.g. bare rooms or detailed furniture.

  19. 360° Fourier transform profilometry in surface reconstruction for fluorescence molecular tomography.

    PubMed

    Shi, Bi'er; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-05-01

    Fluorescence molecular tomography (FMT) is an emerging tool in the observation of diseases. A fast and accurate surface reconstruction of the experimental object is needed as a boundary constraint for FMT reconstruction. In this paper, an automatic, noncontact, and 3-D surface reconstruction method named 360◦ Fourier transform profilometry (FTP) is proposed to reconstruct 3-D surface profiles for FMT system. This method can reconstruct 360◦ integrated surface profiles utilizing the single-frame FTP at different angles. Results show that the relative mean error of the surface reconstruction of this method is less than 1.4% in phantom experiments, and is no more than 2.9% in mouse experiments in vivo. Compared with the Radon transform method, the proposed method reduces the computation time by more than 90% with a minimal error increase. At last, a combined 360◦ FTP/FMT experiment is conducted on a nude mouse. Not only can the 360◦ FTP system operate with the FMT system simultaneously, but it can also help to monitor the status of animals. Moreover, the 360◦ FTP system is independent of FMT system and can be performed to reconstruct the surface by itself.

  20. Functional rehabilitation in advanced intraoral cancer.

    PubMed

    Barret, Juan P; Roodenburg, Jan L

    2017-02-01

    Modern treatment of advanced intraoral cancer involves multidisciplinary teams with use of complicated reconstructive techniques to provide improved survival with optimal rehabilitation. Mastication is an important part of this process, and it can be severely impaired by tumor ablation. Whether flap reconstruction is a determinant factor in dental rehabilitation is still in debate. Thirty-five patients with advanced intraoral cancer were reviewed to determine dental rehabilitation of different reconstructive techniques. The patients were treated with a multidisciplinary team approach. The patients' demographics, primary treatment, reconstructive surgery, dental rehabilitation, and functional outcome were recorded and analyzed. Nine patients had Stadium III disease, and 26 patients had stadium IV. Thirty-two patients (91.42%) received postoperative radiotherapy. Masticatory and dental functional rehabilitation of patients was very poor. Only 15 patients (42.86%) could eat a normal diet, whereas 18 patients (51.42%) could manage only soft diets, and 2 patients (5.72%) could only be fed with a liquid diet. Denture rehabilitation was even more frustrating and had a direct impact on masticatory rehabilitation. Only 10 patients (28.57%) could use dentures postoperatively and 40% of patients (14 patients) could not use any denture at all. Above all reconstructive techniques, the free radial forearm flap provides the best functional outcome. Reconstruction of advanced intraoral cancer results in poor denture rehabilitation, especially when bulky flaps are used. If massive resections are necessary, the free radial forearm flap reconstruction provides the best functional outcome.

  1. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE PAGES

    Willey, T. M.; Champley, K.; Hodgin, R.; ...

    2016-06-17

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst,more » the 2 nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3 rd frame captures the flyer in flight, while the 4 th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  2. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  3. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  4. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, T. M., E-mail: willey1@llnl.gov; Champley, K., E-mail: champley1@llnl.gov; Hodgin, R.

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ∼80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images themore » flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  5. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, T. M.; Champley, K.; Hodgin, R.

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst,more » the 2 nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3 rd frame captures the flyer in flight, while the 4 th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  6. (Tl, Sb) and (Tl, Bi) binary surface reconstructions on Ge(111) substrate

    NASA Astrophysics Data System (ADS)

    Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Yakovlev, A. A.; Mihalyuk, A. N.; Zotov, A. V.; Saranin, A. A.

    2018-03-01

    2D compounds made of Group-III and Group-V elements on the surface of silicon and germanium attract considerable attention due to prospects of creating III-V binary monolayers, which are predicted to hold advanced physical properties. In the present work, we have investigated two such systems, (Tl, Sb)/Ge(111) and (Tl, Bi)/Ge(111) using scanning tunneling microscopy, low energy electron diffraction observations and density-functional-theory calculations. In addition to the previously reported surface structures of 2D (Tl, Sb) and (Tl, Bi) compounds on Si(111), we found new ones, namely, √{ 7} × √{ 7} and 3 × 3. Formation processes and plausible models of their atomic arrangements are discussed.

  7. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Guoyan

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less

  8. Reconstructing the vibro-acoustic quantities on a highly non-spherical surface using the Helmholtz equation least squares method.

    PubMed

    Natarajan, Logesh Kumar; Wu, Sean F

    2012-06-01

    This paper presents helpful guidelines and strategies for reconstructing the vibro-acoustic quantities on a highly non-spherical surface by using the Helmholtz equation least squares (HELS). This study highlights that a computationally simple code based on the spherical wave functions can produce an accurate reconstruction of the acoustic pressure and normal surface velocity on planar surfaces. The key is to select the optimal origin of the coordinate system behind the planar surface, choose a target structural wavelength to be reconstructed, set an appropriate stand-off distance and microphone spacing, use a hybrid regularization scheme to determine the optimal number of the expansion functions, etc. The reconstructed vibro-acoustic quantities are validated rigorously via experiments by comparing the reconstructed normal surface velocity spectra and distributions with the benchmark data obtained by scanning a laser vibrometer over the plate surface. Results confirm that following the proposed guidelines and strategies can ensure the accuracy in reconstructing the normal surface velocity up to the target structural wavelength, and produce much more satisfactory results than a straight application of the original HELS formulations. Experiment validations on a baffled, square plate were conducted inside a fully anechoic chamber.

  9. Reconstruction with Vertical Rectus Abdominus Myocutaneous flap in advanced pelvic malignancy.

    PubMed

    Creagh, Terrence A; Dixon, Liane; Frizelle, Frank A

    2012-06-01

    Pelvic extenuative surgery produces good long term outcomes in advanced pelvic malignancies. We evaluate the use and clinical outcomes of the Vertical Rectus Abdominus Myocutaenous (VRAM) flap as a reconstruction technique in a heterogenic cohort of patients with advanced colorectal cancer in whom neo-adjuvant chemo-radiotherapy had been performed pre-operatively. Analysis of patients having VRAM flaps for pelvic reconstruction in a tertiary referral centre from 2001 to 2010 was conducted. 37 patients (23 female, 14 male) underwent pelvic extenuative surgery of which 22 (60%) had recurrent pelvic disease. All surgical and medical complications were analysed. Major flap complications were defined as 'requiring return to the operating theatre at any stage' and these occurred in 6 (16%) patients. There were 7 (19%) minor flap complications defined as 'requiring conservative non surgical treatment' The total global re-intervention rate of patients requiring return to theatre for re-operation as a result of their exenteration and reconstruction was 6 (16%). We highlight the merits and versatility of the VRAM flap in advanced pelvic malignancy in obtaining stable and supple reconstructive cover and the relative low morbidity in this difficult group confirms out strong support for immediate VRAM reconstruction in pelvic exenterative procedures. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. New paleoclimatic database for the Iberian Peninsula since AD 1700 inferred from tree-ring records and documentary evidence: advances in temperature and drought variability reconstructions

    NASA Astrophysics Data System (ADS)

    Tejedor, Ernesto; Ángel Saz, Miguel; de Luis, Martín; Esper, Jan; Barriendos, Mariano; Serrano-Notivoli, Roberto; Novak, Klemen; Longares, Luis Alberto; Martínez-del Castillo, Edurne; María Cuadrat, José

    2017-04-01

    A substantial increase of surface air temperatures in the upcoming decades, particularly significant in the Mediterranean basin, has been reported by the IPCC (IPCC, 2013). It is therefore particularly important to study past climate extremes and variability in this region, which will in turn support the accuracy of future climate scenarios. Yet, our knowledge of past climate variability and trends is limited by the shortage of instrumental data prior to the twentieth century, which prompts to the need of discovering new sources with which to reconstruct past climate. We here present a new paleoclimatic database for the northeast of the Iberian Peninsula based on tree-ring records, documentary evidence and instrumental data. The network includes 774 tree-ring, earlywood and latewood width series from Pinus uncinata, Pinus sylvestris and Pinus nigra trees in the Pyrenees and Iberian Range reaching back to AD 1510. Three reconstructions are developed using these samples; an annual drought reconstruction since AD 1694, a summer drought reconstruction since AD 1734, and a maximum temperature reconstruction since AD 1604. Additionally, the documentary records from 16 locations in the Ebro Valley are examined focusing on climate-related 'rogations'. We differentiated three types of rogations, considering the importance of religious acts, to identify the severity of drought and pluvial events. Finally, an attempt to explore the links between documentary and tree-ring based reconstructions is presented.

  11. Evaluation of algorithms for point cloud surface reconstruction through the analysis of shape parameters

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Verbeek, Fons J.

    2012-03-01

    In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.

  12. Predicting supramolecular self-assembly on reconstructed metal surfaces

    NASA Astrophysics Data System (ADS)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern. GA image adapted from refs: (a) Phys. Chem. Chem. Phys., 2001, 3, 3399-3404, with permission from the PCCP Owner Societies, and (b) J. Phys. Chem. C, 2008, 112 (18), 7168-7172, reprinted with permission from the American Chemical Society, copyright © 2008.

  13. The sedimentary evolution of the Celtic Sea during Marine Isotope Stages 1 and 2

    NASA Astrophysics Data System (ADS)

    Lockhart, Edward; Scourse, James; Van Landeghem, Katrien; Praeg, Daniel; Mellett, Claire; Huws, Dei; Saher, Margot; Benetti, Sara

    2017-04-01

    During the Last Glacial Maximum (LGM), the Celtic Sea was partially glaciated by the Irish Sea Ice Stream and is considered to have subsequently experienced a high-energy post-glacial transgression. The combination of these events resulted in the deposition, reworking and erosion of a wide range of sediment types to produce the upper stratigraphy of the shelf, including the world's largest submarine elongated ridges. These geomorphic features dominate the shelf and have been previously interpreted to have formed as a result of the tidal reworking of shelf deposits during transgression, despite not having been directly dated. Shelf-wide high-resolution geophysical data, and vibrocores, collected as part of the BRITICE-CHRONO Project, provide new information on relationships between seismic and shallow sedimentary units. A regionally extensive near-surface reflector, cored in several locations, correlates to a gravel/shell layer with an erosive base, unconformably overlying fine-grained LGM glacial sediments with undrained shear strengths in excess of 120 kPa, and in places exhibiting visibly deformed laminations. Geotechnical tests suggest these sediments to be over-consolidated, and we propose that these properties and the observed deformation can only be explained by subglacial reworking under a re-advancing Irish Sea Ice Stream, a scenario never before evidenced in reconstructions of Celtic Sea glaciation. Previous reconstructions propose a single advance-retreat cycle; therefore, a re-advance during a time of inferred retreat would represent a significant change in glacial dynamics. Seismic reflection profiles show that the regionally continuous gravel/shell layer appears to form an undulating palaeo-topography, possibly influenced by the geotechnical properties of the deposits below, on which the large surface ridges are formed. The presence of a regionally continuous reflection surface truncating LGM glacial sediments would suggest a significant erosion event after glacial deposition occurred, possibly representing transgression. This suggests that the large surface ridges may be of post-glacial tidal origin, but with significant sediment supply and morphological control influenced by the glaciation of the Celtic Sea.

  14. Eyelid reconstruction using the "Hughes" tarsoconjunctival advancement flap: Long-term outcomes in 122 consecutive cases over a 13-year period.

    PubMed

    McKelvie, James; Ferguson, Reid; Ng, Stephen G J

    2017-08-01

    This article evaluates the complications and long term functional and cosmetic outcomes of tarsoconjunctival advancement flaps for repairing a range of lower eyelid defects in a large cohort of consecutive cases. A retrospective series of 122 consecutive cases of eyelid reconstruction using tarsoconjunctival-advancement flaps was conducted at Waikato Hospital, or Hamilton Eye Clinic, New Zealand. All cases of lid reconstruction using tarsoconjunctival-advancement flaps between January 1, 2001 until April 3, 2014 were included for analysis. All patients provided written consent for surgery and the study complied with New Zealand Health and Disability Ethics Committee guidelines and the Declaration of Helsinki. Data were collected on patient demographics, lesion histology, defect size, adjuvant surgical procedures required for reconstruction, surgical and postoperative complications, cosmesis and patient satisfaction. Patients requiring lower eyelid reconstruction were predominantly male (56%) and basal cell carcinoma was the most common pathology (>80%). Male gender was associated with larger tarsoconjunctival-advancement-flap width (P-value = 0.0432), larger maximum flap width (20 vs 15 mm), and required on average more adjuvant procedures for reconstruction (1.80 vs 1.48, P-value = 0.02). Mean duration to flap division was 37 days and decreased over the duration of the study. Complicated cases were associated with shorter duration to flap division. Mean follow-up was 7 months, complications were observed in 14% with revision required in 4%. Tarsoconjunctival flap reconstruction of the lower lid is suitable for a range of defect sizes and produces excellent functional and cosmetic outcomes. Complications are relatively infrequent and may be associated in some cases with decreased duration to flap division.

  15. Maculoplasty for age-related macular degeneration: reengineering Bruch's membrane and the human macula.

    PubMed

    Del Priore, Lucian V; Tezel, Tongalp H; Kaplan, Henry J

    2006-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the western world. Over the last decade, there have been significant advances in the management of exudative AMD with the introduction of anti-VEGF drugs; however, many patients with exudative AMD continue to lose vision and there are no effective treatments for advanced exudative AMD or geographic atrophy. Initial attempts at macular reconstruction using cellular transplantation have not been effective in reversing vision loss. Herein we discuss the current status of surgical attempts to reconstruct damaged subretinal anatomy in advanced AMD. We reinforce the concept of maculoplasty for advanced AMD, which is defined as reconstruction of macular anatomy in patients with advanced vision loss. Successful maculoplasty is a three-step process that includes replacing or repairing damaged cells (using transplantation, translocation or stimulation of autologous cell proliferation); immune suppression (if allografts are used to replace damaged cells); and reconstruction or replacement of Bruch's membrane (to restore the integrity of the substrate for proper cell attachment). In the current article we will review the rationale for maculoplasty in advanced AMD, and discuss the results of initial clinical attempts at macular reconstruction. We will then discuss the role of Bruch's membrane damage in limiting transplant survival and visual recovery, and discuss the effects of age-related changes within human Bruch's membrane on the initial attachment and subsequent proliferation of transplanted cells. We will discuss attempts to repair Bruch's membrane by coating with extracellular matrix ligands, anatomic reconstitution of the inner collagen layer, and the effects of Bruch's membrane reconstruction of ultrastuctural anatomy and subsequent cell behavior. Lastly, we will emphasize the importance of continued efforts required for successful maculoplasty.

  16. Functional rehabilitation in advanced intraoral cancer

    PubMed Central

    Roodenburg, Jan L.

    2017-01-01

    Introduction: Modern treatment of advanced intraoral cancer involves multidisciplinary teams with use of complicated reconstructive techniques to provide improved survival with optimal rehabilitation. Mastication is an important part of this process, and it can be severely impaired by tumor ablation. Whether flap reconstruction is a determinant factor in dental rehabilitation is still in debate. Patients and methods: Thirty-five patients with advanced intraoral cancer were reviewed to determine dental rehabilitation of different reconstructive techniques. The patients were treated with a multidisciplinary team approach. The patients’ demographics, primary treatment, reconstructive surgery, dental rehabilitation, and functional outcome were recorded and analyzed. Results: Nine patients had Stadium III disease, and 26 patients had stadium IV. Thirty-two patients (91.42%) received postoperative radiotherapy. Masticatory and dental functional rehabilitation of patients was very poor. Only 15 patients (42.86%) could eat a normal diet, whereas 18 patients (51.42%) could manage only soft diets, and 2 patients (5.72%) could only be fed with a liquid diet. Denture rehabilitation was even more frustrating and had a direct impact on masticatory rehabilitation. Only 10 patients (28.57%) could use dentures postoperatively and 40% of patients (14 patients) could not use any denture at all. Above all reconstructive techniques, the free radial forearm flap provides the best functional outcome. Conclusions: Reconstruction of advanced intraoral cancer results in poor denture rehabilitation, especially when bulky flaps are used. If massive resections are necessary, the free radial forearm flap reconstruction provides the best functional outcome. PMID:29177211

  17. Surface reconstruction of InAs (001) depending on the pressure and temperature examined by density functional thermodynamics.

    PubMed

    Yeu, In Won; Park, Jaehong; Han, Gyuseung; Hwang, Cheol Seong; Choi, Jung-Hae

    2017-09-06

    A detailed understanding of the atomic configuration of the compound semiconductor surface, especially after reconstruction, is very important for the device fabrication and performance. While there have been numerous experimental studies using the scanning probe techniques, further theoretical studies on surface reconstruction are necessary to promote the clear understanding of the origins and development of such subtle surface structures. In this work, therefore, a pressure-temperature surface reconstruction diagram was constructed for the model case of the InAs (001) surface considering both the vibrational entropy and configurational entropy based on the density functional theory. Notably, the equilibrium fraction of various reconstructions was determined as a function of the pressure and temperature, not as a function of the chemical potential, which largely facilitated the direct comparison with the experiments. By taking into account the entropy effects, the coexistence of the multiple reconstructions and the fractional change of each reconstruction by the thermodynamic condition were predicted and were in agreement with the previous experimental observations. This work provides the community with a useful framework for such type of theoretical studies.

  18. Recent Development on the NOAA's Global Surface Temperature Dataset

    NASA Astrophysics Data System (ADS)

    Zhang, H. M.; Huang, B.; Boyer, T.; Lawrimore, J. H.; Menne, M. J.; Rennie, J.

    2016-12-01

    Global Surface Temperature (GST) is one of the most widely used indicators for climate trend and extreme analyses. A widely used GST dataset is the NOAA merged land-ocean surface temperature dataset known as NOAAGlobalTemp (formerly MLOST). The NOAAGlobalTemp had recently been updated from version 3.5.4 to version 4. The update includes a significant improvement in the ocean surface component (Extended Reconstructed Sea Surface Temperature or ERSST, from version 3b to version 4) which resulted in an increased temperature trends in recent decades. Since then, advancements in both the ocean component (ERSST) and land component (GHCN-Monthly) have been made, including the inclusion of Argo float SSTs and expanded EOT modes in ERSST, and the use of ISTI databank in GHCN-Monthly. In this presentation, we describe the impact of those improvements on the merged global temperature dataset, in terms of global trends and other aspects.

  19. Surface Profile and Stress Field Evaluation using Digital Gradient Sensing Method

    DOE PAGES

    Miao, C.; Sundaram, B. M.; Huang, L.; ...

    2016-08-09

    Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output accurate data of that kind. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squaresmore » integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.« less

  20. The Pacman Perforator-Based V-Y Advancement Flap for Reconstruction of Pressure Sores at Different Locations.

    PubMed

    Bonomi, Stefano; Salval, André; Brenta, Federica; Rapisarda, Vincenzo; Settembrini, Fernanda

    2016-09-01

    Many procedures have been proposed for the treatment of pressure sores, and V-Y advancement flaps are widely used to repair a defect. Unfortunately, the degree of mobility of a V-Y advancement flap is dependent on the laxity of the underlying subcutaneous tissue. This is an important disadvantage of traditional V-Y advancement flap and limits its use.We used V-Y advancement flaps as perforator-based to overcome mobility restriction problem, with a further modification (Pacman-like shape) to improve the covering surface area of the flap. Between January 2012 and December 2014, the authors used 37 V-Y Pacman perforator-based flaps in 33 consecutive patients for coverage of defects located at sacral (n = 21), ischial (n = 13), trochanter (n = 1) regions. There were 27 male and 6 female patients with a mean age of 49.9 years (range, 15-74 years). All flaps survived completely (92.3%) except 3 in which one of them had undergone total necrosis due to hematoma and the other 2 had partial necrosis. No venous congestion was observed. The mean follow-up period was 14.9 months (range, 2-38 months). No flap surgery-related mortality or recurrence of pressure sores was noted. The V-Y Pacman perforator-based advancement flaps are safe and very effective for reconstruction of pressure sores at various regions. The advantage of our modification procedure include shorter operative time, lesser pedicle dissection, low donor site morbidity, good preservation of muscle, and offers remarkable excursion to the V-Y flap, which make the V-Y Pacman perforator-based flaps an excellent choice for large pressure sore coverage.

  1. Flip-avoiding interpolating surface registration for skull reconstruction.

    PubMed

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  2. The structure of reconstructed chalcopyrite surfaces

    NASA Astrophysics Data System (ADS)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2018-03-01

    Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.

  3. Single-layer TiO x reconstructions on SrTiO 3 (111): (√7 × √7)R19.1°, (√13 × √13)R13.9°, and related structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Wang, Shuqiu; Castell, Martin R.

    The atomic structures of two reconstructions, (√7 × √7)R19.1° and (√13 × √13)R13.9°, on the SrTiO 3 (111) surface were determined using a combination of density functional theory and scanning tunneling microscopy data and simulations. The combination of these methods allows for potential surface structures to be generated and verified in the absence of diffraction data, providing another tool for solving surface reconstructions. These reconstructions belong to the same stoichiometric, nSrTiO 3 • mTiO 2, structural family made up of an interconnected, single layer of edge-sharing TiO 6 and TiO 5[] octahedra. This family is found to include the previously-solvedmore » (2 × 2)a reconstruction as its smallest unit-cell sized member and serves as a tool for better understanding and predicting the structure of other reconstructions of arbitrary surface unit-cell size on SrTiO 3 (111). This reconstruction family and the calculations of surface energies for different hypothesis structures also shed light on the structure of Schottky defects observed on these reconstructed SrTO 3 (111) surfaces.« less

  4. Anatomic mapping for surgical reconstruction of the proximal tibiofibular ligaments.

    PubMed

    See, Aaron; Bear, Russell R; Owens, Brett D

    2013-01-01

    Injury to the proximal tibiofibular joint is uncommon. Previous studies regarding the anatomy of this region have predominantly focused on joint orientation. As radiographic technology has advanced, later studies have attempted to evaluate the capsular anatomy. However, no reports specifically map the ligaments to this joint. The objectives of the current study were to define specific ligamentous structures that provide stability to the proximal tibiofibular joint, describe easily identifiable and reproducible surgical landmarks to aid in surgical reconstruction, and add to the understanding of the posterolateral structures of the knee previously described by other authors. The proximal tibiofibular joint ligaments were identified in 10 fresh-frozen cadaveric specimens. Average ligament length, width, and thickness and area of the footprints of the tibial and fibular attachments were measured. Distances from the ligament footprints to known anatomic landmarks (eg, Gerdy's tubercle, tibial articular surface, and fibular styloid) were also measured. The anterior ligament tibial attachment was a mean of 15.6 mm lateral and posterior to Gerdy's tubercle and 17.3 mm anterior and inferior from the fibular styloid. Posterior ligament tibial insertion was a mean of 15.7 mm inferior to the tibial articular surface on the tibial side and 14.2 mm medial and slightly inferior from the fibular styloid. Definable ligaments provide stability to the proximal tibiofibular joint and can be reconstructed in an anatomic fashion using the landmarks and parameters described. This information allows for an anatomic reconstruction of the proximal tibiofibular joint, which should provide patients with better outcomes and fewer postoperative sequelae. Copyright 2013, SLACK Incorporated.

  5. [Graphic reconstruction of anatomic surfaces].

    PubMed

    Ciobanu, O

    2004-01-01

    The paper deals with the graphic reconstruction of anatomic surfaces in a virtual 3D setting. Scanning technologies and soft provides a greater flexibility in the digitization of surfaces and a higher resolution and accuracy. An alternative cheap method for the reconstruction of 3D anatomic surfaces is presented in connection with some studies and international projects developed by Medical Design research team.

  6. The fusion of craniofacial reconstruction and microsurgery: a functional and aesthetic approach.

    PubMed

    Broyles, Justin M; Abt, Nicholas B; Shridharani, Sachin M; Bojovic, Branko; Rodriguez, Eduardo D; Dorafshar, Amir H

    2014-10-01

    Reconstruction of large, composite defects in the craniofacial region has evolved significantly over the past half century. During this time, there have been significant advances in craniofacial and microsurgical surgery. These contributions have often been in parallel; however, over the past 10 years, these two disciplines have begun to overlap more frequently, and the techniques of one have been used to advance the other. In the current review, the authors aim to describe the available options for free tissue reconstruction in craniofacial surgery. A review of microsurgical reconstructive options of aesthetic units within the craniofacial region was undertaken with attention directed toward surgeon flap preference. Anatomical areas analyzed included scalp, calvaria, forehead, frontal sinus, nose, maxilla and midface, periorbita, mandible, lip, and tongue. Although certain flaps such as the ulnar forearm flap and lateral circumflex femoral artery-based flaps were used in multiple reconstructive sites, each anatomical location possesses a unique array of flaps to maximize outcomes. Craniofacial surgery, like plastic surgery, has made tremendous advancements in the past 40 years. With innovations in technology, flap design, and training, microsurgery has become safer, faster, and more commonplace than at any time in history. Reconstructive microsurgery allows the surgeon to be creative in this approach, and free tissue transfer has become a mainstay of modern craniofacial reconstruction.

  7. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  8. Study of Huizhou architecture component point cloud in surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Runmei; Wang, Guangyin; Ma, Jixiang; Wu, Yulu; Zhang, Guangbin

    2017-06-01

    Surface reconfiguration softwares have many problems such as complicated operation on point cloud data, too many interaction definitions, and too stringent requirements for inputing data. Thus, it has not been widely popularized so far. This paper selects the unique Huizhou Architecture chuandou wooden beam framework as the research object, and presents a complete set of implementation in data acquisition from point, point cloud preprocessing and finally implemented surface reconstruction. Firstly, preprocessing the acquired point cloud data, including segmentation and filtering. Secondly, the surface’s normals are deduced directly from the point cloud dataset. Finally, the surface reconstruction is studied by using Greedy Projection Triangulation Algorithm. Comparing the reconstructed model with the three-dimensional surface reconstruction softwares, the results show that the proposed scheme is more smooth, time efficient and portable.

  9. Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Richard, Olivier; Bender, Hugo; Mols, Yves; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc

    2017-12-01

    The mechanism of widely observed intermixing of wurtzite and zinc-blende crystal structures in InAs nanowire (NW) grown by selective area epitaxy (SAE) is studied. We demonstrate that the crystal structure in InAs NW grown by SAE can be controlled using basic growth parameters, and wurtzitelike InAs NWs are achieved. We link the polytypic InAs NWs SAE to the reconstruction of the growth front (111)B surface. Surface reconstruction study of InAs (111) substrate and the following homoepitaxy experiment suggest that (111) planar defect nucleation is related to the (1 × 1) reconstruction of InAs (111)B surface. In order to reveal it more clearly, a model is presented to correlate growth temperature and arsenic partial pressure with InAs NW crystal structure. This model considers the transition between (1 × 1) and (2 × 2) surface reconstructions in the frame of adatom atoms adsorption/desorption, and the polytypism is thus linked to reconstruction quantitatively. The experimental data fit well with the model, which highly suggests that surface reconstruction plays an important role in the polytypism phenomenon in InAs NWs SAE.

  10. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    NASA Astrophysics Data System (ADS)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  11. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.« less

  12. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.

  13. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    PubMed Central

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347

  14. Surface modes and reconstruction of diamond structure crystals

    NASA Astrophysics Data System (ADS)

    Goldammer, W.; Ludwig, W.; Zierau, W.

    1986-08-01

    Applying our recently proposed Green function method we calculate the surface phonon spectra for the (111) surfaces of the diamond structure crystals C, Si, Ge and α-Sn on the basis of a phenomenological force constant model. Allowing for changes in the surface force constants we investigate the possibility of a surface phonon softening. Relating these soft modes to surface reconstructions we find evidence for a Si (7 × 7), Ge (8 × 8) and α-Sn (3 × 3) reconstruction, while diamond does not exhibit a soft mode behavior at all. We can thus explain the occurrence of different surface structures in these geometrically identical crystals as being determined to a great extent already by bulk properties. Finally, we derive models of the reconstructed surfaces and discuss our model for the Si (7 × 7) surface with respect to experimental TED patterns.

  15. Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Wimmer, Michael

    2016-02-01

    With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.

  16. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon=-2.7×10(-3) mm(-1), σrecon=7.0×10(-3) mm(-1)) and (μCT=-2.5×10(-3) mm(-1), σCT=5.3×10(-3) mm(-1)), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  17. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.

    PubMed

    Ghaderi, Parviz; Marateb, Hamid R

    2017-07-01

    The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.

  18. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.

  19. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    PubMed

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  1. Stratigraphic framework for Pliocene paleoclimate reconstruction: The correlation conundrum

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2006-01-01

    Pre-Holocene paleoclimate reconstructions face a correlation conundrum because complications inherent in the stratigraphic record impede the development of synchronous reconstruction. The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstructions have carefully balanced temporal resolution and paleoclimate proxy data to achieve a useful and reliable product and are the most comprehensive pre-Pleistocene data sets available for analysis of warmer-than-present climate and for climate modeling experiments. This paper documents the stratigraphic framework for the mid-Pliocene sea surface temperature (SST) reconstruction of the North Atlantic and explores the relationship between stratigraphic/temporal resolution and various paleoceanographic estimates of SST. The magnetobiostratigraphic framework for the PRISM North Atlantic region is constructed from planktic foraminifer, calcareous nannofossil and paleomagnetic reversal events recorded in deep-sea cores and calibrated to age. Planktic foraminifer census data from multiple samples within the mid-Pliocene yield multiple SST estimates for each site. Extracting a single SST value at each site from multiple estimates, given the limitations of the material and stratigraphic resolution, is problematic but necessary for climate model experiments. The PRISM reconstruction, unprecedented in its integration of many different types of data at a focused stratigraphic interval, utilizes a time slab approach and is based on warm peak average temperatures. A greater understanding of the dynamics of the climate system and significant advances in models now mandate more precise, globally distributed yet temporally synchronous SST estimates than are available through averaging techniques. Regardless of the precision used to correlate between sequences within the midd-Pliocene, a truly synoptic reconstruction in the temporal sense is unlikely. SST estimates from multiple proxies promise to further refine paleoclimate reconstructions but must consider the complications associated with each method, what each proxy actually records, and how these different proxies compare in time-averaged samples.

  2. Multi-centennial upper-ocean heat content reconstruction using online data assimilation

    NASA Astrophysics Data System (ADS)

    Perkins, W. A.; Hakim, G. J.

    2017-12-01

    The Last Millennium Reanalysis (LMR) provides an advanced paleoclimate ensemble data assimilation framework for multi-variate climate field reconstructions over the Common Era. Although reconstructions in this framework with full Earth system models remain prohibitively expensive, recent work has shown improved ensemble reconstruction validation using computationally inexpensive linear inverse models (LIMs). Here we leverage these techniques in pursuit of a new multi-centennial field reconstruction of upper-ocean heat content (OHC), synthesizing model dynamics with observational constraints from proxy records. OHC is an important indicator of internal climate variability and responds to planetary energy imbalances. Therefore, a consistent extension of the OHC record in time will help inform aspects of low-frequency climate variability. We use the Community Climate System Model version 4 (CCSM4) and Max Planck Institute (MPI) last millennium simulations to derive the LIMs, and the PAGES2K v.2.0 proxy database to perform annually resolved reconstructions of upper-OHC, surface air temperature, and wind stress over the last 500 years. Annual OHC reconstructions and uncertainties for both the global mean and regional basins are compared against observational and reanalysis data. We then investigate differences in dynamical behavior at decadal and longer time scales between the reconstruction and simulations in the last-millennium Coupled Model Intercomparison Project version 5 (CMIP5). Preliminary investigation of 1-year forecast skill for an OHC-only LIM shows largely positive spatial grid point local anomaly correlations (LAC) with a global average LAC of 0.37. Compared to 1-year OHC persistence forecast LAC (global average LAC of 0.30), the LIM outperforms the persistence forecasts in the tropical Indo-Pacific region, the equatorial Atlantic, and in certain regions near the Antarctic Circumpolar Current. In other regions, the forecast correlations are less than the persistence case but still positive overall.

  3. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-03-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2×1), (2×2), and (4×2) reconstructions, and for Ge(111) surface with c(2×8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2×1) and Si(111)-(7×7) surfaces.

  4. Vaginal reconstruction following resection of primary locally advanced and recurrent colorectal malignancies.

    PubMed

    D'Souza, Dougal N; Pera, Miguel; Nelson, Heidi; Finical, Stephan J; Tran, Nho V

    2003-12-01

    Vertical rectus abdominus myocutaneous flap reconstruction facilitates healing within the radiated pelvis and preserves the possibility of subsequent sexual function in patients with colorectal cancer who require partial or complete resection of the vagina. A retrospective review of a consecutive series of patients. A tertiary referral center. All patients undergoing surgical treatment of locally advanced or recurrent colorectal cancer and vertical rectus abdominus myocutaneous flap reconstruction of the vagina. Vertical rectus abdominus myocutaneous flap reconstruction. Operative feasibility, complications, and sexual function. Twelve patients underwent extended resection for primary locally advanced or recurrent colorectal cancer including total or near total vaginectomy. Median age was 47 years. Tumors included 9 rectal adenocarcinomas, 2 anal squamous cell carcinomas, and 1 recurrent cecal adenocarcinoma. Surgical procedures included 8 abdominoperineal resections with posterior exenteration; resection of pelvic tumor and partial vaginectomy in 2 patients with previous abdominoperineal resection; 1 total exenteration; and 1 total proctocolectomy with posterior exenteration. The average operative time for tumor extirpation, irradiation, and reconstruction was more than 9 hours and all patients required blood transfusions. Despite 2 patients having superficial necrosis and 4 having mild wound infections, no patient required reoperation and all achieved complete healing. Five patients reported resuming sexual intercourse. The vertical rectus abdominus myocutaneous flap can be successfully used for vaginal reconstruction following resection of locally advanced colorectal cancer. It provides nonirradiated, vascularized tissue that fills the pelvic dead space, allows for stomal placement, and provides a chance for sexual function.

  5. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    PubMed

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  6. A review of GPU-based medical image reconstruction.

    PubMed

    Després, Philippe; Jia, Xun

    2017-10-01

    Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Combining multi-atlas segmentation with brain surface estimation

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M.; Pham, Dzung L.; Prince, Jerry L.; Landman, Bennett A.

    2016-03-01

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitation in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  8. Combining Multi-atlas Segmentation with Brain Surface Estimation.

    PubMed

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M; Pham, Dzung L; Prince, Jerry L; Landman, Bennett A

    2016-02-27

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitations in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  9. Reconstruction of deformities resulting from penile enlargement surgery.

    PubMed

    Alter, G J

    1997-12-01

    More than 30 patients presented for reconstruction of penile deformities secondary to penile enlargement surgery performed by other physicians. Lengthening was performed by releasing the suspensory ligament of the penis and advancing pubic skin with a V-Y advancement flap. Girth was increased by injecting autologous fat. Specific complaints relating to the lengthening procedure involve hypertrophic and/or wide scars, a proximal penile hump from a thick, hair-bearing V-Y flap, and a low hanging penis. Complications relating to autologous fat injections include disappearance of fat, penile lumps and nodules, and shaft deformities. The repair of these deformities is described. From 1994 through October 1996, 19 men underwent 24 various combinations of reconstructive operations, such as scar revisions, V-Y advancement flap reversal, and removal of fat nodules and asymmetrical fat deposits. Penile appearance and function were improved. Complications include 1 hematoma requiring drainage, minor wound complications and 1 inadequately reversed V-Y flap. The methods of various repairs are discussed, including reconstructive limitations, timing and staging. Significant improvement can be achieved with proper reconstruction of penile deformities.

  10. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  11. Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Denkiewicz, A.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rivera, H.; Riviére, C.; Rizi, V.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Taşcău, O.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-04-01

    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs “radio-hybrid” measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.

  12. Virtual reconstruction of glenoid bone defects using a statistical shape model.

    PubMed

    Plessers, Katrien; Vanden Berghe, Peter; Van Dijck, Christophe; Wirix-Speetjens, Roel; Debeer, Philippe; Jonkers, Ilse; Vander Sloten, Jos

    2018-01-01

    Description of the native shape of a glenoid helps surgeons to preoperatively plan the position of a shoulder implant. A statistical shape model (SSM) can be used to virtually reconstruct a glenoid bone defect and to predict the inclination, version, and center position of the native glenoid. An SSM-based reconstruction method has already been developed for acetabular bone reconstruction. The goal of this study was to evaluate the SSM-based method for the reconstruction of glenoid bone defects and the prediction of native anatomic parameters. First, an SSM was created on the basis of 66 healthy scapulae. Then, artificial bone defects were created in all scapulae and reconstructed using the SSM-based reconstruction method. For each bone defect, the reconstructed surface was compared with the original surface. Furthermore, the inclination, version, and glenoid center point of the reconstructed surface were compared with the original parameters of each scapula. For small glenoid bone defects, the healthy surface of the glenoid was reconstructed with a root mean square error of 1.2 ± 0.4 mm. Inclination, version, and glenoid center point were predicted with an accuracy of 2.4° ± 2.1°, 2.9° ± 2.2°, and 1.8 ± 0.8 mm, respectively. The SSM-based reconstruction method is able to accurately reconstruct the native glenoid surface and to predict the native anatomic parameters. Based on this outcome, statistical shape modeling can be considered a successful technique for use in the preoperative planning of shoulder arthroplasty. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Probing the electronic transport on the reconstructed Au/Ge(001) surface

    PubMed Central

    Krok, Franciszek; Kaspers, Mark R; Bernhart, Alexander M; Nikiel, Marek; Jany, Benedykt R; Indyka, Paulina; Wojtaszek, Mateusz; Möller, Rolf

    2014-01-01

    Summary By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons. PMID:25247129

  14. Implant Utilization and Time to Prosthetic Rehabilitation in Conventional and Advanced Fibular Free Flap Reconstruction of the Maxilla and Mandible.

    PubMed

    Chuka, Richelle; Abdullah, Wael; Rieger, Jana; Nayar, Suresh; Seikaly, Hadi; Osswald, Martin; Wolfaardt, Johan

    Precisely designed jaw reconstruction rehabilitation (JRR) is important to the integrity of the jaw structure and oral functions. Advanced three-dimensional (3D) digital surgical design and simulation (SDS) techniques have the potential to reduce time to reconstructive and dental treatment completion, thereby promoting early functional oral rehabilitation. This study investigated the use of SDS in JRR procedures. A retrospective chart review was conducted on adult head and neck tumor (HNT) participants who completed JRR treatment with a fibular free flap (FFF) reconstruction. Two treatment approaches, advanced 3D SDS technique (with-SDS) and conventional, nondigitally planned technique (without-SDS), included the use of osseointegrated implants. Data were collected from adult patients treated between January 2000 and March 2014 at the Institute for Reconstructive Sciences in Medicine (iRSM). Participants were excluded if they underwent a bone-containing augmentation to the FFF reconstruction. The without-SDS group underwent a conventional, nonguided FFF reconstruction followed by nonguided implant placement. The with-SDS group underwent a guided FFF reconstruction with guided implant placement during the reconstructive surgery. The outcome measures included implant utilization (ratio of implants placed to connected) and time to prosthetic connection after FFF reconstruction. Mann-Whitney U test was used to analyze the data. The digital SDS technique (with-SDS) group completed prosthetic treatment with a significantly higher utilization of implants as well as a significantly shorter time to prosthetic delivery. SDS allows an interdisciplinary treatment team to work together to create a virtual plan that leads to greater efficiency in patient treatment time and utilization of dental implants.

  15. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    2016-06-15

    Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity inmore » local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real-time and robust surface reconstruction method on point clouds acquired by photogrammetry systems. It serves an important enabling step for real-time motion tracking in radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  16. WE-AB-207A-08: BEST IN PHYSICS (IMAGING): Advanced Scatter Correction and Iterative Reconstruction for Improved Cone-Beam CT Imaging On the TrueBeam Radiotherapy Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Paysan, P; Brehm, M

    2016-06-15

    Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction substantially improves CBCT image quality. It is anticipated that clinically acceptable reconstruction times will result from a multi-GPU implementation (the algorithms are under active development and not yet commercially available). All authors are employees of and (may) own stock of Varian Medical Systems.« less

  17. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discretemore » models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μ{sub recon} = − 2.7 × 10{sup −3} mm{sup −1}, σ{sub recon} = 7.0 × 10{sup −3} mm{sup −1}) and (μ{sub CT} = − 2.5 × 10{sup −3} mm{sup −1}, σ{sub CT} = 5.3 × 10{sup −3} mm{sup −1}), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.« less

  18. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    PubMed Central

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit; Ruan, Dan

    2015-01-01

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon = − 2.7 × 10−3 mm−1, σrecon = 7.0 × 10−3 mm−1) and (μCT = − 2.5 × 10−3 mm−1, σCT = 5.3 × 10−3 mm−1), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy. PMID:26520747

  19. Unit Advancement Flap for Lower Lip Reconstruction.

    PubMed

    Ogino, Akihiro; Onishi, Kiyoshi; Okada, Emi; Nakamichi, Miho

    2018-05-01

    Lower lip reconstruction requires consideration of esthetic and functional outcome in selecting a surgical procedure, and reconstruction with local tissue is useful. The authors reconstructed full-thickness defects with a unit advancement flap. Reconstruction was performed using this method in 4 patients with lower lip squamous cell carcinoma in whom tumor resection with preservation of the mouth angle was possible. The lower lip resection width was 30 to 45 mm, accounting for 50% to 68% of the entire width of the lower lip. The flap was prepared by lateral extension from above the mental unit and matched with the potential wrinkle line of the lower lip in order to design a unit morphology surrounded by the anterior margin of the depressor labii inferioris muscle. It was elevated as a full-thickness flap composed of the orbicularis oris muscle, skin, and mucosa of the residual lower lip from the bilateral sides, and advanced to the defect. Flap transfer was adjusted by small triangular resection of the skin on the lateral side of the mental unit. The postoperative scar was inconspicuous in all patients and there was no impairment of the mouth opening-closing or articulation functions. This was a relatively simple surgical procedure. A blood supply of the flap was stable, and continuity of the orbicularis oris muscle was reconstructed by transferred the residual lower lip advancement flap from the bilateral sides. The postoperative mouth opening-closing function was sufficient, and dentures could be placed from an early phase in elderly patients. The postoperative scar was consistent with the lip unit morphology, being esthetically superior. This procedure may be applicable for reconstruction of defects approximately 1/3 to 2/3 the width of the lower lip where the mouth angle is preserved.

  20. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  1. Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2000-12-01

    Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the canopy surface of a dense redwood stand using tri-ocular high-resolution images scanned from 1:2,400 aerial photographs. The results demonstrate the approach's ability to reconstruct complicated stands. The model-based approach proposed in this thesis is potentially applicable to other surfaces recovering problems with a priori knowledge about objects.

  2. [No interrupted surgical defects of the white upper lip: repair by a combined advancement and rotation flap in the lip subunit].

    PubMed

    Guillot, P

    2013-01-01

    A solid understanding of anatomy, basic surgical principles, and tissue movement is essential when undertaking the reconstruction of facial cutaneous surgical defects. Aesthetic facial reconstruction requires understanding ability to use the tissue adjacent to the defect to create a reconstruction that preserves the function of the area and the cosmetic facial units and subunits. The closure of non interrupted white upper lip defects by using a combined advancement and rotation flap is preferred for defects not overtaking 2.5 cm in diameter.

  3. Homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100): An in-situ STM study

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo

    2015-01-01

    A study of homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100) surfaces is presented. The growth behavior has been investigated by in-situ scanning tunneling microscopy for Au(100) in contact with 0.1 M H2SO4 + 5 μM K[AuCl4]. It is shown that the initial surface structure is decisive for the emerging Au structures, giving rise to clearly different surface morphologies for electro-crystallization of Au on the unreconstructed and on the reconstructed Au(100) surface. A layer-by-layer growth is observed at more positive potentials for unreconstructed Au(100). The electrodeposition proceeds initially by the formation of Au islands followed by island coalescence due to the high mobility of surface atoms. Monatomic recessed stripes are formed as a result of the coalescence of deposited Au islands. At more negative potentials, the growth of Au proceeds strongly anisotropic on the reconstructed surface by the formation of reconstructed elongated islands.

  4. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  5. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Jung, E.

    2009-03-10

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M{sub 4,5}N{sub 1}N{sub 2,3}, M{sub 2,3}M{sub 4,5}M{sub 4,5}, M{sub 2,3}M{sub 4,5}V, and M{sub 1}M{sub 4,5}M{sub 4,5} Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculationsmore » of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.« less

  6. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    PubMed

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-07

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.

  7. Technical report on the surface reconstruction of stacked contours by using the commercial software

    NASA Astrophysics Data System (ADS)

    Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo

    2007-03-01

    After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.

  8. Nonlinearity response correction in phase-shifting deflectometry

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh The; Kang, Pilseong; Ghim, Young-Sik; Rhee, Hyug-Gyo

    2018-04-01

    Owing to the nonlinearity response of digital devices such as screens and cameras in phase-shifting deflectometry, non-sinusoidal phase-shifted fringe patterns are generated and additional measurement errors are introduced. In this paper, a new deflectometry technique is described for overcoming these problems using a pre-distorted pattern combined with an advanced iterative algorithm. The experiment results show that this method can reconstruct the 3D surface map of a sample without fringe print-through caused by the nonlinearity response of digital devices. The proposed technique is verified by measuring the surface height variations in a deformable mirror and comparing them with the measurement result obtained using a coordinate measuring machine. The difference between the two measurement results is estimated to be less than 13 µm.

  9. Re-constructing our models of cellulose and primary cell wall assembly

    PubMed Central

    Cosgrove, Daniel J.

    2014-01-01

    The cellulose microfibril has more subtlety than is commonly recognized. Details of its structure may influence how matrix polysaccharides interact with its distinctive hydrophobic and hydrophilic surfaces to form a strong yet extensible structure. Recent advances in this field include the first structures of bacterial and plant cellulose synthases and revised estimates of microfibril structure, reduced from 36 to 18 chains. New results also indicate that cellulose interactions with xyloglucan are more limited than commonly believed, whereas pectin-cellulose interactions are more prevalent. Computational results indicate that xyloglucan binds tightest to the hydrophobic surface of cellulose microfibrils. Wall extensibility may be controlled at limited regions (“biomechanical hotspots”) where cellulose-cellulose contacts are made, potentially mediated by trace amounts of xyloglucan. PMID:25460077

  10. Re-constructing our models of cellulose and primary cell wall assembly.

    PubMed

    Cosgrove, Daniel J

    2014-12-01

    The cellulose microfibril has more subtlety than is commonly recognized. Details of its structure may influence how matrix polysaccharides interact with its distinctive hydrophobic and hydrophilic surfaces to form a strong yet extensible structure. Recent advances in this field include the first structures of bacterial and plant cellulose synthases and revised estimates of microfibril structure, reduced from 36 to 18 chains. New results also indicate that cellulose interactions with xyloglucan are more limited than commonly believed, whereas pectin–cellulose interactions are more prevalent. Computational results indicate that xyloglucan binds tightest to the hydrophobic surface of cellulose microfibrils. Wall extensibility may be controlled at limited regions (‘biomechanical hotspots’) where cellulose–cellulose contacts are made, potentially mediated by trace amounts of xyloglucan.

  11. Chronological constraints on the Holocene glacier dynamics of the Argentière Glacier (Mont Blanc massif, France) based on cosmogenic nuclide dating

    NASA Astrophysics Data System (ADS)

    Protin, Marie; Schimmelpfennig, Irene; Mugnier, Jean-Louis; Ravanel, Ludovic; Deline, Philip; Le Roy, Melaine; Moreau, Luc; Aster Team

    2017-04-01

    While reconstruction of glacier fluctuations during the Holocene provides important information about the glacier response to natural climate change, it is still a challenge to accurately constrain chronologies of past glacier advances and retreats. Moraine deposits and roches moutonnées represent valuable geomorphic markers of advanced glacier extensions, while the currently ongoing glacier melt uncovers proglacial bedrock that can be used as a new archive to investigate the durations when a glacier was in retreated position during the Holocene. Our study focuses on the Mont-Blanc massif (MBM), located in the Western Alps and hosting some of the largest glaciers of Europe. Chronologies of Holocene glacier fluctuations in this area are still sparse, even if recent studies considerably improved the temporal reconstruction of Holocene advances of some glaciers in the MBM and locations near-by (e.g. Le Roy et al., 2015). Here we present preliminary 10Be exposure ages obtained from moraine boulders, roches moutonnées and pro- and subglacial bedrock in the area of the Argentière Glacier, located on the north-western flank of the MBM. The ages of moraine boulders and roche moutonnée surfaces outboard of the investigated moraines suggest that the Early Holocene deglaciation of this area started around 11 ka ago. Also, 10Be measurements of recently deglaciated bedrock surfaces indicate that the glacier was at a position at least as retracted as today for a minimum duration of 7 ka throughout the Holocene. The 10Be measurement of one sample from a surface that is currently still covered by 60 m of ice suggests that the glacier was shorter than today for at least a duration of 3 ka. These first results will soon be completed with in situ 14C measurements, which will allow us to quantify and take into account subglacial erosion rates and thus to more accurately determine the cumulative duration of pro- and subglacial bedrock exposure during the Holocene.

  12. Exploring changes in vertical ice extent along the margin of the East Antarctic Ice Sheet in western Dronning Maud Land - initial results of the MAGIC-DML collaboration

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.

    2017-12-01

    Numerical ice sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological, and ice core data. However, on the East Antarctic Ice sheet, there are few empirical data with which to reconstruct changes in ice sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the ice sheet margin, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving ice sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical ice-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.

  13. Viable Cancer Cells in the Remnant Stomach are a Potential Source of Peritoneal Metastasis after Curative Distal Gastrectomy for Gastric Cancer.

    PubMed

    Murata, Satoshi; Yamamoto, Hiroshi; Yamaguchi, Tsuyoshi; Kaida, Sachiko; Ishida, Mitsuaki; Kodama, Hirokazu; Takebayashi, Katsushi; Shimizu, Tomoharu; Miyake, Toru; Tani, Tohru; Kushima, Ryoji; Tani, Masaji

    2016-09-01

    The mechanisms underlying peritoneal metastasis (PM) after curative gastrectomy for gastric cancer (GC) are not well elucidated. This study assessed whether viable cancer cells, including cancer stemlike cells (CSCs), were present in the remnant stomach immediately before gastrointestinal (GI) tract reconstruction because these could be a source of PM after gastrectomy. Saline fluid used for remnant stomach lumen irrigation before GI reconstruction was prospectively collected from 142 consecutive patients undergoing distal gastrectomy for GC and cytologically examined. Proliferative activity (Ki67 staining) and stemness (expression of the CSC surface markers CD44s or CD44v6) were evaluated in detected cancer cells. Viable cancer cells were detected in 33 (23.2 %) of the 142 remnant stomachs. These cells formed clusters and stained positively for Ki67, indicating proliferation. Cancer cells in remnant stomachs and surface cancer cells in primary GCs from 10 (30.3 %) of these 33 cases also stained positively for CD44s or CD44v6. In a multiple logistic regression analysis, advanced cancer (odds ratio [OR], 4.65; 95 % confidence interval [CI], 1.32-16.4; P = 0.017), tumor size of 40 mm or larger (OR, 3.78; 95 % CI, 1.12-12.8; P = 0.033), and histologic differentiation (OR, 3.10; 95 % CI, 1.30-7.40; P = 0.011) were associated independently with the presence of cancer cells in the remnant stomach. Viable, proliferative, and clustered cancer cells, including CSCs, were found in remnant gastric lumens immediately before GI reconstruction, indicating a possible cellular source of PM after curative gastrectomy for GC. Dissemination of gastric contents into the peritoneal cavity should be avoided during GI reconstruction.

  14. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recommend, authorize, or consent to road construction, road reconstruction, or surface occupancy associated... construction or road reconstruction associated with mineral leases in Idaho Roadless Areas designated as Backcountry/Restoration. Surface use or occupancy without road construction or reconstruction is permissible...

  15. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    NASA Astrophysics Data System (ADS)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  16. 3D reconstruction of highly fragmented bone fractures

    NASA Astrophysics Data System (ADS)

    Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence

    2007-03-01

    A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.

  17. Positioning Bascularized Composite Allotransplantation with the Spectrum of Transplantion

    DTIC Science & Technology

    2015-10-01

    therapeutic option for patients in need of advanced tissue reconstruction. II. Keywords Biorepository, vascularized composite allograft , nonhuman primates... tissues (e.g. hand, face) into a useful therapeutic option for individuals in need of advance tissue reconstruction and replacement. The proposal...death but increased the rate of soft tissue injury. Vascularized composite allotransplantation (VCA) has recently emerged as a promising strategy for

  18. Advances in the management of orbital fractures.

    PubMed

    Nguyen, P N; Sullivan, P

    1992-01-01

    Great progress has been made in both the basic science and the clinical knowledge base used in orbital reconstruction. With this, increasing complex orbital reconstructive problems are better managed. The diagnosis, treatment plan, and the actual reconstruction have evolved to a higher level. Several areas of progress are of note: the greater appreciation of the intimate relation between the bony orbit's shape and the position of the globe; application of computer technology in orbital injuries; effect of rigid fixation on autogenous and alloplastic graft; and the use of advanced biocompatible synthetic materials in orbital reconstruction. Although this progress has great impact on treatment of orbital injuries, there are many unanswered challenges in the treatment of the fragile frame of the window to the human soul.

  19. Clinical Evaluation of Papilla Reconstruction Using Subepithelial Connective Tissue Graft

    PubMed Central

    Kaushik, Alka; PK, Pal; Chopra, Deepak; Chaurasia, Vishwajit Rampratap; Masamatti, Vinaykumar S; DK, Suresh; Babaji, Prashant

    2014-01-01

    Objective: The aesthetics of the patient can be improved by surgical reconstruction of interdental papilla by using an advanced papillary flap interposed with subepithelial connective tissue graft. Materials and Methods: A total of fifteen sites from ten patients having black triangles/papilla recession in the maxillary anterior region were selected and subjected to presurgical evaluation. The sites were treated with interposed subepithelial connective tissue graft placed under a coronally advance flap. The integrity of the papilla was maintained by moving the whole of gingivopapillary unit coronally. The various parameters were analysed at different intervals. Results: There was a mean decrease in the papilla presence index score and distance from contact point to gingival margin, but it was statistically not significant. Also, there is increase in the width of the keratinized gingiva which was statistically highly significant. Conclusion: Advanced papillary flap with interposed sub–epithelial connective tissue graft can offer predictable results for the reconstruction of interdental papilla. If papilla loss occurs solely due to soft-tissue damage, reconstructive techniques can completely restore it; but if due to periodontal disease involving bone loss, reconstruction is generally incomplete and multiple surgical procedures may be required. PMID:25386529

  20. Mechanism and energetics of O and O{sub 2} adsorption on polar and non-polar ZnO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Seebauer, Edmund G.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2016-05-14

    Polar surfaces of semiconducting metal oxides can exhibit structures and chemical reactivities that are distinct from their non-polar surfaces. Using first-principles calculations, we examine O adatom and O{sub 2} molecule adsorption on 8 different known ZnO reconstructions including Zn-terminated (Zn–ZnO) and O-terminated (O–ZnO) polar surfaces, and non-polar surfaces. We find that adsorption tendencies are largely governed by the thermodynamic environment, but exhibit variations due to the different surface chemistries of various reconstructions. The Zn–ZnO surface reconstructions which appear under O-rich and H-poor environments are found to be most amenable to O and O{sub 2} adsorption. We attribute this to themore » fact that on Zn–ZnO, the O-rich environments that promote O adsorption also simultaneously favor reconstructions that involve adsorbed O species. On these Zn–ZnO surfaces, O{sub 2} dissociatively adsorbs to form O adatoms. By contrast, on O–ZnO surfaces, the O-rich conditions required for O or O{sub 2} adsorption tend to promote reconstructions involving adsorbed H species, making further O species adsorption more difficult. These insights about O{sub 2} adsorption on ZnO surfaces suggest possible design rules to understand the adsorption properties of semiconductor polar surfaces.« less

  1. Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography

    PubMed Central

    Wang, Kun; Su, Richard; Oraevsky, Alexander A; Anastasio, Mark A

    2012-01-01

    Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications. PMID:22864062

  2. Fibular free flap reconstruction for the management of advanced bilateral mandibular osteoradionecrosis.

    PubMed

    Shan, Xiao-Feng; Li, Ru-Huang; Lu, Xu-Guang; Cai, Zhi-Gang; Zhang, Jie; Zhang, Jian-Guo

    2015-03-01

    Fibular osteoseptocutaneous flap has been widely used for unilateral mandibular reconstruction. However, reports about the effects of fibular osteoseptocutaneous flap for the reconstruction of bilateral mandibular defects are limited. In this study, we used free vascularized fibular flaps to successfully manage bilateral mandibular osteoradionecrosis(ORN) in 5 patients. Functional aspects were evaluated during the reconstruction process. All 5 patients had bilateral refractory ORN of the mandible and underwent radical resection between 2003 and 2011. The reconstruction surgery was performed in 2 stages using 2 free fibular flaps in 3 patients. In the other 2 patients, reconstruction was performed in a single stage using 2 separate flaps prepared from a single fibula. All patients had a healthy mandibular symphysis and meniscus of the temporomandibular joint, and these structures were preserved during the reconstruction.Of the 10 defects involving the mandible sides, 9 were successfully reconstructed. One microvascular composite flap failed because of radiation injury to the arterial endothelium at the recipient site. After the treatments, all patients had good esthetic and functional outcomes. Preoperative clinical features such as trismus and dysphagia were also markedly improved. Our surgical method may be an effective alternative for the clinical management of advanced bilateral mandibular ORN.

  3. SIRT-FILTER v1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PELT, DANIEL

    2017-04-21

    Small Python package to compute tomographic reconstructions using a reconstruction method published in: Pelt, D.M., & De Andrade, V. (2017). Improved tomographic reconstruction of large-scale real-world data by filter optimization. Advanced Structural and Chemical Imaging 2: 17; and Pelt, D. M., & Batenburg, K. J. (2015). Accurately approximating algebraic tomographic reconstruction by filtered backprojection. In Proceedings of The 13th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (pp. 158-161).

  4. Every factor helps: Rapid Ptychographic Reconstruction

    NASA Astrophysics Data System (ADS)

    Nashed, Youssef

    2015-03-01

    Recent advances in microscopy, specifically higher spatial resolution and data acquisition rates, require faster and more robust phase retrieval reconstruction methods. Ptychography is a phase retrieval technique for reconstructing the complex transmission function of a specimen from a sequence of diffraction patterns in visible light, X-ray, and electron microscopes. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes. Waiting to postprocess datasets offline results in missed opportunities. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs). A final specimen reconstruction is then achieved by different techniques to merge sub-dataset results into a single complex phase and amplitude image. Results are shown on a simulated specimen and real datasets from X-ray experiments conducted at a synchrotron light source.

  5. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  6. Fast Measurement and Reconstruction of Large Workpieces with Freeform Surfaces by Combining Local Scanning and Global Position Data

    PubMed Central

    Chen, Zhe; Zhang, Fumin; Qu, Xinghua; Liang, Baoqiu

    2015-01-01

    In this paper, we propose a new approach for the measurement and reconstruction of large workpieces with freeform surfaces. The system consists of a handheld laser scanning sensor and a position sensor. The laser scanning sensor is used to acquire the surface and geometry information, and the position sensor is utilized to unify the scanning sensors into a global coordinate system. The measurement process includes data collection, multi-sensor data fusion and surface reconstruction. With the multi-sensor data fusion, errors accumulated during the image alignment and registration process are minimized, and the measuring precision is significantly improved. After the dense accurate acquisition of the three-dimensional (3-D) coordinates, the surface is reconstructed using a commercial software piece, based on the Non-Uniform Rational B-Splines (NURBS) surface. The system has been evaluated, both qualitatively and quantitatively, using reference measurements provided by a commercial laser scanning sensor. The method has been applied for the reconstruction of a large gear rim and the accuracy is up to 0.0963 mm. The results prove that this new combined method is promising for measuring and reconstructing the large-scale objects with complex surface geometry. Compared with reported methods of large-scale shape measurement, it owns high freedom in motion, high precision and high measurement speed in a wide measurement range. PMID:26091396

  7. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, Michael P.; Miklius, Asta

    2011-01-01

    Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.

  8. Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Unger, Jakob; Lagarto, Joao; Phipps, Jennifer; Ma, Dinglong; Bec, Julien; Sorger, Jonathan; Farwell, Gregory; Bold, Richard; Marcu, Laura

    2017-02-01

    Multi-Spectral Time-Resolved Fluorescence Spectroscopy (ms-TRFS) can provide label-free real-time feedback on tissue composition and pathology during surgical procedures by resolving the fluorescence decay dynamics of the tissue. Recently, an ms-TRFS system has been developed in our group, allowing for either point-spectroscopy fluorescence lifetime measurements or dynamic raster tissue scanning by merging a 450 nm aiming beam with the pulsed fluorescence excitation light in a single fiber collection. In order to facilitate an augmented real-time display of fluorescence decay parameters, the lifetime values are back projected to the white light video. The goal of this study is to develop a 3D real-time surface reconstruction aiming for a comprehensive visualization of the decay parameters and providing an enhanced navigation for the surgeon. Using a stereo camera setup, we use a combination of image feature matching and aiming beam stereo segmentation to establish a 3D surface model of the decay parameters. After camera calibration, texture-related features are extracted for both camera images and matched providing a rough estimation of the surface. During the raster scanning, the rough estimation is successively refined in real-time by tracking the aiming beam positions using an advanced segmentation algorithm. The method is evaluated for excised breast tissue specimens showing a high precision and running in real-time with approximately 20 frames per second. The proposed method shows promising potential for intraoperative navigation, i.e. tumor margin assessment. Furthermore, it provides the basis for registering the fluorescence lifetime maps to the tissue surface adapting it to possible tissue deformations.

  9. Surface reconstruction and deformation monitoring of stratospheric airship based on laser scanning technology

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei

    2018-04-01

    Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.

  10. Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Yang, Shi-Ze; Fung, Victor

    2017-07-19

    Although well known in the material science field, surface reconstruction of perovskites has not been implemented in heterogeneous catalysis. In this work, we employ multiple surface sensitive techniques to characterize the surface reconstruction of SrTiO3 (STO) after thermal pretreatment (Sr-enrichment) and chemical etching (Ti-enrichment). We show, using the conversion of 2-propanol as a probe reaction, that the surface reconstruction of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivities in a wide range, which are inaccessible using single metal oxides, either SrO or TiO2. Density functional theory (DFT) calculations well explain the selectivity tuningmore » and reaction mechanism on differently reconstructed surfaces of STO. Similar catalytic tunability is also observed on BaZrO3, highlighting the generality of the finding from this work.« less

  11. What is the future of 'organ transplantation' in the head and neck?

    PubMed

    Lott, David G

    2014-10-01

    To update readers on the current state and future of head and neck tissue transplantation. Many exciting advances have recently occurred in the field of head and neck transplantation and regenerative medicine. Larynx, face, and trachea transplants have all been successfully performed. Significant advancements in tissue engineering have occurred, including the ability to generate three-dimensional tissue structures. Transplantation of regenerated tissues has been successfully incorporated into airway reconstruction. These exciting advancements set the foundation to expand reconstructive options for dysfunctional tissues and to improve a patient's quality of life.

  12. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    PubMed

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  13. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves

    NASA Astrophysics Data System (ADS)

    Krynkin, A.; Dolcetti, G.; Hunting, S.

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  14. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves.

    PubMed

    Krynkin, A; Dolcetti, G; Hunting, S

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  15. Penile Reconstruction

    PubMed Central

    Salgado, Christopher J.; Chim, Harvey; Tang, Jennifer C.; Monstrey, Stan J.; Mardini, Samir

    2011-01-01

    A variety of surgical options exists for penile reconstruction. The key to success of therapy is holistic management of the patient, with attention to the psychological aspects of treatment. In this article, we review reconstructive modalities for various types of penile defects inclusive of partial and total defects as well as the buried penis, and also describe recent basic science advances, which may promise new options for penile reconstruction. PMID:22851914

  16. Updating a preoperative surface model with information from real-time tracked 2D ultrasound using a Poisson surface reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Deyu; Rettmann, Maryam E.; Holmes, David R.; Linte, Cristian A.; Packer, Douglas; Robb, Richard A.

    2014-03-01

    In this work, we propose a method for intraoperative reconstruction of a left atrial surface model for the application of cardiac ablation therapy. In this approach, the intraoperative point cloud is acquired by a tracked, 2D freehand intra-cardiac echocardiography device, which is registered and merged with a preoperative, high resolution left atrial surface model built from computed tomography data. For the surface reconstruction, we introduce a novel method to estimate the normal vector of the point cloud from the preoperative left atrial model, which is required for the Poisson Equation Reconstruction algorithm. In the current work, the algorithm is evaluated using a preoperative surface model from patient computed tomography data and simulated intraoperative ultrasound data. Factors such as intraoperative deformation of the left atrium, proportion of the left atrial surface sampled by the ultrasound, sampling resolution, sampling noise, and registration error were considered through a series of simulation experiments.

  17. The PRISM4 (mid-Piacenzian) Palaeoenvironmental Reconstruction

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark; hide

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian (approximately 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  18. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Moucha, Robert; Forte, Alessandro; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci M.; Chandler, Mark; Foley, Kevin M.; Haywood, Alan M.

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ∼ 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  19. Advancing Supersonic Retropropulsion Using Mars-Relevant Flight Data: An Overview

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Sforzo, Brandon; Campbell, Charles H.

    2017-01-01

    Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.

  20. Reconstructing spatial-temporal continuous MODIS land surface temperature using the DINEOF method

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Peng, Bin; Shi, Jiancheng

    2017-10-01

    Land surface temperature (LST) is one of the key states of the Earth surface system. Remote sensing has the capability to obtain high-frequency LST observations with global coverage. However, mainly due to cloud cover, there are always gaps in the remotely sensed LST product, which hampers the application of satellite-based LST in data-driven modeling of surface energy and water exchange processes. We explored the suitability of the data interpolating empirical orthogonal functions (DINEOF) method in moderate resolution imaging spectroradiometer LST reconstruction around Ali on the Tibetan Plateau. To validate the reconstruction accuracy, synthetic clouds during both daytime and nighttime are created. With DINEOF reconstruction, the root mean square error and bias under synthetic clouds in daytime are 4.57 and -0.0472 K, respectively, and during the nighttime are 2.30 and 0.0045 K, respectively. The DINEOF method can well recover the spatial pattern of LST. Time-series analysis of LST before and after DINEOF reconstruction from 2002 to 2016 shows that the annual and interannual variabilities of LST can be well reconstructed by the DINEOF method.

  1. Mars Science Laboratory Heatshield Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  2. Re-constructing our models of cellulose and primary cell wall assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Daniel J.

    2014-11-16

    The cellulose microfibril has more subtlety than is commonly recognized. Details of its structure may influence how matrix polysaccharides interact with its distinctive hydrophobic and hydrophilic surfaces to form a strong yet extensible structure. We report that recent advances in this field include the first structures of bacterial and plant cellulose synthases and revised estimates of microfibril structure, reduced from 36 to 18 chains. New results also indicate that cellulose interactions with xyloglucan are more limited than commonly believed, whereas pectin-cellulose interactions are more prevalent. Computational results indicate that xyloglucan binds tightest to the hydrophobic surface of cellulose microfibrils. Finally,more » wall extensibility may be controlled at limited regions (“biomechanical hotspots”) where cellulose-cellulose contacts are made, potentially mediated by trace amounts of xyloglucan.« less

  3. Modeling Lunar Borehole Temperature in order to Reconstruct Historical Total Solar Irradiance and Estimate Surface Temperature in Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.

    2007-12-01

    The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is established. References Huang, S., (2007), Surface Temperatures at the Nearside of the Moon as a Record of the Radiation Budget of Earth's Climate System, Advances in Space Research, doi:10.1016/j.asr.2007.04.093. Lean, J., Geophys. Res. Lett., (2000), 27(16), 2425-2428. Miyahara, H., G. Wen, R. F. Cahalan, and A. Ohmura, (2007), Deriving Historical Total Solar Irradiance from Lunar Borehole Temperatures, submitted to Geophy. Res. Lett. Nozette, S., E. M. Shoemaker, P. D. Spudis, and C. L. Lichtenberg, The possibility of ice on the Moon, Science, 278, 144-145, 1997. Spudis, P.D., T. Cook, M. Robinson, B. Bussey, and B. Fessler, Topography of the southe polar region from Clementine stereo imaging, New views of the Moon, Integrated remotely sensed, geophysical, and sample datasets, Lunar Planet. Inst., [CD-ROM], abstract 6010, 1998. Wang, Y. M., J. L. Lean and N. R. Sheeley (2005), Astrophys. J., 625, 522-538.

  4. Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets

    PubMed Central

    Jeong, Won-Ki; Beyer, Johanna; Hadwiger, Markus; Vazquez, Amelio; Pfister, Hanspeter; Whitaker, Ross T.

    2011-01-01

    Recent advances in scanning technology provide high resolution EM (Electron Microscopy) datasets that allow neuroscientists to reconstruct complex neural connections in a nervous system. However, due to the enormous size and complexity of the resulting data, segmentation and visualization of neural processes in EM data is usually a difficult and very time-consuming task. In this paper, we present NeuroTrace, a novel EM volume segmentation and visualization system that consists of two parts: a semi-automatic multiphase level set segmentation with 3D tracking for reconstruction of neural processes, and a specialized volume rendering approach for visualization of EM volumes. It employs view-dependent on-demand filtering and evaluation of a local histogram edge metric, as well as on-the-fly interpolation and ray-casting of implicit surfaces for segmented neural structures. Both methods are implemented on the GPU for interactive performance. NeuroTrace is designed to be scalable to large datasets and data-parallel hardware architectures. A comparison of NeuroTrace with a commonly used manual EM segmentation tool shows that our interactive workflow is faster and easier to use for the reconstruction of complex neural processes. PMID:19834227

  5. Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere.

    PubMed

    Akanuma, Satoshi

    2017-08-06

    Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth's early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth's surface temperature gradually decreased over time, from Archean to present.

  6. Nanopatterned articles produced using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  7. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  8. Complex patterns of glacier advances during the Lateglacial in the Chagan-Uzun Valley, Russian Altai

    NASA Astrophysics Data System (ADS)

    Gribenski, Natacha; Lukas, Sven; Jansson, Krister N.; Stroeven, Arjen P.; Preusser, Frank; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.

    2016-04-01

    Over the last decades, numerous paleoglacial reconstructions have been carried out in Central Asian mountain ranges because glaciers in this region are sensitive to climate change, and thus their associated glacial deposits can be used as proxies for paleoclimate inference. However, non-climatic factors can complicate the relationship between glacier fluctuation and climate change. Careful investigations of the geomorphological and sedimentological context are therefore required to understand the mechanisms behind glacier retreat and expansion. In this study we present the first detailed paleoglacial reconstruction of the Chagan Uzun valley, located in the Russian Altai. This reconstruction is based on detailed geomorphological mapping, sedimentological logging, in situ cosmogenic 10Be and 26Al surface exposure dating of glacially transported boulders, and Optically Stimulated Luminescence (OSL) dating. The Chagan Uzun valley includes extensive lobate moraine belts (>100 km2) deposited in the intramontane Chuja basin, reflecting a series of pronounced former glacial advances. Observation of "hillside-scale" folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, indicate that these moraine belts were formed during glacier-surge like events. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley indicate that they were deposited by retreat of temperate valley glaciers and do not include features indicative of surging. Cosmogenic ages associated with the outermost, innermost and intermediary stages, all indicate deposition times clustered around 19.5 ka, although the 10Be ages of the outermost margin are likely slightly underestimated due to brief episode of glacial lake water coverage. Such close deposition timings are consistent with periods of fast or surge advances, followed by active glacier retreat. OSL dating yields significantly older ages of thick lacustrine accumulation along the Chagan Uzun River, which confirms the presence of lacustrine sediments in the Chagan Uzun glacier foreland before the glacier advances. Such sediments could have acted as a soft bed over which fast or unstable glacier flow occurred. This is the first study reporting surge-like behaviour of former glaciers in the Altai mountain range, supported by detailed geomorphological and sedimentological evidences. Such findings are crucial for paleoclimate inference, as the surge-related features cannot be attributed to a glacier system in equilibrium with the contemporary climate, and cannot be interpreted with traditional ELA reconstructions. This study also highlights the complexity of establishing robust paleoglacial chronologies in highly dynamic environments, with interactions between glacial events and the formation and drainage of lakes.

  9. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp.

    PubMed

    He, Yi; Wang, Bin; Chen, Wanping; Cox, Russell J; He, Jingren; Chen, Fusheng

    High throughput genome sequencing has revealed a multitude of potential secondary metabolites biosynthetic pathways that remain cryptic. Pathway reconstruction coupled with genetic engineering via heterologous expression enables discovery of novel compounds, elucidation of biosynthetic pathways, and optimization of product yields. Apart from Escherichia coli and yeast, fungi, especially Aspergillus spp., are well known and efficient heterologous hosts. This review summarizes recent advances in heterologous expression of microbial secondary metabolite biosynthesis in Aspergillus spp. We also discuss the technological challenges and successes in regard to heterologous host selection and DNA assembly behind the reconstruction of microbial secondary metabolite biosynthesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Surface reconstruction, figure-ground modulation, and border-ownership.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2013-01-01

    The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.

  11. Nitridation of an unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surface in an ammonia flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milakhina, D. S., E-mail: denironman@mail.ru; Malin, T. V.; Mansurov, V. G.

    This paper is devoted to the study of the nitridation of unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surfaces in an ammonia flow by reflection high-energy electron diffraction (RHEED). The experimental results show that sapphire nitridation occurs on the unreconstructed (1 × 1) surface, which results in AlN phase formation on the substrate surface. However, if sapphire nitridation is preceded by high-temperature annealing (1150°C) resulting in sapphire surface reconstruction with formation of the (√31 ×√31)R ± 9° surface, the crystalline AlN phase on the sapphire surface is not formed during surface exposure to an ammonia flow.

  12. Correcting Satellite Image Derived Surface Model for Atmospheric Effects

    NASA Technical Reports Server (NTRS)

    Emery, William; Baldwin, Daniel

    1998-01-01

    This project was a continuation of the project entitled "Resolution Earth Surface Features from Repeat Moderate Resolution Satellite Imagery". In the previous study, a Bayesian Maximum Posterior Estimate (BMPE) algorithm was used to obtain a composite series of repeat imagery from the Advanced Very High Resolution Radiometer (AVHRR). The spatial resolution of the resulting composite was significantly greater than the 1 km resolution of the individual AVHRR images. The BMPE algorithm utilized a simple, no-atmosphere geometrical model for the short-wave radiation budget at the Earth's surface. A necessary assumption of the algorithm is that all non geometrical parameters remain static over the compositing period. This assumption is of course violated by temporal variations in both the surface albedo and the atmospheric medium. The effect of the albedo variations is expected to be minimal since the variations are on a fairly long time scale compared to the compositing period, however, the atmospheric variability occurs on a relatively short time scale and can be expected to cause significant errors in the surface reconstruction. The current project proposed to incorporate an atmospheric correction into the BMPE algorithm for the purpose of investigating the effects of a variable atmosphere on the surface reconstructions. Once the atmospheric effects were determined, the investigation could be extended to include corrections various cloud effects, including short wave radiation through thin cirrus clouds. The original proposal was written for a three year project, funded one year at a time. The first year of the project focused on developing an understanding of atmospheric corrections and choosing an appropriate correction model. Several models were considered and the list was narrowed to the two best suited. These were the 5S and 6S shortwave radiation models developed at NASA/GODDARD and tested extensively with data from the AVHRR instrument. Although the 6S model was a successor to the 5S and slightly more advanced, the 5S was selected because outputs from the individual components comprising the short-wave radiation budget were more easily separated. The separation was necessary since both the 5S and 6S did not include geometrical corrections for terrain, a fundamental constituent of the BMPE algorithm. The 5S correction code was incorporated into the BMPE algorithm and many sensitivity studies were performed.

  13. 3D reconstruction of the porous microstructure of Al2O3-coatings based on sequentially revealed surface data

    NASA Astrophysics Data System (ADS)

    Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard

    2018-06-01

    Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.

  14. Confocal non-line-of-sight imaging based on the light-cone transform

    NASA Astrophysics Data System (ADS)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  15. Confocal non-line-of-sight imaging based on the light-cone transform.

    PubMed

    O'Toole, Matthew; Lindell, David B; Wetzstein, Gordon

    2018-03-15

    How to image objects that are hidden from a camera's view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  16. Reconstructive procedures for disturbed functions within the upper airway: pharyngeal breathing/snoring

    PubMed Central

    Verse, Thomas

    2005-01-01

    Breathing disorders which have their origin within the pharynx mainly occur during sleep. These so-called obstructive sleep-related breathing disorders include three different disturbances which have to be distinguished properly: simple snoring, upper airway resistance syndrome (UARS) and obstructive sleep apnea (OSA). Each disturbance requires a different treatment. Simple snoring does not affect the physical health of the snorer himself, but often leads to social problems due to the annoying character of the breathing sounds. Appropriate treatment modalities are oral devices and transcutaneous or ttransmucosal electrical stimulation of the muscles of the floor of the mouth via surface electrodes. As reconstructive surgical procedures adenotomies, tonsillectomies, tonsillotomies, or adenotonsillectomies are successfully used in children. Moreover, in adults radiofrequency treatments of the tonsils, the soft palate and of the base of tongue, as well as uvulopalatopharyngoplasty (UPPP), laser-assisted uvulopalatoplasty (LAUP) and palatal implants are adequate treatments for simple snoring. Adequate therapies for UARS and mild OSA (less than 20 breathing events per hour of sleep) are oral appliances. Nasal continuos positive airway pressure (NCPAP) ventilation is a very successful treatment modality, but shows low compliance in these patients, as daytime symptoms like excessive sleepiness or or impaired cognitive functions are often unincisive in patients with mild OSA. Reconstructive procedures like UPPP, radiofrequency surgery of the tonsils or the base of tongue, hyoid suspension, mandibular osteotomy with genioglossus advancement (MO) are successful treatment options either as isolated procedures or in combination within so-called multi-level surgery concepts. Goldstandard for the treatment of moderate to severe OSA is the nCPAP ventilation. All patients should at least try this treatment modality. Only in the rare cases of nCPAP failure (2%) and in the relatively frequent cases of nCPAP incompliance (30%) reconstructive surgical procedures become necessary as second choice treatments. These are adenectomies, tonsillectomies, tonsillotomies in children and hyoid suspension, MO, multi-level surgery concepts, or maxillomandibular advancement osteotomies in adults. PMID:22073056

  17. Reconstruction of the vulva with sensate gluteal fold flaps.

    PubMed

    Kuokkanen, H; Mikkola, A; Nyberg, R H; Vuento, M H; Kaartinen, I; Kuoppala, T

    2013-01-01

    Soft-tissue reconstruction of the vulva following resection of malignancies is challenging. The function of perineal organs should be preserved and the reconstructed area should maintain an acceptable cosmetic appearance. Reconstruction with local flaps is usually sufficient in the primary phase after a radical vulvectomy. Numerous flaps have been designed for vulvar reconstruction usually based on circulation from the internal pudendal artery branches. In this paper we introduce our modification of the gluteal fold V-Y advancement flap as a primary reconstruction after a radical vulvectomy. Twenty-two patients were operated with a radical vulvectomy because of vulvar malignancies. The operation was primary in eight and secondary in 14 patients. The reconstruction of the vulva was performed in the same operation for each patient. All flaps survived completely. Wound complications were registered in three patients. Late problems with urinary stream were corrected in two patients. A local recurrence of the malignancy was observed in six patients during the follow-up period. Gluteal fold flap is easy to perform, has a low rate of complications and gives good functional results. Even a large defect can be reconstructed reliably with this method. A gluteal fold V-Y advancement flap is sensate and our modification allows the flap to be transposed with lesser dissection as presented before.

  18. Cosmetic rostral nasal reconstruction after nasal planum and premaxilla resection: technique and results in two dogs.

    PubMed

    Gallegos, Javier; Schmiedt, Chad W; McAnulty, Jonathan F

    2007-10-01

    To describe a novel reconstructive technique after nasal planum and premaxilla resection. Case report. Dogs (n=2) with squamous cell carcinoma (SCC) of the nasal planum. A 9-year-old neutered female Labrador retriever (dog 1) and an 11-year-old neutered male Golden retriever (dog 2) had resection of the nasal planum and premaxilla for treatment of locally invasive SCC. Reconstruction of a nasal planum facsimile was based on use of the nonhaired pigmented margins of bilateral labial mucocutaneous rotation-advancement flaps. Reconstruction of the premaxilla by construction of a nasal planum facsimile resulted in uncomplicated wound healing and improved cosmesis. There was no tumor recurrence at 1290 (dog 1) and 210 (dog 2) days after surgery. Reconstruction of a nasal planum facsimile was successfully performed without complications in 2 dogs with high owner satisfaction with cosmetic appearance. This technique represents a significant advancement in surgical cosmetic outcome, may potentially reduce postoperative complications, and should be considered for dogs requiring nasal reconstruction after nasal planum resection with premaxillectomy.

  19. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Suzuki, T.; Takechi, M.; Urano, H.; Ide, S.

    2015-07-01

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichlet and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.

  20. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    PubMed

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  1. Bidirectional reflectance distribution function effects in ladar-based reflection tomography.

    PubMed

    Jin, Xuemin; Levine, Robert Y

    2009-07-20

    Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.

  2. Interaction of diamond (111)-(1 × 1) and (2 × 1) surfaces with OH: a first principles study.

    PubMed

    Stampfl, C; Derry, T E; Makau, N W

    2010-12-01

    The properties of hydroxyl groups on C(111)-(1 × 1) and reconstructed (2 × 1) surfaces at different sites and for various coverages are investigated using density functional theory. Out of the adsorption sites considered, i.e. face centred cubic, hexagonal close packed, on-top and bridge sites, the on-top site is the most stable for OH on the C(111)-(1 × 1) surface for all coverages. On the reconstructed (2 × 1) surface the on-top site is the preferred configuration. Adsorption of OH was not stable however at any site on the reconstructed C(111)-(2 × 1) relative to the (1 × 1) surface; thus adsorption of OH leads to the de-reconstruction of the former surface. Both the 0.5 and 1 monolayer (ML) coverages were able to lift the (2 × 1) surface reconstruction. Repulsion between the OH adsorbates on the (1 × 1) surface sets in for coverages greater than 0.5 ML. A general decrease in the work function with increasing OH coverage was observed on both the (1 × 1) and (2 × 1) surfaces relative to the values of their respective clean surfaces. Regarding the electronic structure, O 2p states on the reconstructed (2 × 1) surface are observed at around - 21, - 8.75 , - 5 and - 2.5 eV, while O 2s states are present at - 22.5 eV. On the (1 × 1) surface (for 0.33 ML in the on-top site), O 2p states occurred between - 8 and - 9 eV, - 5 and - 4 eV and at around - 2.5 eV. O 2s states are established between - 22.5 and - 21 eV. The valence band width is 21 eV, and a hybrid 2s/2p state that is characteristic of diamond is located at about 12.5 eV below the valence band minimum.

  3. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves

    NASA Astrophysics Data System (ADS)

    Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise

    2017-10-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.

  4. Update on orbital reconstruction.

    PubMed

    Chen, Chien-Tzung; Chen, Yu-Ray

    2010-08-01

    Orbital trauma is common and frequently complicated by ocular injuries. The recent literature on orbital fracture is analyzed with emphasis on epidemiological data assessment, surgical timing, method of approach and reconstruction materials. Computed tomographic (CT) scan has become a routine evaluation tool for orbital trauma, and mobile CT can be applied intraoperatively if necessary. Concomitant serious ocular injury should be carefully evaluated preoperatively. Patients presenting with nonresolving oculocardiac reflex, 'white-eyed' blowout fracture, or diplopia with a positive forced duction test and CT evidence of orbital tissue entrapment require early surgical repair. Otherwise, enophthalmos can be corrected by late surgery with a similar outcome to early surgery. The use of an endoscope-assisted approach for orbital reconstruction continues to grow, offering an alternative method. Advances in alloplastic materials have improved surgical outcome and shortened operating time. In this review of modern orbital reconstruction, several controversial issues such as surgical indication, surgical timing, method of approach and choice of reconstruction material are discussed. Preoperative fine-cut CT image and thorough ophthalmologic examination are key elements to determine surgical indications. The choice of surgical approach and reconstruction materials much depends on the surgeon's experience and the reconstruction area. Prefabricated alloplastic implants together with image software and stereolithographic models are significant advances that help to more accurately reconstruct the traumatized orbit. The recent evolution of orbit reconstruction improves functional and aesthetic results and minimizes surgical complications.

  5. Climate reconstructions from tree-ring widths for the last 850 years in Northern Poland

    NASA Astrophysics Data System (ADS)

    Heinrich, Ingo; Knorr, Antje; Heußner, Karl-Uwe; Wazny, Tomasz; Slowinski, Michal; Helle, Gerhard; Simard, Sonia; Scharnweber, Tobias; Buras, Allan; Beck, Wolfgang; Wilmking, Martin; Brauer, Achim

    2015-04-01

    Tree-ring based temperature reconstructions form the scientific backbone of the current debate over global change, and they are the major part of the palaeo data base used for the IPCC report. However, long temperature reconstructions derived from temperate lowland trees growing well within their distributional limits in central Europe are not part of the IPCC report, which is an essential gap in the international data base. It appears that dendroclimatological analysis at temperate lowland sites was so far difficult to perform mainly for three reasons: diffuse climate-growth relationships, the lack of long chronologies due to absence of sufficient numbers of long-living trees and the potential loss of low-frequency signals due to the short length of the sample segments. We present two robust multi-centennial reconstructions of winter temperatures and summer precipitation based on pine and oak tree-ring widths chronologies from northern Poland, where so far no long tree-ring based reconstructions were available. We compared the new records with global, hemispherical and regional reconstructions, and found good agreement with some of them. In comparison, the winter temperature of our reconstruction, however, did not indicate any modern warming nor did the summer precipitation reconstruction suggest any modern 20th century changes. In a second step, we measured cell structures and developed chronologies of parameters such as cell wall thickness and cell lumen area. We used our new method (Liang et al. 2013a,b) applying confocal laser scanning microscopy to increment core surfaces for efficient histometric analyses. We focused on samples covering the last century because meteorological data necessary for calibration studies were available for direct comparisons. It was demonstrated that the correlations with climate were strong and different from those found for tree-ring widths (e.g., N-Poland oak-vessel-lumen-area-chronology with previous September-to-December mean temperature r = 0,61 and N-Poland pine-tracheid-lumen-area-chronology with mean Feb-to-June temperature r = -0,66). By using only raw values, low-frequency signals could be sustained in the chronologies. Liang, W.; Heinrich, I.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013a): Applying CLSM to increment core surfaces for histometric analyses: A novel advance in quantitative wood anatomy. Dendrochronologia 31, 140-145. Liang, W.; Heinrich, I.; Simard, S.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013b): Climate signals derived from cell anatomy of Scots pine in NE Germany. Tree Physiology 33, 833-844.

  6. Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory

    NASA Astrophysics Data System (ADS)

    Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.

    2017-11-01

    We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.

  7. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    PubMed

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used in the reconstruction process. The concept of assessing temporal resolution by means of the data employed for reconstruction can nicely be extended from single-source to dual-source CT. However, for advanced (possibly nonlinear iterative) reconstruction algorithms the examined approach fails to deliver accurate results. New methods and measures to assess the temporal resolution of CT images need to be developed to be able to accurately compare the performance of such algorithms.

  8. The medial patellofemoral complex.

    PubMed

    Loeb, Alexander E; Tanaka, Miho J

    2018-06-01

    The purpose of this review is to describe the current understanding of the medial patellofemoral complex, including recent anatomic advances, evaluation of indications for reconstruction with concomitant pathology, and surgical reconstruction techniques. Recent advances in our understanding of MPFC anatomy have found that there are fibers that insert onto the deep quadriceps tendon as well as the patella, thus earning the name "medial patellofemoral complex" to allow for the variability in its anatomy. In MPFC reconstruction, anatomic origin and insertion points and appropriate graft length are critical to prevent overconstraint of the patellofemoral joint. The MPFC is a crucial soft tissue checkrein to lateral patellar translation, and its repair or reconstruction results in good restoration of patellofemoral stability. As our understanding of MPFC anatomy evolves, further studies are needed to apply its relevance in kinematics and surgical applications to its role in maintaining patellar stability.

  9. An Alternative Posterosuperior Auricular Fascia Flap for Ear Elevation During Microtia Reconstruction.

    PubMed

    Li, Yiyuan; Zhang, Ruhong; Zhang, Qun; Xu, Zhicheng; Xu, Feng; Li, Datao

    2017-02-01

    Advances in staged total auricular reconstruction have resulted in improved anterior auricular appearance; however, satisfactory postreconstruction esthetics of the retroauricular fold remain challenging. The postauricular appearance of the reconstructed ear depends largely upon optimizing the covering material. When used as the covering soft tissue for ear elevation, a flap containing primarily the upper portion of the retroauricular fascia has potential advantages over the conventional book cover-type retroauricular fascia flap. We developed a geometrically designed, posterosuperior auricular fascia flap to replace the conventional retroauricular fascia flap for ear elevation. During the second-stage operation, the posterosuperior auricular fascia flap is rotated downward and turned over to wrap around the inner strut and entire posterior auricular surface. Compared to the conventional book cover-type retroauricular fascia flap, the novel posterosuperior auricular fascia flap was easier to harvest and the operative time significantly decreased (110.3 vs. 121.5 min, p < 0.01). The modified flap produced a thin and natural contour of the postauricular surface, as well as reduced the incidence of postauricular hypertrophic scarring (from 24.7 to 13.2%, p = 0.03) and partial skin graft necrosis (from 43.4 to 31.2%, p = 0.01). The geometrically designed posterosuperior auricular fascia flap improves ear elevation. Compared to the conventional book cover-type retroauricular fascia flap, this covering tissue is easier to perform so the surgical time is decreased. It was highly vascularized, well defined, thinner, and yields reliable results. Thus, favorable postauricular surface results can be achieved during auricular reconstruction by using the modified fascia flap. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  10. Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.; Llewellyn-Jones, D.; Saunders, R. W.; Rayner, N. A.; Kent, E. C.; Old, C. P.; Berry, D.; Birks, A. R.; Blackmore, T.; Corlett, G. K.; Embury, O.; Jay, V. L.; Kennedy, J.; Mutlow, C. T.; Nightingale, T. J.; O'Carroll, A. G.; Pritchard, M. J.; Remedios, J. J.; Tett, S.

    We describe the approach to be adopted for a major new initiative to derive a homogeneous record of sea surface temperature for 1991 2007 from the observations of the series of three along-track scanning radiometers (ATSRs). This initiative is called (A)RC: (Advanced) ATSR Re-analysis for Climate. The main objectives are to reduce regional biases in retrieved sea surface temperature (SST) to less than 0.1 K for all global oceans, while creating a very homogenous record that is stable in time to within 0.05 K decade-1, with maximum independence of the record from existing analyses of SST used in climate change research. If these stringent targets are achieved, this record will enable significantly improved estimates of surface temperature trends and variability of sufficient quality to advance questions of climate change attribution, climate sensitivity and historical reconstruction of surface temperature changes. The approach includes development of new, consistent estimators for SST for each of the ATSRs, and detailed analysis of overlap periods. Novel aspects of the approach include generation of multiple versions of the record using alternative channel sets and cloud detection techniques, to assess for the first time the effect of such choices. There will be extensive effort in quality control, validation and analysis of the impact on climate SST data sets. Evidence for the plausibility of the 0.1 K target for systematic error is reviewed, as is the need for alternative cloud screening methods in this context.

  11. Validation of a Laboratory Method for Evaluating Dynamic Properties of Reconstructed Equine Racetrack Surfaces

    PubMed Central

    Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.

    2012-01-01

    Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD). Potential Relevance Dynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions. PMID:23227183

  12. Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.

    PubMed

    Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M

    2013-01-01

    Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.

  13. Airway reconstruction: review of an approach to the advanced-stage laryngotracheal stenosis.

    PubMed

    Bitar, Mohamad Ahmad; Al Barazi, Randa; Barakeh, Rana

    The management of laryngotracheal stenosis is complex and is influenced by multiple factors that can affect the ultimate outcome. Advanced lesions represent a special challenge to the treating surgeon to find the best remedying technique. To review the efficacy of our surgical reconstructive approach in managing advanced-stage laryngotracheal stenosis treated at a tertiary medical center. A retrospective review of all patients that underwent open laryngotracheal repair/reconstruction by the senior author between 2002 and 2014. Patients with mild/moderate stenosis (e.g. stage 1 or 2), or those who had an open reconstructive procedure prior to referral, were excluded. Patients who had only endoscopic treatment (e.g. laser, balloon dilatation) and were not subjected to an open reconstructive procedure at our institution, were not included in this study. Variables studied included patient demographics, clinical presentation, etiology of the laryngotracheal pathology, the location of stenosis, the stage of stenosis, the type of corrective or reconstructive procedure performed with the type of graft used (where applicable), the type and duration of stent used, the post-reconstruction complications, and the duration of follow-up. Outcome measures included decannulation rate, total number of reconstructive surgeries needed to achieve decannulation, and the number of post-operative endoscopies needed to reach a safe patent airway. Twenty five patients were included, aged 0.5 months to 45 years (mean 13.5 years, median 15 years) with 16 males and 9 females. Seventeen patients (68%) were younger than 18 years. Most patients presented with stridor, failure of decannulation, or respiratory distress. Majority had acquired etiology for their stenosis with only 24% having a congenital pathology. Thirty-two reconstructive procedures were performed resulting in decannulating 24 patients (96%), with 15/17 (88%) pediatric patients and 5/8 (62.5%) adult patients requiring only a single reconstructive procedure. Cartilage grafts were mostly used in children (84% vs. 38%) and stents were mostly silicone made, followed by endotracheal tubes. The number of endoscopies required ranged from 1 to 7 (mean 3). More co-morbidities existed in young children, resulting in failure to decannulate one patient. Adult patients had more complex pathologies requiring multiple procedures to achieve decannulation, with grafting less efficacious than in younger patients. The pediatric patients had double the incidence of granulation tissue compared to adults. The decannulated patients remained asymptomatic at a mean follow-up of 50.5 months. The review of our approach to open airway repair/reconstruction showed its efficacy in advanced-stage laryngotracheal stenosis. Good knowledge of a variety of reconstructive techniques is important to achieve good results in a variety of age groups. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  14. Basic science of anterior cruciate ligament injury and repair

    PubMed Central

    Kiapour, A. M.; Murray, M. M.

    2014-01-01

    Injury to the anterior cruciate ligament (ACL) is one of the most devastating and frequent injuries of the knee. Surgical reconstruction is the current standard of care for treatment of ACL injuries in active patients. The widespread adoption of ACL reconstruction over primary repair was based on early perception of the limited healing capacity of the ACL. Although the majority of ACL reconstruction surgeries successfully restore gross joint stability, post-traumatic osteoarthritis is commonplace following these injuries, even with ACL reconstruction. The development of new techniques to limit the long-term clinical sequelae associated with ACL reconstruction has been the main focus of research over the past decades. The improved knowledge of healing, along with recent advances in tissue engineering and regenerative medicine, has resulted in the discovery of novel biologically augmented ACL-repair techniques that have satisfactory outcomes in preclinical studies. This instructional review provides a summary of the latest advances made in ACL repair. Cite this article: Bone Joint Res 2014;3:20–31. PMID:24497504

  15. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  16. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX)

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-01-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning. PMID:26217710

  17. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX).

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-06-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 - Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning.

  18. Method of producing nanopatterned articles using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2013-08-27

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  19. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.

  20. Locating structures and evolution pathways of reconstructed rutile TiO2(011) using genetic algorithm aided density functional theory calculations.

    PubMed

    Ding, Pan; Gong, Xue-Qing

    2016-05-01

    Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process.

  1. Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors

    NASA Astrophysics Data System (ADS)

    Goryl, M.; Budzioch, J.; Krok, F.; Wojtaszek, M.; Kolmer, M.; Walczak, L.; Konior, J.; Gnecco, E.; Szymonski, M.

    2012-02-01

    Friction force microscopy (FFM) investigations have been performed on reconstructed (001) surfaces of InSb and Ge in an ultrahigh vacuum. On the c(8×2) reconstruction of InSb(001) atomic resolution is achieved under superlubric conditions, and the features observed in the lateral force images are precisely reproduced by numerical simulations, taking into account possible decorations of the probing tip. On the simultaneously acquired (1×3) reconstruction a significant disorder of the surface atoms is observed. If the loading force increases, friction becomes much larger on this reconstruction compared to the c(8×2) one. In FFM images acquired on the Ge(001)(2×1) characteristic substructures are resolved within the unit cells. In such a case, a strong dependence of the friction pattern on the scan direction is observed.

  2. Coherent diffraction surface imaging in reflection geometry.

    PubMed

    Marathe, Shashidhara; Kim, S S; Kim, S N; Kim, Chan; Kang, H C; Nickles, P V; Noh, D Y

    2010-03-29

    We present a reflection based coherent diffraction imaging method which can be used to reconstruct a non periodic surface image from a diffraction amplitude measured in reflection geometry. Using a He-Ne laser, we demonstrated that a surface image can be reconstructed solely from the reflected intensity from a surface without relying on any prior knowledge of the sample object or the object support. The reconstructed phase image of the exit wave is particularly interesting since it can be used to obtain quantitative information of the surface depth profile or the phase change during the reflection process. We believe that this work will broaden the application areas of coherent diffraction imaging techniques using light sources with limited penetration depth.

  3. Fouling-release coatings prepared from alpha,omega-dihydroxypoly(dimethylsiloxane) cross-linked with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane.

    PubMed

    Berglin, Mattias; Wynne, Kenneth J; Gatenholm, Paul

    2003-01-15

    Surface properties of pristine and water-aged polymeric films made of alpha,omega-dihydroxypoly(dimethylsiloxane) (PDMS) cross-linked with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane (FTEOS17) or tetraethoxysilane (TEOS) were investigated. The FTEOS17-cured coatings showed stable advancing and receding contact angles over a period of 3 months of water exposure, compared to a 70 degrees decrease in receding contact angle for the TEOS-cured coatings. After immersion in water, hydroxyl groups were detected on the TEOS-cured coatings with attenuated total reflection infrared spectroscopy (ATR-FT/IR). Tapping-mode atomic force microscopy (TM-AFM) on pristine FTEOS17-cured coatings showed surfaces topologies ranging from smooth and featureless to topologically complex, depending on FTEOS17 concentration. The fluorinated coatings showed a stable surface morphology after water immersion, which we believe is due to the formation of a fluorinated siliceous phase that prevented the surface reconstruction, water penetration, and hydrolysis. The smooth pristine TEOS-cured coatings showed an increased roughness with cracks and erosion pits present on the surface after water immersion.

  4. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    NASA Astrophysics Data System (ADS)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  5. A multidisciplinary protocol for planned skin-preserving delayed breast reconstruction for patients with locally advanced breast cancer requiring postmastectomy radiation therapy: 3-year follow-up.

    PubMed

    Kronowitz, Steven J; Lam, Candace; Terefe, Welela; Hunt, Kelly K; Kuerer, Henry M; Valero, Vicente; Lance, Samuel; Robb, Geoffrey L; Feng, Lei; Buchholz, Thomas A

    2011-06-01

    The authors examined the safety of a protocol for planned skin-preserving delayed breast reconstruction after postmastectomy radiotherapy with placement of a tissue expander for patients with locally advanced breast cancer (stages IIB and III). The authors compared 47 patients treated according to the protocol between December 2003 and May 2008 with 47 disease-stage-matched control patients who underwent standard delayed reconstruction after postmastectomy radiotherapy (no skin preservation or tissue expander) during the same period. Protocol-group complication rates were 21 percent for skin-preserving mastectomy and placement of the expander (stage 1), 5 percent for postmastectomy radiotherapy, 25 percent for expander reinflation after radiotherapy, and 24 percent for skin-preserving delayed reconstruction. The complication rate for standard delayed reconstruction was 38 percent. Tissue-expander loss rates were 32 percent overall, 9 percent for stage 1, 5 percent for postmastectomy radiotherapy, and 22 percent for reinflation. Wound-healing complications after reconstruction occurred in 3 percent of protocol-group and 10 percent of control-group patients. The median follow-up time for patients still alive at last follow-up was 40 months (range, 8.5 to 85.3 months). Three-year recurrence-free survival rates were 92 percent (95 percent CI, 83 to 100 percent) and 86 percent (95 percent CI, 76 to 98 percent) for the protocol and control groups, respectively (p = 0.87). In patients with locally advanced breast cancer, skin-preserving mastectomy with a deflated tissue expander on the chest wall during postmastectomy radiotherapy does not increase locoregional recurrence risk and is associated with lower complication rates of definitive reconstruction.

  6. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  7. [Contribution of French surgeons to reconstructive microsurgery].

    PubMed

    Grinfeder, C; Pinsolle, V; Pelissier, P; Martin, D; Baudet, J

    2005-02-01

    The authors report the contribution of French surgeons and particularly the plastic surgeons to the reconstructive microsurgery since 1972. Different domains are reviewed: animal experimentation, anatomical studies, reimplantations, free tissular transfer, free bone transfer, strategic original concept of transfer, free toes transfer, microsurgical reconstruction of malformative hand, free lymphatic transfer, nervous microsurgery, flap prefabrication, allotransplantations and the future of microsurgery. Three societies have the place of honour: the French Society of Plastic Reconstructive and Aesthetic Surgery, the Group for Advancement of Microsurgery and the World Society for Reconstructive Microsurgery.

  8. Recent Climate Changes in Northwestern Qaidam Basin Inferred from Geothermal Gradients

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, T.

    2014-12-01

    Temperature perturbations under the ground surface are direct thermal response to ground surface temperature changes. Thus ground surface temperature history can be reconstructed from borehole temperature measurements using borehole paleothermometry inversion method. In this study, we use seven borehole temperature profiles to reconstruct the ground surface temperature variation of the past 500 years of the Qaidam basin, northwestern China. Borehole transient temperature measurement from seven sites in northwestern Qaidam basin were separated from geothermal gradients and analyzed by functional space inversion method to determine past ground surface temperature variations in this region. All temperature profiles show the effects of recent climatic disturbances. Inversion shows an overall increase in ground surface temperature by an averaged 1.2℃ (-0.11~2.21℃) during the last 500 years. Clear signs of a cold period between 1500 and 1900 A.D., corresponding to the Little Ice Age, have been found. Its coldest period was between 1780~1790 A.D. with the ground surface temperature of 5.4℃. During the 19th and the 20th century, reconstructed ground surface temperature shows a rising trend, and in the late 20th century, the temperature started to decrease. However, the highest temperature in 1990s broke the record of the past 500 years. This reconstructed past ground surface temperature variation is verified by the simulated annual surface air temperature computed by EdGCM and the cooling trend is also confirmed by other reconstruction of winter half year minimum temperatures using tree rings on the northeastern Tibetan Plateau.

  9. [Posttraumatic deformities of the knee joint : Intra-articular osteotomy after malreduction of tibial head fractures].

    PubMed

    Frosch, K-H; Krause, M; Frings, J; Drenck, T; Akoto, R; Müller, G; Madert, J

    2016-10-01

    Malreduction of tibial head fractures often leads to malalignment of the lower extremity, pain, limited range of motion and instability. The extent of the complaints and the degree of deformity requires an exact analysis and a standardized approach. True ligamentous instability should be distinguished from pseudoinstability of the joint. Also extra- and intra-articular deformities have to be differentiated. In intra-articular deformities the extent of articular surface displacement, defects and clefts must be accurately evaluated. A specific surgical approach is necessary, which allows adequate visualization, correct osteotomy and refixation of the fractured area of the tibial head. In the long-term course good clinical results are described for intra-articular osteotomies. If the joint is damaged to such an extent that it cannot be reconstructed or in cases of advanced posttraumatic osteoarthritis, total knee arthroplasty may be necessary; however, whenever possible and reasonable, anatomical reconstruction and preservation of the joint should be attempted.

  10. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Y.; Suzuki, T.; Takechi, M.

    2015-07-15

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichletmore » and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.« less

  11. First principles investigation of the initial stage of H-induced missing-row reconstruction of Pd(110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padama, Allan Abraham B.; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp; Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871

    2014-06-28

    The pathway of H diffusion that will induce the migration of Pd atom is investigated by employing first principles calculations based on density functional theory to explain the origin of missing-row reconstruction of Pd(110).The calculated activation barrier and the H-induced reconstruction energy reveal that the long bridge-to-tetrahedral configuration is the energetically favored process for the initial stage of reconstruction phenomenon. While the H diffusion triggers the migration of Pd atom, it is the latter process that significantly contributes to the activated missing-row reconstruction of Pd(110). Nonetheless, the strong interaction between the diffusing H and the Pd atoms dictates the occurrencemore » of reconstructed surface.« less

  12. Sparse reconstruction of liver cirrhosis from monocular mini-laparoscopic sequences

    NASA Astrophysics Data System (ADS)

    Marcinczak, Jan Marek; Painer, Sven; Grigat, Rolf-Rainer

    2015-03-01

    Mini-laparoscopy is a technique which is used by clinicians to inspect the liver surface with ultra-thin laparoscopes. However, so far no quantitative measures based on mini-laparoscopic sequences are possible. This paper presents a Structure from Motion (SfM) based methodology to do 3D reconstruction of liver cirrhosis from mini-laparoscopic videos. The approach combines state-of-the-art tracking, pose estimation, outlier rejection and global optimization to obtain a sparse reconstruction of the cirrhotic liver surface. Specular reflection segmentation is included into the reconstruction framework to increase the robustness of the reconstruction. The presented approach is evaluated on 15 endoscopic sequences using three cirrhotic liver phantoms. The median reconstruction accuracy ranges from 0.3 mm to 1 mm.

  13. Updates in Head and Neck Reconstruction.

    PubMed

    Largo, Rene D; Garvey, Patrick B

    2018-02-01

    After reading this article, the participant should be able to: 1. Have a basic understanding of virtual planning, rapid prototype modeling, three-dimensional printing, and computer-assisted design and manufacture. 2. Understand the principles of combining virtual planning and vascular mapping. 3. Understand principles of flap choice and design in preoperative planning of free osteocutaneous flaps in mandible and midface reconstruction. 4. Discuss advantages and disadvantages of computer-assisted design and manufacture in reconstruction of advanced oncologic mandible and midface defects. Virtual planning and rapid prototype modeling are increasingly used in head and neck reconstruction with the aim of achieving superior surgical outcomes in functionally and aesthetically critical areas of the head and neck compared with conventional reconstruction. The reconstructive surgeon must be able to understand this rapidly-advancing technology, along with its advantages and disadvantages. There is no limit to the degree to which patient-specific data may be integrated into the virtual planning process. For example, vascular mapping can be incorporated into virtual planning of mandible or midface reconstruction. Representative mandible and midface cases are presented to illustrate the process of virtual planning. Although virtual planning has become helpful in head and neck reconstruction, its routine use may be limited by logistic challenges, increased acquisition costs, and limited flexibility for intraoperative modifications. Nevertheless, the authors believe that the superior functional and aesthetic results realized with virtual planning outweigh the limitations.

  14. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  15. Auricular reconstruction for microtia: Part II. Surgical techniques.

    PubMed

    Walton, Robert L; Beahm, Elisabeth K

    2002-07-01

    Reconstruction of the microtic ear represents one of the most demanding challenges in reconstructive surgery. In this review the two most commonly used techniques for ear reconstruction, the Brent and Nagata techniques, are addressed in detail. Unique to this endeavor, the originator of each technique has been allowed to submit representative case material and to address the pros and cons of the other's technique. What follows is a detailed, insightful overview of microtia reconstruction, as a state of the art. The review then details commonly encountered problems in ear reconstruction and pertinent technical points. Finally, a glimpse into the future is offered with an accounting of the advances made in tissue engineering as this technology applies to auricular reconstruction.

  16. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  17. Plastic Surgery Challenges in War Wounded I: Flap-Based Extremity Reconstruction

    PubMed Central

    Sabino, Jennifer M.; Slater, Julia; Valerio, Ian L.

    2016-01-01

    Scope and Significance: Reconstruction of traumatic injuries requiring tissue transfer begins with aggressive resuscitation and stabilization. Systematic advances in acute casualty care at the point of injury have improved survival and allowed for increasingly complex treatment before definitive reconstruction at tertiary medical facilities outside the combat zone. As a result, the complexity of the limb salvage algorithm has increased over 14 years of combat activities in Iraq and Afghanistan. Problem: Severe poly-extremity trauma in combat casualties has led to a large number of extremity salvage cases. Advanced reconstructive techniques coupled with regenerative medicine applications have played a critical role in the restoration, recovery, and rehabilitation of functional limb salvage. Translational Relevance: The past 14 years of war trauma have increased our understanding of tissue transfer for extremity reconstruction in the treatment of combat casualties. Injury patterns, flap choice, and reconstruction timing are critical variables to consider for optimal outcomes. Clinical Relevance: Subacute reconstruction with specifically chosen flap tissue and donor site location based on individual injuries result in successful tissue transfer, even in critically injured patients. These considerations can be combined with regenerative therapies to optimize massive wound coverage and limb salvage form and function in previously active patients. Summary: Traditional soft tissue reconstruction is integral in the treatment of war extremity trauma. Pedicle and free flaps are a critically important part of the reconstructive ladder for salvaging extreme extremity injuries that are seen as a result of the current practice of war. PMID:27679751

  18. A new skin flap method for total auricular reconstruction in microtia patients with a reconstructed ear canal: extended scalp and extended mastoid postauricular skin flaps.

    PubMed

    Hwang, Euna; Kim, Young Soo; Chung, Seum

    2014-06-01

    Before visiting a plastic surgeon, some microtia patients may undergo canaloplasty for hearing improvement. In such cases, scarred tissues and the reconstructed external auditory canal in the postauricular area may cause a significant limitation in using the posterior auricular skin flap for ear reconstruction. In this article, we present a new method for auricular reconstruction in microtia patients with previous canaloplasty. By dividing a postauricular skin flap into an upper scalp extended skin flap and a lower mastoid extended skin flap at the level of a reconstructed external auditory canal, the entire anterior surface of the auricular framework can be covered with the two extended postauricular skin flaps. The reconstructed ear shows good color match and texture, with the entire anterior surface of the reconstructed ear being resurfaced with the skin flaps. Clinical question/level of evidence; therapeutic level IV. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Restorative Rehabilitation of a Patient with Dental Erosion

    PubMed Central

    AlShahrani, Mohammed Thamer; Alqarni, Mohammed

    2017-01-01

    Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition. PMID:28828189

  20. Optics. Observation of optical polarization Möbius strips.

    PubMed

    Bauer, Thomas; Banzer, Peter; Karimi, Ebrahim; Orlov, Sergej; Rubano, Andrea; Marrucci, Lorenzo; Santamato, Enrico; Boyd, Robert W; Leuchs, Gerd

    2015-02-27

    Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"—or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication. Copyright © 2015, American Association for the Advancement of Science.

  1. Restorative Rehabilitation of a Patient with Dental Erosion.

    PubMed

    AlShahrani, Mohammed Thamer; Haralur, Satheesh B; Alqarni, Mohammed

    2017-01-01

    Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition.

  2. A comparative study of tissue expansion and free parascapular flaps in extensive facial burn scar reconstruction

    PubMed Central

    Kalra, G S; Bedi, Mitesh; Barala, Vipin Kumar

    2017-01-01

    Background: Large post burn scars are a very difficult problem to treat. Available methods include skin grafts and tissue expansion. The reconstructive method used should be tailored according to individual patient rather than following a textbook approach in each. Patients and Methods: A retrospective analysis was done of cases with extensive facial burn scars in whom secondary reconstruction was done with either free parascapular flap cover or tissue expansion and flap advancement following facial burn scar excision by a single surgeon (GSK) in Department of Burns, Plastic and reconstructive surgery. Results: A total of 15 patients with free parascapular flap and 15 patients with tissue expansion followed by flap advancement were analyzed in the group. There were no free flap failures, but 2 patients required skin graft at donor site. In patients undergoing tissue expansion, minor complication was noted in 1 patient. Conclusion: Tissue expansion is a useful technique in reconstruction of post burn scars, but has its limitations, especially in patients with extensive burns in head and neck region with limited local tissue availability. Parascapular free flap may provide a good alternative option for reconstruction in such cases. PMID:28804686

  3. X-ray dose reduction in abdominal computed tomography using advanced iterative reconstruction algorithms.

    PubMed

    Ning, Peigang; Zhu, Shaocheng; Shi, Dapeng; Guo, Ying; Sun, Minghua

    2014-01-01

    This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP), 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs) of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol) were recorded. At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.

  4. Silicon and Germanium (111) Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Hao, You Gong

    Silicon (111) surface (7 x 7) reconstruction has been a long standing puzzle. For the last twenty years, various models were put forward to explain this reconstruction, but so far the problem still remains unsolved. Recent ion scattering and channeling (ISC), scanning tunneling microscopy (STM) and transmission electron diffraction (TED) experiments reveal some new results about the surface which greatly help investigators to establish better models. This work proposes a silicon (111) surface reconstruction mechanism, the raising and lowering mechanism which leads to benzene -like ring and flower (raised atom) building units. Based on these building units a (7 x 7) model is proposed, which is capable of explaining the STM and ISC experiment and several others. Furthermore the building units of the model can be used naturally to account for the germanium (111) surface c(2 x 8) reconstruction and other observed structures including (2 x 2), (5 x 5) and (7 x 7) for germanium as well as the (/3 x /3)R30 and (/19 x /19)R23.5 impurity induced structures for silicon, and the higher temperature disordered (1 x 1) structure for silicon. The model is closely related to the silicon (111) surface (2 x 1) reconstruction pi-bonded chain model, which is the most successful model for the reconstruction now. This provides an explanation for the rather low conversion temperature (560K) of the (2 x 1) to the (7 x 7). The model seems to meet some problems in the explanation of the TED result, which is explained very well by the dimer, adatom and stacking fault (DAS) model proposed by Takayanagi. In order to explain the TED result, a variation of the atomic scattering factor is proposed. Comparing the benzene-like ring model with the DAS model, the former needs more work to explain the TED result and the later has to find a way to explain the silicon (111) surface (1 x 1) disorder experiment.

  5. Step patterns on vicinal reconstructed surfaces

    NASA Astrophysics Data System (ADS)

    Vilfan, Igor

    1996-04-01

    Step patterns on vicinal (2 × 1) reconstructed surfaces of noble metals Au(110) and Pt(110), miscut towards the (100) orientation, are investigated. The free energy of the reconstructed surface with a network of crossing opposite steps is calculated in the strong chirality regime when the steps cannot make overhangs. It is explained why the steps are not perpendicular to the direction of the miscut but form in equilibrium a network of crossing steps which make the surface to look like a fish skin. The network formation is the consequence of competition between the — predominantly elastic — energy loss and entropy gain. It is in agreement with recent scanning tunnelling microscopy observations on vicinal Au(110) and Pt(110) surfaces.

  6. Nanopatterned articles produced using reconstructed block copolymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.; Park, Soojin; Wang;, Jia-Yu

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred tomore » the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.« less

  7. Structure and Formation Mechanism of Black TiO 2 Nanoparticles

    DOE PAGES

    Tian, Mengkun; Mahjouri-Samani, Masoud; Eres, Gyula; ...

    2015-10-27

    The remarkable properties of black TiO 2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO 2 nanoparticles consists of a disordered Ti 2O 3 shell. The measurements show a transition region that connects the disordered Ti 2O 3 shell to the perfect rutile core consisting first of four to five monolayers of defective rutile, containing clearly visible Ti interstitialmore » atoms, followed by an ordered reconstruction layer of Ti interstitial atoms. Our data suggest that this reconstructed layer presents a template on which the disordered Ti 2O 3 layers form by interstitial diffusion of Ti ions. In contrast to recent reports that attribute TiO 2 band-gap narrowing to the synergistic action of oxygen vacancies and surface disorder of nonspecific origin, our results point to Ti 2O 3, which is a narrow-band-gap semiconductor. In conclusion, as a stoichiometric compound of the lower oxidation state Ti 3+ it is expected to be a more robust atomic structure than oxygen-deficient TiO 2 for preserving and stabilizing Ti 3+ surface species that are the key to the enhanced photocatalytic activity of black TiO 2.« less

  8. Advances in Surgical Reconstructive Techniques in the Management of Penile, Urethral, and Scrotal Cancer.

    PubMed

    Bickell, Michael; Beilan, Jonathan; Wallen, Jared; Wiegand, Lucas; Carrion, Rafael

    2016-11-01

    This article reviews the most up-to-date surgical treatment options for the reconstructive management of patients with penile, urethral, and scrotal cancer. Each organ system is examined individually. Techniques and discussion for penile cancer reconstruction include Mohs surgery, glans resurfacing, partial and total glansectomy, and phalloplasty. Included in the penile cancer reconstruction section is the use of penile prosthesis in phalloplasty patients after penectomy, tissue engineering in phallic regeneration, and penile transplantation. Reconstruction following treatment of primary urethral carcinoma and current techniques for scrotal cancer reconstruction using split-thickness skin grafts and flaps are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Speed, not magnitude, of knee extensor torque production is associated with self-reported knee function early after anterior cruciate ligament reconstruction.

    PubMed

    Hsieh, Chao-Jung; Indelicato, Peter A; Moser, Michael W; Vandenborne, Krista; Chmielewski, Terese L

    2015-11-01

    To examine the magnitude and speed of knee extensor torque production at the initiation of advanced anterior cruciate ligament (ACL) reconstruction rehabilitation and the associations with self-reported knee function. Twenty-eight subjects who were 12 weeks post-ACL reconstruction and 28 age- and sex-matched physically active controls participated in this study. Knee extensor torque was assessed bilaterally with an isokinetic dynamometer at 60°/s. The variables of interest were peak torque, average rate of torque development, time to peak torque and quadriceps symmetry index. Knee function was assessed with the International Knee Documentation Committee Subjective Knee Form (IKDC-SKF). Peak torque and average rate of torque development were lower on the surgical side compared to the non-surgical side and controls. Quadriceps symmetry index was lower in subjects with ACL reconstruction compared to controls. On the surgical side, average rate of torque development was positively correlated with IKDC-SKF score (r = 0.379) while time to peak torque was negatively correlated with IKDC-SKF score (r = -0.407). At the initiation of advanced ACL reconstruction rehabilitation, the surgical side displayed deficits in peak torque and average rate of torque development. A higher rate of torque development and shorter time to peak torque were associated with better self-reported knee function. The results suggest that the rate of torque development should be addressed during advanced ACL reconstruction rehabilitation and faster knee extensor torque generation may lead to better knee function. III.

  10. Studies of the Ge(100) Surface Using a Low Energy Positron Beam: The Effects of Surface Reconstructions on Positron Trapping and Annihilation Characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2008-03-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(100) surface. The PAES spectrum from the Ge(100) surface displays several strong Auger peaks corresponding to M4,5N1N2,3 , M2,3M4,5M4,5 , M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. The experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the reconstructed Ge(100)-p(2x1), Ge(100)-p(2x2), and Ge(100)-c(4x2) surfaces. Estimates of positron binding energy, work function, and annihilation characteristics reveal their sensitivity to surface reconstruction of the topmost layers of clean Ge(100). These results are compared to the ones obtained for the reconstructed Si(100)-(2x1) and Si(100)-p(2x2) surfaces. A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  11. AES and LEED study of the zinc blende SiC(100) surface

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1985-01-01

    Auger and LEED measurements have been carried out on the (100) surface of zinc blende SiC. Two different phases of the clean surface, in addition to two kinds of oxygen-covered surfaces, have been obtained, identified, and discussed. In the oxygen-covered surface, the oxygen is bonded to the Si. The carbon-rich phase is reconstructed (2 x 1), similar to the (100) clean surfaces of Si, Ge, and diamond. The Si-topped surface is reconstructed. A model of alternating Si dimers is suggested for this surface.

  12. Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery.

    PubMed

    Sugimoto, Maki; Yasuda, Hideki; Koda, Keiji; Suzuki, Masato; Yamazaki, Masato; Tezuka, Tohru; Kosugi, Chihiro; Higuchi, Ryota; Watayo, Yoshihisa; Yagawa, Yohsuke; Uemura, Shuichiro; Tsuchiya, Hironori; Azuma, Takeshi

    2010-09-01

    We applied a new concept of "image overlay surgery" consisting of the integration of virtual reality (VR) and augmented reality (AR) technology, in which dynamic 3D images were superimposed on the patient's actual body surface and evaluated as a reference for surgical navigation in gastrointestinal, hepatobiliary and pancreatic surgery. We carried out seven surgeries, including three cholecystectomies, two gastrectomies and two colectomies. A Macintosh and a DICOM workstation OsiriX were used in the operating room for image analysis. Raw data of the preoperative patient information obtained via MDCT were reconstructed to volume rendering and projected onto the patient's body surface during the surgeries. For accurate registration, OsiriX was first set to reproduce the patient body surface, and the positional coordinates of the umbilicus, left and right nipples, and the inguinal region were fixed as physiological markers on the body surface to reduce the positional error. The registration process was non-invasive and markerlesss, and was completed within 5 min. Image overlay navigation was helpful for 3D anatomical understanding of the surgical target in the gastrointestinal, hepatobiliary and pancreatic anatomies. The surgeon was able to minimize movement of the gaze and could utilize the image assistance without interfering with the forceps operation, reducing the gap from the VR. Unexpected organ injury could be avoided in all procedures. In biliary surgery, the projected virtual cholangiogram on the abdominal wall could advance safely with identification of the bile duct. For early gastric and colorectal cancer, the small tumors and blood vessels, which usually could not be found on the gastric serosa by laparoscopic view, were simultaneously detected on the body surface by carbon dioxide-enhanced MDCT. This provided accurate reconstructions of the tumor and involved lymph node, directly linked with optimization of the surgical procedures. Our non-invasive markerless registration using physiological markers on the body surface reduced logistical efforts. The image overlay technique is a useful tool when highlighting hidden structures, giving more information.

  13. Automatic segmentation and reconstruction of the cortex from neonatal MRI.

    PubMed

    Xue, Hui; Srinivasan, Latha; Jiang, Shuzhou; Rutherford, Mary; Edwards, A David; Rueckert, Daniel; Hajnal, Joseph V

    2007-11-15

    Segmentation and reconstruction of cortical surfaces from magnetic resonance (MR) images are more challenging for developing neonates than adults. This is mainly due to the dynamic changes in the contrast between gray matter (GM) and white matter (WM) in both T1- and T2-weighted images (T1w and T2w) during brain maturation. In particular in neonatal T2w images WM typically has higher signal intensity than GM. This causes mislabeled voxels during cortical segmentation, especially in the cortical regions of the brain and in particular at the interface between GM and cerebrospinal fluid (CSF). We propose an automatic segmentation algorithm detecting these mislabeled voxels and correcting errors caused by partial volume effects. Our results show that the proposed algorithm corrects errors in the segmentation of both GM and WM compared to the classic expectation maximization (EM) scheme. Quantitative validation against manual segmentation demonstrates good performance (the mean Dice value: 0.758+/-0.037 for GM and 0.794+/-0.078 for WM). The inner, central and outer cortical surfaces are then reconstructed using implicit surface evolution. A landmark study is performed to verify the accuracy of the reconstructed cortex (the mean surface reconstruction error: 0.73 mm for inner surface and 0.63 mm for the outer). Both segmentation and reconstruction have been tested on 25 neonates with the gestational ages ranging from approximately 27 to 45 weeks. This preliminary analysis confirms previous findings that cortical surface area and curvature increase with age, and that surface area scales to cerebral volume according to a power law, while cortical thickness is not related to age or brain growth.

  14. Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve.

    PubMed

    Jiang, Hongjun; Campbell, Gord; Xi, Fengfeng

    2005-03-01

    This paper describes the measurement and reconstruction of the leaflet geometry for a pericardial heart valve. Tasks involved include mapping the leaflet geometries by laser digitizing and reconstructing the 3D freeform leaflet surface based on a laser scanned profile. The challenge is to design a prosthetic valve that maximizes the benefits offered to the recipient as compared to the normally operating naturally-occurring valve. This research was prompted by the fact that artificial heart valve bioprostheses do not provide long life durability comparable to the natural heart valve, together with the anticipated benefits associated with defining the valve geometries, especially the leaflet geometries for the bioprosthetic and human valves, in order to create a replicate valve fabricated from synthetic materials. Our method applies the concept of reverse engineering in order to reconstruct the freeform surface geometry. A Brown & Shape coordinate measuring machine (CMM) equipped with a HyMARC laser-digitizing system was used to measure the leaflet profiles of a Baxter Carpentier-Edwards pericardial heart valve. The computer software, Polyworks was used to pre-process the raw data obtained from the scanning, which included merging images, eliminating duplicate points, and adding interpolated points. Three methods, creating a mesh model from cloud points, creating a freeform surface from cloud points, and generating a freeform surface by B-splines are presented in this paper to reconstruct the freeform leaflet surface. The mesh model created using Polyworks can be used for rapid prototyping and visualization. To fit a freeform surface to cloud points is straightforward but the rendering of a smooth surface is usually unpredictable. A surface fitted by a group of B-splines fitted to cloud points was found to be much smoother. This method offers the possibility of manually adjusting the surface curvature, locally. However, the process is complex and requires additional manipulation. Finally, this paper presents a reverse engineered design for the pericardial heart valve which contains three identical leaflets with reconstructed geometry.

  15. CT Imaging Findings after Craniosynostosis Reconstructive Surgery.

    PubMed

    Ginat, Daniel Thomas; Lam, Daniel; Kuhn, Andrew Scott; Reid, Russell

    2018-06-06

    Several surgical options are available for treating the different types of craniosynostosis, including fronto-orbital advancement and remodeling, total or subtotal cranial vault remodeling, barrel stave osteotomy with cranial remodeling, endoscopic suturectomy, monobloc advancement and cranioplasty, and revision cranioplasty. High-resolution, low-dose CT with 3D reconstructed images and volumetric analysis can be useful for evaluating the craniofacial skeleton following surgery. The various types of craniosynostosis surgery and corresponding imaging findings are reviewed in this article. © 2018 S. Karger AG, Basel.

  16. A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.

    PubMed

    Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G

    2017-08-01

    Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Polaron-mediated surface reconstruction in the reduced Rutile TiO2 (110) surface

    NASA Astrophysics Data System (ADS)

    Reticcioli, Michele; Setvin, Martin; Hao, Xianfeng; Diebold, Ulrike; Franchini, Cesare

    The role of polarons is of key importance for the understanding of the fundamental properties and functionalities of TiO2. We use density functional theory with an on-site Coulomb interaction and molecular dynamics to study the formation and dynamics of small polarons in the reduced rutile (110) surface. We show that excess electrons donated by oxygen-vacancies (VO) form mobile small polarons that hop easily in subsurface and surface Ti-sites. The polaron formation becomes more favorable by increasing the VO concentration level (up to 20%) due to the progressively lower energy cost needed to distort the lattice. However, at higher VO concentration the shortening of the averaged polaron-polaron distance leads to an increased Coulomb repulsion among the trapped charges at the Ti-sites, which weakens this trend. This instability is overtaken by means of a structural 1 × 2 surface reconstruction, characterized by a distinctively more favorable polaron distribution. The calculations are validated by a direct comparison with experimental AFM and STM data. Our study identifies a fundamentally novel mechanism to drive surface reconstructions and resolves a long standing issue on the origin of the reconstruction in rutile (110) surface.

  18. Recent advancements in the SQUID magnetospinogram system

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiaki; Kawai, Jun; Haruta, Yasuhiro; Miyamoto, Masakazu; Kawabata, Shigenori; Sekihara, Kensuke; Uehara, Gen

    2017-06-01

    In this study, a new superconducting quantum interference device (SQUID) biomagnetic measurement system known as magnetospinogram (MSG) is developed. The MSG system is used for observation of a weak magnetic field distribution induced by the neural activity of the spinal cord over the body surface. The current source reconstruction for the observed magnetic field distribution provides noninvasive functional imaging of the spinal cord, which enables medical personnel to diagnose spinal cord diseases more accurately. The MSG system is equipped with a uniquely shaped cryostat and a sensor array of vector-type SQUID gradiometers that are designed to detect the magnetic field from deep sources across a narrow observation area over the body surface of supine subjects. The latest prototype of the MSG system is already applied in clinical studies to develop a diagnosis protocol for spinal cord diseases. Advancements in hardware and software for MSG signal processing and cryogenic components aid in effectively suppressing external magnetic field noise and reducing the cost of liquid helium that act as barriers with respect to the introduction of the MSG system to hospitals. The application of the MSG system is extended to various biomagnetic applications in addition to spinal cord functional imaging given the advantages of the MSG system for investigating deep sources. The study also includes a report on the recent advancements of the SQUID MSG system including its peripheral technologies and wide-spread applications.

  19. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzurovic, I; Devlin, P; Hansen, J

    2014-06-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curvedmore » surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high level of positioning accuracy. Implementation of this technique has potential to decrease the planning time and may improve overall quality in superficial brachytherapy.« less

  20. Final report on "Carbon Data Assimilation with a Coupled Ensemble Kalman Filter"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnay, Eugenia; Kang, Ji-Sun; Fung, Inez

    2014-07-23

    We proposed (and accomplished) the development of an Ensemble Kalman Filter (EnKF) approach for the estimation of surface carbon fluxes as if they were parameters, augmenting the model with them. Our system is quite different from previous approaches, such as carbon flux inversions, 4D-Var, and EnKF with approximate background error covariance (Peters et al., 2008). We showed (using observing system simulation experiments, OSSEs) that these differences lead to a more accurate estimation of the evolving surface carbon fluxes at model grid-scale resolution. The main properties of the LETKF-C are: a) The carbon cycle LETKF is coupled with the simultaneous assimilationmore » of the standard atmospheric variables, so that the ensemble wind transport of the CO2 provides an estimation of the carbon transport uncertainty. b) The use of an assimilation window (6hr) much shorter than the months-long windows used in other methods. This avoids the inevitable “blurring” of the signal that takes place in long windows due to turbulent mixing since the CO2 does not have time to mix before the next window. In this development we introduced new, advanced techniques that have since been adopted by the EnKF community (Kang, 2009, Kang et al., 2011, Kang et al. 2012). These advances include “variable localization” that reduces sampling errors in the estimation of the forecast error covariance, more advanced adaptive multiplicative and additive inflations, and vertical localization based on the time scale of the processes. The main result has been obtained using the LETKF-C with all these advances, and assimilating simulated atmospheric CO2 observations from different observing systems (surface flask observations of CO2 but no surface carbon fluxes observations, total column CO2 from GoSAT/OCO-2, and upper troposphere AIRS retrievals). After a spin-up of about one month, the LETKF-C succeeded in reconstructing the true evolving surface fluxes of carbon at a model grid resolution. When applied to the CAM3.5 model, the LETKF gave very promising results as well, although only one month is available.« less

  1. Final Technical Report [Carbon Data Assimilation with a Coupled Ensemble Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnay, Eugenia

    2013-08-30

    We proposed (and accomplished) the development of an Ensemble Kalman Filter (EnKF) approach for the estimation of surface carbon fluxes as if they were parameters, augmenting the model with them. Our system is quite different from previous approaches, such as carbon flux inversions, 4D-­Var, and EnKF with approximate background error covariance (Peters et al., 2008). We showed (using observing system simulation experiments, OSSEs) that these differences lead to a more accurate estimation of the evolving surface carbon fluxes at model grid-scale resolution. The main properties of the LETKF-­C are: a) The carbon cycle LETKF is coupled with the simultaneous assimilationmore » of the standard atmospheric variables, so that the ensemble wind transport of the CO2 provides an estimation of the carbon transport uncertainty. b) The use of an assimilation window (6hr) much shorter than the months-long windows used in other methods. This avoids the inevitable “blurring” of the signal that takes place in long windows due to turbulent mixing since the CO2 does not have time to mix before the next window. In this development we introduced new, advanced techniques that have since been adopted by the EnKF community (Kang, 2009, Kang et al., 2011, Kang et al. 2012). These advances include “variable localization” that reduces sampling errors in the estimation of the forecast error covariance, more advanced adaptive multiplicative and additive inflations, and vertical localization based on the time scale of the processes. The main result has been obtained using the LETKF-­C with all these advances, and assimilating simulated atmospheric CO2 observations from different observing systems (surface flask observations of CO2 but no surface carbon fluxes observations, total column CO2 from GoSAT/OCO-­2, and upper troposphere AIRS retrievals). After a spin-­up of about one month, the LETKF-­C succeeded in reconstructing the true evolving surface fluxes of carbon at a model grid resolution. When applied to the CAM3.5 model, the LETKF gave very promising results as well, although only one month is available.« less

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the possibility of studying the temporal evolution of a surface relief directly during exposure to high-power radiation

    NASA Astrophysics Data System (ADS)

    Abramov, D. V.; Arakelyan, S. M.; Galkin, A. F.; Klimovskii, Ivan I.; Kucherik, A. O.; Prokoshev, V. G.

    2006-06-01

    The video image of the graphite surface exposed to focused laser radiation is obtained with the help of a laser monitor. A bright ring moving over the heated surface was observed. A method for reconstructing the surface relief from the video image is proposed and realised. The method is based on the measurement of the angular distribution of the light intensity scattered by the graphite sample surface. The surface relief of the graphite sample changing in time is reconstructed. The relative change in the relief height during laser excitation is measured. The statistical characteristics of the reconstructed graphite surface shape and their variation during laser irradiation are studied. It is found that a circular convexity appears within the bright ring. The formation mechanism of this convexity requires further investigations.

  3. Functional imaging of small tissue volumes with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  4. Mass balance and sliding velocity of the Puget lobe of the cordilleran ice sheet during the last glaciation

    USGS Publications Warehouse

    Booth, D.B.

    1986-01-01

    An estimate of the sliding velocity and basal meltwater discharge of the Puget lobe of the Cordilleran ice sheet can be calculated from its reconstructed extent, altitude, and mass balance. Lobe dimensions and surface altitudes are inferred from ice limits and flow-direction indicators. Net annual mass balance and total ablation are calculated from relations empirically derived from modern maritime glaciers. An equilibrium-line altitude between 1200 and 1250 m is calculated for the maximum glacial advance (ca. 15,000 yr B.P.) during the Vashon Stade of the Fraser Glaciation. This estimate is in accord with geologic data and is insensitive to plausible variability in the parameters used in the reconstruction. Resultant sliding velocities are as much as 650 m/a at the equilibrium line, decreasing both up- and downglacier. Such velocities for an ice sheet of this size are consistent with nonsurging behavior. Average meltwater discharge increases monotonically downglacier to 3000 m3/sec at the terminus and is of a comparable magnitude to ice discharge over much of the glacier's ablation area. Palcoclimatic inferences derived from this reconstruction are consistent with previous, independently derived studies of late Pleistocene temperature and precipitation in the Pacific Northwest. ?? 1986.

  5. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance

    DOE PAGES

    Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin; ...

    2017-08-03

    Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less

  6. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin

    Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less

  7. Leapfrog Diffusion Mechanism for One-Dimensional Chains on Missing-Row Reconstructed Surfaces

    NASA Astrophysics Data System (ADS)

    Montalenti, F.; Ferrando, R.

    1999-02-01

    We analyze the in-channel diffusion of dimers and longer n-adatom chains on Au and Pt (110) \\(1×2\\) surfaces by molecular dynamics simulations. From our calculations it arises that, on the missing-row reconstructed surface, a novel diffusion process, called leapfrog, dominates over concerted jumps, thus becoming the most frequent diffusion mechanism.

  8. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.

    PubMed

    Tian, Chixia; Lin, Feng; Doeff, Marca M

    2018-01-16

    Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface structural and chemical changes affect the charge distribution, the charge compensation mechanisms, and ultimately, the battery performance. Surface reconstruction, cathode/electrolyte interface layer formation, and oxygen loss are intimately related, making it difficult to disentangle the effects of each of these phenomena. They are driven by the different redox activities of Ni and O on the surface and in the bulk; there is a greater tendency for charge compensation to occur on oxygen anions at particle surfaces rather than on Ni, whereas the Ni in the bulk is more redox active than on the surface. Finally, our latest research efforts are directed toward understanding the thermal properties of NMCs, which is highly relevant to their safety in operating cells.

  9. Influence of AlN(0001) Surface Reconstructions on the Wettability of an Al/AlN System: A First-Principle Study.

    PubMed

    Cao, Junhua; Liu, Yang; Ning, Xiao-Shan

    2018-05-11

    A successful application of a hot dip coating process that coats aluminum (Al) on aluminum nitride (AlN) ceramics, revealed that Al had a perfect wettability to the ceramics under specific circumstances, which was different from previous reports. In order to elucidate the mechanism that controlled the supernormal wetting phenomenon during the dip coating, a first-principle calculation of an Al(111)/AlN(0001) interface, based on the density functional theory (DFT), was employed. The wettability of the Al melt on the AlN(0001) surface, as well as the effect that the surface reconstruction of AlN and the oxygen adsorption had on Al for the adhesion and the wettability of the Al/AlN system, were studied. The results revealed that a LCM (laterally contracted monolayer) reconstruction could improve the adhesion and wettability of the system. Oxygen adsorption on the free surface of Al decreased the contact angle, because the adsorption reduced of the surface tension of Al. A prefect wetting was obtained only after some of the oxygen atoms adsorbed on the free surface of Al. The supernormal wetting phenomenon came from the surface reconstruction of the AlN and the adsorption of oxygen atoms on the Al melt surface.

  10. Facial Gunshot Wounds: Trends in Management

    PubMed Central

    Kaufman, Yoav; Cole, Patrick; Hollier, Larry H.

    2009-01-01

    Facial gunshot wounds, often comprising significant soft and bone tissue defects, pose a significant challenge for reconstructive surgeons. Whether resulting from assault, accident, or suicide attempt, a thorough assessment of the defects is essential for devising an appropriate tissue repair and replacement with a likely secondary revision. Immediately after injury, management is centered on advanced trauma life support with patient stabilization as the primary goal. Thorough examination along with appropriate imaging is critical for identifying any existing defects. Whereas past surgical management advocated delayed definitive treatment using serial debridement, today’s management favors use of more immediate reconstruction. Recent advances in microsurgical technique have shifted favor from local tissue advancement to distant free flap transfers, which improve cosmesis and function. This has resulted in a lower number of surgeries required to achieve reconstruction. Because of the diversity of injury and the complexity of facial gunshot injuries, a systematic algorithm is essential to help manage the different stages of healing and to ensure that the best outcome is achieved. PMID:22110801

  11. Oncoplastic surgery in the treatment of breast cancer

    PubMed Central

    Rancati, Alberto; Gonzalez, Eduardo; Dorr, Julio; Angrigiani, Claudio

    2013-01-01

    Advances in reconstructive breast surgery with new materials and techniques now allow us to offer our patients the best possible cosmetic results without the risks associated with oncological control of the disease. These advances, in both oncological and plastic surgery, have led to a new specialisation, namely oncoplastic breast surgery, which enables us to undertake large resections and, with advance planning, to prevent subsequent deformities. This is particularly important when more than 30% of the breast volume is removed, as it allows us to obtain precise information for conservative surgery according to the site of the lesion, and also allows us to set the boundary between conservative surgery and mastectomy. Given the existence of new alloplastic materials and new reconstructive techniques, it is essential for our patients that surgeons involved in breast cancer treatment are trained in both the oncological as well as the reconstructive and aesthetic fields, to enable them to provide the best loco-regional treatment with the best cosmetic results. PMID:23441139

  12. Electrophilic surface sites as precondition for the chemisorption of pyrrole on GaAs(001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhn, Thomas; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Str.9, 12489 Berlin; Fimland, Bjørn-Ove

    We report how the presence of electrophilic surface sites influences the adsorption mechanism of pyrrole on GaAs(001) surfaces. For this purpose, we have investigated the adsorption behavior of pyrrole on different GaAs(001) reconstructions with different stoichiometries and thus different surface chemistries. The interfaces were characterized by x-ray photoelectron spectroscopy, scanning tunneling microscopy, and by reflectance anisotropy spectroscopy in a spectral range between 1.5 and 5 eV. On the As-rich c(4 × 4) reconstruction that exhibits only nucleophilic surface sites, pyrrole was found to physisorb on the surface without any significant modification of the structural and electronic properties of the surface. Onmore » the Ga-rich GaAs(001)-(4 × 2)/(6 × 6) reconstructions which exhibit nucleophilic as well as electrophilic surface sites, pyrrole was found to form stable covalent bonds mainly to the electrophilic (charge deficient) Ga atoms of the surface. These results clearly demonstrate that the existence of electrophilic surface sites is a crucial precondition for the chemisorption of pyrrole on GaAs(001) surfaces.« less

  13. Low energy positrons as probes of reconstructed semiconductor surfaces.

    NASA Astrophysics Data System (ADS)

    Fazleev, Nail G.; Weiss, Alex H.

    2007-03-01

    Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.

  14. Surface Mass Balance of the Greenland Ice Sheet Derived from Paleoclimate Reanalysis

    NASA Astrophysics Data System (ADS)

    Badgeley, J.; Steig, E. J.; Hakim, G. J.; Anderson, J.; Tardif, R.

    2017-12-01

    Modeling past ice-sheet behavior requires independent knowledge of past surface mass balance. Though models provide useful insight into ice-sheet response to climate forcing, if past climate is unknown, then ascertaining the rate and extent of past ice-sheet change is limited to geological and geophysical constraints. We use a novel data-assimilation framework developed under the Last Millennium Reanalysis Project (Hakim et al., 2016) to reconstruct past climate over ice sheets with the intent of creating an independent surface mass balance record for paleo ice-sheet modeling. Paleoclimate data assimilation combines the physics of climate models and the time series evidence of proxy records in an offline, ensemble-based approach. This framework allows for the assimilation of numerous proxy records and archive types while maintaining spatial consistency with known climate dynamics and physics captured by the models. In our reconstruction, we use the Community Climate System Model version 4, CMIP5 last millennium simulation (Taylor et al., 2012; Landrum et al., 2013) and a nearly complete database of ice core oxygen isotope records to reconstruct Holocene surface temperature and precipitation over the Greenland Ice Sheet on a decadal timescale. By applying a seasonality to this reconstruction (from the TraCE-21ka simulation; Liu et al., 2009), our reanalysis can be used in seasonally-based surface mass balance models. Here we discuss the methods behind our reanalysis and the performance of our reconstruction through prediction of unassimilated proxy records and comparison to paleoclimate reconstructions and reanalysis products.

  15. Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models

    NASA Astrophysics Data System (ADS)

    Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof

    2017-12-01

    Accurately assessing geo-hazards and quantifying landslide risks in mountainous environments are gaining importance in the context of the ongoing global warming. For an in-depth understanding of slope failure mechanisms, accurate monitoring of the mass movement topography at high spatial and temporal resolutions remains essential. The choice of the acquisition framework for high-resolution topographic reconstructions will mainly result from the trade-off between the spatial resolution needed and the extent of the study area. Recent advances in the development of unmanned aerial vehicle (UAV)-based image acquisition combined with the structure-from-motion (SfM) algorithm for three-dimensional (3-D) reconstruction make the UAV-SfM framework a competitive alternative to other high-resolution topographic techniques. In this study, we aim at gaining in-depth knowledge of the Schimbrig earthflow located in the foothills of the Central Swiss Alps by monitoring ground surface displacements at very high spatial and temporal resolution using the efficiency of the UAV-SfM framework. We produced distinct topographic datasets for three acquisition dates between 2013 and 2015 in order to conduct a comprehensive 3-D analysis of the landslide. Therefore, we computed (1) the sediment budget of the hillslope, and (2) the horizontal and (3) the three-dimensional surface displacements. The multitemporal UAV-SfM based topographic reconstructions allowed us to quantify rates of sediment redistribution and surface movements. Our data show that the Schimbrig earthflow is very active, with mean annual horizontal displacement ranging between 6 and 9 m. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure. In addition to variation in horizontal surface movements through time, we interestingly showed that the configuration of nested rotational units changes through time. Although there are major changes in the internal structure of the earthflow in the 2013-2015 period, the sediment budget of the drainage basin is nearly in equilibrium. As a consequence, our data show that the time lag between sediment mobilization by landslides and enhanced sediment fluxes in the river network can be considerable.

  16. Reverse engineering physical models employing a sensor integration between 3D stereo detection and contact digitization

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Lin, Grier C. I.

    1997-12-01

    A vision-drive automatic digitization process for free-form surface reconstruction has been developed, with a coordinate measurement machine (CMM) equipped with a touch-triggered probe and a CCD camera, in reverse engineering physical models. The process integrates 3D stereo detection, data filtering, Delaunay triangulation, adaptive surface digitization into a single process of surface reconstruction. By using this innovative approach, surface reconstruction can be implemented automatically and accurately. Least-squares B- spline surface models with the controlled accuracy of digitization can be generated for further application in product design and manufacturing processes. One industrial application indicates that this approach is feasible, and the processing time required in reverse engineering process can be significantly reduced up to more than 85%.

  17. Entry trajectory and atmosphere reconstruction methodologies for the Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.

    2004-02-01

    The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.

  18. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction

    NASA Astrophysics Data System (ADS)

    Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.

    2018-03-01

    This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.

  19. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.

    PubMed

    Chen, Long; Tang, Wen; John, Nigel W; Wan, Tao Ruan; Zhang, Jian Jun

    2018-05-01

    While Minimally Invasive Surgery (MIS) offers considerable benefits to patients, it also imposes big challenges on a surgeon's performance due to well-known issues and restrictions associated with the field of view (FOV), hand-eye misalignment and disorientation, as well as the lack of stereoscopic depth perception in monocular endoscopy. Augmented Reality (AR) technology can help to overcome these limitations by augmenting the real scene with annotations, labels, tumour measurements or even a 3D reconstruction of anatomy structures at the target surgical locations. However, previous research attempts of using AR technology in monocular MIS surgical scenes have been mainly focused on the information overlay without addressing correct spatial calibrations, which could lead to incorrect localization of annotations and labels, and inaccurate depth cues and tumour measurements. In this paper, we present a novel intra-operative dense surface reconstruction framework that is capable of providing geometry information from only monocular MIS videos for geometry-aware AR applications such as site measurements and depth cues. We address a number of compelling issues in augmenting a scene for a monocular MIS environment, such as drifting and inaccurate planar mapping. A state-of-the-art Simultaneous Localization And Mapping (SLAM) algorithm used in robotics has been extended to deal with monocular MIS surgical scenes for reliable endoscopic camera tracking and salient point mapping. A robust global 3D surface reconstruction framework has been developed for building a dense surface using only unorganized sparse point clouds extracted from the SLAM. The 3D surface reconstruction framework employs the Moving Least Squares (MLS) smoothing algorithm and the Poisson surface reconstruction framework for real time processing of the point clouds data set. Finally, the 3D geometric information of the surgical scene allows better understanding and accurate placement AR augmentations based on a robust 3D calibration. We demonstrate the clinical relevance of our proposed system through two examples: (a) measurement of the surface; (b) depth cues in monocular endoscopy. The performance and accuracy evaluations of the proposed framework consist of two steps. First, we have created a computer-generated endoscopy simulation video to quantify the accuracy of the camera tracking by comparing the results of the video camera tracking with the recorded ground-truth camera trajectories. The accuracy of the surface reconstruction is assessed by evaluating the Root Mean Square Distance (RMSD) of surface vertices of the reconstructed mesh with that of the ground truth 3D models. An error of 1.24 mm for the camera trajectories has been obtained and the RMSD for surface reconstruction is 2.54 mm, which compare favourably with previous approaches. Second, in vivo laparoscopic videos are used to examine the quality of accurate AR based annotation and measurement, and the creation of depth cues. These results show the potential promise of our geometry-aware AR technology to be used in MIS surgical scenes. The results show that the new framework is robust and accurate in dealing with challenging situations such as the rapid endoscopy camera movements in monocular MIS scenes. Both camera tracking and surface reconstruction based on a sparse point cloud are effective and operated in real-time. This demonstrates the potential of our algorithm for accurate AR localization and depth augmentation with geometric cues and correct surface measurements in MIS with monocular endoscopes. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.

    PubMed

    Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A

    2015-08-01

    Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.

    PubMed

    Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad

    2017-11-30

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  2. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients

    PubMed Central

    Solano-Altamirano, Juan Manuel; Khikhlukha, Danila

    2017-01-01

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features. PMID:29189722

  3. Biomaterials and Tissue Engineering Strategies for Conjunctival Reconstruction and Dry Eye Treatment

    PubMed Central

    Lu, Qiaozhi; Al-Sheikh, Osama; Elisseeff, Jennifer H.; Grant, Michael P.

    2015-01-01

    The ocular surface is a component of the anterior segment of the eye and is covered by the tear film. Together, they protect the vital external components of the eye from the environment. Injuries, surgical trauma, and autoimmune diseases can damage this system, and in severe cases, tissue engineering strategies are necessary to ensure proper wound healing and recovery. Dry eye is another major concern and a complicated disease affecting the ocular surface. More effective and innovative therapies are required for better outcomes in treating dry eye. This review focuses on the regenerative medicine of the conjunctiva, which is an essential part of the ocular surface system. Features and advances of different types of biomolecular materials, and autologous and allogeneic tissue grafts are summarized and compared. Specifically, vitrigel, a collagen membrane and novel material for use on the ocular surface, offers significant advantages over other biomaterials. This review also discusses a breakthrough microfluidic technology, “organ-on-a-chip” and its potential application in investigating new therapies for dry eye. PMID:26692712

  4. Advanced Computational Dynamics Simulation of Protective Structures Research

    DTIC Science & Technology

    2008-04-01

    unreinforced masonry.” Ancient Reconstruction of the Pompeii Forum. School of Architecture, University of Virginia, Charlottesville, Virginia...Martini, K. (1996b). “Finite element studies in the two-way out-of-plane behavior of unreinforced masonry,” Ancient Reconstruction of the Pompeii Forum

  5. Latissimus dorsi (LD) free flap and reconstruction plate used for extensive maxillo-mandibular reconstruction after tumour ablation.

    PubMed

    Li, Bo-Han; Jung, Hun Jong; Choi, Sung-Won; Kim, Soung-Min; Kim, Myung-Jin; Lee, Jong-Ho

    2012-12-01

    The purpose of this study was to consider the indications and evaluate the clinical advantages and disadvantages including, results and complications, of immediate reconstruction using a latissimus dorsi (LD) free flap and reconstruction plate (R-plate) in advanced oro-mandibular tumour resection. Our cohort included 116 patients who underwent LD free flap and R-plate reconstruction. Flap survival, postoperative function, donor/recipient site complication and aesthetics were evaluated. Our series demonstrated a 99.1% flap survival rate. One case required a contralateral LD free flap reconstruction after the initial flap failed due to pedicle kinking. Twelve patients needed the plate to be removed and replaced (n=4, plate fracture; n=2, plate exposure) or definite reconstruction with free fibular flap and implant installation. Donor site complications included seroma accumulation, scarring, and discomfort of the shoulder girdle. The size of the skin paddle ranged from 6 × 10 cm to 12 × 18 cm (12 were double paddled).The facial contour was acceptable without sagging of the flap. The flap was tolerant to irradiation and was resistant to the exposure of the plate at the symphyseal arch. Our series of primary reconstruction with LD free flaps and R-plates showed the retention of mandibular function and the reconstruction of considerably large soft tissue can be achieved successfully. This reconstruction scheme can be indicated for large-volume defects in the oro-mandibular area when the area cannot be covered by a single osteocutaneous free flap, has undergone extensive oncologic resection for advanced or high recurrence rate malignancy and when immediate postoperative chemotherapy and/or irradiation is necessary. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Modern principles of reconstructive surgery for advanced head and neck tumors

    NASA Astrophysics Data System (ADS)

    Kulbakin, D. E.; Choinzonov, E. L.; Mukhamedov, M. R.; Garbukov, E. U.; Shtin, V. I.; Havkin, N. M.; Vasilev, R. V.

    2017-09-01

    Background: Surgery remains the mainstay of treatment for head and neck cancer. Reconstruction after cancer surgery can help to restore both the appearance and function of the affected areas. Materials and methods: From 2008 to 2016, a total of 120 reconstructive surgeries were performed at the Department of Head and Neck Tumors of Tomsk Cancer Research Institute. The majority of patients had locally advanced cancer (T3 stage in 49 patients and T4 stage in 41 patients). The localizations of the defects requiring reconstruction were as follows: oral cavity—26 cases; tongue—24 cases; skin (including defects of lower lip)—12 cases; maxilla—14 cases; larynx and hypopharynx—12 cases; lips—6 cases, cheek—11 cases, and mandibulla—5 cases. Various free flaps (83%) and pedicle flaps (17%) were used for the reconstruction of the large defects following extirpation of head and neck malignant tumors. In 15 cases (13%), the implants from titanium and titanium nickelide (TiNi) were used to restore the supporting and skeletal functions of the reconstructed region. We used 3D model of the patient's skull for a more precise planning of the reconstruction of maxillofacial bone defects. Results: Good functional results were achieved in most cases. Full flap necrosis was observed in 12 cases (10%). Fibular flap necroses were noted in 8 cases (7%). Conclusions: Single-stage reconstructions of the lost structures after tumor resection significantly improve survival of head and neck cancer patients without causing significant functional and aesthetic damage, as well as contribute to quick rehabilitation of these patients and improvement of their social status. To reduce postoperative complications after reconstructive surgery, it is necessary to carefully select the appropriate reconstructive implant materials.

  7. [The influences upon the passive tensile of the masticatory muscles and ligaments by Herbst appliance under various bite reconstruction--a three dimensional finite element analysis].

    PubMed

    Song, J; Zhao, Z; Hu, L; Jiang, W; Fan, Y; Chen, J

    2001-02-01

    This study aimed to provide some biomechanical references for the clinical use and improvement of Herbst appliance. The three-dimensional model of the 'Temporomandibular joint mandible Herbst appliance system' was set up by SUPER SAP software (version 9.3). On this model, the passive tensile in the masticatory muscles and ligaments were analyzed under various bit reconstruction designed according to specified advanced displacement and vertical bite opening. When Herbst appliance drove the mandible forward, there was not any tensile in the medial, lateral pterygoid and the collateral ligament, while the temporalis, the deep paret of masseter, the stylomandibular ligament, and the sphenomandibular ligament were passively drawn. Under various bite reconstruction, the passive tensile in the medial temporalis, the posterior temporalis, the stylomandibular ligament and the sphenomandibular ligament increased with the amount of the advancement of the mandible; The passive tensile in the posterior temporalis and the deep part of masseter increased with the amount of vertical bite opening of the mandible. The StL, SpL, PT and AT played an important role in functional reconstruction of mandible by Herbst. All five group of bite reconstruction (3-7 mm advancement, 4-2 mm vertical bite opening of the mandible) designed by this study can be selected in clinic according to the patient's capability of adaptation, the extent of malocclusion and the potential and direction of growth.

  8. Five centuries of climate change in Australia: the view from underground

    NASA Astrophysics Data System (ADS)

    Pollack, Henry N.; Huang, Shaopeng; Smerdon, Jason E.

    2006-10-01

    Fifty-seven borehole temperature profiles from across Australia are analysed to reconstruct a ground surface temperature history for the past five centuries. The five-hundred-year reconstruction is characterised by a temperature increase of approximately 0.5 K, with most of the warming occurring in the 19th and 20th centuries. The 17th century was the coolest interval of the five-century reconstruction. Comparison of the geothermal reconstruction to the Australian annual surface air temperature time series in their period of overlap shows excellent agreement. The full geothermal reconstruction also agrees well with the low-frequency component of dendroclimatic reconstructions from Tasmania and New Zealand. The warming of Australia over the past five centuries is only about half that experienced by the continents of the Northern Hemisphere in the same time interval. Copyright

  9. Excitonic mechanism of the photoinduced surface restructuring of copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotskii, Michel

    An explanation for the photoinduced reconstruction of Cu single-crystal surfaces that was observed by Ernst et al. [Science 279, 679 (1998)] under the influence of visible light is proposed. It is suggested that reconstruction can be attributed to the energy released during the nonradiative decay of excitons that were excited by light irradiation and captured on surface active centers. The estimates performed show that exciton decay on surface steps and adatoms releases enough energy to create surface defects.

  10. Reconstructing 3-D skin surface motion for the DIET breast cancer screening system.

    PubMed

    Botterill, Tom; Lotz, Thomas; Kashif, Amer; Chase, J Geoffrey

    2014-05-01

    Digital image-based elasto-tomography (DIET) is a prototype system for breast cancer screening. A breast is imaged while being vibrated, and the observed surface motion is used to infer the internal stiffness of the breast, hence identifying tumors. This paper describes a computer vision system for accurately measuring 3-D surface motion. A model-based segmentation is used to identify the profile of the breast in each image, and the 3-D surface is reconstructed by fitting a model to the profiles. The surface motion is measured using a modern optical flow implementation customized to the application, then trajectories of points on the 3-D surface are given by fusing the optical flow with the reconstructed surfaces. On data from human trials, the system is shown to exceed the performance of an earlier marker-based system at tracking skin surface motion. We demonstrate that the system can detect a 10 mm tumor in a silicone phantom breast.

  11. Comparing a thermo-mechanical Weichselian Ice Sheet reconstruction to reconstructions based on the sea level equation: aspects of ice configurations and glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Lund, B.; Näslund, J.-O.; Fastook, J.

    2014-05-01

    In this study we compare a recent reconstruction of the Weichselian Ice Sheet as simulated by the University of Maine ice sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: ICE-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and ICE-5G are global models based on the sea level equation. The three models of the Weichselian Ice Sheet are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal extent of the ICE-5G ice sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and ICE-5G melt relatively uniformly over the entire ice sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by ICE-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice sheet reconstructions.

  12. Assessment of conjunctival epithelium after severe burns and surgical reconstruction with Tenon plasty by means of a modified impression cytology procedure.

    PubMed

    Reim, M; Becker, J; Genser, C; Salla, S

    1998-07-01

    Tenon plasty has been used to reconstruct the conjunctival surface in severe burns in which ischemic sclera was exposed or undergoing ulceration. A modified impression cytology procedure was applied to investigate the conjunctival epithelium. The quality of the regenerated epithelium on the advanced Tenon sheets was assessed. The 63 conjunctival samples of eye-burn patients were investigated. Among these, 41 patients had very severe bums. Conjunctival samples were collected from 6 weeks after surgery to 5 years after the accident. They were compared with conjunctival epithelia obtained from 53 normal eyes of healthy volunteers. A 25-mm2 Biopore membrane (Millipore Catalogue PICM 01250) was placed on the bulbar conjunctiva surface in the lower temporal quadrant, at a distance of 3-5 mm from the limbus, till it was soaked with fluid. The ablated cell sheets were stained with periodic acid-Schiff (PAS). In all cases, an intact conjunctival epithelium was observed. In healthy eyes, 2,338 epithelial cells/mm2 and 155 goblet cells/ mm2 were found. Eyes after a surgical reconstruction with Tenon plasty resulted only in 1,575 epithelial cells/mm2 and 72 goblet cells/mm2. The differences were highly significant. The ratio of epithelial to goblet cell counts revealed an increase of goblet cells during the postoperative period. Conjunctival epithelium as well as goblet cell densities were reduced after heat, lime, alkali, and acid burns. However, after concrete burns, cell densities were increased. Tenon plasty provided the regeneration of the fully intact conjunctival epithelium. Goblet cells were present from 6 weeks after the surgery on; their number increased gradually. The stimulation of the goblet cell mucous secretion is discussed.

  13. Major lower limb congenital shortening: a mini review.

    PubMed

    Fixsen, John A

    2003-01-01

    Major congenital limb deficiencies are rare and the experience of most orthopaedic surgeons of their management will be small. The suggestion of the establishment of special limb deficiency clinics seems a sensible way of collecting the necessary expertise together in one place in order to advise patient and parents on the long-term management, throughout life, of their problems. Advances in imaging have led to prenatal diagnosis, which produces very significant problems in counselling parents before their child is born. More sophisticated methods of imaging after birth such as magnetic resonance imaging allow more accurate assessment of the deficiency. Early classifications based on plain radiology in the first year of life are being superseded by classifications relevant to the modern methods of reconstruction particularly the circular (Ilizarov) fixator. Similarly the remarkable advances in molecular biology are increasing our understanding of the fundamental causes of these deficiencies and the ultimate aim of their prevention. The rapid advances in reconstruction particularly using circular fixators has made reconstruction rather than amputation and a prosthesis possible, particularly in the milder forms of deficiency. However, the surgeon must remember that these conditions represent a field defect so that reconstruction cannot produce a normal limb. One of the hardest things to explain to patients and parents is that however well reconstruction is performed the result is not a normal limb. In the more severe forms of deficiency frequently the best advice is still amputation and a modern prosthesis. For some patients and parents this is very difficult if not impossible to accept. However, life with a good amputation and modern prosthesis may be better than attempting a long and arduous reconstruction, which still results in an abnormal and imperfect limb.

  14. Non-axisymmetric equilibrium reconstruction on the Compact Toroidal Hybrid Experiment using external magnetic and soft x-ray inversion radius measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.

    2015-11-01

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  15. Implementation of a close range photogrammetric system for 3D reconstruction of a scoliotic torso

    NASA Astrophysics Data System (ADS)

    Detchev, Ivan Denislavov

    Scoliosis is a deformity of the human spine most commonly encountered with children. After being detected, periodic examinations via x-rays are traditionally used to measure its progression. However, due to the increased risk of cancer, a non-invasive and radiation-free scoliosis detection and progression monitoring methodology is needed. Quantifying the scoliotic deformity through the torso surface is a valid alternative, because of its high correlation with the internal spine curvature. This work proposes a low-cost multi-camera photogrammetric system for semi-automated 3D reconstruction of a torso surface with sub-millimetre level accuracy. The thesis describes the system design and calibration for optimal accuracy. It also covers the methodology behind the reconstruction and registration procedures. The experimental results include the complete reconstruction of a scoliotic torso mannequin. The final accuracy is evaluated through the goodness of fit between the reconstructed surface and a more accurate set of points measured by a coordinate measuring machine.

  16. CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study

    PubMed Central

    2016-01-01

    Clean and stable surface modifications of an iridium (100) single crystal, i.e., the (1 × 1) phase, the (5 × 1) reconstruction, and the oxygen-terminated (2 × 1)-O surface, were prepared and characterized by low energy electron diffraction (LEED), temperature-programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS) and polarization modulation IRAS (PM-IRAS). The adsorption of CO in UHV and at elevated (mbar) pressure/temperature was followed both ex situ and in situ on all three surface modifications, with a focus on mbar pressures of CO. The Ir(1 × 1) surface exhibited c(4 × 2)/c(2 × 2) and c(6 × 2) CO structures under low pressure conditions, and remained stable up to 100 mbar and 700 K. For the (2 × 1)-O reconstruction CO adsorption induced a structural change from (2 × 1)-O to (1 × 1), as confirmed by LEED, TPD, and IR. For Ir (2 × 1)-O TPD indicated that CO reacted with surface oxygen forming CO2. The (5 × 1) reconstruction featured a reversible and dynamic behavior upon CO adsorption, with a local lifting of the reconstruction to (1 × 1). After CO desorption, the (5 × 1) structure was restored. All three reconstructions exhibited CO adsorption with on-top geometry, as evidenced by IR. With increasing CO exposure the resonances shifted to higher wavenumber, due to adsorbate–adsorbate and adsorbate–substrate interactions. The largest wavenumber shift (from 2057 to 2100 cm–1) was observed for Ir(5 × 1) upon CO dosing from 1 L to 100 mbar. PMID:27257467

  17. [Applicability of Pedicled Coronoid Process and Temporal Muscle(Fascial)Combined(PCPTM)Flap for Reconstruction of Orbital Floor Defect Following Hemi-Maxillectomy for Advanced Maxillary Cancer - A Report of Two Cases].

    PubMed

    Karino, Masaaki; Kanno, Takahiro; Kaneko, Ichiro; Ide, Taichi; Yoshino, Aya; Sekine, Joji

    2017-11-01

    We usually perform surgery for resectable oral and maxillofacial carcinomas. Following complete cancer resection, reconstruction of soft and hard tissues using various types of local flaps and/or vascularized free flaps is usually performed. The maxilla is composed of various anatomical structures. In particular, reconstruction of the orbit is one of the most important and challenging procedures for prevention of functional and esthetic complications. Here we report 2 cases of orbital floor defect reconstruction following advanced maxillary cancer resection using a pedicled coronoid process and temporal muscle (fascial)combined(PCPTM)flap. Case 1: A 69-year-old Japanese man with squamous cell carcinoma of the left maxilla (cT4aN2bM0, Stage IV A). Case 2: An 86-year-old Japanese woman with recurrence of myoepithelial carcinoma of the left maxilla. In both cases, the orbital floor defect was reconstructed following hemi-maxillectomy using a PCPTM flap. Minor infection and/or partial necrosis were observed postoperatively, and a maxillofacial prosthesis was used in one case. A PCPTM flap was feasible for reconstruction of surgical defects of the orbital floor following maxillectomy for cancer.

  18. Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra [On the Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra

    DOE PAGES

    Gilroy, Kyle D.; Elnabawy, Ahmed O.; Yang, Tung -Han; ...

    2017-04-27

    Despite the remarkable success in controlling the synthesis of metal nanocrystals, it still remains a grand challenge to stabilize and preserve the shapes or internal structures of metastable kinetic products. In this work, we address this issue by systematically investigating the surface and bulk reconstructions experienced by a Pd concave icosahedron when subjected to heating up to 600 °C in vacuum. We used in situ high-resolution transmission electron microscopy to identify the equilibration pathways of this far-from-equilibrium structure. We were able to capture key structural transformations occurring during the thermal annealing process, which were mechanistically rationalized by implementing self-consistent plane-wavemore » density functional theory (DFT) calculations. Specifically, the concave icosahedron was found to evolve into a regular icosahedron via surface reconstruction in the range of 200–400 °C, and then transform into a pseudospherical crystalline structure through bulk reconstruction when further heated to 600 °C. As a result, the mechanistic understanding may lead to the development of strategies for enhancing the thermal stability of metal nanocrystals.« less

  19. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.

    In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less

  20. Giant (12 ×12 ) and (4 ×8 ) reconstructions of the 6 H -SiC(0001) surface obtained by progressive enrichment in Si atoms

    NASA Astrophysics Data System (ADS)

    Martrou, David; Leoni, Thomas; Chaumeton, Florian; Castanié, Fabien; Gauthier, Sébastien; Bouju, Xavier

    2018-02-01

    Silicon carbide (SiC) is nowadays a major material for applications in high power electronics, quantum optics, or nitride semiconductors growth. Mastering the surface of SiC substrate is crucial to obtain reproducible results. Previous studies on the 6 H -SiC(0001) surface have determined several reconstructions, including the (√{3 }×√{3 }) -R 30∘ and the (3 ×3 ) . Here, we introduce a process of progressive Si enrichment that leads to the formation of two reconstructions, the giant (12 ×12 ) and the (4 ×8 ) . From electron diffraction and tunneling microscopy completed by molecular dynamics simulations, we build models introducing a type of Si adatom bridging two Si surface atoms. Using these Si bridges, we also propose a structure for two other reconstructions, the (2 √{3 }×2 √{3 }) -R 30∘ and the (2 √{3 }×2 √{13 } ). We show that five reconstructions follow each other with Si coverage ranging from 1 and 1.444 monolayer. This result opens the way to greatly improve the control of 6 H -SiC(0001) at the atomic scale.

  1. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.

    2018-01-01

    Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.

  2. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    DOE PAGES

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; ...

    2018-01-31

    In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less

  3. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa2 Cu3 Oy : Fermi-Surface Reconstruction by Bidirectional Charge Order

    NASA Astrophysics Data System (ADS)

    Cyr-Choinière, O.; Badoux, S.; Grissonnanche, G.; Michon, B.; Afshar, S. A. A.; Fortier, S.; LeBoeuf, D.; Graf, D.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis

    2017-07-01

    The Seebeck coefficient S of the cuprate YBa2 Cu3 Oy is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p =0.11 and p =0.12 , for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S /T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in Sb, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S /T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  4. Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience

    PubMed Central

    WANNER, A. A.; KIRSCHMANN, M. A.

    2015-01-01

    Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464

  5. Stochastic Surface Mesh Reconstruction

    NASA Astrophysics Data System (ADS)

    Ozendi, M.; Akca, D.; Topan, H.

    2018-05-01

    A generic and practical methodology is presented for 3D surface mesh reconstruction from the terrestrial laser scanner (TLS) derived point clouds. It has two main steps. The first step deals with developing an anisotropic point error model, which is capable of computing the theoretical precisions of 3D coordinates of each individual point in the point cloud. The magnitude and direction of the errors are represented in the form of error ellipsoids. The following second step is focused on the stochastic surface mesh reconstruction. It exploits the previously determined error ellipsoids by computing a point-wise quality measure, which takes into account the semi-diagonal axis length of the error ellipsoid. The points only with the least errors are used in the surface triangulation. The remaining ones are automatically discarded.

  6. Large aperture and wide field of view space telescope for the detection of ultra high energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Mazzinghi, Piero; Bratina, Vojko; Gambicorti, Lisa; Simonetti, Francesca; Zuccaro Marchi, Alessandro

    2017-11-01

    New technologies are proposed for large aperture and wide Field of View (FOV) space telescopes dedicated to detection of Ultra High Energy Cosmic Rays and Neutrinos flux, through observation of fluorescence traces in atmosphere and diffused Cerenkov signals. The presented advanced detection system is a spaceborne LEO telescope, with better performance than ground-based observatories, detecting up to 103 - 104 events/year. Different design approaches are implemented, all with very large FOV and focal surface detectors with sufficient segmentation and time resolution to allow precise reconstructions of the arrival direction. In particular, two Schmidt cameras are suggested as an appropriate solution to match most of the optical and technical requirements: large FOV, low f/#, reduction of stray light, optionally flat focal surface, already proven low-cost construction technologies. Finally, a preliminary proposal of a wideFOV retrofocus catadioptric telescope is explained.

  7. Data, age uncertainties and ocean δ18O under the spotlight for Ocean2k Phase 2

    USGS Publications Warehouse

    McGregor, Helen V.; Martrat, Belen; Evans, Michael N.; Thompson, Diane; Reynolds, D.; Addison, Jason A.

    2016-01-01

    The oceans make up 71% of the Earth’s surface area and are a major component of the global climate system. They are the world’s primary heat reservoir, and knowledge of the global ocean response to past and present radiative forcing is important for understanding climate change. PAGES’ Ocean2k working group aims to place marine climate of the past century within the context of the previous 2000 years (2k). Phase 1 (2011-2015) focused on constraining the forcing mechanisms most consistent with reconstructed sea surface temperature (SST) over the 2k interval (McGregor et al. 2015; Tierney et al. 2015). The 1st Ocean2k workshop assisted in the transition to Ocean2k Phase 2 (2015-2017), with the workshop goal to develop, coordinate and significantly advance community-identified and -driven activities.

  8. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  9. Combined experimental and theoretical study of fast atom diffraction on the β2(2×4) reconstructed GaAs(001) surface

    NASA Astrophysics Data System (ADS)

    Debiossac, M.; Zugarramurdi, A.; Khemliche, H.; Roncin, P.; Borisov, A. G.; Momeni, A.; Atkinson, P.; Eddrief, M.; Finocchi, F.; Etgens, V. H.

    2014-10-01

    A grazing incidence fast atom diffraction (GIFAD or FAD) setup, installed on a molecular beam epitaxy chamber, has been used to characterize the β2(2×4) reconstruction of a GaAs(001) surface at 530∘C under an As4 overpressure. Using a 400-eV 4He beam, high-resolution diffraction patterns with up to eighty well-resolved diffraction orders are observed simultaneously, providing a detailed fingerprint of the surface structure. Experimental diffraction data are in good agreement with results from quantum scattering calculations based on an ab initio projectile-surface interaction potential. Along with exact calculations, we show that a straightforward semiclassical analysis allows the features of the diffraction chart to be linked to the main characteristics of the surface reconstruction topography. Our results demonstrate that GIFAD is a technique suitable for measuring in situ the subtle details of complex surface reconstructions. We have performed measurements at very small incidence angles, where the kinetic energy of the projectile motion perpendicular to the surface can be reduced to less than 1 meV. This allowed the depth of the attractive van der Waals potential well to be estimated as -8.7 meV in very good agreement with results reported in literature.

  10. Transition from Reconstruction toward Thin Film on the (110) Surface of Strontium Titanate

    PubMed Central

    2016-01-01

    The surfaces of metal oxides often are reconstructed with a geometry and composition that is considerably different from a simple termination of the bulk. Such structures can also be viewed as ultrathin films, epitaxed on a substrate. Here, the reconstructions of the SrTiO3 (110) surface are studied combining scanning tunneling microscopy (STM), transmission electron diffraction, and X-ray absorption spectroscopy (XAS), and analyzed with density functional theory calculations. Whereas SrTiO3 (110) invariably terminates with an overlayer of titania, with increasing density its structure switches from n × 1 to 2 × n. At the same time the coordination of the Ti atoms changes from a network of corner-sharing tetrahedra to a double layer of edge-shared octahedra with bridging units of octahedrally coordinated strontium. This transition from the n × 1 to 2 × n reconstructions is a transition from a pseudomorphically stabilized tetrahedral network toward an octahedral titania thin film with stress-relief from octahedral strontia units at the surface. PMID:26954064

  11. Reconstructive Microsurgery: The Future Is Today.

    PubMed

    Amin, Kavit; Mohan, Anita T

    2017-01-01

    This reconstructive microsurgery course will run yearly and was borne and popularized from its infant meeting the year before, primarily focused on perforator flaps. It is a 2-day course updating residents/registrars to attending physicians/consultants about the most topical advancements in microvascular reconstructive surgery. The course is held at the New York University Langone Hospital in the United States.The timetable is primarily lecture based with the advantage of live-surgical procedures by world-renowned faculty. The timetable includes, but not limited to, facial/hand vascularized composite allotransplantation, upper/lower limb, breast, head and neck, transgender, and lymphedema surgery. Lectures were highly informative and there was ample time for case discussion with the appreciation that managing complex situations often requires input from other colleagues. The faculty focused on the lessons they have learned and potential pitfalls to avoid. The faculty was comprised of leading experts in reconstructive microsurgery from Europe, Korea, and throughout the United States.The primary emphasis of the course was to appreciate the global recognition in advances in microsurgery.

  12. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  13. Dynamic probe of ZnTe(110) surface by scanning tunneling microscopy

    PubMed Central

    Kanazawa, Ken; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji

    2015-01-01

    The reconstructed surface structure of the II–VI semiconductor ZnTe (110), which is a promising material in the research field of semiconductor spintronics, was studied by scanning tunneling microscopy/spectroscopy (STM/STS). First, the surface states formed by reconstruction by the charge transfer of dangling bond electrons from cationic Zn to anionic Te atoms, which are similar to those of IV and III–V semiconductors, were confirmed in real space. Secondly, oscillation in tunneling current between binary states, which is considered to reflect a conformational change in the topmost Zn–Te structure between the reconstructed and bulk-like ideal structures, was directly observed by STM. Third, using the technique of charge injection, a surface atomic structure was successfully fabricated, suggesting the possibility of atomic-scale manipulation of this widely applicable surface of ZnTe. PMID:27877752

  14. Electronic structure studies of adsorbate-induced surface reconstructions: oxygen on Rh(1 0 0)

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Harris, Suzanne

    2004-03-01

    Solid-state Fenske-Hall band structure calculations have been used to study the electronic structure and bonding that occur on an "asymmetric" clock reconstructed Rh(1 0 0) surface with a half-monolayer of O atom adsorbates. The displacement of the top-layer Rh atoms on reconstructed O/Rh(1 0 0) is similar to that observed when a half-monolayer of C or N atoms adsorb onto clean Ni(1 0 0). Unlike the five-coordinate C or N adsorbates that adsorb into effectively coplanar sites on the Ni(1 0 0) surface, however, O atoms sit well above the Rh surface plane and occupy three-coordinate adsorption sites. The results of these calculations show that the asymmetric clock reconstruction of O/Rh(1 0 0) increases the negative charge localized on the highly electronegative O atoms and strengthens the O-Rh bonding relative to an unreconstructed surface. This suggests that, in contrast to the C(N)/Ni(1 0 0) clock, which appears to be driven primarily by the restoration of metal-metal bonding, the asymmetric O/Rh(1 0 0) clock reconstruction is driven by the optimization of the O atom bonding environment. Comparisons of the O/Rh(1 0 0) and C(N, O)/Ni(1 0 0) surfaces further indicate that the electronegativity and electron count of the adsorbed species, as well as the electron count and physical size of the metal, all play a role in determining the preferred atomic geometries of these adsorbate-covered transition metal surfaces.

  15. Scanning tunneling microscopy and spectroscopy studies of the heavy-electron superconductor TlNi2Se2

    NASA Astrophysics Data System (ADS)

    Wilfert, Stefan; Schmitt, Martin; Schmidt, Henrik; Mauerer, Tobias; Sessi, Paolo; Wang, Hangdong; Mao, Qianhui; Fang, Minghu; Bode, Matthias

    2018-01-01

    We report on the structural and superconducting electronic properties of the heavy-electron superconductor TlNi2Se2 . By using a variable-temperature scanning tunneling microscopy (VT-STM) the coexistence of (√{2 }×√{2 }) R 45∘ and (2 ×1 ) surface reconstructions is observed. Similar to earlier observations on the "122" family of Fe-based superconductors, we find that their respective surface fraction strongly depends on the temperature during cleavage, the measurement temperature, and the sample's history. Cleaving at low temperature predominantly results in the (√{2 }×√{2 }) R 45∘ -reconstructed surface. A detailed analysis of the (√{2 }×√{2 }) R 45∘ -reconstructed domains identifies (2 ×1 ) -ordered dimers, tertramers, and higher order even multimers as domain walls. Higher cleaving temperatures and the warming of low-temperature-cleaved samples increases the relative weight of the (2 ×1 ) surface reconstruction. By slowly increasing the sample temperature Ts inside the VT-STM we find that the (√{2 }×√{2 }) R 45∘ surface reconstructions transforms into the (2 ×1 ) structure at Ts=123 K. We identify the polar nature of the TlNi2Se2 (001) surface as the most probable driving mechanism of the two reconstructions, as both lead to a charge density ρ =0.5 e- , thereby avoiding divergent electrostatic potentials and the resulting "polar catastrophe." Low-temperature scanning tunneling spectroscopy (STS) performed with normal metal and superconducting probe tips shows a superconducting gap which is best fit with an isotropic s wave. We could not detect any correlation between the local surface reconstruction, suggesting that the superconductivity is predominantly governed by TlNi2Se2 bulk properties. Correspondingly, temperature- and field-dependent data reveal that both the critical temperature and critical magnetic field are in good agreement with bulk values obtained earlier from transport measurements. In the superconducting state the formation of an Abrikosov lattice is observed without any zero bias anomaly at the vortex core.

  16. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  17. 78 FR 76753 - Standards of Performance for Petroleum Refineries for Which Construction, Reconstruction, or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ..., or Use I. National Technology Transfer and Advancement Act J. Executive Order 12898: Federal Actions... and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995... information claimed to be confidential business information (CBI) or other information whose disclosure is...

  18. Positron Annihilation Induced Auger Electron Spectroscopic Studies Of Reconstructed Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Reed, J. A.; Starnes, S. G.; Weiss, A. H.

    2011-06-01

    The positron annihilation induced Auger spectrum from GaAs(100) displays six As and three Ga Auger peaks below 110 eV corresponding to M4,5VV, M2M4V, M2,3M4,5M4,5 Auger transitions for As and M2,3M4,5M4,5 Auger transitions for Ga. The integrated Auger peak intensities have been used to obtain experimental annihilation probabilities of surface trapped positrons with As 3p and 3d and Ga 3p core level electrons. PAES data is analyzed by performing calculations of positron surface and bulk states and annihilation characteristics of surface trapped positrons with relevant Ga and As core level electrons for both Ga- and As-rich (100) surfaces of GaAs, ideally terminated, non-reconstructed and with (2×8), (2×4), and (4×4) reconstructions. The orientation-dependent variations of the atomic and electron densities associated with reconstructions are found to affect localization of the positron wave function at the surface. Computed positron binding energy, work function, and annihilation characteristics demonstrate their sensitivity both to chemical composition and atomic structure of the topmost layers of the surface. Theoretical annihilation probabilities of surface trapped positrons with As 3d, 3p, and Ga 3p core level electrons are compared with the ones estimated from the measured Auger peak intensities.

  19. Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases.

    PubMed

    Kobayashi, Masakazu; Nakamura, Takahiro; Yasuda, Makoto; Hata, Yuiko; Okura, Shoki; Iwamoto, Miyu; Nagata, Maho; Fullwood, Nigel J; Koizumi, Noriko; Hisa, Yasuo; Kinoshita, Shigeru

    2015-01-01

    Severe ocular surface diseases (OSDs) with severe dry eye can be devastating and are currently some of the most challenging eye disorders to treat. To investigate the feasibility of using an autologous tissue-engineered cultivated nasal mucosal epithelial cell sheet (CNMES) for ocular surface reconstruction, we developed a novel technique for the culture of nasal mucosal epithelial cells expanded ex vivo from biopsy-derived human nasal mucosal tissues. After the protocol, the CNMESs had 4-5 layers of stratified, well-differentiated cells, and we successfully generated cultured epithelial sheets, including numerous goblet cells. Immunohistochemistry confirmed the presence of keratins 3, 4, and 13; mucins 1, 16, and 5AC; cell junction and basement membrane assembly proteins; and stem/progenitor cell marker p75 in the CNMESs. We then transplanted the CNMESs onto the ocular surfaces of rabbits and confirmed the survival of this tissue, including the goblet cells, up to 2 weeks. The present report describes an attempt to overcome the problems of treating severe OSDs with the most severe dry eye by treating them using tissue-engineered CNMESs to supply functional goblet cells and to stabilize and reconstruct the ocular surface. The present study is a first step toward assessing the use of tissue-engineered goblet-cell transplantation of nonocular surface origin for ocular surface reconstruction. ©AlphaMed Press.

  20. Augmented reality based real-time subcutaneous vein imaging system

    PubMed Central

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-01-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690

  1. Augmented reality based real-time subcutaneous vein imaging system.

    PubMed

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  2. Observer success rates for identification of 3D surface reconstructed facial images and implications for patient privacy and security

    NASA Astrophysics Data System (ADS)

    Chen, Joseph J.; Siddiqui, Khan M.; Fort, Leslie; Moffitt, Ryan; Juluru, Krishna; Kim, Woojin; Safdar, Nabile; Siegel, Eliot L.

    2007-03-01

    3D and multi-planar reconstruction of CT images have become indispensable in the routine practice of diagnostic imaging. These tools cannot only enhance our ability to diagnose diseases, but can also assist in therapeutic planning as well. The technology utilized to create these can also render surface reconstructions, which may have the undesired potential of providing sufficient detail to allow recognition of facial features and consequently patient identity, leading to violation of patient privacy rights as described in the HIPAA (Health Insurance Portability and Accountability Act) legislation. The purpose of this study is to evaluate whether 3D reconstructed images of a patient's facial features can indeed be used to reliably or confidently identify that specific patient. Surface reconstructed images of the study participants were created used as candidates for matching with digital photographs of participants. Data analysis was performed to determine the ability of observers to successfully match 3D surface reconstructed images of the face with facial photographs. The amount of time required to perform the match was recorded as well. We also plan to investigate the ability of digital masks or physical drapes to conceal patient identity. The recently expressed concerns over the inability to truly "anonymize" CT (and MRI) studies of the head/face/brain are yet to be tested in a prospective study. We believe that it is important to establish whether these reconstructed images are a "threat" to patient privacy/security and if so, whether minimal interventions from a clinical perspective can substantially reduce this possibility.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanlei; May, Brian M.; Serrano-Sevillano, Jon

    The surface configuration of pristine layered oxide cathode particles for Li-ion batteries significantly affects the electrochemical behavior, which is generally considered to be a thin rock-salt layer in the surface. Unfortunately, aside from its thin nature and spatial location on the surface, the true structural nature of this surface rock-salt layer remains largely unknown, creating the need to understand its configuration and the underlying mechanisms of formation. Using scanning transmission electron microscopy, we have found a correlation between the surface rock-salt formation and the crystal facets on pristine LiNi0.80Co0.15Al0.05O2 primary particles. It is found that the originally (01more » $$ \\overline{4}\\ $$) and (003) surfaces of the layered phase result in two kinds of rock-salt reconstructions: the (002) and (111) rock-salt surfaces, respectively. Stepped surface configurations are generated for both reconstructions. The (002) configuration is relatively flat with monoatomic steps while the (111) configuration shows significant surface roughening. Both reconstructions reduce the ionic and electronic conductivity of the cathode, leading to a reduced electrochemical performance.« less

  4. Surface models of the male urogenital organs built from the Visible Korean using popular software

    PubMed Central

    Shin, Dong Sun; Park, Jin Seo; Shin, Byeong-Seok

    2011-01-01

    Unlike volume models, surface models, which are empty three-dimensional images, have a small file size, so they can be displayed, rotated, and modified in real time. Thus, surface models of male urogenital organs can be effectively applied to an interactive computer simulation and contribute to the clinical practice of urologists. To create high-quality surface models, the urogenital organs and other neighboring structures were outlined in 464 sectioned images of the Visible Korean male using Adobe Photoshop; the outlines were interpolated on Discreet Combustion; then an almost automatic volume reconstruction followed by surface reconstruction was performed on 3D-DOCTOR. The surface models were refined and assembled in their proper positions on Maya, and a surface model was coated with actual surface texture acquired from the volume model of the structure on specially programmed software. In total, 95 surface models were prepared, particularly complete models of the urinary and genital tracts. These surface models will be distributed to encourage other investigators to develop various kinds of medical training simulations. Increasingly automated surface reconstruction technology using commercial software will enable other researchers to produce their own surface models more effectively. PMID:21829759

  5. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China.

    PubMed

    Zou, Qingsong; Fu, Qiang

    2018-04-01

    Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.

  6. MRI segmentation by active contours model, 3D reconstruction, and visualization

    NASA Astrophysics Data System (ADS)

    Lopez-Hernandez, Juan M.; Velasquez-Aguilar, J. Guadalupe

    2005-02-01

    The advances in 3D data modelling methods are becoming increasingly popular in the areas of biology, chemistry and medical applications. The Nuclear Magnetic Resonance Imaging (NMRI) technique has progressed at a spectacular rate over the past few years, its uses have been spread over many applications throughout the body in both anatomical and functional investigations. In this paper we present the application of Zernike polynomials for 3D mesh model of the head using the contour acquired of cross-sectional slices by active contour model extraction and we propose the visualization with OpenGL 3D Graphics of the 2D-3D (slice-surface) information for the diagnostic aid in medical applications.

  7. Ill-posed problem and regularization in reconstruction of radiobiological parameters from serial tumor imaging data

    NASA Astrophysics Data System (ADS)

    Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh

    2015-11-01

    The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more-advanced parameter reconstruction algorithms.

  8. Latest advances in molecular imaging instrumentation.

    PubMed

    Pichler, Bernd J; Wehrl, Hans F; Judenhofer, Martin S

    2008-06-01

    This review concentrates on the latest advances in molecular imaging technology, including PET, MRI, and optical imaging. In PET, significant improvements in tumor detection and image resolution have been achieved by introducing new scintillation materials, iterative image reconstruction, and correction methods. These advances enabled the first clinical scanners capable of time-of-flight detection and incorporating point-spread-function reconstruction to compensate for depth-of-interaction effects. In the field of MRI, the most important developments in recent years have mainly been MRI systems with higher field strengths and improved radiofrequency coil technology. Hyperpolarized imaging, functional MRI, and MR spectroscopy provide molecular information in vivo. A special focus of this review article is multimodality imaging and, in particular, the emerging field of combined PET/MRI.

  9. Immediate autologous breast reconstruction after neoadjuvant chemoradiotherapy for breast cancer: initial results of the first 29 patients.

    PubMed

    Grinsell, Damien; Pitcher, Meron; Wong, Shirley; Guerrieri, Mario; Nielsen, Hans H M

    2018-03-01

    Breast reconstruction after mastectomy in the treatment of locally advanced breast cancer is often done in stages and before radiotherapy. We have previously published an algorithm for immediate free autologous reconstruction after neoadjuvant chemotherapy and preoperative radiotherapy. This protocol was designed to provide a shorter and simpler reconstructive path whilst improving cosmesis and maintaining oncological efficiency. A total of 29 patients were included and underwent surgery for 30 cancers by the first author between 2010 and September 2015. Data were prospectively entered into a database and analysed for tumour size, chemotherapeutic response, lymph node involvement, surgical complications and tumour recurrence. The mean age was 55 ± 7 years. Eighty percent of patients had either a partial or complete chemotherapeutic response defined as >25% decrease in tumour size. Twenty-eight patients had free abdominal tissue transfer. One patient was excluded due to advanced disease. There were no take-backs due to microsurgical issues. One patient was reoperated on for a haematoma. Four patients had recurrent cancer during follow-up, three of whom are deceased. Many, but not all, breast reconstructive surgeons consider autologous reconstruction as the 'gold' standard in the presence of radiotherapy. Rearranging the order of radiotherapy and surgery means operating in a recently irradiated field. We believe the surgical challenges are outweighed by a shorter and simpler reconstructive journey that additionally results in a better cosmesis. It is possible to perform immediate free autologous reconstruction after neoadjuvant chemotherapy and preoperative radiotherapy with excellent results and at least equivalent oncological efficacy. © 2017 Royal Australasian College of Surgeons.

  10. Jaw In A Day™ – State of the Art in Maxillary Reconstruction

    PubMed Central

    Runyan, Christopher M.; Sharma, Vishal; Staffenberg, David A.; Levine, Jamie P.; Brecht, Lawrence E.; Wexler, Leonard H.; Hirsch, David L.

    2017-01-01

    Background Reconstruction of maxillary defects following tumor extirpation is challenging because of combined aesthetic and functional roles of the maxilla. One-stage reconstruction combining osseous free flaps with immediate osseointegrated implants are becoming the standard for mandibular defects, and have similar potential for maxillary reconstruction. Methods A woman with maxillary Ewing’s sarcoma successfully treated at age nine with neoadjuvant chemotherapy, right hemi-maxillectomy and obturator prosthetic reconstruction presented for definitive reconstruction, complaining of poor obturator fit and hypernasality. Her reconstruction was computer-simulated by a multi-disciplinary team, consisting of left hemi-Lefort I advancement and right maxillary reconstruction with a free fibula flap with immediate osseointegrated implants and dental prosthesis. Results Full dental restoration, midface projection and oral fistula corrections were achieved in one operative stage using this approach. Conclusions This case demonstrates a successful approach for maxillary reconstruction using computer-planned orthognathic surgery with free fibula reconstruction and immediate osseointegrated implants with dental prosthesis. PMID:28005762

  11. Latissimus Dorsi Flap in Breast Reconstruction

    PubMed Central

    Sood, Rachita; Easow, Jeena M.; Konopka, Geoffrey; Panthaki, Zubin J.

    2018-01-01

    Background: Surgeons employ the latissimus dorsi flap (LDF) for reconstruction of a large variety of breast cancer surgery defects, including quadrantectomy, lumpectomy, modified radical mastectomy, and others. The LDF may be used in delayed or immediate reconstruction, in combination with tissue expanders for a staged reconstruction, with implant-based immediate reconstruction, or alone as an autogenous flap. Methods: The authors discuss the historical uses and more recent developments in the LDF. More recent advancements, including the “scarless” approach and augmentation with the thoracodorsal artery perforator flap, are discussed. Results: The LDF is a reliable means for soft tissue coverage providing form and function during breast reconstruction with acceptable perioperative and long-term morbidities. Conclusions: When there is a paucity of tissue, the LDF can provide tissue volume in autologous reconstruction, as well as a reliable vascular pedicle for implant-based reconstruction as in the setting of irradiated tissue. PMID:29334788

  12. An integrated software suite for surface-based analyses of cerebral cortex.

    PubMed

    Van Essen, D C; Drury, H A; Dickson, J; Harwell, J; Hanlon, D; Anderson, C H

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  13. An integrated software suite for surface-based analyses of cerebral cortex

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Dickson, J.; Harwell, J.; Hanlon, D.; Anderson, C. H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  14. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotoku, J; Nakabayashi, S; Kumagai, S

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image.more » We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)« less

  15. The Creation of Space Vector Models of Buildings From RPAS Photogrammetry Data

    NASA Astrophysics Data System (ADS)

    Trhan, Ondrej

    2017-06-01

    The results of Remote Piloted Aircraft System (RPAS) photogrammetry are digital surface models and orthophotos. The main problem of the digital surface models obtained is that buildings are not perpendicular and the shape of roofs is deformed. The task of this paper is to obtain a more accurate digital surface model using building reconstructions. The paper discusses the problem of obtaining and approximating building footprints, reconstructing the final spatial vector digital building model, and modifying the buildings on the digital surface model.

  16. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    PubMed

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  17. Shrink-wrapped isosurface from cross sectional images

    PubMed Central

    Choi, Y. K.; Hahn, J. K.

    2010-01-01

    Summary This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching Cubes (MC) algorithm, our method does not extract the iso-density surface (isosurface) directly from the voxel data but calculates the iso-density point (isopoint) first. After building a coarse initial mesh approximating the ideal isosurface by the cell-boundary representation, it metamorphoses the mesh into the final isosurface by a relaxation scheme, called shrink-wrapping process. Compared with the MC algorithm, our method is robust and does not make any cracks on surface. Furthermore, since it is possible to utilize lots of additional isopoints during the surface reconstruction process by extending the adjacency definition, theoretically the resulting surface can be better in quality than the MC algorithm. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images. PMID:20703361

  18. Three-dimensional reconstruction of indoor whole elements based on mobile LiDAR point cloud data

    NASA Astrophysics Data System (ADS)

    Gong, Yuejian; Mao, Wenbo; Bi, Jiantao; Ji, Wei; He, Zhanjun

    2014-11-01

    Ground-based LiDAR is one of the most effective city modeling tools at present, which has been widely used for three-dimensional reconstruction of outdoor objects. However, as for indoor objects, there are some technical bottlenecks due to lack of GPS signal. In this paper, based on the high-precision indoor point cloud data which was obtained by LiDAR, an international advanced indoor mobile measuring equipment, high -precision model was fulfilled for all indoor ancillary facilities. The point cloud data we employed also contain color feature, which is extracted by fusion with CCD images. Thus, it has both space geometric feature and spectral information which can be used for constructing objects' surface and restoring color and texture of the geometric model. Based on Autodesk CAD platform and with help of PointSence plug, three-dimensional reconstruction of indoor whole elements was realized. Specifically, Pointools Edit Pro was adopted to edit the point cloud, then different types of indoor point cloud data was processed, including data format conversion, outline extracting and texture mapping of the point cloud model. Finally, three-dimensional visualization of the real-world indoor was completed. Experiment results showed that high-precision 3D point cloud data obtained by indoor mobile measuring equipment can be used for indoor whole elements' 3-d reconstruction and that methods proposed in this paper can efficiently realize the 3 -d construction of indoor whole elements. Moreover, the modeling precision could be controlled within 5 cm, which was proved to be a satisfactory result.

  19. Atom probe trajectory mapping using experimental tip shape measurements.

    PubMed

    Haley, D; Petersen, T; Ringer, S P; Smith, G D W

    2011-11-01

    Atom probe tomography is an accurate analytical and imaging technique which can reconstruct the complex structure and composition of a specimen in three dimensions. Despite providing locally high spatial resolution, atom probe tomography suffers from global distortions due to a complex projection function between the specimen and detector which is different for each experiment and can change during a single run. To aid characterization of this projection function, this work demonstrates a method for the reverse projection of ions from an arbitrary projection surface in 3D space back to an atom probe tomography specimen surface. Experimental data from transmission electron microscopy tilt tomography are combined with point cloud surface reconstruction algorithms and finite element modelling to generate a mapping back to the original tip surface in a physically and experimentally motivated manner. As a case study, aluminium tips are imaged using transmission electron microscopy before and after atom probe tomography, and the specimen profiles used as input in surface reconstruction methods. This reconstruction method is a general procedure that can be used to generate mappings between a selected surface and a known tip shape using numerical solutions to the electrostatic equation, with quantitative solutions to the projection problem readily achievable in tens of minutes on a contemporary workstation. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  20. Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Ho, Hsuan-Wei; Nguyen, Xuan-Loc

    2010-02-01

    This article presents a novel band-pass filter for Fourier transform profilometry (FTP) for accurate 3-D surface reconstruction. FTP can be employed to obtain 3-D surface profiles by one-shot images to achieve high-speed measurement. However, its measurement accuracy has been significantly influenced by the spectrum filtering process required to extract the phase information representing various surface heights. Using the commonly applied 2-D Hanning filter, the measurement errors could be up to 5-10% of the overall measuring height and it is unacceptable to various industrial application. To resolve this issue, the article proposes an elliptical band-pass filter for extracting the spectral region possessing essential phase information for reconstructing accurate 3-D surface profiles. The elliptical band-pass filter was developed and optimized to reconstruct 3-D surface models with improved measurement accuracy. Some experimental results verify that the accuracy can be effectively enhanced by using the elliptical filter. The accuracy improvement of 44.1% and 30.4% can be achieved in 3-D and sphericity measurement, respectively, when the elliptical filter replaces the traditional filter as the band-pass filtering method. Employing the developed method, the maximum measured error can be kept within 3.3% of the overall measuring range.

  1. Geomorphic changes of a scarp on a slope gully by applying 3D photo-reconstruction technique (Duratón river valley, central Spain).

    NASA Astrophysics Data System (ADS)

    Rodríguez, Lourdes; Tanarro, Luis M.

    2017-04-01

    Recent advances in the field of photogrammetry and the computer vision has allowed the improvement of the art 3D Photo-Reconstruction (FR-3D). This technique, which uses Structure from Motion (SfM) and Multi-View Stereo (MVS) reconstruction algorithms, allows us to obtain three-dimensional models of the terrain of high resolution. Its application in the field of Earth Sciences is recent (Westoby et al., 2012, James and Robson, 2012), and has been applied mainly to evaluate the activity of different morphodynamic environments (coastal cliffs, gully erosion, etc.). In this work the FR-3D technique is applied to analyze the geomorphological dynamics of a scarp modelled on the valley-side gully of the right side of the Duraton river (41° 16'N, 3°39'W, 988 m, central Spain). The scarp has a length of about 50 m and a height in the central part of 10 m and the lithology is constituted by red clays with levels of conglomerates of Miocene age. Photographs along the scarp have been taken with a compact digital camera (Canon PowerShot S95, 10 MP) in two different time periods (2014/08/27 and 2016/02/06), and have been processed using Bentley ContextCapture software, generating the respective 3D meshes and from these, directly the Digital Surface Models (DSM) for each date. Finally, DSMs have been compared, obtaining the difference in surface elevations. Previously, at the base of the scarp were placed three wood-stakes, whose coordinates were obtained by GPS, and have been used as control points for georreferencing the models. The DMS obtained have a high resolution (the default cell size of each model are 0.0039 m and 0.0063 m respectively). Volumetric change from elevation differences for the entire time interval (529 days) shows a predominance of sedimentation against erosion (426.79 m3 versus 65.61 m3). In conclusion, FR-3D technique provides high resolution Digital Surface Models, allowing to detect changes in the surface at a high level of detail (cm or even mm). However, the uncertainty due to the difficulty in identifying the control points accurately must be taken into account in the interpretation of the results. This is fundamental for the detection of surface changes at centimetric scale and for a short time interval. James, M.R. y Robson, S. (2012) "Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application", Journal of Geophysical Research, 117: F03017. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J. y Reynolds, J.M. 2012. 'Structure from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314

  2. Driving Organic Molecule Crystalliztion with Surface Reconstructions

    NASA Astrophysics Data System (ADS)

    Bickel, Jessica; Trovato, Gianfranco

    This work examines how surface reconstructions can drive crystallization of organic molecules via self-assembly. Organic electronic molecules have low conductivities compared to inorganic materials, but crystallizing these polymers increases their conductivity. This project uses surface reconstructions with periodically repeating topographies to drive the crystallization process. The samples are grown by placing a drop of a dilute PEDOT solution on the clean Si(001)-(2x1) or Si(111)-(7x7) surface reconstruction and heating the surface up to both evaporate the solvent and promote diffusion of the polymer to the thermodynamically defined lowest energy position. The resulting samples are characterized by scanning tunneling microscopy (STM) with respect to their crystallinity and electronic properties. Of particular interest is whether there is a preferential location for the PEDOT molecule to adsorb and whether there are any conformational changes upon adsorption that modify the HOMO-LUMO gap. This work is being done in a new pan-style RHK-STM enclosed in a glovebox at Cleveland State University. The glovebox has O2 and H2O levels of less than 1ppm. This allows for sample preparation and imaging in a controlled environment that is free from contamination.

  3. Reconstruction of the 3-D Dynamics From Surface Variables in a High-Resolution Simulation of North Atlantic

    NASA Astrophysics Data System (ADS)

    Fresnay, S.; Ponte, A. L.; Le Gentil, S.; Le Sommer, J.

    2018-03-01

    Several methods that reconstruct the three-dimensional ocean dynamics from sea level are presented and evaluated in the Gulf Stream region with a 1/60° realistic numerical simulation. The use of sea level is motivated by its better correlation with interior pressure or quasi-geostrophic potential vorticity (PV) compared to sea surface temperature and sea surface salinity, and, by its observability via satellite altimetry. The simplest method of reconstruction relies on a linear estimation of pressure at depth from sea level. Another method consists in linearly estimating PV from sea level first and then performing a PV inversion. The last method considered, labeled SQG for surface quasi-geostrophy, relies on a PV inversion but assumes no PV anomalies. The first two methods show comparable skill at levels above -800 m. They moderately outperform SQG which emphasizes the difficulty of estimating interior PV from surface variables. Over the 250-1,000 m depth range, the three methods skillfully reconstruct pressure at wavelengths between 500 and 200 km whereas they exhibit a rapid loss of skill between 200 and 100 km wavelengths. Applicability to a real case scenario and leads for improvements are discussed.

  4. Oncological safety of skin sparing mastectomy followed by immediate reconstruction for locally advanced breast cancer.

    PubMed

    Lim, Woosung; Ko, Beom-Seok; Kim, Hee-Jung; Lee, Jong Won; Eom, Jin Sup; Son, Byung Ho; Lee, Taik Jong; Ahn, Sei-Hyun

    2010-07-01

    Skin sparing mastectomy (SSM) has been demonstrated as an oncologically safe procedure for early breast cancer in several studies. But few studies concerned the safety of SSM for patients with locally advanced breast cancer; therefore, its safety for these patients is less clear. The purpose of this study is to examine the oncological safety of SSM followed by immediate reconstruction for locally advanced breast cancer. We retrospectively analyzed 897 breast cancer patients who underwent mastectomy for stage IIB (T3N0)-III between 1996 and 2005. Of 897, 87 underwent SSM (n = 73) or nipple sparing mastectomy (NSM, n = 14). We compared the local recurrence (LR) rate, disease-free survival (DFS) and overall survival (OS) for SSM group with conventional mastectomy group. The 5-year DFS and OS of SSM group were not worse than those of CM group for all stages. LR rate was 3.0% (2/67) for IIB, 2.8% (1/36) for IIIA, 4.5% (1/22) for IIIC, and 5.0% (1/20) for T3 in SSM group. There was no difference in LR rates between SSM group and CM group for all stages. Our study demonstrates that SSM followed by immediate reconstruction is oncologically safe for locally advanced breast cancer. (c) 2010 Wiley-Liss, Inc.

  5. Solar and Volcanic Modulation of Little Ice Age Climate in the Tropical Andes, Venezuela

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Abbott, M. B.; Wolfe, A. P.; Rull, V.; Bezada, M.

    2004-12-01

    The underlying causes of late-Holocene climate variability in the tropics are incompletely understood. Here, we report a 1500-year reconstruction of climate history in the Venezuelan Andes using lake sediment records from four sites. This reconstruction is based upon accelerator mass spectrometry (AMS) radiocarbon and Pb-210 dating, sedimentology, magnetic susceptibility, geochemistry, pollen and stable isotope (C, N) measurements. In the Laguna Mucubaji watershed four distinct glacial advances occurred between 1250 and 1810 A.D. The earliest advance began during an extended period of higher global volcanic activity. The subsequent three advances were coincident with minima in solar activity (reconstructed from Be-10 and C-14 records). The Mucubají glacial activity in the Venezuelan Andes coincides with other records of Little Ice Age (LIA) glacial advances in S. America. Comparison of modern glacier equilibrium line altitudes (ELAs) in Venezuela with the Mucubaji LIA glacier ELA indicates an ELA depression of at least 300 m. Both a decline in temperature and increase in precipitation are required to explain the ELA depression. The precipitation increase is supported by increased catchment erosion recorded in L. Blanca sediments. Pollen records from two sites in the Venezuelan Andes also indicate wetter and colder conditions during the LIA.

  6. Effects of sparse sampling in combination with iterative reconstruction on quantitative bone microstructure assessment

    NASA Astrophysics Data System (ADS)

    Mei, Kai; Kopp, Felix K.; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Kirschke, Jan S.; Noël, Peter B.; Baum, Thomas

    2017-03-01

    The trabecular bone microstructure is a key to the early diagnosis and advanced therapy monitoring of osteoporosis. Regularly measuring bone microstructure with conventional multi-detector computer tomography (MDCT) would expose patients with a relatively high radiation dose. One possible solution to reduce exposure to patients is sampling fewer projection angles. This approach can be supported by advanced reconstruction algorithms, with their ability to achieve better image quality under reduced projection angles or high levels of noise. In this work, we investigated the performance of iterative reconstruction from sparse sampled projection data on trabecular bone microstructure in in-vivo MDCT scans of human spines. The computed MDCT images were evaluated by calculating bone microstructure parameters. We demonstrated that bone microstructure parameters were still computationally distinguishable when half or less of the radiation dose was employed.

  7. A novel mechanochemical method for reconstructing the moisture-degraded HKUST-1.

    PubMed

    Sun, Xuejiao; Li, Hao; Li, Yujie; Xu, Feng; Xiao, Jing; Xia, Qibin; Li, Yingwei; Li, Zhong

    2015-07-11

    A novel mechanochemical method was proposed to reconstruct quickly moisture-degraded HKUST-1. The degraded HKUST-1 can be restored within minutes. The reconstructed samples were characterized, and confirmed to have 95% surface area and 92% benzene capacity of the fresh HKUST-1. It is a simple and effective strategy for degraded MOF reconstruction.

  8. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    NASA Astrophysics Data System (ADS)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  9. The Application of Three-Dimensional Surface Imaging System in Plastic and Reconstructive Surgery.

    PubMed

    Li, Yanqi; Yang, Xin; Li, Dong

    2016-02-01

    Three-dimensional (3D) surface imaging system has gained popularity worldwide in clinical application. Unlike computed tomography and magnetic resonance imaging, it has the ability to capture 3D images with both shape and texture information. This feature has made it quite useful for plastic surgeons. This review article is mainly focusing on demonstrating the current status and analyzing the future of the application of 3D surface imaging systems in plastic and reconstructive surgery.Currently, 3D surface imaging system is mainly used in plastic and reconstructive surgery to help improve the reliability of surgical planning and assessing surgical outcome objectively. There have already been reports of its using on plastic and reconstructive surgery from head to toe. Studies on facial aging process, online applications development, and so on, have also been done through the use of 3D surface imaging system.Because different types of 3D surface imaging devices have their own advantages and disadvantages, a basic knowledge of their features is required and careful thought should be taken to choose the one that best fits a surgeon's demand.In the future, by integrating with other imaging tools and the 3D printing technology, 3D surface imaging system will play an important role in individualized surgical planning, implants production, meticulous surgical simulation, operative techniques training, and patient education.

  10. Theory and Application of Auger and Photoelectron Diffraction and Holography

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    This dissertation addresses the theories and applications of three important surface analysis techniques: Auger electron diffraction (AED), x-ray photoelectron diffraction (XPD), and Auger and photoelectron holography. A full multiple-scattering scheme for the calculations of XPD, AED, and Kikuchi electron diffraction pattern from a surface cluster is described. It is used to simulate 64 eV M_{2,3}VV and 913 eV L_3VV AED patterns from Cu(001) surfaces, in order to test assertions in the literature that they are explicable by a classical "blocking" and channeling model. We find that this contention is not valid, and that only a quantum mechanical multiple-scattering calculation is able to simulate these patterns well. The same multiple scattering simulation scheme is also used to investigate the anomalous phenomena of peak shifts off the forward-scattering directions in photo -electron diffraction patterns of Mg KLL (1180 eV) and O 1s (955 eV) from MgO(001) surfaces. These shifts are explained by calculations assuming a short electron mean free path. Similar simulations of XPD from a CoSi_2(111) surface for Co-3p and Si-2p normal emission agree well with experimental diffraction patterns. A filtering process aimed at eliminating the self -interference effect in photoelectron holography is developed. A better reconstructed image from Si-2p XPD from a Si(001) (2 times 1) surface is seen at atomic resolution. A reconstruction algorithm which corrects for the anisotropic emitter waves as well as the anisotropic atomic scattering factors is used for holographic reconstruction from a Co-3p XPD pattern from a CoSi_2 surface. This new algorithm considerably improves the reconstructed image. Finally, a new reconstruction algorithm called "atomic position recovery by iterative optimization of reconstructed intensities" (APRIORI), which takes account of the self-interference terms omitted by the other holographic algorithms, is developed. Tests on a Ni-C-O chain and Si(111)(sqrt{3} times sqrt{3})B surface suggest that this new method may overcome the twin image problem in the traditional holographic methods, reduce the artifacts in real space, and even separately identify the chemical species of the scatterers.

  11. Preserving half-metallic surface states in Cr O2 : Insights into surface reconstruction rules

    NASA Astrophysics Data System (ADS)

    Deng, Bei; Shi, X. Q.; Chen, L.; Tong, S. Y.

    2018-04-01

    The issue of whether the half-metallic (HM) nature of Cr O2 could be retained at its surface has been a standing problem under debate for a few decades, but until now is still controversial. Here, based on the density functional theory calculations we show, in startling contrast to the previous theoretical understandings, that the surfaces of Cr O2 favorably exhibit a half-metallic-semiconducting (SmC) transition driven by means of a surface electronic reconstruction largely attributed to the participation of the unexpected local charge carriers (LCCs), which convert the HM double exchange surface state into a SmC superexchange state and in turn, stabilize the surface as well. On the basis of the LCCs model, a new insight into the surface reconstruction rules is attained. Our novel finding not only provided an evident interpretation for the widely observed SmC character of Cr O2 surface, but also offered a novel means to improve the HM surface states for a variety of applications in spintronics and superconductors, and promote the experimental realization of the quantum anomalous Hall effect in half-metal based systems.

  12. Strain-induced structure transformations on Si(111) and Ge(111) surfaces: a combined density-functional and scanning tunneling microscopy study.

    PubMed

    Zhachuk, R; Teys, S; Coutinho, J

    2013-06-14

    Si(111) and Ge(111) surface formation energies were calculated using density functional theory for various biaxial strain states ranging from -0.04 to 0.04, and for a wide set of experimentally observed surface reconstructions: 3 × 3, 5 × 5, 7 × 7 dimer-adatom-stacking fault reconstructions and c(2 × 8), 2 × 2, and √3×√3 adatoms based surfaces. The calculations are compared with scanning tunneling microscopy data obtained on stepped Si(111) surfaces and on Ge islands grown on a Si(111) substrate. It is shown that the surface structure transformations observed in these strained systems are accounted for by a phase diagram that relates the equilibrium surface structure to the applied strain. The calculated formation energy of the unstrained Si(111)-9 × 9 dimer-adatom-stacking fault surface is reported for the first time and it is higher than corresponding energies of Si(111)-5 × 5 and Si(111)-7 × 7 dimer-adatom-stacking fault surfaces as expected. We predict that the Si(111) surface should adopt a c(2 × 8) reconstruction when tensile strain is above 0.03.

  13. Novel 3-D free-form surface profilometry for reverse engineering

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Zhi-Xue

    2005-01-01

    This article proposes an innovative 3-D surface contouring approach for automatic and accurate free-form surface reconstruction using a sensor integration concept. The study addresses a critical problem in accurate measurement of free-form surfaces by developing an automatic reconstruction approach. Unacceptable measuring accuracy issues are mainly due to the errors arising from the use of inadequate measuring strategies, ending up with inaccurate digitised data and costly post-data processing in Reverse Engineering (RE). This article is thus aimed to develop automatic digitising strategies for ensuring surface reconstruction efficiency, as well as accuracy. The developed approach consists of two main stages, namely the rapid shape identification (RSI) and the automated laser scanning (ALS) for completing 3-D surface profilometry. This developed approach effectively utilises the advantages of on-line geometric information to evaluate the degree of satisfaction of user-defined digitising accuracy under a triangular topological patch. An industrial case study was used to attest the feasibility of the approach.

  14. Space-Based Three-Dimensional Imaging of Equatorial Plasma Bubbles: Advancing the Understanding of Ionospheric Density Depletions and Scintillation

    DTIC Science & Technology

    2012-03-28

    Scintillation 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Comberiate, Joseph M. 5e. TASK NUMBER 5f. WORK...bubble climatology. A tomographic reconstruction technique was modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric... modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric electron density. These data cubes allowed for 3-D imaging of

  15. Upper Extremity Amputations and Prosthetics

    PubMed Central

    Ovadia, Steven A.; Askari, Morad

    2015-01-01

    Upper extremity amputations are most frequently indicated by severe traumatic injuries. The location of the injury will determine the level of amputation. Preservation of extremity length is often a goal. The amputation site will have important implications on the functional status of the patient and options for prosthetic reconstruction. Advances in amputation techniques and prosthetic reconstructions promote improved quality of life. In this article, the authors review the principles of upper extremity amputation, including techniques, amputation sites, and prosthetic reconstructions. PMID:25685104

  16. Intrinsic origin of two-dimensional electron gas at the (001) surface of SrTiO3

    NASA Astrophysics Data System (ADS)

    Delugas, Pietro; Fiorentini, Vincenzo; Mattoni, Alessandro; Filippetti, Alessio

    2015-03-01

    It is generally assumed that two-dimensional electron gas (2DEG) recently observed at the (001) SrTiO3 surface can be solely derived by oxygen vacancies introduced during ultrahigh vacuum annealing or through ultraviolet irradiation exposure. However, 2DEG entirely due to defect formation may be at odds with the characteristics of high mobility and easy field-effect manipulation required for applications; to that aim, an intrinsic formation mechanism should be preferred. Using advanced ab initio simulations we give evidence that 2DEG at the (001) SrTiO3 surface may even result from purely intrinsic properties of the pristine surface, provided that the surface is SrO terminated. The key concept is that the SrO termination is electron-attractive as a consequence of both the surface-induced polarity and the specific electronic reconstruction, whereas the TiO2 termination is electron-repulsive. It follows that in vacuum-cleaved samples where both terminations are present, 2DEG can result from the structurally ordered superposition of the two kinds of domain, even in the absence of any extrinsic source. On the other hand, in etching-prepared single-terminated TiO2 samples 2DEG should be assumed as entirely derived by extrinsic factors.

  17. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  18. Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.

    A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture x-ray microscopy on a sparse grid across the microstructure volume of interest. Resulting orientation data are clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi implicit interface method, progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surface reconstruction errormore » provides an objective termination criterion for boundary relaxation.« less

  19. Lipid biomarkers in surface sediments from the Gulf of Genoa (Ligurian Sea) and their potential for palaeo-environmental reconstructions

    NASA Astrophysics Data System (ADS)

    Ruggieri, Nicoletta; Kaiser, Jérôme; Arz, Helge W.; Hefter, Jens; Siegel, Herbert; Mollenhauer, Gesine; Lamy, Frank

    2014-05-01

    A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. The interest for the Gulf of Genoa lies in its contrasting coastal and central areas in terms of terrestrial input, oligotrophy, primary production and surface temperature gradient. Moreover, the Gulf of Genoa contains a large potential for climate reconstruction as it is one of the four major Mediterranean centres for cyclogenesis and the ultra high sedimentation rates on the shelf make this area suitable for high resolution environmental reconstruction. Initial results from sediment cores in the coastal area indeed reveal the potential for Holocene environmental reconstruction on up to decadal timescales (see Poster "Reconstruction of late Holocene flooding events in the Gulf of Genoa, Ligurian Sea" by Lamy et al.). During R/V Poseidon cruise P413 (May 2011), ca. 60 sediment cores were taken along the Ligurian shelf, continental slope, and in the basin between off Livorno and the French border. Results based on surface sediments suggest that some biomarker-based proxies are well-suited to reconstruct sea surface temperature (SST), the input of terrestrial organic material (TOM), and marine primary productivity (PP). The estimated UK'37 SST reflects very closely the autumnal mean satellite-based SST distribution, while TEXH86 SSTs correspond to summer SST at offshore sites and to winter SST for the nearshore sites. Using both SST proxies together may thus allow reconstructing past seasonality changes. Proxies for TOM input (terrestrial n-alkane and n-alkanol concentrations, BIT index) have higher values close to the major river mouths and decrease offshore suggesting that these may be used as proxy for the variability in TOM input by runoff. Interestingly, high n-alkane average chain length in the most offshore sites may result from aeolian input from northern Africa. Finally, high concentrations of crenarchaeol and isoprenoid GDGTs in the open basin illustrate the preference of Thaumarchaeota for oligotrophic waters. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.

  20. Stable isotope paleoaltimetry and the evolution of landscapes and life

    NASA Astrophysics Data System (ADS)

    Mulch, Andreas

    2016-01-01

    Reconstructing topography of our planet not only advances our knowledge of the geodynamic processes that shape the Earth's surface; equally important it adds a key element towards understanding long-term continental moisture transport, atmospheric circulation and the distribution of biomes and biodiversity. Stable isotope paleoaltimetry exploits systematic decreases in the oxygen (δ18O) or hydrogen (δD) isotopic composition of precipitation along a mountain front when the interaction of topography and advected moist air masses induces orographic precipitation. These changes in δ18O or δD can be recovered from the geologic record and recent geochemical and modeling advances allow a broad range of proxy materials to be evaluated. Over the last 10 yr stable isotope paleoaltimetry has witnessed rapidly expanding research activities and has produced a broad array of fascinating tectonic and geomorphologic studies many of which have concentrated on determining the elevation history of continental plateau regions. These single-site studies have greatly expanded what used to be very sparse global paleoaltimetric data. The challenge now lies in disentangling the surface uplift component from the impact of climate change on δ18O and δD in precipitation. The robustness of stable isotope paleoaltimetry can be enhanced when high-elevation δ18O or δD data are referenced against low-elevation sites that track climate-modulated sea level δ18O or δD of precipitation through time (' δ- δ approach'). Analysis of central Andean paleosols documents that differences in δ18O of soil carbonate between the Subandean foreland and the Bolivian Altiplano are small between 11 and 7 Ma but rise rapidly to ca. 2.9‰ after 7 Ma, corroborating the magnitude of late Miocene change in δ18O on the Altiplano. Future advances in stable isotope paleoaltimetry will greatly benefit from addressing four key challenges: (1) Identifying topographically-induced changes in atmospheric circulation and associated teleconnections in the global climate system that affect δ18O or δD of precipitation; (2) Evaluating on a case-by-case basis if temporal and spatial changes in isotope lapse rates influence interpretations of paleoelevation; (3) Interfacing with phylogenetic techniques to evaluate competing hypotheses with respect to the timing of surface uplift and the diversification of lineages; (4) Characterizing feedbacks between changes in surface elevation and atmospheric circulation as these are likely to be equally important to the diversification of lineages than changes in surface elevation alone. Tackling these challenges will benefit from the accelerating pace of improved data-model comparisons and rapidly evolving geochemical techniques for reconstructing precipitation patterns. Most importantly, stable isotope paleoaltimetry has the potential to develop into a truly interdisciplinary field if innovative tectonic/paleoclimatic and evolutionary biology/phylogenetic approaches are integrated into a common research framework. It therefore, opens new avenues to study the long-term evolution of landscapes and life.

  1. Direct endoscopic video registration for sinus surgery

    NASA Astrophysics Data System (ADS)

    Mirota, Daniel; Taylor, Russell H.; Ishii, Masaru; Hager, Gregory D.

    2009-02-01

    Advances in computer vision have made possible robust 3D reconstruction of monocular endoscopic video. These reconstructions accurately represent the visible anatomy and, once registered to pre-operative CT data, enable a navigation system to track directly through video eliminating the need for an external tracking system. Video registration provides the means for a direct interface between an endoscope and a navigation system and allows a shorter chain of rigid-body transformations to be used to solve the patient/navigation-system registration. To solve this registration step we propose a new 3D-3D registration algorithm based on Trimmed Iterative Closest Point (TrICP)1 and the z-buffer algorithm.2 The algorithm takes as input a 3D point cloud of relative scale with the origin at the camera center, an isosurface from the CT, and an initial guess of the scale and location. Our algorithm utilizes only the visible polygons of the isosurface from the current camera location during each iteration to minimize the search area of the target region and robustly reject outliers of the reconstruction. We present example registrations in the sinus passage applicable to both sinus surgery and transnasal surgery. To evaluate our algorithm's performance we compare it to registration via Optotrak and present closest distance point to surface error. We show our algorithm has a mean closest distance error of .2268mm.

  2. Conditions that influence the accuracy of anthropometric parameter estimation for human body segments using shape-from-silhouette

    NASA Astrophysics Data System (ADS)

    Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.

    2005-01-01

    Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).

  3. Lp-Norm Regularization in Volumetric Imaging of Cardiac Current Sources

    PubMed Central

    Rahimi, Azar; Xu, Jingjia; Wang, Linwei

    2013-01-01

    Advances in computer vision have substantially improved our ability to analyze the structure and mechanics of the heart. In comparison, our ability to observe and analyze cardiac electrical activities is much limited. The progress to computationally reconstruct cardiac current sources from noninvasive voltage data sensed on the body surface has been hindered by the ill-posedness and the lack of a unique solution of the reconstruction problem. Common L2- and L1-norm regularizations tend to produce a solution that is either too diffused or too scattered to reflect the complex spatial structure of current source distribution in the heart. In this work, we propose a general regularization with Lp-norm (1 < p < 2) constraint to bridge the gap and balance between an overly smeared and overly focal solution in cardiac source reconstruction. In a set of phantom experiments, we demonstrate the superiority of the proposed Lp-norm method over its L1 and L2 counterparts in imaging cardiac current sources with increasing extents. Through computer-simulated and real-data experiments, we further demonstrate the feasibility of the proposed method in imaging the complex structure of excitation wavefront, as well as current sources distributed along the postinfarction scar border. This ability to preserve the spatial structure of source distribution is important for revealing the potential disruption to the normal heart excitation. PMID:24348735

  4. Monitoring the Deterioration of Stone at Mindener MUSEUM'S Lapidarium

    NASA Astrophysics Data System (ADS)

    Pomaska, G.

    2013-07-01

    Mindener Museum's Lapidarium incorporates a collection of stone work like reliefs, sculptures and inscriptions from different time epochs as advices of the city's history. These gems must be protected against environmental influences and deterioration. In advance of the measures a 3D reconstruction and detailed documentation has to be taken. The framework to establish hard- and software must match the museum's infrastructure. Two major question will be answered. Are low-cost scanning devices like depth cameras and digital of the shelf cameras suitable for the data acquisition? Does the functionality of open source and freeware covers the demand on investigation and analysis in this application? The working chain described in this contribution covers the structure from motion method and the reconstruction with RGB-D cameras. Mesh processing such as cleaning, smoothing, poisson surface reconstruction and texturing will be accomplished with MeshLab. Data acquisition and modelling continues in structure analysis. Therefore the focus lies as well on latest software developments related to 3D printing technologies. Repairing and finishing of meshes is a task for MeshMixer. Netfabb as a tool for positioning, dimensioning and slicing enables virtual handling of the items. On the Sketchfab web site one can publish and share 3D objects with integration into web pages supported by WebGL. Finally if a prototype is needed, the mesh can be uploaded to a 3D printing device provided by an online service.

  5. Climate reconstruction from borehole temperatures influenced by groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.

  6. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.

    PubMed

    Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon

    2017-07-01

    Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Positron probes of the Ge(1 0 0) surface: The effects of surface reconstructions and electron positron correlations on positron trapping and annihilation characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2007-08-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(1 0 0) surface. The high-resolution PAES spectrum from the Ge(1 0 0) surface displays several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the non-reconstructed and reconstructed Ge(1 0 0)-p(2 × 1), Ge(1 0 0)-p(2 × 2) and Ge(1 0 0)-c(4 × 2) surfaces. It is found that the positron surface state wave function extends into the Ge lattice in the regions where atoms are displaced from their ideal terminated positions due to reconstructions. Estimates of the positron binding energy and the positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Ge(1 0 0). A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  8. Surface-from-gradients without discrete integrability enforcement: A Gaussian kernel approach.

    PubMed

    Ng, Heung-Sun; Wu, Tai-Pang; Tang, Chi-Keung

    2010-11-01

    Representative surface reconstruction algorithms taking a gradient field as input enforce the integrability constraint in a discrete manner. While enforcing integrability allows the subsequent integration to produce surface heights, existing algorithms have one or more of the following disadvantages: They can only handle dense per-pixel gradient fields, smooth out sharp features in a partially integrable field, or produce severe surface distortion in the results. In this paper, we present a method which does not enforce discrete integrability and reconstructs a 3D continuous surface from a gradient or a height field, or a combination of both, which can be dense or sparse. The key to our approach is the use of kernel basis functions, which transfer the continuous surface reconstruction problem into high-dimensional space, where a closed-form solution exists. By using the Gaussian kernel, we can derive a straightforward implementation which is able to produce results better than traditional techniques. In general, an important advantage of our kernel-based method is that the method does not suffer discretization and finite approximation, both of which lead to surface distortion, which is typical of Fourier or wavelet bases widely adopted by previous representative approaches. We perform comparisons with classical and recent methods on benchmark as well as challenging data sets to demonstrate that our method produces accurate surface reconstruction that preserves salient and sharp features. The source code and executable of the system are available for downloading.

  9. Three-channel dynamic photometric stereo: a new method for 4D surface reconstruction and volume recovery

    NASA Astrophysics Data System (ADS)

    Schroeder, Walter; Schulze, Wolfram; Wetter, Thomas; Chen, Chi-Hsien

    2008-08-01

    Three-dimensional (3D) body surface reconstruction is an important field in health care. A popular method for this purpose is laser scanning. However, using Photometric Stereo (PS) to record lumbar lordosis and the surface contour of the back poses a viable alternative due to its lower costs and higher flexibility compared to laser techniques and other methods of three-dimensional body surface reconstruction. In this work, we extended the traditional PS method and proposed a new method for obtaining surface and volume data of a moving object. The principle of traditional Photometric Stereo uses at least three images of a static object taken under different light sources to obtain 3D information of the object. Instead of using normal light, the light sources in the proposed method consist of the RGB-Color-Model's three colors: red, green and blue. A series of pictures taken with a video camera can now be separated into the different color channels. Each set of the three images can then be used to calculate the surface normals as a traditional PS. This method waives the requirement that the object imaged must be kept still as in almost all the other body surface reconstruction methods. By putting two cameras opposite to a moving object and lighting the object with the colored light, the time-varying surface (4D) data can easily be calculated. The obtained information can be used in many medical fields such as rehabilitation, diabetes screening or orthopedics.

  10. On differential photometric reconstruction for unknown, isotropic BRDFs.

    PubMed

    Chandraker, Manmohan; Bai, Jiamin; Ramamoorthi, Ravi

    2013-12-01

    This paper presents a comprehensive theory of photometric surface reconstruction from image derivatives in the presence of a general, unknown isotropic BRDF. We derive precise topological classes up to which the surface may be determined and specify exact priors for a full geometric reconstruction. These results are the culmination of a series of fundamental observations. First, we exploit the linearity of chain rule differentiation to discover photometric invariants that relate image derivatives to the surface geometry, regardless of the form of isotropic BRDF. For the problem of shape-from-shading, we show that a reconstruction may be performed up to isocontours of constant magnitude of the gradient. For the problem of photometric stereo, we show that just two measurements of spatial and temporal image derivatives, from unknown light directions on a circle, suffice to recover surface information from the photometric invariant. Surprisingly, the form of the invariant bears a striking resemblance to optical flow; however, it does not suffer from the aperture problem. This photometric flow is shown to determine the surface up to isocontours of constant magnitude of the surface gradient, as well as isocontours of constant depth. Further, we prove that specification of the surface normal at a single point completely determines the surface depth from these isocontours. In addition, we propose practical algorithms that require additional initial or boundary information, but recover depth from lower order derivatives. Our theoretical results are illustrated with several examples on synthetic and real data.

  11. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.

    2015-12-15

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  12. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.

    2015-12-01

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.

  13. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE PAGES

    Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...

    2015-12-22

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  14. Torso geometry reconstruction and body surface electrode localization using three-dimensional photography.

    PubMed

    Perez-Alday, Erick A; Thomas, Jason A; Kabir, Muammar; Sedaghat, Golriz; Rogovoy, Nichole; van Dam, Eelco; van Dam, Peter; Woodward, William; Fuss, Cristina; Ferencik, Maros; Tereshchenko, Larisa G

    We conducted a prospective clinical study (n=14; 29% female) to assess the accuracy of a three-dimensional (3D) photography-based method of torso geometry reconstruction and body surface electrodes localization. The position of 74 body surface electrocardiographic (ECG) electrodes (diameter 5mm) was defined by two methods: 3D photography, and CT (marker diameter 2mm) or MRI (marker size 10×20mm) imaging. Bland-Altman analysis showed good agreement in X (bias -2.5 [95% limits of agreement (LoA) -19.5 to 14.3] mm), Y (bias -0.1 [95% LoA -14.1 to 13.9] mm), and Z coordinates (bias -0.8 [95% LoA -15.6 to 14.2] mm), as defined by the CT/MRI imaging, and 3D photography. The average Hausdorff distance between the two torso geometry reconstructions was 11.17±3.05mm. Thus, accurate torso geometry reconstruction using 3D photography is feasible. Body surface ECG electrodes coordinates as defined by the CT/MRI imaging, and 3D photography, are in good agreement. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Building Virtual Mars

    NASA Astrophysics Data System (ADS)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.

    2017-12-01

    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  16. Transition from reconstruction toward thin film on the (110) surface of strontium titanate

    DOE PAGES

    Wang, Z.; Loon, A.; Subramanian, A.; ...

    2016-03-08

    The surfaces of metal oxides often are reconstructed with a geometry and composition that is considerably different from a simple termination of the bulk. Such structures can also be viewed as ultrathin films, epitaxed on a substrate. Here, the reconstructions of the SrTiO 3 (110) surface are studied combining scanning tunneling microscopy (STM), transmission electron diffraction, and X-ray absorption spectroscopy (XAS), and analyzed with density functional theory calculations. Whereas SrTiO 3 (110) invariably terminates with an overlayer of titania, with increasing density its structure switches from n × 1 to 2 × n. At the same time the coordination ofmore » the Ti atoms changes from a network of corner-sharing tetrahedra to a double layer of edge-shared octahedra with bridging units of octahedrally coordinated strontium. Furthermore, this transition from the n × 1 to 2 × n reconstructions is a transition from a pseudomorphically stabilized tetrahedral network toward an octahedral titania thin film with stress-relief from octahedral strontia units at the surface.« less

  17. Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration.

    PubMed

    Rohl, Sebastian; Bodenstedt, Sebastian; Suwelack, Stefan; Dillmann, Rudiger; Speidel, Stefanie; Kenngott, Hannes; Muller-Stich, Beat P

    2012-03-01

    In laparoscopic surgery, soft tissue deformations substantially change the surgical site, thus impeding the use of preoperative planning during intraoperative navigation. Extracting depth information from endoscopic images and building a surface model of the surgical field-of-view is one way to represent this constantly deforming environment. The information can then be used for intraoperative registration. Stereo reconstruction is a typical problem within computer vision. However, most of the available methods do not fulfill the specific requirements in a minimally invasive setting such as the need of real-time performance, the problem of view-dependent specular reflections and large curved areas with partly homogeneous or periodic textures and occlusions. In this paper, the authors present an approach toward intraoperative surface reconstruction based on stereo endoscopic images. The authors describe our answer to this problem through correspondence analysis, disparity correction and refinement, 3D reconstruction, point cloud smoothing and meshing. Real-time performance is achieved by implementing the algorithms on the gpu. The authors also present a new hybrid cpu-gpu algorithm that unifies the advantages of the cpu and the gpu version. In a comprehensive evaluation using in vivo data, in silico data from the literature and virtual data from a newly developed simulation environment, the cpu, the gpu, and the hybrid cpu-gpu versions of the surface reconstruction are compared to a cpu and a gpu algorithm from the literature. The recommended approach toward intraoperative surface reconstruction can be conducted in real-time depending on the image resolution (20 fps for the gpu and 14fps for the hybrid cpu-gpu version on resolution of 640 × 480). It is robust to homogeneous regions without texture, large image changes, noise or errors from camera calibration, and it reconstructs the surface down to sub millimeter accuracy. In all the experiments within the simulation environment, the mean distance to ground truth data is between 0.05 and 0.6 mm for the hybrid cpu-gpu version. The hybrid cpu-gpu algorithm shows a much more superior performance than its cpu and gpu counterpart (mean distance reduction 26% and 45%, respectively, for the experiments in the simulation environment). The recommended approach for surface reconstruction is fast, robust, and accurate. It can represent changes in the intraoperative environment and can be used to adapt a preoperative model within the surgical site by registration of these two models.

  18. An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Dickson, James; Harwell, John; Hanlon, Donna; Anderson, Charles H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database. PMID:11522765

  19. Spotted star mapping by light curve inversion: Tests and application to HD 12545

    NASA Astrophysics Data System (ADS)

    Kolbin, A. I.; Shimansky, V. V.

    2013-06-01

    A code for mapping the surfaces of spotted stars is developed. The concept of the code is to analyze rotational-modulated light curves. We simulate the process of reconstruction for the star surface and the results of simulation are presented. The reconstruction atrifacts caused by the ill-posed nature of the problem are deduced. The surface of the spotted component of system HD 12545 is mapped using the procedure.

  20. Optimizing Aesthetic Outcomes in Delayed Breast Reconstruction

    PubMed Central

    2017-01-01

    Background: The need to restore both the missing breast volume and breast surface area makes achieving excellent aesthetic outcomes in delayed breast reconstruction especially challenging. Autologous breast reconstruction can be used to achieve both goals. The aim of this study was to identify surgical maneuvers that can optimize aesthetic outcomes in delayed breast reconstruction. Methods: This is a retrospective review of operative and clinical records of all patients who underwent unilateral or bilateral delayed breast reconstruction with autologous tissue between April 2014 and January 2017. Three groups of delayed breast reconstruction patients were identified based on patient characteristics. Results: A total of 26 flaps were successfully performed in 17 patients. Key surgical maneuvers for achieving aesthetically optimal results were identified. A statistically significant difference for volume requirements was identified in cases where a delayed breast reconstruction and a contralateral immediate breast reconstruction were performed simultaneously. Conclusions: Optimal aesthetic results can be achieved with: (1) restoration of breast skin envelope with tissue expansion when possible, (2) optimal positioning of a small skin paddle to be later incorporated entirely into a nipple areola reconstruction when adequate breast skin surface area is present, (3) limiting the reconstructed breast mound to 2 skin tones when large area skin resurfacing is required, (4) increasing breast volume by deepithelializing, not discarding, the inferior mastectomy flap skin, (5) eccentric division of abdominal flaps when an immediate and delayed bilateral breast reconstructions are performed simultaneously; and (6) performing second-stage breast reconstruction revisions and fat grafting. PMID:28894666

  1. Kinetic-MHD hybrid simulation of fishbone modes excited by fast ions on the experimental advanced superconducting tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing

    2017-03-01

    Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri

    Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.

  3. The surface orientation of some Apollo 14 rocks.

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Morrison, D. A.; Hartung, J. B.

    1972-01-01

    Detailed stereomicroscopic studies of the distribution of microcraters, soil covers, and glass coatings were performed to reconstruct the most recent surface orientations of selected Apollo 14 rocks. Surface orientations could be established for rocks 14053, 14073, 14301, 14303, 14307, 14310, and 14311 (which includes rock 14308). A tentative orientation of rock 14055 is suggested, and comments concerning the surface history of rocks 14302, 14305, and 14318 are presented. The examination of rocks 14066, 14306, and 14321 indicates that these specimens have complicated surface histories that prevent reconstruction of their orientation by the criteria that were established in these stereomicroscopic studies.

  4. Atomically Visualizing Elemental Segregation-Induced Surface Alloying and Restructuring

    DOE PAGES

    Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri; ...

    2017-12-01

    Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.

  5. Electronic structure and surface properties of MgB2(0001) upon oxygen adsorption

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Eun; Ray, Keith G.; Bahr, David F.; Lordi, Vincenzo

    2018-05-01

    We use density-functional theory to investigate the bulk and surface properties of MgB2. The unique bonding structure of MgB2 is investigated by Bader's atoms-in-molecules, charge density difference, and occupancy projected band structure analyses. Oxygen adsorption on the charge-depleted surfaces of MgB2 is studied by a surface potential energy mapping method, reporting a complete map including low-symmetry binding sites. The B-terminated MgB2(0001) demonstrates reconstruction of the graphenelike B layer, and the reconstructed geometry exposes a threefold site of the subsurface Mg, making it accessible from the surface. Detailed reconstruction mechanisms are studied by simulated annealing method based on ab initio molecular dynamics and nudged elastic band calculations. The surface clustering of B atoms significantly modifies the B 2 p states to occupy low energy valence states. The present paper emphasizes that a thorough understanding of the surface phase may explain an apparent inconsistency in the experimental surface characterization of MgB2. Furthermore, these results suggest that the surface passivation can be an important technical challenge when it comes to development of a superconducting device using MgB2.

  6. Anatomy structure creation and editing using 3D implicit surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, Lyndon S.

    2012-05-15

    Purpose: To accurately reconstruct, and interactively reshape 3D anatomy structures' surfaces using small numbers of 2D contours drawn in the most visually informative views of 3D imagery. The innovation of this program is that the number of 2D contours can be very much smaller than the number of transverse sections, even for anatomy structures spanning many sections. This program can edit 3D structures from prior segmentations, including those from autosegmentation programs. The reconstruction and surface editing works with any image modality. Methods: Structures are represented by variational implicit surfaces defined by weighted sums of radial basis functions (RBFs). Such surfacesmore » are smooth, continuous, and closed and can be reconstructed with RBFs optimally located to efficiently capture shape in any combination of transverse (T), sagittal (S), and coronal (C) views. The accuracy of implicit surface reconstructions was measured by comparisons with the corresponding expert-contoured surfaces in 103 prostate cancer radiotherapy plans. Editing a pre-existing surface is done by overdrawing its profiles in image views spanning the affected part of the structure, deleting an appropriate set of prior RBFs, and merging the remainder with the new edit contour RBFs. Two methods were devised to identify RBFs to be deleted based only on the geometry of the initial surface and the locations of the new RBFs. Results: Expert-contoured surfaces were compared with implicit surfaces reconstructed from them over varying numbers and combinations of T/S/C planes. Studies revealed that surface-surface agreement increases monotonically with increasing RBF-sample density, and that the rate of increase declines over the same range. These trends were observed for all surface agreement metrics and for all the organs studied--prostate, bladder, and rectum. In addition, S and C contours may convey more shape information than T views for CT studies in which the axial slice thickness is greater than the pixel size. Surface editing accuracy likewise improves with larger sampling densities, and the rate of improvement similarly declines over the same conditions. Conclusions: Implicit surfaces based on RBFs are accurate representations of anatomic structures and can be interactively generated or modified to correct segmentation errors. The number of input contours is typically smaller than the number of T contours spanned by the structure.« less

  7. Quantitative characterization of surface topography using spectral analysis

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  8. Reconstruction of low-index graphite surfaces

    NASA Astrophysics Data System (ADS)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2016-07-01

    The low-index graphite surfaces (10 1 -0), (10 1 -1), (11 2 -0) and (11 2 - 1) have been studied by density functional theory (DFT) including van-der-Waals (vdW) corrections. Different from the (0001) surface which has been extensively investigated both experimentally and theoretically, there is no comprehensive study on the (10 1 -0)- (10 1 -1)-, (11 2 -0)- and (11 2 - 1)-surfaces available, although they are of relevance for Li insertion processes, e.g. in Li-ion batteries. In this study the structure and stability of all non-(0001) low-index surfaces were calculated with RPBE-D3 and converged slab models. In all cases reconstruction involving bond formation between unsaturated carbon atoms of two neighboring graphene sheets reduces the surface energy dramatically. Two possible reconstruction patterns have been considered. The first possibility leads to formation of oblong nanotubes. Alternatively, the graphene sheets form bonds to different neighboring sheets at the upper and lower sides and sinusoidal structures are formed. Both structure types have similar stabilities. Based on the calculated surface energies the Gibbs-Wulff theorem was applied to construct the macroscopic shape of graphite single crystals.

  9. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0064: Advanced Computational Dynamics Simulation of Protective Structures Research

    DTIC Science & Technology

    2008-02-01

    Livermore, California. 32. Martini, K. (1996a). “Research in the out-of-plane behavior of unreinforced masonry.” Ancient Reconstruction of the Pompeii Forum...plane behavior of unreinforced masonry,” Ancient Reconstruction of the Pompeii Forum. School of Architecture, University of Virginia

  10. CLOSURE OF LARYNGECTOMY DEFECTS IN THE AGE OF CHEMORADIATION THERAPY

    PubMed Central

    Hanasono, Matthew M.; Lin, Derrick; Wax, Mark K.

    2014-01-01

    The use of chemoradiation therapy in laryngeal cancer has resulted in significant reconstructive challenges. Although reconstruction of salvage laryngectomy defects remains controversial, current literature supports aggressive management of these defects with vascularized tissue, even when there is sufficient pharyngeal tissue present for primary closure. Significant advancement in reconstructive techniques has permitted improved outcomes in patients with advanced disease who require total laryngopharyngectomy or total laryngoglossectomy. Use of enteric and fasciocutaneous flaps result in good patient outcomes. Finally, wound complication rates after salvage surgery approach 60% depending on comorbid conditions such as cardiac insufficiency, hypothyroidism, or extent of previous treatment. Neck dehiscence, great vessel exposure, fistula formation, or cervical skin necrosis results in complex wounds that can often be treated initially with negative pressure dressings followed by definitive reconstruction. The timing of repair and approach to the vessel-depleted neck also present challenges in this patient population. Currently, there is significant institutional bias in the management of the patient with postchemoradiation salvage laryngectomy. Future prospective multi-institutional studies are certainly needed to more clearly define optimal treatment of these difficult patients. PMID:21416549

  11. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.

    PubMed

    Koehler, Christopher; Liang, Zongxian; Gaston, Zachary; Wan, Hui; Dong, Haibo

    2012-09-01

    Insect wings demonstrate elaborate three-dimensional deformations and kinematics. These deformations are key to understanding many aspects of insect flight including aerodynamics, structural dynamics and control. In this paper, we propose a template-based subdivision surface reconstruction method that is capable of reconstructing the wing deformations and kinematics of free-flying insects based on the output of a high-speed camera system. The reconstruction method makes no rigid wing assumptions and allows for an arbitrary arrangement of marker points on the interior and edges of each wing. The resulting wing surfaces are projected back into image space and compared with expert segmentations to validate reconstruction accuracy. A least squares plane is then proposed as a universal reference to aid in making repeatable measurements of the reconstructed wing deformations. Using an Eastern pondhawk (Erythimus simplicicollis) dragonfly for demonstration, we quantify and visualize the wing twist and camber in both the chord-wise and span-wise directions, and discuss the implications of the results. In particular, a detailed analysis of the subtle deformation in the dragonfly's right hindwing suggests that the muscles near the wing root could be used to induce chord-wise camber in the portion of the wing nearest the specimen's body. We conclude by proposing a novel technique for modeling wing corrugation in the reconstructed flapping wings. In this method, displacement mapping is used to combine wing surface details measured from static wings with the reconstructed flapping wings, while not requiring any additional information be tracked in the high speed camera output.

  12. Advances in Alkenone Paleotemperature Proxies: Analytical Methods, Novel Structures and Haptophyte Species, Biosynthesis, New indices and Ecological Aspects

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Longo, W. M.; Zheng, Y.; Richter, N.; Dillon, J. T.; Theroux, S.; D'Andrea, W. J.; Toney, J. L.; Wang, L.; Amaral-Zettler, L. A.

    2017-12-01

    Alkenones are mature, well-established paleo-sea surface temperature proxies that have been widely applied for more than three decades. However, recent advances across a broad range of alkenone-related topics at Brown University are inviting new paleoclimate and paleo-environmental applications for these classic biomarkers. In this presentation, I will summarize our progress in the following areas: (1) Discovery of a freshwater alkenone-producing haptophyte species and structural elucidation of novel alkenone structures unique to the species, performing in-situ temperature calibrations, and classifying alkenone-producing haptophytes into three groups based on molecular ecological approaches (with the new species belonging to Group I Isochrysidales); (2) A global survey of Group I haptophyte distributions and environmental conditions favoring the presence of this alga, as well as examples of using Group I alkenones for paleotemperature reconstructions; (3) New gas chromatographic columns that allow unprecedented resolution of alkenones and alkenoates and associated structural isomers, and development of a new suite of paleotemperature and paleoenvironmental proxies; (4) A new liquid chromatographic separation technique that allows efficient cleanup of alkenones and alkenoates (without the need for saponification) for subsequent coelution-free gas chromatographic analysis; (5) Novel structural features revealed by new analytical methods that now allow a comprehensive re-assessment of taxonomic features of various haptophyte species, with principal component analysis capable of fully resolving species biomarker distributions; (6) Development of UK37 double prime (UK37'') for Group II haptophytes (e.g., those occurring in saline lakes and estuaries), that differs from the traditional unsaturation indices used for SST reconstructions; (7) New assessment of how mixed inputs from different alkenone groups may affect SST reconstructions in marginal ocean environments and possible approaches to solving the problem; and, (8) Optimization of analytical methods for determining the double-bond positions of alkenones and alkenoates, and subsequent discovery of new structural features of short-chain alkenones and the proposal of new biosynthetic pathways.

  13. Smartphone based scalable reverse engineering by digital image correlation

    NASA Astrophysics Data System (ADS)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  14. Reconstruction of vibroacoustic responses of a highly nonspherical structure using Helmholtz equation least-squares method.

    PubMed

    Lu, Huancai; Wu, Sean F

    2009-03-01

    The vibroacoustic responses of a highly nonspherical vibrating object are reconstructed using Helmholtz equation least-squares (HELS) method. The objectives of this study are to examine the accuracy of reconstruction and the impacts of various parameters involved in reconstruction using HELS. The test object is a simply supported and baffled thin plate. The reason for selecting this object is that it represents a class of structures that cannot be exactly described by the spherical Hankel functions and spherical harmonics, which are taken as the basis functions in the HELS formulation, yet the analytic solutions to vibroacoustic responses of a baffled plate are readily available so the accuracy of reconstruction can be checked accurately. The input field acoustic pressures for reconstruction are generated by the Rayleigh integral. The reconstructed normal surface velocities are validated against the benchmark values, and the out-of-plane vibration patterns at several natural frequencies are compared with the natural modes of a simply supported plate. The impacts of various parameters such as number of measurement points, measurement distance, location of the origin of the coordinate system, microphone spacing, and ratio of measurement aperture size to the area of source surface of reconstruction on the resultant accuracy of reconstruction are examined.

  15. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 3D Segmentation of Maxilla in Cone-beam Computed Tomography Imaging Using Base Invariant Wavelet Active Shape Model on Customized Two-manifold Topology

    PubMed Central

    Chang, Yu-Bing; Xia, James J.; Yuan, Peng; Kuo, Tai-Hong; Xiong, Zixiang; Gateno, Jaime; Zhou, Xiaobo

    2013-01-01

    Recent advances in cone-beam computed tomography (CBCT) have rapidly enabled widepsread applications of dentomaxillofacial imaging and orthodontic practices in the past decades due to its low radiation dose, high spatial resolution, and accessibility. However, low contrast resolution in CBCT image has become its major limitation in building skull models. Intensive hand-segmentation is usually required to reconstruct the skull models. One of the regions affected by this limitation the most is the thin bone images. This paper presents a novel segmentation approach based on wavelet density model (WDM) for a particular interest in the outer surface of anterior wall of maxilla. Nineteen CBCT datasets are used to conduct two experiments. This mode-based segmentation approach is validated and compared with three different segmentation approaches. The results show that the performance of this model-based segmentation approach is better than those of the other approaches. It can achieve 0.25 ± 0.2mm of surface error from ground truth of bone surface. PMID:23694914

  17. Surface dating of bricks, an application of luminescence techniques

    NASA Astrophysics Data System (ADS)

    Galli, Anna; Martini, Marco; Maspero, Francesco; Panzeri, Laura; Sibilia, Emanuela

    2014-05-01

    Luminescence techniques are a powerful tool to date archaeological ceramic materials and geological sediments. Thermoluminescence (TL) is widely used for bricks dating to reconstruct the chronology of urban complexes and the development of human cultures. However, it can sometimes be inconclusive, since TL assesses the firing period of bricks, which can be reused, even several centuries later. This problem can be circumvented using a dating technique based on a resetting event different from the last heating. OSL (Optically Stimulated Luminescence) exploits the last light exposition of the brick surface, which resets the light-sensitive electron traps until the surface is definitely shielded by mortar and superimposed bricks. This advanced application (surface dating) has been successfully attempted on rocks, marble and stone artifacts, but not yet on bricks. A recent conservation campaign at the Certosa di Pavia gave the opportunity to sample some bricks belonging to a XVII century collapsed wall, still tied to their mortars. This was an advantageous condition to test this technique, comparing the dating results with precise historical data. This attempt gave satisfactory results, allowing to identify bricks surely reused and to fully confirm that the edification of the perimetral wall occurred at the end of XVII century.

  18. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison.

    PubMed

    Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph

    2016-05-01

    To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; p<.0001). Subjective image quality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (p<0.0001, respectively). Aortic CTA performed with 3rd generation DSCT, ATVS, integrated circuit detector, and advanced iterative reconstruction allow a substantial reduction of radiation exposure while improving image quality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Outcomes After En Bloc Iliac Vessel Excision and Reconstruction During Pelvic Exenteration.

    PubMed

    Brown, Kilian G M; Koh, Cherry E; Solomon, Michael J; Qasabian, Raffi; Robinson, David; Dubenec, Steven

    2015-09-01

    Advanced pelvic cancers involving the lateral pelvic compartment, and particularly the iliac vasculature, are difficult to manage. Common or external iliac vessel involvement has traditionally been considered a contraindication for curative surgery. The purpose of this study was to investigate pathological and surgical outcomes, particularly postoperative morbidity of pelvic exenteration with en bloc major iliac vascular excision and reconstruction. This study was a case series. The study was conducted at a quaternary referral center for pelvic exenteration in Sydney. Patients included those undergoing en bloc iliac vessel excision as part of their pelvic exenteration for a locally advanced pelvic malignancy. Over the study period, 336 patients underwent pelvic exenteration. Twenty-one patients (6.3%) underwent en bloc vascular excision of 29 vessels for tumor involvement. Twenty-four vessels required reconstruction. The primary outcomes were postoperative complications and pathologic outcomes. Survival rates were estimated using the Kaplan-Meier technique. Operating time for patients who underwent vascular excision and reconstruction was longer, but this did not reach significance (631 vs 531 minutes; p = 0.052). Mean blood loss was significantly higher in the vascular excision and reconstruction group (6.8 vs 3.4 L; p < 0.001). Patients who required en bloc vascular excision were less likely to have R0 margins compared with patients who did not (38% vs 78%; p < 0.001). There was no intraoperative or 30-day mortality. Overall graft patency and limb loss at 1 year were 96% and 0%. A total of 52% of patients had at least 1 vascular related complication. Median overall and disease-free survival times were 34 and 26 months. This study is limited by a relatively small number of heterogeneous patients. En bloc vascular resection and reconstruction for contiguous tumor involvement is feasible and safe in selected patients. Advanced pelvic tumors involving iliac vessels should not be precluded from curative surgery in specialized institutions.

  20. Advances in 6d diffraction contrast tomography

    NASA Astrophysics Data System (ADS)

    Viganò, N.; Ludwig, W.

    2018-04-01

    The ability to measure 3D orientation fields and to determine grain boundary character plays a key role in understanding many material science processes, including: crack formation and propagation, grain coarsening, and corrosion processes. X-ray diffraction imaging techniques offer the ability to retrieve such information in a non-destructive manner. Among them, Diffraction Contrast Tomography (DCT) is a monochromatic beam, near-field technique, that uses an extended beam and offers fast mapping of 3D sample volumes. It was previously shown that the six-dimensional extension of DCT can be applied to moderately deformed samples (<= 5% total strain), made from materials that exhibit low levels of elastic deformation of the unit cell (<= 1%). In this article, we improved over the previously proposed 6D-DCT reconstruction method, through the introduction of both a more advanced forward model and reconstruction algorithm. The results obtained with the proposed improvements are compared against the reconstructions previously published in [1], using Electron Backscatter Diffraction (EBSD) measurements as a reference. The result was a noticeably higher quality reconstruction of the grain boundary positions and local orientation fields. The achieved reconstruction quality, together with the low acquisition times, render DCT a valuable tool for the stop-motion study of polycrystalline microstructures, evolving as a function of applied strain or thermal annealing treatments, for selected materials.

  1. Tissue-engineered vascularized bone grafts: basic science and clinical relevance to trauma and reconstructive microsurgery.

    PubMed

    Johnson, Elizabeth O; Troupis, Theodore; Soucacos, Panayotis N

    2011-03-01

    Bone grafts are an important part of orthopaedic surgeon's armamentarium. Despite well-established bone-grafting techniques, large bone defects still represent a challenge. Efforts have therefore been made to develop osteoconductive, osteoinductive, and osteogenic bone-replacement systems. The long-term clinical goal in bone tissue engineering is to reconstruct bony tissue in an anatomically functional three-dimensional morphology. Current bone tissue engineering strategies take into account that bone is known for its ability to regenerate following injury, and for its intrinsic capability to re-establish a complex hierarchical structure during regeneration. Although the tissue engineering of bone for the reconstruction of small to moderate sized bone defects technically feasible, the reconstruction of large defects remains a daunting challenge. The essential steps towards optimized clinical application of tissue-engineered bone are dependent upon recent advances in the area of neovascularization of the engineered construct. Despite these recent advances, however, a gap from bench to bedside remains; this may ultimately be bridged by a closer collaboration between basic scientists and reconstructive surgeons. The aim of this review is to introduce the basic principles of tissue engineering of bone, outline the relevant bone physiology, and discuss the recent concepts for the induction of vascularization in engineered bone tissue. Copyright © 2011 Wiley-Liss, Inc.

  2. Recent Advances in X-ray Cone-beam Computed Laminography.

    PubMed

    O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas

    2016-10-06

    X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.

  3. Overview of Facial Plastic Surgery and Current Developments

    PubMed Central

    Chuang, Jessica; Barnes, Christian; Wong, Brian J. F.

    2016-01-01

    Facial plastic surgery is a multidisciplinary specialty largely driven by otolaryngology but includes oral maxillary surgery, dermatology, ophthalmology, and plastic surgery. It encompasses both reconstructive and cosmetic components. The scope of practice for facial plastic surgeons in the United States may include rhinoplasty, browlifts, blepharoplasty, facelifts, microvascular reconstruction of the head and neck, craniomaxillofacial trauma reconstruction, and correction of defects in the face after skin cancer resection. Facial plastic surgery also encompasses the use of injectable fillers, neural modulators (e.g., BOTOX Cosmetic, Allergan Pharmaceuticals, Westport, Ireland), lasers, and other devices aimed at rejuvenating skin. Facial plastic surgery is a constantly evolving field with continuing innovative advances in surgical techniques and cosmetic adjunctive technologies. This article aims to give an overview of the various procedures that encompass the field of facial plastic surgery and to highlight the recent advances and trends in procedures and surgical techniques. PMID:28824978

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  5. Tomo3D 2.0--exploitation of advanced vector extensions (AVX) for 3D reconstruction.

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-02-01

    Tomo3D is a program for fast tomographic reconstruction on multicore computers. Its high speed stems from code optimization, vectorization with Streaming SIMD Extensions (SSE), multithreading and optimization of disk access. Recently, Advanced Vector eXtensions (AVX) have been introduced in the x86 processor architecture. Compared to SSE, AVX double the number of simultaneous operations, thus pointing to a potential twofold gain in speed. However, in practice, achieving this potential is extremely difficult. Here, we provide a technical description and an assessment of the optimizations included in Tomo3D to take advantage of AVX instructions. Tomo3D 2.0 allows huge reconstructions to be calculated in standard computers in a matter of minutes. Thus, it will be a valuable tool for electron tomography studies with increasing resolution needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics

    DTIC Science & Technology

    2014-06-01

    TERMS Wavefront reconstruction, Adaptive optics , Wavelets, Atmospheric turbulence , Branch points, Mirror surface optimization, Space telescope, Segmented...contribution adapts the proposed algorithm to work when branch points are present from significant atmospheric turbulence . An analysis of vector spaces...estimate the distortion of the collected light caused by the atmosphere and corrected by adaptive optics . A generalized orthogonal wavelet wavefront

  7. Temperature and heat flux changes at the base of Laurentide ice sheet inferred from geothermal data (evidence from province of Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Demezhko, Dmitry; Gornostaeva, Anastasia; Majorowicz, Jacek; Šafanda, Jan

    2018-01-01

    Using a previously published temperature log of the 2363-m-deep borehole Hunt well (Alberta, Canada) and the results of its previous interpretation, the new reconstructions of ground surface temperature and surface heat flux histories for the last 30 ka have been obtained. Two ways to adjust the timescale of geothermal reconstructions are discussed, namely the traditional method based on the a priori data on thermal diffusivity value, and the alternative one including the orbital tuning of the surface heat flux and the Earth's insolation changes. It is shown that the second approach provides better agreement between geothermal reconstructions and proxy evidences of deglaciation chronology in the studied region.

  8. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    PubMed

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  9. Facial recognition software success rates for the identification of 3D surface reconstructed facial images: implications for patient privacy and security.

    PubMed

    Mazura, Jan C; Juluru, Krishna; Chen, Joseph J; Morgan, Tara A; John, Majnu; Siegel, Eliot L

    2012-06-01

    Image de-identification has focused on the removal of textual protected health information (PHI). Surface reconstructions of the face have the potential to reveal a subject's identity even when textual PHI is absent. This study assessed the ability of a computer application to match research subjects' 3D facial reconstructions with conventional photographs of their face. In a prospective study, 29 subjects underwent CT scans of the head and had frontal digital photographs of their face taken. Facial reconstructions of each CT dataset were generated on a 3D workstation. In phase 1, photographs of the 29 subjects undergoing CT scans were added to a digital directory and tested for recognition using facial recognition software. In phases 2-4, additional photographs were added in groups of 50 to increase the pool of possible matches and the test for recognition was repeated. As an internal control, photographs of all subjects were tested for recognition against an identical photograph. Of 3D reconstructions, 27.5% were matched correctly to corresponding photographs (95% upper CL, 40.1%). All study subject photographs were matched correctly to identical photographs (95% lower CL, 88.6%). Of 3D reconstructions, 96.6% were recognized simply as a face by the software (95% lower CL, 83.5%). Facial recognition software has the potential to recognize features on 3D CT surface reconstructions and match these with photographs, with implications for PHI.

  10. Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.

    PubMed

    Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh

    2007-11-01

    This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc

  11. Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.

    PubMed

    Cluitmans, Matthijs; Karel, Joël; Bonizzi, Pietro; Volders, Paul; Westra, Ronald; Peeters, Ralf

    2018-05-12

    We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal, anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions. Graphical Abstract The inverse problem of electrocardiography is to reconstruct heart-surface potentials from recorded bodysurface electrocardiograms (ECGs) and a torso-heart geometry. However, it is ill-posed and solving it requires additional constraints for regularization. We introduce a regularization method that simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Our approach reconstructs epicardial (heart-surface) potentials with higher accuracy than common methods. It also improves the reconstruction of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias. This novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions.

  12. Reconstructing White Walls: Multi-View Multi-Shot 3d Reconstruction of Textureless Surfaces

    NASA Astrophysics Data System (ADS)

    Ley, Andreas; Hänsch, Ronny; Hellwich, Olaf

    2016-06-01

    The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades. Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline. The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.

  13. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Pan, X; Stayman, J

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less

  14. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating

    NASA Astrophysics Data System (ADS)

    Úbeda, J.; Palacios, D.; Vázquez-Selém, L.

    2012-04-01

    We have reconstructed the evolution of the paleo-glaciers of the volcanic complex Nevado Coropuna (15°S, 72°W; 6377 m asl) through the interpretation and dating of geomorphological evidences. Surface exposure dating (SED) based on the accumulation of 36Cl on the surface of moraine boulders, polished bedrock and lava flows allowed: 1) to confirm that the presence of ice masses in the region dates back to >80ka; 2) to produce chronologies of glacial and volcanic phases for the last ~21 ka; and 3) to obtain evidences of the reactivation of volcanic activity after the Last Glacial Maximum. Bromley et al. (2009) presented 3He SED ages of 21 ka for moraine boulders on the Mapa Mayo valley, to the North of Nevado Coropuna. Our 36Cl SED SED for moraine boulders from the valleys on the NE sector of the volcanic complex suggest a maximum initial advance between 20 and 16 ka, followed by another expansion of similar extent at 12-11 ka. On the Southern slope of Nevado Coropuna, the 36Cl ages show a maximum initial advance that reaches to the level of the Altiplano at 14 ka, and a re-advance at ~10-9 ka BP. Other data show minor re-advances at 9 ka on the Northern slope and at 6 ka to the South of the volcanic complex. These minor positive pulses interrupted a fast deglaciation process during the Holocene as shown by two series of 36Cl SED from polished rock surfaces on successively higher altitudes along the valleys of rivers Blanco and Cospanja, to the SW and SE. Despite the global warming occuring since 20 ka, deduced from the record of sea surface paleo-temperature of the Galapago Islands (Lea et al, 2006), the evolution of the fresh-water plankton from Lake Titicaca (Fritz et al, 2007) is consistent with sustained glacial conditions until 10-9 ka as suggested by the present work. Exposure ages of three lava flows indicate a reactivation of the magmatic system as the paleo-glaciers abandonned the slopes. The eruptive activity migrated from the West, where we found a lava flow of 6 ka, to the East, where we dated two units similar to the previous one at 2 and <1ka. Bromley, G.R. et al., 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews, 1-13. Bromley, R.M. et al., 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science, 26 (1): 37-43. Fritz, S.C. et al., 2007. Lake Titicaca 370KYr LT01-2B Sediment Database. Lake Titicaca 370KYr LT01-2B Sediment Data. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 92-008. NOAA/NGDC Paleoclimatology Program. Boulder (EEUU). Lea, D.W. et al., 2006. Galápagos TR163-22 Foraminiferal ^18O and Mg/Ca Data and SST Reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-090. NOAA/NCDC Paleoclimatology Program, Boulder (EEUU). Research funded by CGL2009-7343 project, Government of Spain.

  15. Predicting skin deficits through surface area measurements in ear reconstruction and adult ear surface area norms.

    PubMed

    Yazar, Memet; Sevim, Kamuran Zeynep; Irmak, Fatih; Yazar, Sevgi Kurt; Yeşilada, Ayşin Karasoy; Karşidağğ, Semra Hacikerim; Tatlidede, Hamit Soner

    2013-07-01

    Ear reconstruction is one of the most challenging procedures in plastic surgery practice. Many studies and techniques have been described in the literature for carving a well-pronounced framework. However, just as important as the cartilage framework is the ample amount of delicate skin coverage of the framework. In this report, we introduce an innovative method of measuring the skin surface area of the auricle from a three-dimensional template created from the healthy ear.The study group consisted of 60 adult Turkish individuals who were randomly selected (30 men and 30 women). The participant ages ranged from 18 to 45 years (mean, 31.5 years), and they had no history of trauma or congenital anomalies. The template is created by dividing the ear into aesthetic subunits and using ImageJ software to estimate the necessary amount of total skin surface area required.Reconstruction of the auricle is a complicated process that requires experience and patience to provide the auricular details. We believe this estimate will shorten the learning curve for residents and surgeons interested in ear reconstruction and will help surgeons obtain adequate skin to drape over the well-sculpted cartilage frameworks by providing a reference list of total ear skin surface area measurements for Turkish men and women.

  16. A scanning tunnelling microscopy study of C and N adsorption phases on the vicinal Ni(100) surfaces Ni(810) and Ni(911)

    NASA Astrophysics Data System (ADS)

    Driver, S. M.; Toomes, R. L.; Woodruff, D. P.

    2016-04-01

    The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and [ 01 1 bar ] step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2-4 layers high are more typical. STM atomic-scale images show the (2 × 2)pg 'clock' reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2 × 2) structure, most readily reconciled with a 'rumpling' reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1 × 1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [ 01 1 bar ] step direction.

  17. Opposing effects of humidity on rhodochrosite surface oxidation.

    PubMed

    Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T

    2015-03-03

    Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

  18. Computer-assisted innovations in craniofacial surgery.

    PubMed

    Rudman, Kelli; Hoekzema, Craig; Rhee, John

    2011-08-01

    Reconstructive surgery for complex craniofacial defects challenges even the most experienced surgeons. Preoperative reconstructive planning requires consideration of both functional and aesthetic properties of the mandible, orbit, and midface. Technological innovations allow for computer-assisted preoperative planning, computer-aided manufacturing of patient-specific implants (PSIs), and computer-assisted intraoperative navigation. Although many case reports discuss computer-assisted preoperative planning and creation of custom implants, a general overview of computer-assisted innovations is not readily available. This article reviews innovations in computer-assisted reconstructive surgery including anatomic considerations when using PSIs, technologies available for preoperative planning, work flow and process of obtaining a PSI, and implant materials available for PSIs. A case example follows illustrating the use of this technology in the reconstruction of an orbital-frontal-temporal defect with a PSI. Computer-assisted reconstruction of complex craniofacial defects provides the reconstructive surgeon with innovative options for challenging reconstructive cases. As technology advances, applications of computer-assisted reconstruction will continue to expand. © Thieme Medical Publishers.

  19. Comparison of Autograft and Allograft with Surface Modification for Flexor Tendon Reconstruction: A Canine in Vivo Model.

    PubMed

    Wei, Zhuang; Reisdorf, Ramona L; Thoreson, Andrew R; Jay, Gregory D; Moran, Steven L; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng

    2018-04-04

    Flexor tendon injury is common, and tendon reconstruction is indicated clinically if the primary repair fails or cannot be performed immediately after tendon injury. The purpose of the current study was to compare clinically standard extrasynovial autologous graft (EAG) tendon and intrasynovial allogeneic graft (IAG) that had both undergone biolubricant surface modification in a canine in vivo model. Twenty-four flexor digitorum profundus (FDP) tendons from the second and fifth digits of 12 dogs were used for this study. In the first phase, a model of failed FDP tendon repair was created. After 6 weeks, the ruptured FDP tendons with a scarred digit were reconstructed with the use of either EAG or IAG tendons treated with carbodiimide-derivatized hyaluronic acid and lubricin. At 12 weeks after tendon reconstruction, the digits were harvested for functional, biomechanical, and histologic evaluations. The tendon failure model was a clinically relevant and reproducible model for tendon reconstruction. The IAG group demonstrated improved digit function with decreased adhesion formation, lower digit work of flexion, and improved graft gliding ability compared with the EAG group. However, the IAG group had decreased healing at the distal tendon-bone junction. Our histologic findings verified the biomechanical evaluations and, further, showed that cellular repopulation of allograft at 12 weeks after reconstruction is still challenging. FDP tendon reconstruction using IAG with surface modification has some beneficial effects for reducing adhesions but demonstrated inferior healing at the distal tendon-bone junction compared with EAG. These mixed results indicate that vitalization and turnover acceleration are crucial to reducing failure of reconstruction with allograft. Flexor tendon reconstruction is a common surgical procedure. However, postoperative adhesion formation may lead to unsatisfactory clinical outcomes. In this study, we developed a potential flexor tendon allograft using chemical and tissue-engineering approaches. This technology could improve function following tendon reconstruction.

  20. Coupled Source-to-Sink and Geodynamic Modeling of Extensional Basins: A Case Study of the Gulf of Corinth, Greece.

    NASA Astrophysics Data System (ADS)

    Smithells, R. A.

    2015-12-01

    Many studies investigate rift evolution with geodynamic models, giving insight into the architecture and morphology of extensional basins. Recent advances in modeling allow better temporal and spatial resolution in surface processes when coupled with geodynamic processes, allowing modeling the interactions between sediment erosion and deposition with rift development. Here we use a combination of dynamic forward modeling and landscape evolution models to determine feedback and interaction of sediment erosion and deposition with rift development and fault localization. The Gulf of Corinth is an ideal basin to study the effect of surface processes on rifting because it can be considered a closed system for sediment erosion and deposition. It is a young rift, not affected by subsequent overprinting and there is a large amount of data from offshore seismic surveys and onshore fieldwork to constrain its evolution. We reconstruct paleo topography of the catchment area by removing the effects of fault activity and sediment erosion. The reconstructed topography is used to model different scenarios for landscape evolution and the results determine the relative importance of regional and fault related uplift and subsidence on the drainage evolution in the Gulf of Corinth. The landscape models are also used to constrain source area and total amount of sediment eroded from the catchment area. The eroded onshore volume and the amount of sediment deposited offshore are compared in order to reconstruct the source-to-sink balance for the Gulf of Corinth. Our results constrain the evolution of the catchment area and timings of drainage reversals that occurred in the fluvial systems of the Gulf of Corinth. Coupled forward tectonic-surface process modeling is used to investigate feedback between rift formation and the surface processes and to determine its role in developing asymmetry and fault migration in an extensional setting. In this study we investigate the effect of a mature sediment routing system on rift development. Our models show that migrating fault activity may be triggered by migration of sediment deposition filling the accommodation space provided by the associated half grabens. The asymmetric development of the rift can be explained by the preferred erosion and deposition of the southern flank of the Gulf of Corinth.

  1. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.

    PubMed

    Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A

    2017-03-01

    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.

  2. A handheld optical device for skin profile measurement

    NASA Astrophysics Data System (ADS)

    Sun, Jiuai; Liu, Xiaojin

    2018-04-01

    This paper describes a portable optical scanning device designed for skin surface measurement on both colour and 3D geometry through a relative easy and cost effective multiple light source photometric stereo method. The validation of colour recovered had been verified through its application on skin lesion segmentation in our early work. This paper focuses on the reconstructed topographic data which are subject to further evaluation and advancement. The evaluation work takes the skin in vitro as an application scenario and compares the experimental result to that obtained by using a commercial product. The experiments show that this handheld device can measure the skin profile significantly closer to that of the ground truth and have the additional function of skin colour recovery.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Shawn

    This code consists of Matlab routines which enable the user to perform non-manifold surface reconstruction via triangulation from high dimensional point cloud data. The code was based on an algorithm originally developed in [Freedman (2007), An Incremental Algorithm for Reconstruction of Surfaces of Arbitrary Codimension Computational Geometry: Theory and Applications, 36(2):106-116]. This algorithm has been modified to accommodate non-manifold surface according to the work described in [S. Martin and J.-P. Watson (2009), Non-Manifold Surface Reconstruction from High Dimensional Point Cloud DataSAND #5272610].The motivation for developing the code was a point cloud describing the molecular conformation space of cyclooctane (C8H16). Cyclooctanemore » conformation space was represented using points in 72 dimensions (3 coordinates for each molecule). The code was used to triangulate the point cloud and thereby study the geometry and topology of cyclooctane. Futures applications are envisioned for peptides and proteins.« less

  4. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-02-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  5. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-06-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  6. Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography.

    PubMed

    Smith, Erin J; Anstey, Joseph A; Venne, Gabriel; Ellis, Randy E

    2013-05-01

    Bone models derived from patient imaging and fabricated using additive manufacturing technology have many potential uses including surgical planning, training, and research. This study evaluated the accuracy of bone surface reconstruction of two diarthrodial joints, the hip and shoulder, from computed tomography. Image segmentation of the tomographic series was used to develop a three-dimensional virtual model, which was fabricated using fused deposition modelling. Laser scanning was used to compare cadaver bones, printed models, and intermediate segmentations. The overall bone reconstruction process had a reproducibility of 0.3 ± 0.4 mm. Production of the model had an accuracy of 0.1 ± 0.1 mm, while the segmentation had an accuracy of 0.3 ± 0.4 mm, indicating that segmentation accuracy was the key factor in reconstruction. Generally, the shape of the articular surfaces was reproduced accurately, with poorer accuracy near the periphery of the articular surfaces, particularly in regions with periosteum covering and where osteophytes were apparent.

  7. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    PubMed

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  8. Composition and structure of surfaces by time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongheon

    1997-10-01

    Time-of-flight scattering and recoiling spectrometry (TOF-SARS) was applied to characterize surface structures in order to understand the chemical and physical phenomena on various surfaces. The combination of TOF-SARS, LEED, and classical ion trajectory simulations has allowed characterization of the elemental composition in the outermost atomic layers, surface symmetry, and possible reconstruction or relaxation. The composition and structure of the CdS\\{0001\\}-(1 x 1) and CdS\\{000bar1\\}-(1 x 1) surfaces were investigated. The termination layer of each surface was determined by grazing incidence TOF-SARS. Both (1 x 1) surfaces are bulk-terminated without any reconstruction or relaxation detected by TOF-SARS. Each surface has two domains which are rotated by 60sp° from each other and there exist steps on both surfaces. The CdS\\{0001\\}-(1 x 1) surface is stabilized by O and H covering half a monolayer which are structurally ordered on the surface, while the O and H on the CdS\\{000bar1\\}-(1 x 1) stabilize the surface without ordering. The study of GaN\\{000bar1\\}-(1 x 1) shows the bulk-termination of the surface with no detectable reconstruction or relaxation. The surface is terminated in a N layer with Ga in the 2sp{nd}-layer. H atoms are bound to the outermost N atoms with a coverage of ˜3/4 monolayer and protrude outward from the surface. The surface termination, composition and structure of the Alsb2Osb3 (sapphire) were examined. The surface relaxation was studied quantitatively using classical ion trajectory simulations along with TOF-SARS. The surface undergoes 1sp{st}{-}2sp{nd}-layer relaxation as large as 0.5 A from the bulk value resulting in near coplanarity of Al and O atoms. The reconstruction of the Ni\\{100\\}-(2 x 2)-C surface was studied by TOF-SARS. The surface contained 80% of the (2 x 2)p4g phase and 20% of the unreconstructed (2 x 2) phase. The displacement of Ni atoms was determined by comparing the experimental and simulated results.

  9. Anticoagulative strategies in reconstructive surgery – clinical significance and applicability

    PubMed Central

    Jokuszies, Andreas; Herold, Christian; Niederbichler, Andreas D.; Vogt, Peter M.

    2012-01-01

    Advanced strategies in reconstructive microsurgery and especially free tissue transfer with advanced microvascular techniques have been routinely applied and continously refined for more than three decades in day-to-day clinical work. Bearing in mind the success rates of more than 95%, the value of these techniques in patient care and comfort (one-step reconstruction of even the most complex tissue defects) cannot be underestimated. However, anticoagulative protocols and practices are far from general acceptance and – most importantly – lack the benchmark of evidence basis while the reconstructive and microsurgical methods are mostly standardized. Therefore, the aim of our work was to review the actual literature and synoptically lay out the mechanisms of action of the plethora of anticoagulative substances. The pharmacologic prevention and the surgical intervention of thrombembolic events represent an established and essential part of microsurgery. The high success rates of microvascular free tissue transfer as of today are due to treatment of patients in reconstructive centers where proper patient selection, excellent microsurgical technique, tissue transfer to adequate recipient vessels, and early anastomotic revision in case of thrombosis is provided. Whether the choice of antithrombotic agents is a factor of success remains still unclear. Undoubtedly however the lack of microsurgical experience and bad technique can never be compensated by any regimen of antithrombotic therapy. All the more, the development of consistent standards and algorithms in reconstructive microsurgery is absolutely essential to optimize clinical outcomes and increase multicentric and international comparability of postoperative results and complications. PMID:22294976

  10. Simulation of mirror surfaces for virtual estimation of visibility lines for 3D motor vehicle collision reconstruction.

    PubMed

    Leipner, Anja; Dobler, Erika; Braun, Marcel; Sieberth, Till; Ebert, Lars

    2017-10-01

    3D reconstructions of motor vehicle collisions are used to identify the causes of these events and to identify potential violations of traffic regulations. Thus far, the reconstruction of mirrors has been a problem since they are often based on approximations or inaccurate data. Our aim with this paper was to confirm that structured light scans of a mirror improve the accuracy of simulating the field of view of mirrors. We analyzed the performances of virtual mirror surfaces based on structured light scans using real mirror surfaces and their reflections as references. We used an ATOS GOM III scanner to scan the mirrors and processed the 3D data using Geomagic Wrap. For scene reconstruction and to generate virtual images, we used 3ds Max. We compared the simulated virtual images and photographs of real scenes using Adobe Photoshop. Our results showed that we achieved clear and even mirror results and that the mirrors behaved as expected. The greatest measured deviation between an original photo and the corresponding virtual image was 20 pixels in the transverse direction for an image width of 4256 pixels. We discussed the influences of data processing and alignment of the 3D models on the results. The study was limited to a distance of 1.6m, and the method was not able to simulate an interior mirror. In conclusion, structured light scans of mirror surfaces can be used to simulate virtual mirror surfaces with regard to 3D motor vehicle collision reconstruction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. MBCP - Approach - Advanced Surgery | Center for Cancer Research

    Cancer.gov

    Advanced Surgery We have the expertise to do complex reconstructive procedures with robotic assistance. This results in: smaller incisions, less blood loss, and shorter stays in the hospital In the most challenging of cases of radical cystectomy, we remove the bladder and replace it with a bladder that we construct from bowel tissue. This is standard-of-care for advanced cases.

  12. Elucidating Complex Surface Reconstructions with Atomic-Resolution Scanning Tunneling Microscopy: Au(100)-Aqueous Electrochemical Interface

    DTIC Science & Technology

    1992-05-01

    that unusually high-quality STM data of this type 5-7can be obtained at ordered gold -aqueous interfaces. Reconstruction is seen 2 to be triggered on...all three low-index gold surfaces by altering the potential to values corresponding to small (10-15 pC cm-2 ) negative surface electronic 5-7 charges...connections. The former was platinum and the latter was a freshly electrooxidized gold wire. All electrode potentials quoted here, however, are

  13. Controlling the width of self-assembled dysprosium silicide nanowires on the Si(001) surface.

    PubMed

    Cui, Y; Chung, J; Nogami, J

    2012-02-01

    We present STM data that show that it is possible to use a metal induced 2 × 7 reconstruction of Si(001) to narrow the width distribution of Dy silicide nanowires. This behavior is distinct from the effect of the 7 × 7 reconstruction on the Si(111) surface, where the 7 × 7 serves as a static template and the deposited metal avoids the unit cell boundaries on the substrate. In this case, the 2 × 7 is a dynamic template, and the nanowires nucleate at anti-phase boundaries between 2 × 7 reconstruction domains.

  14. The atomistic mechanism for Sb segregation and As displacement of Sb in InSb(001) surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, Evan M.; Millunchick, Joanna M.

    2018-01-01

    Interfacial broadening occurs in mixed-anion alloy heterostructures such as InAs/InAsSb due to both Sb-segregation and As-for-Sb exchange. In order to determine the atomistic mechanisms for these processes, we conduct ab initio calculations coupled with a cluster expansion formalism to determine the surface reconstructions of the pure and As-exposed InSb(001) surfaces. This approach provides a predicted phase diagram for pure InSb that is in better agreement with experiments. Namely, the α2(2 × 4) and α3c(4 × 4) structures are ultimately stable at 0K, but the α(4 × 3) and α2c(2 × 6) are within 1 meV/Å2. Exposure of the InSb(001) surface to As results in the As atoms infiltrating into the crystal and displacing subsurface Sb, thus providing the atomistic mechanisms for experimental observations of the As-for-Sb exchange reaction and Sb segregation. Experiments show that the widely reported A-(1 × 3) reconstruction is actually comprised of multiple reconstructions, which is consistent with the prediction of several nearly stable possible reconstructions.

  15. Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2018-05-01

    We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.

  16. Pursuing Mirror Image Reconstruction in Unilateral Microtia: Customizing Auricular Framework by Application of Three-Dimensional Imaging and Three-Dimensional Printing.

    PubMed

    Chen, Hsin-Yu; Ng, Li-Shia; Chang, Chun-Shin; Lu, Ting-Chen; Chen, Ning-Hung; Chen, Zung-Chung

    2017-06-01

    Advances in three-dimensional imaging and three-dimensional printing technology have expanded the frontier of presurgical design for microtia reconstruction from two-dimensional curved lines to three-dimensional perspectives. This study presents an algorithm for combining three-dimensional surface imaging, computer-assisted design, and three-dimensional printing to create patient-specific auricular frameworks in unilateral microtia reconstruction. Between January of 2015 and January of 2016, six patients with unilateral microtia were enrolled. The average age of the patients was 7.6 years. A three-dimensional image of the patient's head was captured by 3dMDcranial, and virtual sculpture carried out using Geomagic Freeform software and a Touch X Haptic device for fabrication of the auricular template. Each template was tailored according to the patient's unique auricular morphology. The final construct was mirrored onto the defective side and printed out with biocompatible acrylic material. During the surgery, the prefabricated customized template served as a three-dimensional guide for surgical simulation and sculpture of the MEDPOR framework. Average follow-up was 10.3 months. Symmetric and good aesthetic results with regard to auricular shape, projection, and orientation were obtained. One case with severe implant exposure was salvaged with free temporoparietal fascia transfer and skin grafting. The combination of three-dimensional imaging and manufacturing technology with the malleability of MEDPOR has surpassed existing limitations resulting from the use of autologous materials and the ambiguity of two-dimensional planning. This approach allows surgeons to customize the auricular framework in a highly precise and sophisticated manner, taking a big step closer to the goal of mirror-image reconstruction for unilateral microtia patients. Therapeutic, IV.

  17. New Computer Simulations of Macular Neural Functioning

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.

    1994-01-01

    We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.

  18. A Coral-based Reconstruction of Sea Surface Salinity at Sabine Bank, Vanuatu from 2007 to 1843 CE

    NASA Astrophysics Data System (ADS)

    Gorman, M. K.; Quinn, T. M.; Taylor, F. W.; Dunn, E. M.; Cabioch, G.; Ballu, V.; Maes, C.; Austin, J. A.; Saustrup, S.; Pelletier, B.

    2011-12-01

    We present a reconstruction of sea surface salinity (SSS) derived from a coral δ18O time series extending from 2007-1843 CE at Sabine Bank, Vanuatu (SBV, 166.04° E, 15.94°S). This reconstruction is significant because instrumental records of SSS are rare in time and space, yet the SSS response to the El Niño Southern Oscillation (ENSO) forcing is large in many regions of the tropical oceans. There is a strong positive relationship between sea surface temperature anomalies (SSTA) in the central Pacific (Niño 3.4 region; canonical ENSO signal) and six month lagged sea surface salinity anomalies (SSSA, data from Delcroix et al., 2011) at SBV, which establishes a dynamical link between surface ocean variability at SBV and ENSO variability. We calculate a coral δ18O anomaly time series and note that there is a strong correlation between it and instrumental SSS variations over the period 1970-2007 (r = 0.70, p < 0.01). We compute a linear transfer function that we use to predict SSS variations given observed coral δ18O variations. A calibration-verification exercise conducted over two intervals (1970-1987, 1988-2007) resulted in similar correlations between instrumental and reconstructed SSS for both time periods, which provides confidence in our SSS reconstructions in the pre-1970 interval. We further test our SBV transfer function by applying it to a previously published coral δ18O record from Malo Channel, Vanuatu (Kilbourne et al., 2004b), located 130 km to the east of Sabine Bank. The reconstructed SSS time series from the two locations over their common time interval (1991-1939 CE) are nearly always the same within error, indicating that the ENSO-influenced salinity signal is regional in extent, and can be reconstructed using coral δ18O records from Vanuatu. We observe high salinity excursions (>0.5 psu) pre-1970 corresponding to strong ENSO warm phase events recorded in the SST instrumental record and historical ENSO record (i.e. 1941-42, 1918-19, 1877-78), and an overall freshening trend, demonstrating the ability of our reconstructed dataset to capture interannual variability as well as long-term trends in SSS at Vanuatu.

  19. 3D Reconstruction of geological structures based on remote sensing data: example from Anaran anticline, Lurestan province, Zagros folds and thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Snidero, M.; Amilibia, A.; Gratacos, O.; Muñoz, J. A.

    2009-04-01

    This work presents a methodological workflow for the 3D reconstruction of geological surfaces at regional scale, based on remote sensing data and geological maps. This workflow has been tested on the reconstruction of the Anaran anticline, located in the Zagros Fold and Thrust belt mountain front. The used remote sensing data-set is a combination of Aster and Spot images as well as a high resolution digital elevation model. A consistent spatial positioning of the complete data-set in a 3D environment is necessary to obtain satisfactory results during the reconstruction. The Aster images have been processed by the Optimum Index Factor (OIF) technique, in order to facilitate the geological mapping. By pansharpening of the resulting Aster image with the SPOT panchromatic one we obtain the final high-resolution image used during the 3D mapping. Structural data (dip data) has been acquired through the analysis of the 3D mapped geological traces. Structural analysis of the resulting data-set allows us to divide the structure in different cylindrical domains. Related plunge lines orientation has been used to project data along the structure, covering areas with little or no information. Once a satisfactory dataset has been acquired, we reconstruct a selected horizon following the dip-domain concept. By manual editing, the obtained surfaces have been adjusted to the mapped geological limits as well as to the modeled faults. With the implementation of the Discrete Smooth Interpolation (DSI) algorithm, the final surfaces have been reconstructed along the anticline. Up to date the results demonstrate that the proposed methodology is a powerful tool for 3D reconstruction of geological surfaces when working with remote sensing data, in very inaccessible areas (eg. Iran, China, Africa). It is especially useful in semiarid regions where the structure strongly controls the topography. The reconstructed surfaces clearly show the geometry in the different sectors of the structure: presence of a back thrust affecting the back limb in the southern part of the anticline, the geometry of the grabens located along the anticline crest, the crosscutting relationship in the north-south faulted zone with the main thrust, the northern dome periclinal closure.

  20. Friction Regimes of Water-Lubricated Diamond (111): Role of Interfacial Ether Groups and Tribo-Induced Aromatic Surface Reconstructions

    NASA Astrophysics Data System (ADS)

    Kuwahara, Takuya; Moras, Gianpietro; Moseler, Michael

    2017-09-01

    Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H2O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H2O dissociation yield dense H /OH surface passivation leading to another ultralow friction regime.

  1. Utilizing the Iterative Closest Point (ICP) algorithm for enhanced registration of high resolution surface models - more than a simple black-box application

    NASA Astrophysics Data System (ADS)

    Stöcker, Claudia; Eltner, Anette

    2016-04-01

    Advances in computer vision and digital photogrammetry (i.e. structure from motion) allow for fast and flexible high resolution data supply. Within geoscience applications and especially in the field of small surface topography, high resolution digital terrain models and dense 3D point clouds are valuable data sources to capture actual states as well as for multi-temporal studies. However, there are still some limitations regarding robust registration and accuracy demands (e.g. systematic positional errors) which impede the comparison and/or combination of multi-sensor data products. Therefore, post-processing of 3D point clouds can heavily enhance data quality. In this matter the Iterative Closest Point (ICP) algorithm represents an alignment tool which iteratively minimizes distances of corresponding points within two datasets. Even though tool is widely used; it is often applied as a black-box application within 3D data post-processing for surface reconstruction. Aiming for precise and accurate combination of multi-sensor data sets, this study looks closely at different variants of the ICP algorithm including sub-steps of point selection, point matching, weighting, rejection, error metric and minimization. Therefore, an agricultural utilized field was investigated simultaneously by terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) sensors two times (once covered with sparse vegetation and once bare soil). Due to different perspectives both data sets show diverse consistency in terms of shadowed areas and thus gaps so that data merging would provide consistent surface reconstruction. Although photogrammetric processing already included sub-cm accurate ground control surveys, UAV point cloud exhibits an offset towards TLS point cloud. In order to achieve the transformation matrix for fine registration of UAV point clouds, different ICP variants were tested. Statistical analyses of the results show that final success of registration and therefore data quality depends particularly on parameterization and choice of error metric, especially for erroneous data sets as in the case of sparse vegetation cover. At this, the point-to-point metric is more sensitive to data "noise" than the point-to-plane metric which results in considerably higher cloud-to-cloud distances. Concluding, in order to comply with accuracy demands of high resolution surface reconstruction and the aspect that ground control surveys can reach their limits both in time exposure and terrain accessibility ICP algorithm represents a great tool to refine rough initial alignment. Here different variants of registration modules allow for individual application according to the quality of the input data.

  2. The ongoing emergence of robotics in plastic and reconstructive surgery.

    PubMed

    Struk, S; Qassemyar, Q; Leymarie, N; Honart, J-F; Alkhashnam, H; De Fremicourt, K; Conversano, A; Schaff, J-B; Rimareix, F; Kolb, F; Sarfati, B

    2018-04-01

    Robot-assisted surgery is more and more widely used in urology, general surgery and gynecological surgery. The interest of robotics in plastic and reconstructive surgery, a discipline that operates primarily on surfaces, has yet to be conclusively proved. However, the initial applications of robotic surgery in plastic and reconstructive surgery have been emerging in a number of fields including transoral reconstruction of posterior oropharyngeal defects, nipple-sparing mastectomy with immediate breast reconstruction, microsurgery, muscle harvesting for pelvic reconstruction and coverage of the scalp or the extremities. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collaboration: Pierre Auger Collaboration

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analysesmore » including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.« less

  4. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  5. The use of computer imaging techniques to visualize cardiac muscle cells in three dimensions.

    PubMed

    Marino, T A; Cook, P N; Cook, L T; Dwyer, S J

    1980-11-01

    Atrial muscle cells and atrioventricular bundle cells were reconstructed using a computer-assisted three-dimensional reconstruction system. This reconstruction technique permitted these cells to be viewed from any direction. The cell surfaces were approximated using triangular tiles, and this optimization technique for cell reconstruction allowed for the computation of cell surface area and cell volume. A transparent mode is described which enables the investigator to examine internal cellular features such as the shape and location of the nucleus. In addition, more than one cell can be displayed simultaneously, and, therefore, spatial relationships are preserved and intercellular relationships viewed directly. The use of computer imaging techniques allows for a more complete collection of quantitative morphological data and also the visualization of the morphological information gathered.

  6. Modeling the interface of platinum and α-quartz(001): Implications for sintering

    DOE PAGES

    Plessow, Philipp N.; Sánchez-Carrera, Roel S.; Li, Lin; ...

    2016-05-04

    We present a first-principles study which aims to understand the metal–support interaction of platinum nanoparticles on α-quartz(001) and, more generally, silica. The thermodynamic stability of the α-quartz(001) surface and its interface with Pt(111) are investigated as a function of temperature and partial pressure of H 2O and O 2. Potential defects in the α-quartz(001) surface as well as the adsorption energies of the Pt atom are also studied. This allows us to draw conclusions concerning nanoparticle shape and the resistance toward particle migration based on the interface free energies. We find that, as for the clean α-quartz(001) surface, a dry,more » reconstructed interface is expected at temperatures that are high but within experimentally relevant ranges. On an ideal, dry, reconstructed surface, particle migration is predicted to be a fast sintering mechanism. On real surfaces, defects may locally prevent reconstruction and act as anchoring points. Finally, the energetics of the adsorption of platinum atoms on α-quartz(001) do not support surface-mediated single-atom migration as a viable path for sintering on the investigated surfaces.« less

  7. Learning to perform ear reconstruction.

    PubMed

    Wilkes, Gordon H

    2009-08-01

    Learning how to perform ear reconstruction is very difficult. There are no standardized teaching methods. This has resulted in many ear reconstructions being suboptimal. Learning requires a major commitment by the surgeon. Factors to be seriously considered by those considering performing this surgery are (1) commitment, (2) aptitude, (3) training methods available, (4) surgical skills and experience, and (5) additional equipment needs. Unless all these factors are addressed in a surgeon's decision to perform this form of reconstruction, the end result will be compromised, and patient care will not be optimized. It is hoped that considering these factors and following this approach will result in a higher quality of aesthetic result. The future of ear reconstruction lies in the use of advanced digital technologies and tissue engineering. Copyright Thieme Medical Publishers.

  8. Posterior cruciate ligament: anatomy, biomechanics, and outcomes.

    PubMed

    Voos, James E; Mauro, Craig S; Wente, Todd; Warren, Russell F; Wickiewicz, Thomas L

    2012-01-01

    The optimal treatment of posterior cruciate ligament ruptures remains controversial despite numerous recent basic science advances on the topic. The current literature on the anatomy, biomechanics, and clinical outcomes of posterior cruciate ligament reconstruction is reviewed. Recent studies have quantified the anatomic location and biomechanical contribution of each of the 2 posterior cruciate ligament bundles on tunnel placement and knee kinematics during reconstruction. Additional laboratory and cadaveric studies have suggested double-bundle reconstructions of the posterior cruciate ligament may better restore normal knee kinematics than single-bundle reconstructions although clinical outcomes have not revealed such a difference. Tibial inlay posterior cruciate ligament reconstructions (either open or arthroscopic) are preferred by many authors to avoid the "killer turn" and graft laxity with cyclic loading. Posterior cruciate ligament reconstruction improves subjective patient outcomes and return to sport although stability and knee kinematics may not return to normal.

  9. Hyperspectral image reconstruction for x-ray fluorescence tomography

    DOE PAGES

    Gürsoy, Doǧa; Biçer, Tekin; Lanzirotti, Antonio; ...

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmore » approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.« less

  10. Reconstruction of the lower vermilion with a musculomucosal flap from the upper lip in the repair of extensive lower lip and chin defects.

    PubMed

    Rong, Li; Lan, Shi-Jie; Zhang, Duo; Wang, Wang-Shu; Liu, Chao; Peng, Wei-Hai

    2014-09-01

    In the repair of extensive lower lip and chin defects, the reconstruction of vermilion at the same time is a great challenge to plastic surgeons. We describe a novel method for the reconstruction of lower vermilion with musculomucosal flap from the upper lip in the repair of extensive lower lip and chin defects. Two patients underwent extensive lower lip and chin reconstruction together with vermilion reconstruction. This technique used 3 basic components: musculomucosal flap from the upper lip, buccal mucosal advancement flap, and cutaneous rotational flap from the neck. All the flaps survived without significant complications. Labial function in the motions of expression and speaking was maintained. The patients could basically close their mouths completely, and there were no drooping or small-mouth deformities postoperatively. Functional and cosmetically acceptable lower-lip and chin reconstructions in both patients were achieved.

  11. Image reconstruction for PET/CT scanners: past achievements and future challenges

    PubMed Central

    Tong, Shan; Alessio, Adam M; Kinahan, Paul E

    2011-01-01

    PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831

  12. Titanium template for scaphoid reconstruction.

    PubMed

    Haefeli, M; Schaefer, D J; Schumacher, R; Müller-Gerbl, M; Honigmann, P

    2015-06-01

    Reconstruction of a non-united scaphoid with a humpback deformity involves resection of the non-union followed by bone grafting and fixation of the fragments. Intraoperative control of the reconstruction is difficult owing to the complex three-dimensional shape of the scaphoid and the other carpal bones overlying the scaphoid on lateral radiographs. We developed a titanium template that fits exactly to the surfaces of the proximal and distal scaphoid poles to define their position relative to each other after resection of the non-union. The templates were designed on three-dimensional computed tomography reconstructions and manufactured using selective laser melting technology. Ten conserved human wrists were used to simulate the reconstruction. The achieved precision measured as the deviation of the surface of the reconstructed scaphoid from its virtual counterpart was good in five cases (maximal difference 1.5 mm), moderate in one case (maximal difference 3 mm) and inadequate in four cases (difference more than 3 mm). The main problems were attributed to the template design and can be avoided by improved pre-operative planning, as shown in a clinical case. © The Author(s) 2014.

  13. Nanotechnology applications in plastic and reconstructive surgery: a review.

    PubMed

    Parks, Joe; Kath, Melissa; Gabrick, Kyle; Ver Halen, Jon Peter

    2012-01-01

    Although nanotechnology is a relatively young field, there are already countless biomedical applications. Plastic and reconstructive surgery has significantly benefited from nanoscale refinements of diagnostic and therapeutic techniques. Plastic surgery is an incredibly diverse specialty, encompassing craniofacial surgery, hand surgery, cancer/trauma/congenital reconstruction, burn care, and aesthetic surgery. In particular, wound care, topical skin care, implant and prosthetic design, tissue engineering, regenerative medicine, and drug delivery have all been influenced by advances in nanotechnology. Nanotechnology will continue to witness growth and expansion of its biomedical applications, especially those in plastic surgery.

  14. Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Fowell, Sara E.; Sandford, Kate; Stewart, Joseph A.; Castillo, Karl D.; Ries, Justin B.; Foster, Gavin L.

    2016-10-01

    Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971, a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcification. Instrumental temperature records in this region are sparse, making it necessary to reconstruct longer SST records indirectly through geochemical temperature proxies. Here we investigate the skeletal Sr/Ca and Li/Mg ratios of S. siderea from two distinct reef zones (forereef and backreef) of the MBRS. Our field calibrations of S. siderea show that Li/Mg and Sr/Ca ratios are well correlated with temperature, although both ratios are 3 times more sensitive to temperature change in the forereef than in the backreef. These differences suggest that a secondary parameter also influences these SST proxies, highlighting the importance for site- and species-specific SST calibrations. Application of these paleothermometers to downcore samples reveals highly uncertain reconstructed temperatures in backreef coral, but well-matched reconstructed temperatures in forereef coral, both between Sr/Ca-SSTs and Li/Mg-SSTs, and in comparison to the Hadley Centre Sea Ice and Sea Surface Temperature record. Reconstructions generated from a combined Sr/Ca and Li/Mg multiproxy calibration improve the precision of these SST reconstructions. This result confirms that there are circumstances in which both Li/Mg and Sr/Ca are reliable as stand-alone and combined proxies of sea surface temperature. However, the results also highlight that high-precision, site-specific calibrations remain critical for reconstructing accurate SSTs from coral-based elemental proxies.

  15. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chung Liu, Wai; Wu, Bo; Wöhler, Christian

    2018-02-01

    Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.

  16. In induced reconstructions of Si(1 1 1) as superlattice matched epitaxial templates for InN growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in

    Graphical abstract: Display Omitted Highlights: ► A novel growth method to form InN at low growth temperatures. ► Use of Si reconstruction as a growth template for group III nitrides. ► Band gap variation of InN – Moss–Burstein shift – non-parabolic conduction band for InN. ► Super lattice matching epitaxy of metal induced reconstructions with III–V unit cell. -- Abstract: Indium induced surface reconstructions of Si(1 1 1)-7 × 7 are used as templates to grow high quality InN. We grow InN on Si(1 1 1)-7 × 7, Si(1 1 1)-4 × 1-In and Si(1 1 1)-1 × 1-In reconstructedmore » surfaces and study the quality of the films formed using complementary characterization tools. InN grown on Si(1 1 1)-1 × 1-In reconstruction shows superior film quality with lowest band-edge emission having a narrow full width at half maximum, intense and narrow 0 0 0 2 X-ray diffraction, low surface roughness and carrier concentration an order lower than other samples. We attribute the high quality of the film formed at 300 °C to the integral matching of InN and super lattice dimensions, we also study the reasons for the band gap variation of InN in the literature. Present study demonstrates the proposed Superlattice Matched Epitaxy can be a general approach to grow good quality InN at much lower growth temperature on compatible In induced reconstructions of the Si surface.« less

  17. Chimeric anterolateral thigh free flap for reconstruction of complex cranio-orbito-facial defects after skull base cancers resection.

    PubMed

    Cherubino, Mario; Turri-Zanoni, Mario; Battaglia, Paolo; Giudice, Marco; Pellegatta, Igor; Tamborini, Federico; Maggiulli, Francesca; Guzzetti, Luca; Di Giovanna, Danilo; Bignami, Maurizio; Calati, Carolina; Castelnuovo, Paolo; Valdatta, Luigi

    2017-01-01

    Complex cranio-orbito-facial defects after skull base cancers resection entail a functional and esthetic reconstruction. The introduction of endoscopic assisted techniques for excision surgery with the advances in reconstructive surgery and anesthesiology allowed to improve the management of such critical patients. We report a series of chimeric anterolateral thigh (ALT) flaps used to reconstruct complex cranio-orbital-facial defects after skull base surgery. A retrospective review of patients that underwent cranio-orbito-facial reconstruction using a chimeric ALT flap from March 2013 to October 2015 at a single tertiary care referral Institute was performed. All patients were affected by locally-advanced malignant tumor and the resulting defects involved the skull base in all cases. The ALT flaps were perforator-based flaps with different components: fascia, skin and muscle. The different flap territories had independent vascular supply and were independent of any physical interconnection except where linked by a common source vessel. Ten patients were included in the study. Three patients underwent adjuvant radiotherapy and to chemotherapy. The mean hospitalization time was 21 days (range, 8-24 days). One failure was observed. After a mean follow-up of 12.4 months, 3 patients died of the disease, 2 are alive with disease, while 5 patients (50%) are currently alive without evidence of disease. Chimeric ALT flap is a reliable and versatile reconstructive option for complex cranio-orbito-facial defects resulting from skull base surgery. The chimeric flap composed of different territories proved to be adequate for a patient-tailored three-dimensional reconstruction of the defects as well as able to resist to the postoperative adjuvant treatments. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Surgical gem: island advancement flaps for lip reconstruction.

    PubMed

    Kaufman, Andrew J

    2014-08-01

    Island advancement flaps provide specific advantages for repairing certain defects on the upper lip. We discuss the design and execution of this flap for defects on the alar sill and philtrum. © 2014 The Author. Australasian Journal of Dermatology © 2014 The Australasian College of Dermatologists.

  19. 3D surface reconstruction for laparoscopic computer-assisted interventions: comparison of state-of-the-art methods

    NASA Astrophysics Data System (ADS)

    Groch, A.; Seitel, A.; Hempel, S.; Speidel, S.; Engelbrecht, R.; Penne, J.; Höller, K.; Röhl, S.; Yung, K.; Bodenstedt, S.; Pflaum, F.; dos Santos, T. R.; Mersmann, S.; Meinzer, H.-P.; Hornegger, J.; Maier-Hein, L.

    2011-03-01

    One of the main challenges related to computer-assisted laparoscopic surgery is the accurate registration of pre-operative planning images with patient's anatomy. One popular approach for achieving this involves intraoperative 3D reconstruction of the target organ's surface with methods based on multiple view geometry. The latter, however, require robust and fast algorithms for establishing correspondences between multiple images of the same scene. Recently, the first endoscope based on Time-of-Flight (ToF) camera technique was introduced. It generates dense range images with high update rates by continuously measuring the run-time of intensity modulated light. While this approach yielded promising results in initial experiments, the endoscopic ToF camera has not yet been evaluated in the context of related work. The aim of this paper was therefore to compare its performance with different state-of-the-art surface reconstruction methods on identical objects. For this purpose, surface data from a set of porcine organs as well as organ phantoms was acquired with four different cameras: a novel Time-of-Flight (ToF) endoscope, a standard ToF camera, a stereoscope, and a High Definition Television (HDTV) endoscope. The resulting reconstructed partial organ surfaces were then compared to corresponding ground truth shapes extracted from computed tomography (CT) data using a set of local and global distance metrics. The evaluation suggests that the ToF technique has high potential as means for intraoperative endoscopic surface registration.

  20. Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Mickevicius, Nikolai J.; Paulson, Eric S.

    2017-04-01

    The purpose of this work is to investigate the effects of undersampling and reconstruction algorithm on the total processing time and image quality of respiratory phase-resolved 4D MRI data. Specifically, the goal is to obtain quality 4D-MRI data with a combined acquisition and reconstruction time of five minutes or less, which we reasoned would be satisfactory for pre-treatment 4D-MRI in online MRI-gRT. A 3D stack-of-stars, self-navigated, 4D-MRI acquisition was used to scan three healthy volunteers at three image resolutions and two scan durations. The NUFFT, CG-SENSE, SPIRiT, and XD-GRASP reconstruction algorithms were used to reconstruct each dataset on a high performance reconstruction computer. The overall image quality, reconstruction time, artifact prevalence, and motion estimates were compared. The CG-SENSE and XD-GRASP reconstructions provided superior image quality over the other algorithms. The combination of a 3D SoS sequence and parallelized reconstruction algorithms using computing hardware more advanced than those typically seen on product MRI scanners, can result in acquisition and reconstruction of high quality respiratory correlated 4D-MRI images in less than five minutes.

  1. Immediate breast reconstruction using autologous skin graft associated with breast implant.

    PubMed

    Dutra, A K; Andrade, W P; Carvalho, S M T; Makdissi, F B A; Yoshimatsu, E K; Domingues, M C; Maciel, M S

    2012-02-01

    Immediate breast reconstruction with skin graft is still little mentioned in the literature. Follow-up studies regarding the technique aspects are particularly scarce. The objective was to detail immediate breast reconstruction using autologous skin graft. Patients (n = 49) who underwent mastectomies and autologous immediate breast reconstruction with skin graft associated with a breast implant at A. C. Camargo Hospital (São Paulo, Brazil) between January 2007 and July 2010 were included. Information on clinical data, technique details and clinical outcome were prospectively collected. Following mastectomy, the autologous full-thickness skin graft was obtained through an inframammary fold incision along the contralateral breast in most patients. The skin graft was placed on the surface of the pectoralis major muscle after adjustments to conform to the mastectomy defect. A minimum of 10-month follow-up period was established. Patients' age ranged from 35 to 55 years and all received a silicone gel textured surface implant to obtain the necessary breast mound. The mean surgical time was 45 min, and the mean amount of skin resection was 4.5 cm in the largest diameter. Follow-up ranged from 10 to 35 months (median 23). All patients had silicone-gel textured surface implants to perform the breast mound reconstruction. No complications were observed in 87.8% of reconstructions. Forty-six patients (94%) had no complaints about the donor-site aesthetics. The result was a breast mound with a central ellipse of healed skin graft. Three (6%) poor results were observed. Thirty-six patients (67%) reported the results as good or very good. Our results lead us to conclude that autologous skin graft provided a reliable option in immediate breast reconstruction to skin-sparing mastectomy defects. The technique accomplished a single-stage implant breast reconstruction when there is inadequate skin coverage. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Forensic Facial Reconstruction: The Final Frontier.

    PubMed

    Gupta, Sonia; Gupta, Vineeta; Vij, Hitesh; Vij, Ruchieka; Tyagi, Nutan

    2015-09-01

    Forensic facial reconstruction can be used to identify unknown human remains when other techniques fail. Through this article, we attempt to review the different methods of facial reconstruction reported in literature. There are several techniques of doing facial reconstruction, which vary from two dimensional drawings to three dimensional clay models. With the advancement in 3D technology, a rapid, efficient and cost effective computerized 3D forensic facial reconstruction method has been developed which has brought down the degree of error previously encountered. There are several methods of manual facial reconstruction but the combination Manchester method has been reported to be the best and most accurate method for the positive recognition of an individual. Recognition allows the involved government agencies to make a list of suspected victims'. This list can then be narrowed down and a positive identification may be given by the more conventional method of forensic medicine. Facial reconstruction allows visual identification by the individual's family and associates to become easy and more definite.

  3. Reconstruction of Moderately Constricted Ears by Combining V-Y Advancement of Helical Root, Conchal Cartilage Graft, and Mastoid Hitch.

    PubMed

    Elshahat, Ahmed; Lashin, Riham

    2016-01-01

    Despite the multitude of corrective procedures described in the literature, adequate surgical correction of the congenital constricted ear remains a challenge. The maintenance of the shape and size of the reconstructed upper neohelix poses a particular problem. In the present study, a total of 12 cases of reconstruction were undertaken. All of them were moderate (type IIA Tanzer classification) deformities. A combined procedure was adopted using a V-Y advancement of the helical root, cartilage scoring, and cartilage grafting from the contralateral concha to reconstruct the upper helix. A mastoid hitch was used as an adjunct to these procedures to maintain helical elevation and prevent recurrence. Mean follow-up period was 6 months. RESULTS were excellent (n = 7), good (n = 4), and fair (n = 1). Paired t test showed a significant increase in the height of the constricted ear postoperatively (P < .001) and a nonsignificant difference between the height of the constricted and contralateral ears postoperatively (P > .05). Apart from dislodgment of the mastoid hitch suture in 1 patient, no complications were recorded. This combined technique is useful in correcting moderately constricted ear deformities.

  4. Reconstruction of pressure sores with perforator-based propeller flaps.

    PubMed

    Jakubietz, Rafael G; Jakubietz, Danni F; Zahn, Robert; Schmidt, Karsten; Meffert, Rainer H; Jakubietz, Michael G

    2011-03-01

    Perforator flaps have been successfully used for reconstruction of pressure sores. Although V-Y advancement flaps approximate debrided wound edges, perforator-based propeller flaps allow rotation of healthy tissue into the defect. Perforator-based propeller flaps were planned in 13 patients. Seven pressure sores were over the sacrum, five over the ischial tuberosity, and one on the tip of the scapula. Three patients were paraplegic, six were bedridden, and five were ambulatory. In three patients, no perforators were found. In 10 patients, propeller flaps were transferred. In two patients, total flap necrosis occurred, which was reconstructed with local advancement flaps. In two cases, a wound dehiscence occurred and had to be revised. One hematoma required evacuation. No further complications were noted. No recurrence at the flap site occurred. Local perforator flaps allow closure of pressure sores without harvesting muscle. The propeller version has the added benefit of transferring tissue from a distant site, avoiding reapproximation of original wound edges. Twisting of the pedicle may cause torsion and venous obstruction. This can be avoided by dissecting a pedicle of at least 3 cm. Propeller flaps are a safe option for soft tissue reconstruction of pressure sores. © Thieme Medical Publishers.

  5. Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation.

    PubMed

    Siegel, Nisan; Rosen, Joseph; Brooker, Gary

    2013-10-01

    Recent advances in Fresnel incoherent correlation holography (FINCH) increase the signal-to-noise ratio in hologram recording by interference of images from two diffractive lenses with focal lengths close to the image plane. Holograms requiring short reconstruction distances are created that reconstruct poorly with existing Fresnel propagation methods. Here we show a dramatic improvement in reconstructed fluorescent images when a 2D Hamming window function substituted for the disk window typically used to bound the impulse response in the Fresnel propagation. Greatly improved image contrast and quality are shown for simulated and experimentally determined FINCH holograms using a 2D Hamming window without significant loss in lateral or axial resolution.

  6. High quality 3D shape reconstruction via digital refocusing and pupil apodization in multi-wavelength holographic interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Li

    Multi-wavelength holographic interferometry (MWHI) has good potential for evolving into a high quality 3D shape reconstruction technique. There are several remaining challenges, including I) depth-of-field limitation, leading to axial dimension inaccuracy of out-of-focus objects; and 2) smearing from shiny smooth objects to their dark dull neighbors, generating fake measurements within the dark area. This research is motivated by the goal of developing an advanced optical metrology system that provides accurate 3D profiles for target object or objects of axial dimension larger than the depth-of-field, and for objects with dramatically different surface conditions. The idea of employing digital refocusing in MWHI has been proposed as a solution to the depth-of-field limitation. One the one hand, traditional single wavelength refocusing formula is revised to reduce sensitivity to wavelength error. Investigation over real example demonstrates promising accuracy and repeatability of reconstructed 3D profiles. On the other hand, a phase contrast based focus detection criterion is developed especially for MWHI, which overcomes the problem of phase unwrapping. The combination for these two innovations gives birth to a systematic strategy of acquiring high quality 3D profiles. Following the first phase contrast based focus detection step, interferometric distance measurement by MWHI is implemented as a next step to conduct relative focus detection with high accuracy. This strategy results in +/-100mm 3D profile with micron level axial accuracy, which is not available in traditional extended focus image (EFI) solutions. Pupil apodization has been implemented to address the second challenge of smearing. The process of reflective rough surface inspection has been mathematically modeled, which explains the origin of stray light and the necessity of replacing hard-edged pupil with one of gradually attenuating transmission (apodization). Metrics to optimize pupil types and parameters have been chosen especially for MWHI. A Gaussian apodized pupil has been installed and tested. A reduction of smearing in measurement result has been experimentally demonstrated.

  7. Is there more to the clinical outcome in posttraumatic reconstruction of the inferior and medial orbital walls than accuracy of implant placement and implant surface contouring? A prospective multicenter study to identify predictors of clinical outcome.

    PubMed

    Zimmerer, Rüdiger M; Gellrich, Nils-Claudius; von Bülow, Sophie; Strong, Edward Bradley; Ellis, Edward; Wagner, Maximilian E H; Sanchez Aniceto, Gregorio; Schramm, Alexander; Grant, Michael P; Thiam Chye, Lim; Rivero Calle, Alvaro; Wilde, Frank; Perez, Daniel; Bittermann, Gido; Mahoney, Nicholas R; Redondo Alamillos, Marta; Bašić, Joanna; Metzger, Marc; Rasse, Michael; Dittman, Jan; Rometsch, Elke; Espinoza, Kathrin; Hesse, Ronny; Cornelius, Carl-Peter

    2018-04-01

    Reconstruction of orbital wall fractures is demanding and has improved dramatically with the implementation of new technologies. True-to-original accuracy of reconstruction has been deemed essential for good clinical outcome, and reasons for unfavorable clinical outcome have been researched extensively. However, no detailed analysis on the influence of plate position and surface contour on clinical outcome has yet been published. Data from a previous study were used for an ad-hoc analysis to identify predictors for unfavorable outcome, defined as diplopia or differences in globe height and/or globe projection of >2 mm. Presumed predictors were implant surface contour, aberrant implant dimension or position, accuracy of reconstructed orbital volume, and anatomical fracture topography according to the current AO classification. Neither in univariable nor in multivariable regression models were unfavorable clinical outcomes associated with any of the presumed radiological predictors, and no association of the type of implant, i.e., standard preformed, CAD-based individualized and non-CAD-based individualized with its surface contour could be shown. These data suggest that the influence of accurate mechanical reconstruction on clinical outcomes may be less predictable than previously believed, while the role of soft-tissue-related factors may have been underestimated. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms

    NASA Astrophysics Data System (ADS)

    Dasi-Espuig, M.; Jiang, J.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Yeo, K. L.

    2016-05-01

    Aims: We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. Methods: The record of sunspot group areas and positions from the Royal Greenwich Observatory (RGO) is only available since 1874. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semi-synthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance (TSI) between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. Results: We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the TSI on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2+0.2-0.3 Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-α composite. The complete total and spectral (115 nm-160 μm) irradiance reconstructions since 1700 will be available from http://www2.mps.mpg.de/projects/sun-climate/data.html

  9. Consistent cortical reconstruction and multi-atlas brain segmentation.

    PubMed

    Huo, Yuankai; Plassard, Andrew J; Carass, Aaron; Resnick, Susan M; Pham, Dzung L; Prince, Jerry L; Landman, Bennett A

    2016-09-01

    Whole brain segmentation and cortical surface reconstruction are two essential techniques for investigating the human brain. Spatial inconsistences, which can hinder further integrated analyses of brain structure, can result due to these two tasks typically being conducted independently of each other. FreeSurfer obtains self-consistent whole brain segmentations and cortical surfaces. It starts with subcortical segmentation, then carries out cortical surface reconstruction, and ends with cortical segmentation and labeling. However, this "segmentation to surface to parcellation" strategy has shown limitations in various cohorts such as older populations with large ventricles. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. A modification called MaCRUISE(+) is designed to perform well when white matter lesions are present. Comparing to the benchmarks CRUISE and FreeSurfer, the surface accuracy of MaCRUISE and MaCRUISE(+) is validated using two independent datasets with expertly placed cortical landmarks. A third independent dataset with expertly delineated volumetric labels is employed to compare segmentation performance. Finally, 200MR volumetric images from an older adult sample are used to assess the robustness of MaCRUISE and FreeSurfer. The advantages of MaCRUISE are: (1) MaCRUISE constructs self-consistent voxelwise segmentations and cortical surfaces, while MaCRUISE(+) is robust to white matter pathology. (2) MaCRUISE achieves more accurate whole brain segmentations than independently conducting the multi-atlas segmentation. (3) MaCRUISE is comparable in accuracy to FreeSurfer (when FreeSurfer does not exhibit global failures) while achieving greater robustness across an older adult population. MaCRUISE has been made freely available in open source. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Reconstruction of 3d Models from Point Clouds with Hybrid Representation

    NASA Astrophysics Data System (ADS)

    Hu, P.; Dong, Z.; Yuan, P.; Liang, F.; Yang, B.

    2018-05-01

    The three-dimensional (3D) reconstruction of urban buildings from point clouds has long been an active topic in applications related to human activities. However, due to the structures significantly differ in terms of complexity, the task of 3D reconstruction remains a challenging issue especially for the freeform surfaces. In this paper, we present a new reconstruction algorithm which allows the 3D-models of building as a combination of regular structures and irregular surfaces, where the regular structures are parameterized plane primitives and the irregular surfaces are expressed as meshes. The extraction of irregular surfaces starts with an over-segmented method for the unstructured point data, a region growing approach based the adjacent graph of super-voxels is then applied to collapse these super-voxels, and the freeform surfaces can be clustered from the voxels filtered by a thickness threshold. To achieve these regular planar primitives, the remaining voxels with a larger flatness will be further divided into multiscale super-voxels as basic units, and the final segmented planes are enriched and refined in a mutually reinforcing manner under the framework of a global energy optimization. We have implemented the proposed algorithms and mainly tested on two point clouds that differ in point density and urban characteristic, and experimental results on complex building structures illustrated the efficacy of the proposed framework.

  11. Robust Surface Reconstruction via Laplace-Beltrami Eigen-Projection and Boundary Deformation

    PubMed Central

    Shi, Yonggang; Lai, Rongjie; Morra, Jonathan H.; Dinov, Ivo; Thompson, Paul M.; Toga, Arthur W.

    2010-01-01

    In medical shape analysis, a critical problem is reconstructing a smooth surface of correct topology from a binary mask that typically has spurious features due to segmentation artifacts. The challenge is the robust removal of these outliers without affecting the accuracy of other parts of the boundary. In this paper, we propose a novel approach for this problem based on the Laplace-Beltrami (LB) eigen-projection and properly designed boundary deformations. Using the metric distortion during the LB eigen-projection, our method automatically detects the location of outliers and feeds this information to a well-composed and topology-preserving deformation. By iterating between these two steps of outlier detection and boundary deformation, we can robustly filter out the outliers without moving the smooth part of the boundary. The final surface is the eigen-projection of the filtered mask boundary that has the correct topology, desired accuracy and smoothness. In our experiments, we illustrate the robustness of our method on different input masks of the same structure, and compare with the popular SPHARM tool and the topology preserving level set method to show that our method can reconstruct accurate surface representations without introducing artificial oscillations. We also successfully validate our method on a large data set of more than 900 hippocampal masks and demonstrate that the reconstructed surfaces retain volume information accurately. PMID:20624704

  12. Section Curve Reconstruction and Mean-Camber Curve Extraction of a Point-Sampled Blade Surface

    PubMed Central

    Li, Wen-long; Xie, He; Li, Qi-dong; Zhou, Li-ping; Yin, Zhou-ping

    2014-01-01

    The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization. PMID:25551467

  13. Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface.

    PubMed

    Li, Wen-long; Xie, He; Li, Qi-dong; Zhou, Li-ping; Yin, Zhou-ping

    2014-01-01

    The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization.

  14. The case of the 1981 eruption of Mount Etna: An example of very fast moving lava flows

    NASA Astrophysics Data System (ADS)

    Coltelli, Mauro; Marsella, Maria; Proietti, Cristina; Scifoni, Silvia

    2012-01-01

    Mount Etna despite being an extremely active volcano which, during the last 400 years, has produced many lava flow flank eruptions has rarely threatened or damaged populated areas. The reconstruction of the temporal evolution of potentially hazardous flank eruptions represents a useful contribution to reducing the impact of future eruptions by and analyzing actions to be taken for protecting sensitive areas. In this work, we quantitatively reconstructed the evolution of the 1981 lava flow field of Mt Etna, which threatened the town of Randazzo. This reconstruction was used to evaluate the cumulated volume, the time averaged discharge rate trend and to estimate its maximum value. The analysis was conducted by comparing pre- and post-eruption topographic surfaces, extracted by processing historical photogrammetric data sets and by utilizing the eruption chronology to establish the lava flow front positions at different times. An unusually high discharge rate (for Etna) of 640 m3/s was obtained, which corresponds well with the very fast advance rate observed for the main lava flow. A comparison with other volcanoes, presenting high discharge rate, was proposed for finding a clue to unveil the 1981 Etna eruptive mechanism. A model was presented to explain the high discharge rate, which includes an additional contribution to the lava discharge caused by the interception of a shallow magma reservoir by a dike rising from depth and the subsequent emptying of the reservoir.

  15. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera.

    PubMed

    Clausner, Tommy; Dalal, Sarang S; Crespo-García, Maité

    2017-01-01

    The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D . Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position.

  16. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera

    PubMed Central

    Clausner, Tommy; Dalal, Sarang S.; Crespo-García, Maité

    2017-01-01

    The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D. Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position. PMID:28559791

  17. Rough surface reconstruction for ultrasonic NDE simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.

    2014-02-18

    The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors.more » This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.« less

  18. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE PAGES

    Harrison, Neil

    2016-08-16

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  19. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Neil

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  20. Towards extensive spatio-temporal reconstructions of North American land cover: a comparison of state-of-the-art pollen-vegetation models

    NASA Astrophysics Data System (ADS)

    Dawson, A.; Trachsel, M.; Goring, S. J.; Paciorek, C. J.; McLachlan, J. S.; Jackson, S. T.; Williams, J. W.

    2017-12-01

    Pollen records have been extensively used to reconstruct past changes in vegetation and study the underlying processes. However, developing the statistical techniques needed to accurately represent both data and process uncertainties is a formidable challenge. Recent advances in paleoecoinformatics (e.g. the Neotoma Paleoecology Database and the European Pollen Database), Bayesian age-depth models, and process-based pollen-vegetation models, and Bayesian hierarchical modeling have pushed paleovegetation reconstructions forward to a point where multiple sources of uncertainty can be incorporated into reconstructions, which in turn enables new hypotheses to be asked and more rigorous integration of paleovegetation data with earth system models and terrestrial ecosystem models. Several kinds of pollen-vegetation models have been developed, notably LOVE/REVEALS, STEPPS, and classical transfer functions such as the modern analog technique. LOVE/REVEALS has been adopted as the standard method for the LandCover6k effort to develop quantitative reconstructions of land cover for the Holocene, while STEPPS has been developed recently as part of the PalEON project and applied to reconstruct with uncertainty shifts in forest composition in New England and the upper Midwest during the late Holocene. Each PVM has different assumptions and structure and uses different input data, but few comparisons among approaches yet exist. Here, we present new reconstructions of land cover change in northern North America during the Holocene based on LOVE/REVEALS and data drawn from the Neotoma database and compare STEPPS-based reconstructions to those from LOVE/REVEALS. These parallel developments with LOVE/REVEALS provide an opportunity to compare and contrast models, and to begin to generate continental scale reconstructions, with explicit uncertainties, that can provide a base for interdisciplinary research within the biogeosciences. We show how STEPPS provides an important benchmark for past land-cover reconstruction, and how the LandCover 6k effort in North America advances our understanding of the past by allowing cross-continent comparisons using standardized methods and quantifying the impact of humans in the early Anthropocene.

  1. SU-E-J-246: A Deformation-Field Map Based Liver 4D CBCT Reconstruction Method Using Gold Nanoparticles as Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Zhang, Y; Ren, L

    2014-06-01

    Purpose: To investigate the feasibility of using nanoparticle markers to validate liver tumor motion together with a deformation field map-based four dimensional (4D) cone-beam computed tomography (CBCT) reconstruction method. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In this method, each phase of the 4D-CBCT is considered as a deformation of a prior CT volume. The DFM is solved by a motion modeling and free-form deformation (MM-FD) technique, using a data fidelity constraint and the deformation energy minimization. For liver imaging, there is low contrast of a liver tumor inmore » on-board projections. A validation of liver tumor motion using implanted gold nanoparticles, along with the MM-FD deformation technique is implemented to reconstruct onboard 4D CBCT liver radiotherapy images. These nanoparticles were placed around the liver tumor to reflect the tumor positions in both CT simulation and on-board image acquisition. When reconstructing each phase of the 4D-CBCT, the migrations of the gold nanoparticles act as a constraint to regularize the deformation field, along with the data fidelity and the energy minimization constraints. In this study, multiple tumor diameters and positions were simulated within the liver for on-board 4D-CBCT imaging. The on-board 4D-CBCT reconstructed by the proposed method was compared with the “ground truth” image. Results: The preliminary data, which uses reconstruction for lung radiotherapy suggests that the advanced reconstruction algorithm including the gold nanoparticle constraint will Resultin volume percentage differences (VPD) between lesions in reconstructed images by MM-FD and “ground truth” on-board images of 11.5% (± 9.4%) and a center of mass shift of 1.3 mm (± 1.3 mm) for liver radiotherapy. Conclusion: The advanced MM-FD technique enforcing the additional constraints from gold nanoparticles, results in improved accuracy for reconstructing on-board 4D-CBCT of liver tumor. Varian medical systems research grant.« less

  2. Three-Dimensional Reconstruction of Thoracic Structures: Based on Chinese Visible Human

    PubMed Central

    Luo, Na; Tan, Liwen; Fang, Binji; Li, Ying; Xie, Bing; Liu, Kaijun; Chu, Chun; Li, Min

    2013-01-01

    We managed to establish three-dimensional digitized visible model of human thoracic structures and to provide morphological data for imaging diagnosis and thoracic and cardiovascular surgery. With Photoshop software, the contour line of lungs and mediastinal structures including heart, aorta and its ramus, azygos vein, superior vena cava, inferior vena cava, thymus, esophagus, diaphragm, phrenic nerve, vagus nerve, sympathetic trunk, thoracic vertebrae, sternum, thoracic duct, and so forth were segmented from the Chinese Visible Human (CVH)-1 data set. The contour data set of segmented thoracic structures was imported to Amira software and 3D thorax models were reconstructed via surface rendering and volume rendering. With Amira software, surface rendering reconstructed model of thoracic organs and its volume rendering reconstructed model were 3D reconstructed and can be displayed together clearly and accurately. It provides a learning tool of interpreting human thoracic anatomy and virtual thoracic and cardiovascular surgery for medical students and junior surgeons. PMID:24369489

  3. Robust, Efficient Depth Reconstruction With Hierarchical Confidence-Based Matching.

    PubMed

    Sun, Li; Chen, Ke; Song, Mingli; Tao, Dacheng; Chen, Gang; Chen, Chun

    2017-07-01

    In recent years, taking photos and capturing videos with mobile devices have become increasingly popular. Emerging applications based on the depth reconstruction technique have been developed, such as Google lens blur. However, depth reconstruction is difficult due to occlusions, non-diffuse surfaces, repetitive patterns, and textureless surfaces, and it has become more difficult due to the unstable image quality and uncontrolled scene condition in the mobile setting. In this paper, we present a novel hierarchical framework with multi-view confidence-based matching for robust, efficient depth reconstruction in uncontrolled scenes. Particularly, the proposed framework combines local cost aggregation with global cost optimization in a complementary manner that increases efficiency and accuracy. A depth map is efficiently obtained in a coarse-to-fine manner by using an image pyramid. Moreover, confidence maps are computed to robustly fuse multi-view matching cues, and to constrain the stereo matching on a finer scale. The proposed framework has been evaluated with challenging indoor and outdoor scenes, and has achieved robust and efficient depth reconstruction.

  4. Chlorine adsorption on the InAs (001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A. V.; Eremeev, S. V.; Tereshchenko, O. E.

    2011-01-15

    Chlorine adsorption on the In-stabilized InAs(001) surface with {zeta}-(4 Multiplication-Sign 2) and {beta}3 Prime -(4 Multiplication-Sign 2) reconstructions and on the Ga-stabilized GaAs (001)-{zeta}-(4 Multiplication-Sign 2) surface has been studied within the electron density functional theory. The equilibrium structural parameters of these reconstructions, surface atom positions, bond lengths in dimers, and their changes upon chlorine adsorption are determined. The electronic characteristics of the clean surface and the surface with adsorbed chlorine are calculated. It is shown that the most energetically favorable positions for chlorine adsorption are top positions over dimerized indium or gallium atoms. The mechanism of chlorine binding withmore » In(Ga)-stabilized surface is explained. The interaction of chlorine atoms with dimerized surface atoms weakens surface atom bonds and controls the initial stage of surface etching.« less

  5. Carbon stable isotope (δ13C) and elemental (TOC, TN, C/N) geochemistry in salt marsh surface sediments (Western Brittany, France): Adequate proxies for relative sea-level reconstruction?

    NASA Astrophysics Data System (ADS)

    Goslin, Jerome; Sans-jofre, Pierre; Van Vliet Lanoë, Brigitte; Delacourt, Christophe

    2017-04-01

    Reconstructing a dense network of precise and reliable records of Holocene relative sea-level (RSL) changes is still a major challenge for the paleo climate scientific community. In some regions, the use of traditional foraminifera-based transfer function is prevented by micro-fauna scarcity (e.g. Stéphan et al., 2014, Goslin et al., 2015), thus fostering the need for alternative proxies to be developed and used. Rather recently, isotopic and elemental geochemistry tools have been shown to form promising alternative proxies for RSL reconstruction (e.g. Wilson et al., 2005, Engelhart et al., 2013, Khan et al., 2015). Questions remain nonetheless open regarding the possibility for such markers to allow (i) distinguishing between freshwater and brackish to marine domains (this condition being needed if RSL index-points are to be derived from sedimentary markers) and (ii) to adequately identify the source of the organic matter preserved in the sediment. Concerns about the preservation of carbon and nitrogen compounds during diagenesis have also arose questioning the reliability of such markers for paleo-environmental reconstruction purposes (Wilson et al., 2005; Lamb et al., 2006). We analyzed stable carbon isotope ratios (δ13C), Total Organic Carbon (TOC), and Total Nitrogen (TN) values within 94 surface sediments sampled across two C-3 plants dominated saltmarshes (Brittany, France). The distributions of δ13C, TOC, TN and C/N values is observed to follow clear and strong elevation-dependent trends. Some slight local variability appears between the studied sites that can be easily explained by the different morphological configuration and functioning of these latter. An indicator is found that allows sediments from below and above the high-tide level to be discriminated. This finding forms an interesting advance in the field as it permits to ensure that samples formed under saline conditions and thus suggests that these can be used as stand-alone proxies for RSL reconstruction. This dataset is then used as a modern referential for Holocene RSL reconstruction. Statistical clustering analyses, conducted on the combined regional dataset allow for the identification of several intertidal elevation-dependent groups, characterized by specific values of δ13C, TOC, and TN. Our study thus confirm that δ13C, TOC, TN can act as direct RSL indicators in the context of C-3 plants dominated salt-marshes. Nonetheless, potential preservation issues are observed for the nitrogen compounds within the ancient sediments that deposited in the upper-tidal domain. This eventually challenges the reliable positioning of these latter on the former tidal frame, and thus introduces some uncertainty in the RSL positions that can be derived from them.

  6. From bed topography to ice thickness: GlaRe, a GIS tool to reconstruct the surface of palaeoglaciers

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramon; Rea, Brice; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig; Hughes, Philip; Ribolini, Adriano; Renssen, Hans; Lukas, Sven

    2016-04-01

    We present GlaRe, A GIS tool that automatically reconstructs the 3D geometry for palaeoglaciers given the bed topography. This tool utilises a numerical approach and can work using a minimum of morphological evidence i.e. the position of the palaeoglacier front. The numerical approach is based on an iterative solution to the perfect plasticity assumption for ice rheology, explained in Benn and Hulton (2010). The tool can be run in ArcGIS 10.1 (ArcInfo license) and later updates and the toolset is written in Python code. The GlaRe toolbox presented in this paper implements a well-established approach for the determination of palaeoglacier equilibrium profiles. Significantly it permits users to quickly run multiple glacier reconstructions which were previously very laborious and time consuming (typically days for a single valley glacier). The implementation of GlaRe will facilitate the reconstruction of large numbers of palaeoglaciers which will provide opportunities for such research addressing at least two fundamental problems: 1. Investigation of the dynamics of palaeoglaciers. Glacier reconstructions are often based on a rigorous interpretation of glacial landforms but not always sufficient attention and/or time has been given to the actual reconstruction of the glacier surface, which is crucial for the calculation of palaeoglacier ELAs and subsequent derivation of quantitative palaeoclimatic data. 2. the ability to run large numbers of reconstructions and over much larger spatial areas provides an opportunity to undertake palaeoglaciers reconstructions across entire mountain, ranges, regions or even continents, allowing climatic gradients and atmospheric circulation patterns to be elucidated. The tool performance has been evaluated by comparing two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known with a basic reconstruction using GlaRe. Results from the comparisons between extant glacier surfaces and modelled ones show very similar ELA values on the order of 10-20 meter error (which would account for a 0.065-0.13 K degree variation on a typical -6.5 K altitudinal gradient), and these can be improved further by increasing the number of flowlines and using F factors where needed. GlaRe is able to quickly generate robust palaeoglacier surfaces based on the very limited inputs often available from the geomorphological record.

  7. A new method for reconstruction of solar irradiance

    NASA Astrophysics Data System (ADS)

    Privalsky, Victor

    2018-07-01

    The purpose of this research is to show how time series should be reconstructed using an example with the data on total solar irradiation (TSI) of the Earth and on sunspot numbers (SSN) since 1749. The traditional approach through regression equation(s) is designed for time-invariant vectors of random variables and is not applicable to time series, which present random functions of time. The autoregressive reconstruction (ARR) method suggested here requires fitting a multivariate stochastic difference equation to the target/proxy time series. The reconstruction is done through the scalar equation for the target time series with the white noise term excluded. The time series approach is shown to provide a better reconstruction of TSI than the correlation/regression method. A reconstruction criterion is introduced which allows one to define in advance the achievable level of success in the reconstruction. The conclusion is that time series, including the total solar irradiance, cannot be reconstructed properly if the data are not treated as sample records of random processes and analyzed in both time and frequency domains.

  8. [Hand transplantation and implantation of nerve chips. New developments within hand surgery].

    PubMed

    Dahlin, L; Fridén, J; Hagberg, L; Lundborg, G

    1999-10-06

    Injuries and diseases of the hand naturally have an enormous impact on hand function and on quality of life, both occupational and social. The majority of hand-injury patients are under 30 years of age. Hand surgery, an established specialty in Sweden since 1969, is of great importance in terms of clinical developments, education and research. In the coming decade, scientific and clinical advances are to be expected in several fields such as nerve injuries including brachial plexus lesion, microsurgery, flexor tendon injuries and tendon transfer. Bioimplant research and new advances at the biotechnological interface will yield new options in nerve reconstruction, microchip implants in the nervous system, and the restoration of muscle-tendon function following injury. Artificial limbs with advanced motor and sensory functions will be important future aids in the rehabilitation of amputees. Transplantation of human hands is another promising reconstructive procedure which may open up new perspectives in the coming millennium.

  9. [Hand transplantation and implantation of nerve chips. New developments within hand surgery].

    PubMed

    Dahlin, L; Fridén, J; Hagberg, L; Lundborg, G

    2000-03-20

    Injuries and diseases of the hand naturally have an enormous impact on hand function and on quality of life, both occupational and social. The majority of hand-injury patients are under 30 years of age. Hand surgery, an established specialty in Sweden since 1969, is of great importance in terms of clinical developments, education and research. In the coming decade, scientific and clinical advances are to be expected in several fields such as nerve injuries including brachial plexus lesion, microsurgery, flexor tendon injuries and tendon transfer. Bioimplant research and new advances at the biotechnological interface will yield new options in nerve reconstruction, microchip implants in the nervous system, and the restoration of muscle-tendon function following injury. Artificial limbs with advanced motor and sensory functions will be important future aids in the rehabilitation of amputees. Transplantation of human hands is another promising reconstructive procedure which may open iup new perspectives in the coming millennium.

  10. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim

    2013-03-15

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In thismore » approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all experiments showed that TPS interpolation provided the best results. The quantitative results in the phantom experiments showed comparable nRMSE of Almost-Equal-To 0.047 {+-} 0.004 for the TPS and Shepard's method. Only slightly inferior results for the smoothed weighting function and the linear approach were achieved. The UQI resulted in a value of Almost-Equal-To 99% for all four interpolation methods. On clinical human data sets, the best results were clearly obtained with the TPS interpolation. The mean contour deviation between the TPS reconstruction and the standard FDK reconstruction improved in the three human cases by 1.52, 1.34, and 1.55 mm. The Dice coefficient showed less sensitivity with respect to variations in the ventricle boundary. Conclusions: In this work, the influence of different motion interpolation methods on left ventricle motion compensated tomographic reconstructions was investigated. The best quantitative reconstruction results of a phantom, a porcine, and human clinical data sets were achieved with the TPS approach. In general, the framework of motion estimation using a surface model and motion interpolation to a dense MVF provides the ability for tomographic reconstruction using a motion compensation technique.« less

  11. Erosion research with a digital camera: the structure from motion method used in gully monitoring - field experiments from southern Morocco

    NASA Astrophysics Data System (ADS)

    Kaiser, Andreas; Rock, Gilles; Neugirg, Fabian; Müller, Christoph; Ries, Johannes

    2014-05-01

    From a geoscientific view arid or semiarid landscapes are often associated with soil degrading erosion processes and thus active geomorphology. In this regard gully incision represents one of the most important influences on surface dynamics. Established approaches to monitor and quantify soil loss require costly and labor-intensive measuring methods: terrestrial or airborne LiDAR scans to create digital elevation models and unmanned airborne vehicles for image acquisition provide adequate tools for geomorphological surveying. Despite their ever advancing abilities, they are finite with their applicability in detailed recordings of complex surfaces. Especially undercuttings and plunge pools in the headcut area of gully systems are invisible or cause shadowing effects. The presented work aims to apply and advance an adequate tool to avoid the above mentioned obstacles and weaknesses of the established methods. The emerging structure from motion-based high resolution 3D-visualisation not only proved to be useful in gully erosion. Moreover, it provides a solid ground for additional applications in geosciences such as surface roughness measurements, quantification of gravitational mass movements or capturing stream connectivity. During field campaigns in semiarid southern Morocco a commercial DSLR camera was used, to produce images that served as input data for software based point cloud and mesh generation. Thus, complex land surfaces could be reconstructed entirely in high resolution by photographing the object from different perspectives. In different scales the resulting 3D-mesh represents a holistic reconstruction of the actual shape complexity with its limits set only by computing capacity. Analysis and visualization of time series of different erosion-related events illustrate the additional benefit of the method. It opens new perspectives on process understanding that can be exploited by open source and commercial software. Results depicted a soil loss of 5,28 t for a 3,5 m² area at a headcut retreat of 1,95 m after two heavy rain events. At a different site in the Souss region the depression line of a gully was lowered after channel flow and a hollow appeared while the headcut remained stable. The latter is usually interpreted as a hint for an inactive system. While formerly precise differences in volumes could only be estimated based on aerial imagery or LiDAR scans, the presented methodology allows assumptions of high quality and precision. Not only in erosion research the structure from motion-method serves as a useful, flexible and cheap means to increase detail and work efficiency.

  12. Chemical and valence reconstruction at the surface of SmB6 revealed by means of resonant soft x-ray reflectometry

    NASA Astrophysics Data System (ADS)

    Zabolotnyy, V. B.; Fürsich, K.; Green, R. J.; Lutz, P.; Treiber, K.; Min, Chul-Hee; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Kang, B. Y.; Cho, B. K.; Sutarto, R.; He, Feizhou; Reinert, F.; Inosov, D. S.; Hinkov, V.

    2018-05-01

    Samarium hexaboride (SmB6), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant M4 ,5 absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB6. We show that upon cleaving, the highly polar (001) surface of SmB6 undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm3 + dominated subsurface region. Whereas at room temperature, the reconstruction occurs on a timescale of less than 2 h, it takes about 24 h below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of surface states in this system.

  13. A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud

    NASA Astrophysics Data System (ADS)

    Zeng, Chao; Long, Di; Shen, Huanfeng; Wu, Penghai; Cui, Yaokui; Hong, Yang

    2018-07-01

    Land surface temperature (LST) is one of the most important parameters in land surface processes. Although satellite-derived LST can provide valuable information, the value is often limited by cloud contamination. In this paper, a two-step satellite-derived LST reconstruction framework is proposed. First, a multi-temporal reconstruction algorithm is introduced to recover invalid LST values using multiple LST images with reference to corresponding remotely sensed vegetation index. Then, all cloud-contaminated areas are temporally filled with hypothetical clear-sky LST values. Second, a surface energy balance equation-based procedure is used to correct for the filled values. With shortwave irradiation data, the clear-sky LST is corrected to the real LST under cloudy conditions. A series of experiments have been performed to demonstrate the effectiveness of the developed approach. Quantitative evaluation results indicate that the proposed method can recover LST in different surface types with mean average errors in 3-6 K. The experiments also indicate that the time interval between the multi-temporal LST images has a greater impact on the results than the size of the contaminated area.

  14. The past, present and future of ligament regenerative engineering

    PubMed Central

    Mengsteab, Paulos Y; Nair, Lakshmi S; Laurencin, Cato T

    2016-01-01

    Regenerative engineering has been defined as the convergence of Advanced Materials Sciences, Stem Cell Sciences, Physics, Developmental Biology and Clinical Translation for the regeneration of complex tissues and organ systems. Anterior cruciate ligament (ACL) reconstruction necessitates the regeneration of bone, ligament and their interface to achieve superior clinical results. In the past, the ACL has been repaired with the use of autologous and allogeneic grafts, which have their respective drawbacks. Currently, investigations on the use of biodegradable matrices to achieve knee stability and permit tissue regeneration are making promising advancements. In the future, utilizing regenerative biology cues to induce an endogenous regenerative response may aid the enhancement of clinical ACL reconstruction outcomes. PMID:27879170

  15. The past, present and future of ligament regenerative engineering.

    PubMed

    Mengsteab, Paulos Y; Nair, Lakshmi S; Laurencin, Cato T

    2016-12-01

    Regenerative engineering has been defined as the convergence of Advanced Materials Sciences, Stem Cell Sciences, Physics, Developmental Biology and Clinical Translation for the regeneration of complex tissues and organ systems. Anterior cruciate ligament (ACL) reconstruction necessitates the regeneration of bone, ligament and their interface to achieve superior clinical results. In the past, the ACL has been repaired with the use of autologous and allogeneic grafts, which have their respective drawbacks. Currently, investigations on the use of biodegradable matrices to achieve knee stability and permit tissue regeneration are making promising advancements. In the future, utilizing regenerative biology cues to induce an endogenous regenerative response may aid the enhancement of clinical ACL reconstruction outcomes.

  16. Digital reconstruction on geographical environment of Neolithic human activities in the Lingjiatan site of Chaohu City, East China

    NASA Astrophysics Data System (ADS)

    Wang, Xinyuan; Zhang, Jie; Wu, Li; Zhou, Kunshu; Mo, Duowen

    2010-11-01

    The Chaohu Lake Basin is an important area for ancient human activities in East China. The Lingjiatan site, which is located at the southeast of Chaohu City, Anhui Province, and 35 km north to the Yangtze River and 5 km south to the Taihu Mountain, is the most representative Neolithic Age site with advanced jade-carving techniques in this area. The 14C date of Lingjiatan Site is about 5600~5300aBP, the same time as the Hongshan culture and earlier than the Liangzhu culture, which falls into the Mid-Holocene epoch. Based on mid-high resolution remote sensing images and former archaeological materials, combined with field investigations and sampling analysis of the archaeological site profile of Lingjiatan Site as well as core drillings in the Chaohu Lake, the paper reconstructs the climate environment of the Lingjiatan site and the environmental background of ancient human activities during Mid-Holocene. The research results show that: (1) The ancients in Lingjiatan lived in the Holocene Optimum, its culture development was during the interim phase when the climate transformed from warm and wet to cool and dry. (2) The ground surface deposited in the last phase of late Pleistocene epoch (OSL dating is 11.6 +/-1.0 ka BP) was the living ground for Lingjiatan ancient humans. The sedimentary discontinuous surface may be caused by strong fluvial erosion under the warm and humid climatic conditions of the Mid-Holocene. (3) Originally, paleo-geomorphic surface was a level shallow mesa foreside southern part of Taihu Mountain, but was cut by fluvial waters and the geomorphologic configuration formed "finger-like" features alternately with strip hillocks and rivers. These features can be seen on the Landsat ETM+ remote sensing image, especially the depression area. This depression is now cropland, and was interpreted as the palaeochannels. (4) Based on the remote sensing image interpretation, the site was in a "peninsula shape" environment which had rivers flowing around the east, west and south sides of the Changgang terrain and that was good for rice planting, hunting, fishing and water transportation. (5) The most particular characteristic of the Lingjiatan site is the advanced jade production, those maybe have some relationship with the convenient shipping, trade exchanges and optimal environmental conditions, which was also conducive to rice cultivation.

  17. Reconstruction of radial thermal conductivity depth profile in case hardened steel rods

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Mendioroz, Arantza; Apiñaniz, Estibaliz; Salazar, Agustín; Wang, Chinhua; Mandelis, Andreas

    2009-04-01

    In this work the surface thermal-wave field (ac temperature) of a solid cylinder illuminated by a modulated light beam is calculated first in two cases: a multilayered cylinder and a cylinder the radial thermal conductivity of which varies continuously. It is demonstrated numerically that, using a few layers of different thicknesses, the surface thermal-wave field of a cylindrical sample with continuously varying radial thermal conductivity can be calculated with high accuracy. Next, an inverse procedure based on the multilayered model is used to reconstruct the radial thermal conductivity profile of hardened C1018 steel rods, the surface temperature of which was measured by photothermal radiometry. The reconstructed thermal conductivity depth profile has a similar shape to those found for flat samples of this material and shows a qualitative anticorrelation with the hardness depth profile.

  18. Human eyeball model reconstruction and quantitative analysis.

    PubMed

    Xing, Qi; Wei, Qi

    2014-01-01

    Determining shape of the eyeball is important to diagnose eyeball disease like myopia. In this paper, we present an automatic approach to precisely reconstruct three dimensional geometric shape of eyeball from MR Images. The model development pipeline involved image segmentation, registration, B-Spline surface fitting and subdivision surface fitting, neither of which required manual interaction. From the high resolution resultant models, geometric characteristics of the eyeball can be accurately quantified and analyzed. In addition to the eight metrics commonly used by existing studies, we proposed two novel metrics, Gaussian Curvature Analysis and Sphere Distance Deviation, to quantify the cornea shape and the whole eyeball surface respectively. The experiment results showed that the reconstructed eyeball models accurately represent the complex morphology of the eye. The ten metrics parameterize the eyeball among different subjects, which can potentially be used for eye disease diagnosis.

  19. Photometric Lunar Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  20. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor

    DOE PAGES

    Chan, Mun Keat; Harrison, Neil; Mcdonald, Ross David; ...

    2016-07-22

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling ofmore » these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy« less

  1. Palinspastic reconstruction of structure maps: an automated finite element approach with heterogeneous strain

    NASA Astrophysics Data System (ADS)

    Dunbar, John A.; Cook, Richard W.

    2003-07-01

    Existing methods for the palinspastic reconstruction of structure maps do not adequately account for heterogeneous rock strain and hence cannot accurately treat features such as fault terminations and non-cylindrical folds. We propose a new finite element formulation of the map reconstruction problem that treats such features explicitly. In this approach, a model of the map surface, with internal openings that honor the topology of the fault-gap network, is constructed of triangular finite elements. Both model building and reconstruction algorithms are guided by rules relating fault-gap topology to the kinematics of fault motion and are fully automated. We represent the total strain as the sum of a prescribed component of locally homogeneous simple shear and a minimum amount of heterogeneous residual strain. The region within which a particular orientation of simple shear is treated as homogenous can be as small as an individual element or as large as the entire map. For residual strain calculations, we treat the map surface as a hyperelastic membrane. A globally optimum reconstruction is found that unfolds the map while faithfully honoring assigned strain mechanisms, closes fault gaps without overlap or gap and imparts the least possible residual strain in the restored surface. The amount and distribution of the residual strain serves as a diagnostic tool for identifying mapping errors. The method can be used to reconstruct maps offset by any number of faults that terminate, branch and offset each other in arbitrarily complex ways.

  2. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  3. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sitesmore » of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.« less

  4. Optimization of tomographic reconstruction workflows on geographically distributed resources

    DOE PAGES

    Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; ...

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less

  5. Optimization of tomographic reconstruction workflows on geographically distributed resources

    PubMed Central

    Bicer, Tekin; Gürsoy, Doǧa; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks. PMID:27359149

  6. Optimization of tomographic reconstruction workflows on geographically distributed resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less

  7. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2016-04-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  8. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2015-10-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  9. Modeling aspects of the surface reconstruction problem

    NASA Astrophysics Data System (ADS)

    Toth, Charles K.; Melykuti, Gabor

    1994-08-01

    The ultimate goal of digital photogrammetry is to automatically produce digital maps which may in turn form the basis of GIS. Virtually all work in surface reconstruction deals with various kinds of approximations and constraints that are applied. In this paper we extend these concepts in various ways. For one, matching is performed in object space. Thus, matching and densification (modeling) is performed in the same reference system. Another extension concerns the solution of the second sub-problem. Rather than simply densifying (interpolating) the surface, we propose to model it. This combined top-down and bottom-up approach is performed in scale space, whereby the model is refined until compatibility between the data and expectations is reached. The paper focuses on the modeling aspects of the surface reconstruction problem. Obviously, the top-down and bottom-up model descriptions ought to be in a form which allows the generation and verification of hypotheses. Another crucial question is the degree of a priori scene knowledge necessary to constrain the solution space.

  10. Unusual island formations of Ir on Ge (111) studied by STM

    NASA Astrophysics Data System (ADS)

    van Zijll, M.; Huffman, E.; Lovinger, D. J.; Chiang, S.

    2017-12-01

    Island formation on the Ir/Ge(111) surface is studied using ultrahigh vacuum scanning tunneling microscopy. Ir was deposited at room temperature onto a Ge (111) substrate with coverages between 0.5 and 2.0 monolayers (ML). The samples were annealed to temperatures between 550 and 800 K, and then cooled prior to imaging. With 1.0 ML Ir coverage, at annealing temperatures 650-750 K, round islands form at locations where domain boundaries of the substrate reconstruction intersect. Both the substrate and the islands display a (√{ 3} x√{ 3}) R30∘ reconstruction. Additionally, a novel surface formation is observed where the Ir gathers along the antiphase domain boundaries between competing surface domains of the Ge surface reconstruction. This gives the appearance of the Ir in the domain boundaries forming pathways between different islands. The islands formed at higher annealing temperatures resulted in larger island sizes, which is evidence of Ostwald ripening. We present a model for the islands and the pathways which is consistent with our observations.

  11. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement

    NASA Astrophysics Data System (ADS)

    Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan

    2015-03-01

    Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.

  13. TomoBank: a tomographic data repository for computational x-ray science

    DOE PAGES

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; ...

    2018-02-08

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  14. Performances of the PIPER scalable child human body model in accident reconstruction

    PubMed Central

    Giordano, Chiara; Kleiven, Svein

    2017-01-01

    Human body models (HBMs) have the potential to provide significant insights into the pediatric response to impact. This study describes a scalable/posable approach to perform child accident reconstructions using the Position and Personalize Advanced Human Body Models for Injury Prediction (PIPER) scalable child HBM of different ages and in different positions obtained by the PIPER tool. Overall, the PIPER scalable child HBM managed reasonably well to predict the injury severity and location of the children involved in real-life crash scenarios documented in the medical records. The developed methodology and workflow is essential for future work to determine child injury tolerances based on the full Child Advanced Safety Project for European Roads (CASPER) accident reconstruction database. With the workflow presented in this study, the open-source PIPER scalable HBM combined with the PIPER tool is also foreseen to have implications for improved safety designs for a better protection of children in traffic accidents. PMID:29135997

  15. Towards Better Calibration of Modern Palynological Data against Climate: A Case Study in Osaka Bay, Japan

    NASA Astrophysics Data System (ADS)

    Kitaba, I.; Nakagawa, T.; McClymont, E.; Dettman, D. L.; Yamada, K.; Takemura, K.; Hyodo, M.

    2014-12-01

    Many of the difficulties in the pollen fossil-based paleoclimate reconstruction in coastal regions derive from the complex sedimentary processes of the near-shore environment. In order to examine this problem, we carried out pollen analysis of surface sediments collected from 35 sites in Osaka Bay, Japan. Using the biomisation method, the surrounding vegetation was accurately reconstructed at all sites. Applying the modern analogue technique to the same data, however, led to reconstructed temperatures that were lower by ca. 5 deg. C and precipitation amounts higher by ca. 5000 mm than the current sea level climate of the region. The range of reconstructed values was larger than the reconstruction error associated with the method. The principal component analysis shows that the surface pollen variation in Osaka Bay reflects sedimentary processes. This significant error associated with the quantitative climatic reconstruction using pollen data is attributed to the fact that the pollen assemblage is not determined solely by climate but reflects non-climatic influences. The accuracy and precision of climatic reconstruction can be improved significantly by expanding counts of minor taxa. Given this result, we re-examined the reconstructed climate using Osaka Bay palynological record reported in Kitaba et al. (2013). This new method did not significantly alter the overall variation in the reconstructed climate, and thus we conclude that the reconstruction was generally reliable. However, some intervals were strongly affected by depositional environmental change. In these, a climate signal can be extracted by excluding the patterns that arise from coastal sedimentation.

  16. View-interpolation of sparsely sampled sinogram using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Lee, Hoyeon; Lee, Jongha; Cho, Suengryong

    2017-02-01

    Spare-view sampling and its associated iterative image reconstruction in computed tomography have actively investigated. Sparse-view CT technique is a viable option to low-dose CT, particularly in cone-beam CT (CBCT) applications, with advanced iterative image reconstructions with varying degrees of image artifacts. One of the artifacts that may occur in sparse-view CT is the streak artifact in the reconstructed images. Another approach has been investigated for sparse-view CT imaging by use of the interpolation methods to fill in the missing view data and that reconstructs the image by an analytic reconstruction algorithm. In this study, we developed an interpolation method using convolutional neural network (CNN), which is one of the widely used deep-learning methods, to find missing projection data and compared its performances with the other interpolation techniques.

  17. Dynamic Shape Capture of Free-Swimming Aquatic Life using Multi-view Stereo

    NASA Astrophysics Data System (ADS)

    Daily, David

    2017-11-01

    The reconstruction and tracking of swimming fish in the past has either been restricted to flumes, small volumes, or sparse point tracking in large tanks. The purpose of this research is to use an array of cameras to automatically track 50-100 points on the surface of a fish using the multi-view stereo computer vision technique. The method is non-invasive thus allowing the fish to swim freely in a large volume and to perform more advanced maneuvers such as rolling, darting, stopping, and reversing which have not been studied. The techniques for obtaining and processing the 3D kinematics and maneuvers of tuna, sharks, stingrays, and other species will be presented and compared. The National Aquarium and the Naval Undersea Warfare Center and.

  18. Reconstruction with a 180-degree Rotationally Divided Latissimus-dorsi-musculocutaneous Flap after the Removal of Locally Advanced Breast Cancer

    PubMed Central

    Kirita, Miho; Sakurai, Hiroyuki

    2014-01-01

    Summary: This study described a technique for reconstruction of a large lateral thoracic region defect after locally advanced breast cancer resection that allows for full coverage of the defect and primary closure of the flap donor site. The authors performed reconstruction using the newly designed 180-degree rotationally-divided latissimus-dorsi-musculocutaneous flap in a 42-year-old woman for coverage of a large skin defect (18 × 15 cm) following extensive tissue resection for locally advanced breast cancer. The latissimus-dorsi-musculocutaneous flap, consisting of two rotated skin islands (18 × 7.5 cm each) that were sutured to form a large skin island, was used for coverage of the defect. The flap was sutured without causing excessive tension in the recipient region and the donor site was closed with simple reefing. No skin grafting was necessary. The flap survived completely, shoulder joint function was intact, and esthetic outcome was satisfactory. Quick wound closure allowed postoperative irradiation to be started 1 month after surgery. The technique offered advantages over the conventional pedicled latissimus-dorsi-musculocutaneous flap, but the flap was unable to be used, when the thoracodorsal artery and vein were damaged during extensive tissue removal. Detailed planning before surgery with breast surgeons would be essential. PMID:25426400

  19. Topography reconstruction of specular surfaces

    NASA Astrophysics Data System (ADS)

    Kammel, Soren; Horbach, Jan

    2005-01-01

    Specular surfaces are used in a wide variety of industrial and consumer products like varnished or chrome plated parts of car bodies, dies, molds or optical components. Shape deviations of these products usually reduce their quality regarding visual appearance and/or technical performance. One reliable method to inspect such surfaces is deflectometry. It can be employed to obtain highly accurate values representing the local curvature of the surfaces. In a deflectometric measuring system, a series of illumination patterns is reflected at the specular surface and is observed by a camera. The distortions of the patterns in the acquired images contain information about the shape of the surface. This information is suited for the detection and measurement of surface defects like bumps, dents and waviness with depths in the range of a few microns. However, without additional information about the distances between the camera and each observed surface point, a shape reconstruction is only possible in some special cases. Therefore, the reconstruction approach described in this paper uses data observed from at least two different camera positions. The data obtained is used separately to estimate the local surface curvature for each camera position. From the curvature values, the epipolar geometry for the different camera positions is recovered. Matching the curvature values along the epipolar lines yields an estimate of the 3d position of the corresponding surface points. With this additional information, the deflectometric gradient data can be integrated to represent the surface topography.

  20. Development and evaluation of a new 3-D digitization and computer graphic system to study the anatomic tissue and restoration surfaces.

    PubMed

    Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R

    1996-01-01

    It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment.

Top