Science.gov

Sample records for advanced te materials

  1. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  2. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review, CdMnTe (CMT) Gamma Ray Detectors

    SciTech Connect

    Bolotnikov,A.

    2009-06-02

    The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials, TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.

  3. Advances in dental materials.

    PubMed

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  4. Advanced methods for preparation and characterization of infrared detector materials. [crystallization and phase diagrams of Hg sub 1-x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Lehoczy, S. L.

    1979-01-01

    Crystal growth of Hg sub 1-x Cd sub x Te and density measurements of ingot slices are discussed. Radial compositional variations are evaluated from the results of infrared transmission edge mapping. The pseudo-binary HgTe-CdTe phase diagram is examined with reference to differential thermal analysis measurements. The phase equilibria calculations, based on the 'regular association solution' theory (R.A.S.) are explained and, using the obtained R.A.S. parameters, the activities of Hg, Cd, and Te vapors and their partial pressures over the pseudo-binary melt are calculated.

  5. Advanced Superlattice BiTe-PbTe/TAGS Milliwatt Radioisotope Power System

    NASA Astrophysics Data System (ADS)

    Drinker, Richard W.; Reddy, Anil; Heshmatpour, Ben; Snyder, G. Jeffrey; Tuttle, Karen L.

    2005-02-01

    The objective of this effort, under NASA's Project Prometheus, the Nuclear Systems Program, is to develop a high efficiency thermoelectric (T/E) energy conversion device to power milliwatt radioisotope power systems (mWRPS) for future NASA space science applications. The conversion efficiency goal is 8% at a power output level of 50 to several hundred mW. A two stage cascaded T/E module design is being used to achieve these program objectives. This concept incorporates the advanced superlattice BiTe thermoelectric device technology, which is under development by Research Triangle institute (RTI), with Teledyne's segmented T/E couple technology. The hot stage device in the cascade is comprised of Teledyne's PbTe/TAGS/PbSnTe segmented T/E couple which is glass bonded into a monolithic multicouple configuration. The cold stage device is an RTI developed thin film superlattice BiTe based multicouple device.

  6. Accelerating advanced-materials commercialization

    NASA Astrophysics Data System (ADS)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  7. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  8. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  9. Advanced Materials Technology

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)

    1982-01-01

    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

  10. Advances in CdTe R&D at NREL

    SciTech Connect

    Wu, X.; Zhou, J.; Keane, J. C.; Dhere, R. G.; Albin, D. S.; Gessert, T. A.; DeHart, C.; Duda, A.; Ward, J. J.; Yan, Y.; Teeter, G.; Levi, D. H.; Asher, S.; Perkins, C.; Moutinho, H. R.; To, B.

    2005-11-01

    This paper summarizes the following R&D accomplishments at National Renewable Energy Laboratory (NREL): (1) Developed several novel materials and world-record high-efficiency CdTe solar cell, (2) Developed "one heat-up step" manufacturing processes, and (3) Demonstrated 13.9% transparent CdTe cell and 15.3% CdTe/CIS polycrystalline tandem solar cell. Cadmium telluride has been well recognized as a promising photovoltaic material for thin-film solar cells because of its near-optimum bandgap of ~1.5 eV and its high absorption coefficient. Impressive results have been achieved in the past few years for polycrystalline CdTe thin-film solar cells at NREL. In this paper, we summarize some recent R&D activities at NREL.

  11. Development of advanced thermoelectric materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of an advanced thermoelectric material for radioisotope thermoelectric generator (RTG) applications is reported. A number of materials were explored. The bulk of the effort, however, was devoted to improving silicon germanium alloys by the addition of gallium phosphide, the synthesis and evaluation of lanthanum chrome sulfide and the formulation of various mixtures of lanthanum sulfide and chrome sulfide. It is found that each of these materials exhibits promise as a thermoelectric material.

  12. Advanced electron microscopy for advanced materials.

    PubMed

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-08

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  13. Advanced materials for space

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Slemp, W. S.; Long, E. R., Jr.; Sykes, G. F.

    1980-01-01

    The principal thrust of the LSST program is to develop the materials technology required for confident design of large space systems such as antennas and platforms. Areas of research in the FY-79 program include evaluation of polysulfones, measurement of the coefficient of thermal expansion of low expansion composite laminates, thermal cycling effects, and cable technology. The development of new long thermal control coatings and adhesives for use in space is discussed. The determination of radiation damage mechanisms of resin matrix composites and the formulation of new polymer matrices that are inherently more stable in the space environment are examined.

  14. High-Resolution ^125Te NMR of Novel Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Schmidt-Rohr, K.; Cook, B. A.; Han, Mi-Kyung; Kanatzidis, M. G.

    2008-03-01

    Several novel Te-based thermoelectric materials with extraordinary figure of merit ZT >=1.4 have been studied by high-resolution 25 kHz magic angle spinning ^125Te nuclear magnetic resonance (NMR) in order to investigate variations in composition on the nano-scale. A 20-fold wider ^125Te NMR signal of both AgSbGe4Te6 and AgSbGe5.67Te7.67 (˜90 kHz) compared to that of PbTe (4.5 kHz) indicates a variation of shifts due to local composition fluctuations. The similar total shift of the main peak in Ag0.53Pb18Sb1.2Te20 (-1790 ppm) and PbTe (-1750 ppm) and similarly long T2 relaxation time show that the majority of Te atoms in both materials has a similar environment. A second peak in Ag0.53Pb18Sb1.2Te20 at -1600 ppm shows the presence of a second type of Te site, accounting for ˜1/3 of all Te. These are apparently located in Ag,Sb-rich inclusions, as indicated by a much shorter T2, which can be due to the effect of quadrupolar relaxation of ^121Sb or ^123Sb (spin 5/2 or 7/2, respectively) on ^125Te. Our data confirm suggestions made by Hsu et al., Science (2004) and by Chen et al., Appl. Phys. Lett. (2005) about the presence of nano-scale inclusions in Ag0.53Pb18Sb1.2Te20, which result in low lattice thermal conductivity and high ZT.

  15. Raman spectroscopy of advanced materials.

    PubMed

    Huong, P V

    1996-06-01

    Many micro-structural aspects of advanced materials and the incidence on the physical properties have been elucidated by Raman micro-spectroscopy. The potential of this technique is demonstrated with new materials interesting in both academic and industrial developments: new carbons and diamonds, superconductors, semiconductors, superhards.

  16. Extending lithography with advanced materials

    NASA Astrophysics Data System (ADS)

    Guerrero, Douglas J.

    2014-03-01

    Material evolution has been a key enabler of lithography nodes in the last 30 years. This paper explores the evolution of anti-reflective coatings and their transformation from materials that provide only reflection control to advanced multifunctional layers. It is expected that complementary processes that do not require a change in wavelength will continue to dominate the development of new devices and technology nodes. New device architecture, immersion lithography, negative-tone development, multiple patterning, and directed self-assembly have demonstrated the capabilities of extending lithography nodes beyond what anyone thought would be possible. New material advancements for future technology nodes are proposed.

  17. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  18. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  19. Future requirements for advanced materials

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1980-01-01

    Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.

  20. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  1. Improvements in Materials and Processes for Segmented BiTe/PbTe-BiTe/TAGS/PbSnTe based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Flanders, Laffite A.; Drinker, Richard W.; Heshmatpour, Ben; Moul, David S.; Fleurial, Jean-Pierre; Tuttle, Karen L.

    2005-02-01

    The objective of this effort, under NASA's Project Prometheus, the Nuclear Systems Program, is to develop a high efficiency thermoelectric (T/E) energy conversion device to power radioisotope power systems (RPS) for future NASA space science applications. The conversion efficiency goal is 10% or higher at a power output level of 20 W or higher. The T/E efficiency achievable with the present T/E materials is about 8.5%. To increase the conversion efficiency, the T/E material properties as well as the T/E couple thermal and electrical performance need to be improved. By altering and optimizing the compositional make up, homogeneity and the microstructural characteristics such as the grain size and the phases present the T/E material properties can be improved. The T/E couple performance can be improved by reducing the electrical and thermal contact resistances as well as the physical integrity of the segmented T/E elements. The latter characteristics are improved by reducing the thermo-mechanical stresses, improving the quality of the bonds and interfaces, minimizing the number of required bonds, and reducing the degradation rate of the T/E materials and the bonds.

  2. FTIR characterization of advanced materials

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1986-01-01

    This paper surveys the application of Fourier transform infrared spectroscopy to the characterization of advanced materials. FTIR sampling techniques including internal and external reflectance and photoacoustic spectroscopy are discussed. Representative examples from the literature of the analysis of resins, fibers, prepregs and composites are reviewed. A discussion of several promising specialized FTIR techniques is also presented.

  3. Reassessment of the carrier concentration in GeTe-based thermoelectric materials by ^125Te NMR

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Acton, J. D.; Schmidt-Rohr, K.

    2012-02-01

    Ge1-xAgx/2Sbx/2Te p-type thermoelectric materials (``TAGS-n'') were studied extensively in the 1970s and then again recently. They exhibit an unusual combination of large thermopower, S, and high hole concentration, p, reported based on the Hall effect data, which has not been explained. To solve this puzzle, we have synthesized GeTe, GeTe:Bi, and TAGS-n with n = 97, 94, 90, and 85 and studied XRD, thermopower, electrical resistivity, thermal conductivity, and ^125Te NMR. Most importantly, we have determined the carrier concentrations using ^125Te NMR spin-lattice relaxation and Knight shift. In GeTe and GeTe:Bi, we found that carrier concentrations generally agree with the values reported from Hall effect. In TAGS-n, they are much lower but agree better with the values expected from S vs. p for GeTe-based materials, solving the puzzle partially. The NMR vs. Hall effect discrepancy in TAGS-n can be due to the presence not only of holes but also electrons generated by Sb atoms, which results in artificially high hole concentration from Hall effect. Even though the true hole concentration is lower than reported, the thermopower of TAGS-n is still significantly larger than that of GeTe and GeTe:Bi at similar carrier concentration. This can be explained by energy filtering enhanced by potential barriers formed due to Ag-Sb pairs in the TAGS-n lattice.

  4. Development of electrodeposited ZnTe layers as window materials in ZnTe/CdTe/CdHgTe multi-layer solar cells

    SciTech Connect

    Islam, A.B.M.O. Chaure, N.B.; Wellings, J.; Tolan, G.; Dharmadasa, I.M.

    2009-02-15

    Zinc telluride (ZnTe) thin films have been deposited on glass/conducting glass substrates using a low-cost electrodeposition method. The resulting films have been characterized using various techniques in order to optimize growth parameters. X-ray diffraction (XRD) has been used to identify the phases present in the films. Photoelectrochemical (PEC) cell and optical absorption measurements have been performed to determine the electrical conductivity type, and the bandgap of the layers, respectively. It has been confirmed by XRD measurement that the deposited layers mainly consist of ZnTe phases. The PEC measurements indicate that the ZnTe layers are p-type in electrical conduction and optical absorption measurements show that their bandgap is in the range 2.10-2.20 eV. p-Type ZnTe window materials have been used in CdTe based solar cell structures, following new designs of graded bandgap multi-layer solar cells. The structures of FTO/ZnTe/CdTe/metal and FTO/ZnTe/CdTe/CdHgTe/metal have been investigated. The results are presented in this paper using observed experimental data.

  5. Recent progress in MBE grown HgCdTe materials and devices at UWA

    NASA Astrophysics Data System (ADS)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  6. Advanced Infrared Photodetectors (Materials Review)

    DTIC Science & Technology

    1993-12-01

    rays by reducing the effective detector area (9]. The lens structure also offers a measure of mechanical protection. 2.3.2 Electronic non...ib.itio’ý I by Availability Codes Philip J. Picone Avail and/ornDist Special SUMMARY The present status of advanced infrared semiconductor detector materials... POSTAL ADDRESS: Director, Surveillance Research Laboratory, PO Box 1500, Salisbury, South Australia, 5108. SRL.0117-RR UNCLASSIFIED SRL - 0117 - RR

  7. Plasma Processing of Advanced Materials

    SciTech Connect

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  8. Advanced aircraft engine materials trends

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Gray, H. R.; Levine, S. R.; Signorelli, R.

    1981-01-01

    Recent activities of the Lewis Research Center are reviewed which are directed toward developing materials for rotating hot section components for aircraft gas turbines. Turbine blade materials activities are directed at increasing metal temperatures approximately 100 C compared to current directionally solidified alloys by use of oxide dispersion strengthening or tungsten alloy wire reinforcement of nickel or iron base superalloys. The application of thermal barrier coatings offers a promise of increasing gas temperatures an additional 100 C with current cooling technology. For turbine disk alloys, activities are directed toward reducing the cost of turbine disks by 50 percent through near net shape fabrication of prealloyed powders as well as towards improved performance. In addition, advanced alloy concepts and fabrication methods for dual alloy disks are being studied as having potential for improving the life of future high performance disks and reducing the amount of strategic materials required in these components.

  9. Synthesis and characterization of Bi-Te-Se thermoelectric materials

    SciTech Connect

    Tripathi, S. K.; Kumari, Ankita; Ridhi, R.; Kaur, Jagdish

    2015-08-28

    Bismuth Telluride (Bi{sub 2}Te{sub 3}) and its related alloys act as a promising thermoelectric material and preferred over other thermoelectric materials due to their high stability and efficiency under ambient conditions. In the present work, we have reported economical, environment friendly and low-temperature aqueous chemical method for the synthesis of Bi-Se-Te alloy. The prepared samples are characterized by X-Ray Diffraction to investigate the structural properties and UV-Visible spectroscopy for the spectroscopic analysis. The absorption spectrum reveals the sensitivity in the ultraviolet as well as in visible region.

  10. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  11. Advanced CdTe Photovoltaic Technology: September 2007 - March 2009

    SciTech Connect

    Barth, K.

    2011-05-01

    During the last eighteen months, Abound Solar (formerly AVA Solar) has enjoyed significant success under the SAI program. During this time, a fully automated manufacturing line has been developed, fabricated and commissioned in Longmont, Colorado. The facility is fully integrated, converting glass and semiconductor materials into complete modules beneath its roof. At capacity, a glass panel will enter the factory every 10 seconds and emerge as a completed module two hours later. This facility is currently undergoing trials in preparation for large volume production of 120 x 60 cm thin film CdTe modules. Preceding the development of the large volume manufacturing capability, Abound Solar demonstrated long duration processing with excellent materials utilization for the manufacture of high efficiency 42 cm square modules. Abound Solar prototype modules have been measured with over 9% aperture area efficiency by NREL. Abound Solar demonstrated the ability to produce modules at industry leading low costs to NREL representatives. Costing models show manufacturing costs below $1/Watt and capital equipment costs below $1.50 per watt of annual manufacturing capacity. Under this SAI program, Abound Solar supported a significant research and development program at Colorado State University. The CSU team continues to make progress on device and materials analysis. Modeling for increased device performance and the effects of processing conditions on properties of CdTe PV were investigated.

  12. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  13. Advanced materials for space applications

    NASA Astrophysics Data System (ADS)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  14. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  15. Crystallisation of CdTe and related materials

    NASA Astrophysics Data System (ADS)

    Fiederle, M.; Benz, K. W.; Duffar, T.; Launay, J. C.; Roosen, G.; Dieguez, E.; Zanotti, L.

    2005-10-01

    Cadmium telluride (CdTe) and related compounds are promising materials for radiation sensors and photorefractive devices. Their commercial use is still limited owing to the problems in growing them. This MAP project is a close collaboration of scientists and industry to improve the growth of these materials and to demonstrate the potential for different applications. The activities concentrate on growth from the melt using "dewetting". The phenomenon of dewetting had been observed in various experiments under microgravity and it has an enormous influence on the quality of the material. The theoretical understanding of this mechanism opened the possibility of dewetting not only under microgravity but also on Earth by controlling pressure. Remarkable results have been achieved by dewetting growth on Earth, showing an improvement in crystal quality. The goal is to establish dewetting growth for industrial production under terrestrial conditions. This will be achieved by a combination of experiments under microgravity (STS-95, Foton-M2, International Space Station), a laboratory research programme, building a theory of the dewetting mechanism and close collaboration with industry partners to develop CdTe-Based devices. Important milestones include the first CdTe crystal grown by dewetting on Earth and the development of CdTe-based devices.

  16. Advanced materials: Information and analysis needs

    SciTech Connect

    Curlee, T.R.; Das, S.; Lee, R.; Trumble, D.

    1990-09-01

    This report presents the findings of a study to identify the types of information and analysis that are needed for advanced materials. The project was sponsored by the US Bureau of Mines (BOM). It includes a conceptual description of information needs for advanced materials and the development and implementation of a questionnaire on the same subject. This report identifies twelve fundamental differences between advanced and traditional materials and discusses the implications of these differences for data and analysis needs. Advanced and traditional materials differ significantly in terms of physical and chemical properties. Advanced material properties can be customized more easily. The production of advanced materials may differ from traditional materials in terms of inputs, the importance of by-products, the importance of different processing steps (especially fabrication), and scale economies. The potential for change in advanced materials characteristics and markets is greater and is derived from the marriage of radically different materials and processes. In addition to the conceptual study, a questionnaire was developed and implemented to assess the opinions of people who are likely users of BOM information on advanced materials. The results of the questionnaire, which was sent to about 1000 people, generally confirm the propositions set forth in the conceptual part of the study. The results also provide data on the categories of advanced materials and the types of information that are of greatest interest to potential users. 32 refs., 1 fig., 12 tabs.

  17. Materials Data on Te (SG:221) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Te (SG:51) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Te (SG:152) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray

    2016-07-12

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  1. Video Fact Sheets: Everyday Advanced Materials

    SciTech Connect

    2015-10-06

    What are Advanced Materials? Ames Laboratory is behind some of the best advanced materials out there. Some of those include: Lead-Free Solder, Photonic Band-Gap Crystals, Terfenol-D, Aluminum-Calcium Power Cable and Nano Particles. Some of these are in products we use every day.

  2. Application of advanced materials to rotating machines

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1983-01-01

    In discussing the application of advanced materials to rotating machinery, the following topics are covered: the torque speed characteristics of ac and dc machines, motor and transformer losses, the factors affecting core loss in motors, advanced magnetic materials and conductors, and design tradeoffs for samarium cobalt motors.

  3. Video Fact Sheets: Everyday Advanced Materials

    ScienceCinema

    None

    2016-07-12

    What are Advanced Materials? Ames Laboratory is behind some of the best advanced materials out there. Some of those include: Lead-Free Solder, Photonic Band-Gap Crystals, Terfenol-D, Aluminum-Calcium Power Cable and Nano Particles. Some of these are in products we use every day.

  4. Development of Specialized Advanced Materials Curriculum.

    ERIC Educational Resources Information Center

    Malmgren, Thomas; And Others

    This course is intended to give students a comprehensive experience in current and future manufacturing materials and processes. It familiarizes students with: (1) base of composite materials; (2) composites--a very light, strong material used in spacecraft and stealth aircraft; (3) laminates; (4) advanced materials--especially aluminum alloys;…

  5. Sb-Te Phase-change Materials under Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Ihalawela, Chandrasiri A.

    Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with

  6. Recent Advances in Superhard Materials

    NASA Astrophysics Data System (ADS)

    Zhao, Zhisheng; Xu, Bo; Tian, Yongjun

    2016-07-01

    In superhard materials research, two topics are of central focus. One is to understand hardness microscopically and to establish hardness models with atomic parameters, which can be used to guide the design or prediction of novel superhard crystals. The other is to synthesize superhard materials with enhanced comprehensive performance (i.e., hardness, fracture toughness, and thermal stability), with the ambition of achieving materials harder than natural diamond. In this review, we present recent developments in both areas. The microscopic hardness models of covalent single crystals are introduced and further generalized to polycrystalline materials. Current research progress in novel superhard materials and nanostructuring approaches for high-performance superhard materials are discussed. We also clarify a long-standing controversy about the criterion for performing a reliable indentation hardness measurement.

  7. Topological crystalline insulators in the SnTe material class

    NASA Astrophysics Data System (ADS)

    Hsieh, Timothy H.; Lin, Hsin; Liu, Junwei; Duan, Wenhui; Bansil, Arun; Fu, Liang

    2012-07-01

    Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline insulator in the semiconductor SnTe by identifying its non-zero topological index. We predict that as a manifestation of this non-trivial topology, SnTe has metallic surface states with an even number of Dirac cones on high-symmetry crystal surfaces such as {001}, {110} and {111}. These surface states form a new type of high-mobility chiral electron gas, which is robust against disorder and topologically protected by reflection symmetry of the crystal with respect to {110} mirror plane. Breaking this mirror symmetry via elastic strain engineering or applying an in-plane magnetic field can open up a continuously tunable band gap on the surface, which may lead to wide-ranging applications in thermoelectrics, infra-red detection and tunable electronics. Closely related semiconductors PbTe and PbSe also become topological crystalline insulators after band inversion by pressure, strain and alloying.

  8. Micromechanical modeling of advanced materials

    SciTech Connect

    Silling, S.A.; Taylor, P.A.; Wise, J.L.; Furnish, M.D.

    1994-04-01

    Funded as a laboratory-directed research and development (LDRD) project, the work reported here focuses on the development of a computational methodology to determine the dynamic response of heterogeneous solids on the basis of their composition and microstructural morphology. Using the solid dynamics wavecode CTH, material response is simulated on a scale sufficiently fine to explicitly represent the material`s microstructure. Conducting {open_quotes}numerical experiments{close_quotes} on this scale, the authors explore the influence that the microstructure exerts on the material`s overall response. These results are used in the development of constitutive models that take into account the effects of microstructure without explicit representation of its features. Applying this methodology to a glass-reinforced plastic (GRP) composite, the authors examined the influence of various aspects of the composite`s microstructure on its response in a loading regime typical of impact and penetration. As a prerequisite to the microscale modeling effort, they conducted extensive materials testing on the constituents, S-2 glass and epoxy resin (UF-3283), obtaining the first Hugoniot and spall data for these materials. The results of this work are used in the development of constitutive models for GRP materials in transient-dynamics computer wavecodes.

  9. Enthusiasms and realities in advanced materials

    SciTech Connect

    Gilman, J.J.

    1987-04-01

    This paper offers general comments on the past, present, and future of materials technology. The process by which a substance becomes an engineering material is lengthy. The following functional areas are likely to grow most in the foreseeable future: photonics, robotics, prosthetics, astronautics, and nanoelectronics. The trend in advanced materials is toward integration. (DLC)

  10. Advanced Electrical Materials and Component Development

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2003-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give a description and status of the internal and external research sponsored by NASA Glenn Research Center on soft magnetic materials, dielectric materials and capacitors, and high quality silicon carbide (SiC) atomically smooth substrates. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will be briefly discussed.

  11. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  12. Advanced baffle materials technology development

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Vonbenken, C. J.; Halverson, W. D.; Evans, R. D.; Wollam, J. S.

    1991-10-01

    Optical sensors for strategic defense will require optical baffles to achieve adequate off-axis stray light rejection and pointing accuracy. Baffle materials must maintain their optical performance after exposure to both operational and threat environments. In addition, baffle materials must not introduce contamination which would compromise the system signal-to-noise performance or impair system mission readiness. Critical examination of failure mechanisms in current baffle materials are quite fragile and contribute to system contamination problems. Spire has developed technology to texture the substrate directly, thereby, removing minute, fragile interfaces subject to mechanical failure. This program has demonstrated that ion beam texturing produces extremely dark surfaces which are immune to damage from ordinary handling. This technology allows control of surface texture feature size and hence the optical wavelength at which the surface absorbs. The USAMTL/Spire program has produced dramatic improvements in the reflectance of ion beam textured aluminum without compromising mechanical hardness. In simulated launch vibration tests, this material produced no detectable contamination on adjacent catcher plates.

  13. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  14. Advanced Microelectronics and Materials Programs

    DTIC Science & Technology

    1991-12-01

    grain size have been fabricated using sol-gel processing. The process has also been used to produce composite fibers containing tetragonal zirconia ... tetragonal zirconia have also been produced. Microwave energy has been demonstrated as a viable method for ignition of self- propagating synthesis. A...have been produced on several Isubstrate materials. Yttria-stabilized tetragonal zirconia with dispersed alpha-alumina has been produced in short

  15. Advanced Materials for Neural Surface Electrodes

    PubMed Central

    Schendel, Amelia A.; Eliceiri, Kevin W.; Williams, Justin C.

    2015-01-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development. PMID:26392802

  16. Advanced Materials for Neural Surface Electrodes.

    PubMed

    Schendel, Amelia A; Eliceiri, Kevin W; Williams, Justin C

    2014-12-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.

  17. Recent advances in thin film CdTe solar cells

    SciTech Connect

    Ferekides, C.S.; Ceekala, V.; Dugan, K.; Killian, L.; Oman, D.; Swaminathan, R.; Morel, D.

    1996-01-01

    CdTe thin film solar cells have been fabricated on a variety of glass substrates (borosilicate and soda lime). The CdS films were deposited to a thickness of 500{endash}2000 A by the chemical bath deposition (CBD), rf sputtering, or close spaced sublimation (CSS) processes. The CdTe films were deposited by CSS in the temperature range of 450{endash}625{degree}C. The main objective of this work is to fabricate high efficiency solar cells using processes that can meet low cost manufacturing requirements. In an attempt to enhance the blue response of the CdTe cells, ZnS films have also been prepared (CBD, rf sputtering, CSS) as an alternative window layer to CdS. Device behavior has been found to be consistent with a recombination model. {copyright} {ital 1996 American Institute of Physics.}

  18. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  19. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  20. Methane storage in advanced porous materials.

    PubMed

    Makal, Trevor A; Li, Jian-Rong; Lu, Weigang; Zhou, Hong-Cai

    2012-12-07

    The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However, efficient storage methods are still lacking to implement the application of methane in the automotive industry. Advanced porous materials, metal-organic frameworks and porous organic polymers, have received considerable attention in sorptive storage applications owing to their exceptionally high surface areas and chemically-tunable structures. In this critical review we provide an overview of the current status of the application of these two types of advanced porous materials in the storage of methane. Examples of materials exhibiting high methane storage capacities are analyzed and methods for increasing the applicability of these advanced porous materials in methane storage technologies described.

  1. New Advanced Dielectric Materials for Accelerator Applications

    SciTech Connect

    Kanareykin, A.

    2010-11-04

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  2. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  3. Detector Performance of Ammonium-Sulfide-Passivated CdZnTe and CdMnTe Materials

    SciTech Connect

    Kim, K.H.; Bolotnikov, A.E.; Camarda, G.S.; Marchini, L.; Yang, G.; Hossain, A.; Cui, Y.; Xu, L.; and James, R.B.

    2010-08-01

    Dark currents, including those in the surface and bulk, are the leading source of electronic noise in X-ray and gamma detectors, and are responsible for degrading a detector's energy resolution. The detector material itself determines the bulk leakage current; however, the surface leakage current is controllable by depositing appropriate passivation layers. In previous research, we demonstrated the effectiveness of surface passivation in CZT (CdZnTe) and CMT (CdMnTe) materials using ammonium sulfide and ammonium fluoride. In this research, we measured the effect of such passivation on the surface states of these materials, and on the performances of detectors made from them.

  4. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  5. Electronic Inhomogeneity in PbTe-based High Performance Thermoelectric Materials Observed by NMR

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Schmidt-Rohr, K.; Cook, B. A.; Kanatzidis, M. G.

    2009-03-01

    Effects of composition and synthesis conditions on the local structure and charge carrier concentration in AgxSbyPb18Te20 (LAST-18) thermoelectric (TE) materials have been studied by ^125Te and ^207Pb nuclear magnetic resonance (NMR) with magic-angle spinning. The high-resolution ^125Te NMR spectra show that most Sb and Ag is not part of Sb2Te3, AgSbTe2, or Ag2Te inclusions. Biexponential NMR spin-lattice (T1) relaxation as well as Knight shifts of ^125Te and ^207Pb NMR signals show that many LAST-18 materials contain two phases of similar composition but with free electron concentrations that differ by more than an order of magnitude, i.e. these materials are electronically inhomogeneous. The NMR data were calibrated against Hall- and Seebeck-effect measurements to give the charge carrier concentrations in the two phases. This electronic inhomogeneity may result in the appearance of potential barriers inside TE materials, similar to those observed for semiconductor-semiconductor or metal-semiconductor junctions. Such barriers may affect thermopower, electrical, and thermal conductivity of TE materials.

  6. Materials as additives for advanced lubrication

    DOEpatents

    Pol, Vilas G.; Thackeray, Michael M.; Mistry, Kuldeep; Erdemir, Ali

    2016-09-13

    This invention relates to carbon-based materials as anti-friction and anti-wear additives for advanced lubrication purposes. The materials comprise carbon nanotubes suspended in a liquid hydrocarbon carrier. Optionally, the compositions further comprise a surfactant (e.g., to aid in dispersion of the carbon particles). Specifically, the novel lubricants have the ability to significantly lower friction and wear, which translates into improved fuel economies and longer durability of mechanical devices and engines.

  7. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  8. Integrating Language Lab Materials into Advanced Russian.

    ERIC Educational Resources Information Center

    Allar, Gregory

    1986-01-01

    Describes the use of language lab materials supplied by the pedagogical journal "Russkij Jazyk Za Rubezom" in an advanced Russian-language class. Each week students were given a relevant picture and vocabulary list prior to listening to a taped story. The story was used as the basis for conversation. (LMO)

  9. ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS.

    SciTech Connect

    DE GERONIMO,G.; O CONNOR,P.; KANDASAMY,A.; GROSHOLZ,J.

    2002-07-08

    A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 {micro}m CMOS and tested. Design concepts and experimental results are discussed.

  10. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  11. Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.

    PubMed

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-02-24

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.

  12. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  13. Advanced Industrial Materials (AIM) fellowship program

    SciTech Connect

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  14. Advances in HgCdTe APDs and LADAR Receivers

    NASA Technical Reports Server (NTRS)

    Bailey, Steven; McKeag, William; Wang, Jinxue; Jack, Michael; Amzajerdian, Farzin

    2010-01-01

    Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High sensitivity is obtained by integrating high performance detectors with gain i.e. APDs with very low noise Readout Integrated Circuits. Unique aspects of these designs include: independent acquisition (non-gated) of pulse returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image. Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting. SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range resolution enabling detailed 3D imagery both at short range and long ranges. In this presentation we will review progress in high resolution scanning, staring and ultra-high sensitivity photon counting LADAR sensors.

  15. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  16. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Besser, M. F.; Hanus, R.

    2013-08-01

    GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ˜700 K, GeTe has a very large power factor, 42 μWcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

  17. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials

    SciTech Connect

    Levin, E. M.; Besser, M. F.; Hanus, R.

    2013-08-28

    GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and {sup 125}Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short {sup 125}Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ∼700 K, GeTe has a very large power factor, 42 μWcm{sup −1}K{sup −2}, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

  18. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials

    SciTech Connect

    Levin, Evgenii; Besser, Mathew; Hanus, Riley

    2013-01-01

    GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ~700 K, GeTe has a very large power factor, 42 μWcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

  19. Corrosion Behavior of Bi2Te3-Based Thermoelectric Materials Fabricated by Melting Method

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2016-11-01

    Bi2Te3-based compounds are used practically as thermoelectric cooling materials. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudobinary system compounds are usually applied as p- or n-type material, respectively. Atmospheric water may condense on the surface of thermoelectric materials constituting Peltier modules, depending on their operating environment. Very few studies on the corrosion resistance of Bi2Te3-based compounds have been reported in literature. Moreover, the detailed corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the corrosion behavior of cleavage planes of Bi2Te3-based compounds fabricated by a melting method has been investigated. Bi2Te3, Sb2Te3, and Bi2Se3 were prepared by the vertical Bridgman method, respectively. Their electrochemical properties evaluated at room temperature by cyclic voltammetry in a standard three-electrode cell with naturally aerated 0.6 mass% or 3.0 mass% NaCl solution as working electrolyte. The c-planes of Bi2Te3 and Sb2Te3 exhibited similar corrosion potential. The corrosion potential of c-plane of Bi2Se3 was more cathodic compared with that of the telluride. The passive current density of the Bi2Te3-based compounds was single or double digit lower than that of stainless steel. X-ray photoelectron spectroscopy results for the electrolyte after testing indicated the possibility that a corrosion product diffuses to the environment including NaCl for Sb2Te3 and Bi2Se3.

  20. Choice of Substrate Material for Epitaxial CdTe Solar Cells

    SciTech Connect

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-06-14

    Epitaxial CdTe with high quality, low defect density, and high carrier concentration should in principle yield high-efficiency photovoltaic devices. However, insufficient effort has been given to explore the choice of substrate for high-efficiency epitaxial CdTe solar cells. In this paper, we use numerical simulations to investigate three crystalline substrates: silicon (Si), InSb, and CdTe each substrate material are generally discussed.

  1. Advanced fiber/matrix material systems

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy

    1991-01-01

    Work completed in Phase 1 of the NASA Advanced Composite Technology program is discussed. Two towpreg forms (commingled yarns and fused powder towpregs) are being characterized under the program. These towpregs will be used to evaluate textile fabrication technologies for advanced aircraft composite structures. The unique characteristic of both of these material forms is that both fiber and matrix resin are handled in a single operation such as weaving, braiding, or fiber placement. The evaluation of both commingled and fused powder towpreg is described. Various polymer materials are considered for both subsonic and supersonic applications. Polymers initially being evaluated include thermoplastic polyimides such as Larc-TPI and New-TPI, thermoplastics such as PEEK and PEKEKK as well as some toughened crosslinked polyimides. Preliminary mechanical properties as well as tow handling are evaluated.

  2. Effect of Initial Bulk Material Composition on Thermoelectric Properties of Bi2Te3 Thin Films

    NASA Astrophysics Data System (ADS)

    Budnik, A. V.; Rogacheva, E. I.; Pinegin, V. I.; Sipatov, A. Yu.; Fedorov, A. G.

    2013-07-01

    V2VI3 compounds and solid solutions based on them are known to be the best low-temperature thermoelectric (TE) materials. The predicted possibility of enhancement of the TE figure of merit in two-dimensional (2D) structures has stimulated studies of the properties of these materials in the thin-film state. The goal of the present work is to study the dependences of the Seebeck coefficient S, electrical conductivity σ, Hall coefficient R H, charge carrier mobility μ H, and TE power factor P = S 2 σ of Bi2Te3 thin films on the composition of the initial bulk material used for preparing them. Thin films with thickness d = 200 nm to 250 nm were grown by thermal evaporation in vacuum of stoichiometric Bi2Te3 crystals (60.0 at.% Te) and of crystals with 62.8 at.% Te onto glass substrates at temperatures T S of 320 K to 500 K. It was established that the conductivity type of the initial material is reproduced in films fairly well. For both materials, an increase in T S leads to an increase in the thin-film structural perfection, better correspondence between the film composition and that of the initial material, and increase in S, R H, μ H, σ, and P. The room-temperature maximum values of P for the films grown from crystals with 60.0 at.% and 62.8 at.% Te are P = 7.5 × 10-4 W/K2 m and 35 × 10-4 W/K2 m, respectively. Thus, by using Bi2Te3 crystals with different stoichiometry as initial materials, one can control the conductivity type and TE parameters of the films, applying a simple and low-cost method of thermal evaporation from a single source.

  3. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  4. Library of Advanced Materials for Engineering : LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-08-01

    Constitutive modeling is an important aspect of computational solid mechanics. Sandia National Laboratories has always had a considerable effort in the development of constitutive models for complex material behavior. However, for this development to be of use the models need to be implemented in our solid mechanics application codes. In support of this important role, the Library of Advanced Materials for Engineering (LAME) has been developed in Engineering Sciences. The library allows for simple implementation of constitutive models by model developers and access to these models by application codes. The library is written in C++ and has a very simple object oriented programming structure. This report summarizes the current status of LAME.

  5. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  6. Precision machining of advanced materials with waterjets

    NASA Astrophysics Data System (ADS)

    Liu, H. T.

    2017-01-01

    Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.

  7. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    PubMed Central

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-01-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows. PMID:27033314

  8. Lifetime Measurement of HgCdTe Semiconductor Material

    DTIC Science & Technology

    2012-03-01

    measurement of minority carrier lifetime using the photoconductive decay method. This experiment was conducted to analyze the minority carrier lifetime of...lifetime, photoconductive decay. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 18 19a. NAME OF...the photoconductive decay method was used. To measure the lifetime of the HgCdTe samples using the photoconductive decay method, samples of HgCdTe

  9. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  10. Advanced Electron Microscopy in Materials Physics

    SciTech Connect

    Zhu, Y.; Jarausch, K.

    2009-06-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together {approx}100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  11. SCAPS Modeling for Degradation of Ultrathin CdTe Films: Materials Interdiffusion

    NASA Astrophysics Data System (ADS)

    Houshmand, Mohammad; Zandi, M. Hossein; Gorji, Nima E.

    2015-09-01

    Ultrathin film solar cells based on CdS/CdTe ( d CdTe ≤ 1 µm) suffer from two main issues: incomplete photo absorption and high degradation rate. The former is cured by light-trapping techniques, whereas the latter is a matter of fabrication details. Interdiffusion of the material components and formation of subsequent interlayers at the front/back region can change the optical/electrical properties and performance/stability of the device. We model the degradation of the ultrathin CdTe film devices considering the material interdiffusion and interlayers formation: CdTeS, CdZnTe, Cu x Te (i.e., Te/Cu bilayer), and oxide interlayers (i.e., CdTeO3). The diffusion rate of the materials is considered separately and the reactions that change the interlayer's properties are studied. Additionally, a back contact of single-walled carbon nanotube showed a higher stability than the metallic contacts. A new time-dependent approach is applied to simulate the degradation rate due to formation of any interlayer. It is shown that the materials interdiffusion causes a defect increment under thermal stress and illumination. The metallic back contact accelerates the degradation, whereas single-walled carbon nanotubes show the highest stability. A SCAPS simulator was used because of its ability in defining the properties of the back contact and metastabilities at the interface layers. The properties of the layers were taken from the experimental data reported in the literature.

  12. Implications of smart materials in advanced prosthetics

    NASA Astrophysics Data System (ADS)

    Lenoe, Edward M.; Radicic, William N.; Knapp, Michael S.

    1994-05-01

    This research reviews common implant materials and suggests smart materials that may be used as substitutes. Current prosthetic technology, including artificial limbs, joints, and soft and hard tissue, falls short in comprehensive characterization of the chemo-mechanics and materials relationships of the natural tissues and their prosthetic materials counterparts. Many of these unknown chemo-mechanical properties in natural tissue systems maintain cooperative function that allows for optimum efficiency in performance and healing. Traditional prosthetic devices have not taken into account the naturally occurring electro-chemo-mechanical stress- strain relationships that normally exist in a tissue system. Direct mechanical deformation of tissue and cell membrane as a possible use of smart materials may lead to improved prosthetic devices once the mechanosensory systems in living tissues are identified and understood. Smart materials may aid in avoiding interfacial atrophy which is a common cause of prosthetic failure. Finally, we note that advanced composite materials have not received sufficient attention, they should be more widely used in prosthetics. Their structural efficiency allows design and construction of truly efficient bionic devices.

  13. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    SciTech Connect

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian; Jeffrey Snyder, G.

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  14. Recent advances in organic semiconducting materials

    NASA Astrophysics Data System (ADS)

    Ostroverkhova, Oksana

    2011-10-01

    Organic semiconductors have attracted attention due to their low cost, easy fabrication, and tunable properties. Applications of organic materials in thin-film transistors, solar cells, light-emitting diodes, sensors, and many other devices have been actively explored. Recent advances in organic synthesis, material processing, and device fabrication led to significant improvements in (opto)electronic device performance. However, a number of challenges remain. These range from lack of understanding of basic physics of intermolecular interactions that determine optical and electronic properties of organic materials to difficulties in controlling film morphology and stability. In this presentation, current state of the field will be reviewed and recent results related to charge carrier and exciton dynamics in organic thin films will be presented.[4pt] In collaboration with Whitney Shepherd, Mark Kendrick, Andrew Platt, Oregon State University; Marsha Loth and John Anthony, University of Kentucky.

  15. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  16. Advanced reflector materials for solar concentrators

    SciTech Connect

    Jorgensen, G; Williams, T; Wendelin, T

    1994-10-01

    This paper describes the research and development program at the U.S. National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  17. Advanced reflector materials for solar concentrators

    NASA Astrophysics Data System (ADS)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  18. International Symposium on Advanced Materials (ISAM 2013)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    This proceeding is a compilation of peer reviewed papers presented at the 13th International Symposium on Advanced Materials (ISAM 2013) held from September 23-27, 2013, at Islamabad, Pakistan. In my capacity as ISAM-2013 Secretary, I feel honoured that the symposium has ended on a positive note. The ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. ISAM and other similar forums serve to fulfill this need. The five day deliberations of ISAM 2013, consisted of 19 technical sessions and 2 poster sessions. In all, 277 papers were presented, inclusive of 80 contributory, invited and oral presentations. The symposium also hosted panel discussions led by renowned scientists and eminent researchers from foreign as well as local institutes. The ultimate aim of this proceeding is to record in writing the new findings in the field of advanced materials. I hope that the technical data available in this publication proves valuable to young scientists and researchers working in this area of science. At the same time, I wish to acknowledge Institute of Physics (IOP) Publishing UK, for accepting the research papers from ISAM-2013 for publication in the IOP Conference Series: Materials Science and Engineering. The proceeding will be available on the IOP website as an online open access document. I am profoundly thankful to the Symposium Chairman for his steadfast support and valuable guidance without which ISAM 2013 could not have been the mega event that it turned out to be. My gratitude to all our distinguished participants, session chairs/co-chairs, and reviewers for their active role in the symposium. I appreciate the entire organizing committee for the zest and ardor with which each committee fulfilled its obligations to ISAM. Last yet not the least, my thankfulness goes to all our sponsors for wilfully financing the event. Dr. Sara Qaisar Symposium Secretary Further

  19. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  20. Nondestructive evaluation of advanced ceramic composite materials

    SciTech Connect

    Lott, L.A.; Kunerth, D.C.; Walter, J.B.

    1991-09-01

    Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

  1. Innovative low temperature SOFCs and advanced materials

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Yang, X. T.; Xu, J.; Zhu, Z. G.; Ji, S. J.; Sun, M. T.; Sun, J. C.

    High ionic conductivity, varying from 0.01 to 1 S cm -1 between 300 and 700 °C, has been achieved for the hybrid and nano-ceria-composite electrolyte materials, demonstrating a successful application for advanced low temperature solid oxide fuel cells (LTSOFCs). The LTSOFCs were constructed based on these new materials. The performance of 0.15-0.25 W cm -2 was obtained in temperature region of 320-400 °C for the ceria-carbonate composite electrolyte, and of 0.35-0.66 W cm -2 in temperature region of 500-600 °C for the ceria-lanthanum oxide composites. The cell could even function at as low as 200 °C. The cell has also undergone a life test for several months. A two-cell stack was studied, showing expected performance successfully. The excellent LTSOFC performance is resulted from both functional electrolyte and electrode materials. The electrolytes are two phase composite materials based on the oxygen ion and proton conducting phases, or two rare-earth oxides. The electrodes used were based on the same composite material system having excellent compatibility with the electrolyte. They are highly catalytic and conductive thus creating the excellent performances at low temperatures. These innovative LT materials and LTSOFC technologies would open the door for wide applications, not only for stationary but also for mobile power sources.

  2. Mechanisms and Kinetics of Tellurium Precipitation in CdTe-based Materials

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2012-02-01

    CdTe and related alloys are important materials for solar photovoltaic application as well as for high-resolution room-temperature gamma radiation detectors. However, the performance of devices, particularly in high-energy applications, is limited by various material defects. Among the most important defects are Te precipitates of various sizes caused by non-stoichiometric growth conditions. In this work, we study the kinetics of Te aggregation and precipitation at the atomic scale. Density functional theory is used to compute the energetics, migration rates, and binding energies of point defects involved in Te aggregation, which include various interstitials, vacancies, and anti-site defects. Kinetic Monte Carlo is then used to simulate the aggregation process leading to precipitation nuclei. The mechanisms and kinetics of formation of these Te-rich regions are analyzed for various conditions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. Advances in the In-House CdTe Research Activities at NREL

    SciTech Connect

    Gessert, T.; Wu, X.; Dhere, R.; Moutinho, H.; Smith, S.; Romero, M.; Zhou, J.; Duda, A.; Corwine, C.

    2005-01-01

    NREL in-house CdTe research activities have impacted a broad range of recent program priorities. Studies aimed at industrially relevant applications have produced new materials and processes that enhance the performance of devices based on commercial materials (e.g., soda-lime glass, SnO2:F). Preliminary tests of the effectiveness of these novel components using large-scale processes have been encouraging. Similarly, electro- and nano-probe techniques have been developed and used to study the evolution and function of CdTe grain boundaries. Finally, cathodoluminescence (CL) and photoluminescence (PL) studies on single-crystal samples have yielded improved understanding of how various processes may combine to produce important defects in CdTe films.

  4. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  5. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  6. Yttrium-Doped Sb2Te3: A Promising Material for Phase-Change Memory.

    PubMed

    Li, Zhen; Si, Chen; Zhou, Jian; Xu, Huibin; Sun, Zhimei

    2016-10-05

    Sb2Te3 exhibits outstanding performance among the candidate materials for phase-change memory; nevertheless, its low electrical resistivity and thermal stability hinder its practical application. Hence, numerous studies have been carried out to search suitable dopants to improve the performance; however, the explored dopants always cause phase separation and thus drastically reduce the reliability of phase-change memory. In this work, on the basis of ab initio calculations, we have identified yttrium (Y) as an optimal dopant for Sb2Te3, which overcomes the phase separation problem and significantly increases the resistivity of crystalline state by at least double that of Sb2Te3. The good phase stability of crystalline Y-doped Sb2Te3 (YST) is attributed to the same crystal structure between Y2Te3 and Sb2Te3 as well as their tiny lattice mismatch of only ∼1.1%. The significant increase in resistivity of c-YST is understood by our findings that Y can dramatically increase the carrier's effective mass by regulating the band structure and can also reduce the intrinsic carrier density by suppressing the formation of SbTe antisite defects. Y doping can also improve the thermal stability of amorphous YST based on our ab initio molecular dynamics simulations, which is attributed to the stronger interactions between Y and Te than that of Sb and Te.

  7. NREL Advances Spillover Materials for Hydrogen Storage (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    This fact sheet describes NREL's accomplishments in advancing spillover materials for hydrogen storage and improving the reproducible synthesis, long-term durability, and material costs of hydrogen storage materials. Work was performed by NREL's Chemical and Materials Science Center.

  8. Advancements in MEMS materials and processing technology

    NASA Astrophysics Data System (ADS)

    Olivas, John D.; Bolin, Stephen

    1998-01-01

    From achievements in display imaging to air bag deployment, microelectromechanical systems are becoming more commonplace in everyday life. With an abundance of opportunities for innovative R&D in the field, the research trends are not only directed toward novel sensor and actuator development, but also toward further miniaturization, specifically achieving micro- and nanoscaled integrated systems. R&D efforts in space, military, and commercial applications are directing specific research programs focused on the area of materials science as an enabling technology to be exploited by researchers and to further push the envelope of micrometerscaled device technology. These endeavors are making significant progress in bringing this aspect of the microelectro-mechanical field to maturation through advances in materials and processing technologies.

  9. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  10. On the fracture toughness of advanced materials

    SciTech Connect

    Launey, Maximilien E.; Ritchie, Robert O.

    2008-11-24

    Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as the

  11. Advances in all-sputtered CdTe solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Wieland, Kristopher; Mahabaduge, Hasitha; Vasko, Anthony; Compaan, Alvin

    2010-03-01

    The University of Toledo II-VI semiconductor group has developed magnetron sputtering (MS) for the deposition of thin films of CdS, CdTe, and related materials for photovoltaic applications. On glass superstrates, we have reached air mass 1.5 efficiencies of 14%.[1] Recently we have studied the use of MS for the fabrication of thin-film CdS/CdTe cells on flexible polyimide superstrates. This takes advantage of the high film quality that can be achieved at substrate temperatures below 300 C when RF MS is used. Our recent CdS/CdTe solar cells have reached 10.5% on flexible polyimide substrates. [2] This all-sputtered cell (except for back contact) has a structure of polyimide/ZnO:Al/ZnO/CdS/CdTe/Cu/Au. The physics of this device will be discussed through the use of spectral quantum efficiency and current-voltage measurements as a function of CdTe layer thickness. Pathways toward further increases in device efficiencies will also be discussed. [1] Appl. Phys. Lett. 85, 684 (2004) [2] Phys. Stat. Sol. (B) 241, No. 3, 779--782 (2004)

  12. Materials for advanced ultrasupercritical steam turbines

    SciTech Connect

    Purgert, Robert; Shingledecker, John; Saha, Deepak; Thangirala, Mani; Booras, George; Powers, John; Riley, Colin; Hendrix, Howard

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  13. Role of Self-Organization, Nanostructuring, and Lattice Strain on Phonon Transport in NaPb18-xSnxBiTe20 Thermoelectric Materials

    SciTech Connect

    He, J.; Wu, L.; Gueguen, A.; Sootsman, J.R.; Zheng, J.-C.; Zhu, Y.; Kanatzidis, M.G.; Dravid, V.P.

    2009-11-16

    The composition and microstructure of five thermoelectric materials, PbTe, SnTe, Pb{sub 0.65}Sn{sub 0.35}Te and NaPb{sub 18-x}Sn{sub x}BiTe{sub 20} (x = 5, 9), were investigated by advanced transmission electron microcopy. We confirm that the pure PbTe, SnTe, and Pb{sub 0.65}Sn{sub 0.35}Te have a uniform crystalline structure and homogeneous compositions without any nanoscale inclusions. On the other hand, the nominal NaPb{sub 9}Sn{sub 9}BiTe{sub 20} phase contains extensive inhomogeneities and nanostructures with size distribution of 3-7 nm. We find that the chemical architecture of the NaPb{sub 13}Sn{sub 5}BiTe{sub 20} member of the series to be more complex; besides nanoscale precipitates, self-organized lamellar structures are present which were identified as PbTe and SnTe by composition analysis and transmission electron microscopy image simulations. Density functional theory calculations suggest that the arrangement of the lamellar structures conforms to the lowest total energy configuration. Geometric-phase analyses revealed large distributed elastic strain around the nanoscale inclusions and lamellar structures. We propose that interface-induced elastic perturbations in the matrix play a decisive role in affecting the phonon-propagation pathways. The interfaces further enhance phonon scattering which, in turn, reduces the lattice thermal conductivity in these systems that directly results directly in improvement in the thermoelectric figure of merit.

  14. Thermal fatigue durability for advanced propulsion materials

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1989-01-01

    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.

  15. Advanced neutron source materials surveillance program

    SciTech Connect

    Heavilin, S.M.

    1995-01-01

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing.

  16. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  17. Material engineering of GexTe100-x compounds to improve phase-change memory performances

    NASA Astrophysics Data System (ADS)

    Navarro, G.; Sousa, V.; Persico, A.; Pashkov, N.; Toffoli, A.; Bastien, J.-C.; Perniola, L.; Maitrejean, S.; Roule, A.; Zuliani, P.; Annunziata, R.; De Salvo, B.

    2013-11-01

    In this paper we provide a detailed physical and electrical characterization of Germanium Telluride compounds (GexTe100-x) targeting phase-change memory applications. Thin films of Germanium-rich as well as Tellurium-rich phase-change materials are deposited for material analysis (XRD, resistivity and optical characterization). GexTe100-x compounds are then integrated in lance-type analytical phase-change memory devices allowing for a thorough analysis of the switching characteristics, data retention and endurance performances. Tellurium-rich GeTe alloys exhibit stable programming characteristics and can sustain endurance up to 107 cycles, while Germanium-rich compounds show an unstable RESET state during repeated write/erase cycles, probably affected by Ge segregation. Finally we demonstrate that data retention is strongly improved departing from Ge50Te50 stoichiometric composition.

  18. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  19. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  20. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  1. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  2. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation.

    PubMed

    Zhou, Xilin; Dong, Weiling; Zhang, Hao; Simpson, Robert E

    2015-06-11

    Oxygen-doped germanium telluride phase change materials are proposed for high temperature applications. Up to 8 at.% oxygen is readily incorporated into GeTe, causing an increased crystallisation temperature and activation energy. The rhombohedral structure of the GeTe crystal is preserved in the oxygen doped films. For higher oxygen concentrations the material is found to phase separate into GeO2 and TeO2, which inhibits the technologically useful abrupt change in properties. Increasing the oxygen content in GeTe-O reduces the difference in film thickness and mass density between the amorphous and crystalline states. For oxygen concentrations between 5 and 6 at.%, the amorphous material and the crystalline material have the same density. Above 6 at.% O doping, crystallisation exhibits an anomalous density change, where the volume of the crystalline state is larger than that of the amorphous. The high thermal stability and zero-density change characteristic of Oxygen-incorporated GeTe, is recommended for efficient and low stress phase change memory devices that may operate at elevated temperatures.

  3. Advanced materials systems as commercial opportunities

    SciTech Connect

    Gilman, J.J.

    1987-04-01

    This paper shows that commercial opportunities in the materials area lie principally in materials systems, and much less in components made from differentiated individual materials. Examples are given.

  4. Advanced materials and nanotechnology for drug delivery.

    PubMed

    Yan, Li; Yang, Yang; Zhang, Wenjun; Chen, Xianfeng

    2014-08-20

    Many biological barriers are of great importance. For example, stratum corneum, the outmost layer of skin, effectively protects people from being invaded by external microorganisms such as bacteria and viruses. Cell membranes help organisms maintain homeostasis by controlling substances to enter and leave cells. However, on the other hand, these biological barriers seriously restrict drug delivery. For instance, stratum corneum has a very dense structure and only allows very small molecules with a molecular weight of below 500 Da to permeate whereas most drug molecules are much larger than that. A wide variety of drugs including genes needs to enter cells for proper functioning but cell membranes are not permeable to them. To overcome these biological barriers, many drug-delivery routes are being actively researched and developed. In this research news, we will focus on two advanced materials and nanotechnology approaches for delivering vaccines through the skin for painless and efficient immunization and transporting drug molecules to cross cell membranes for high-throughput intracellular delivery.

  5. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  6. Studies of noise transmission in advanced composite material structures

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Mcgary, M. C.; Powell, C. A.

    1983-01-01

    Noise characteristics of advanced composite material fuselages were discussed from the standpoints of applicable research programs and noise transmission theory. Experimental verification of the theory was also included.

  7. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W. Martin...Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W

  8. Analysis of Advanced Thermoelectric Materials and Their Functional Limits

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung

    2015-01-01

    The world's demand for energy is increasing dramatically, but the best energy conversion systems operate at approximately 30% efficiency. One way to decrease energy loss is in the recovery of waste heat using thermoelectric (TE) generators. A TE generator is device that generates electricity by exploiting heat flow across a thermal gradient. The efficiency of a TE material for power generation and cooling is determined by the dimensionless Figure of Merit (ZT): ZT = S(exp. 2)sigmaT/?: where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and ? is the thermal conductivity. The parameters are not physically independent, but intrinsically coupled since they are a function of the transport properties of electrons. Traditional research on TE materials has focused on synthesizing bulk semiconductor-type materials that have low thermal conductivity and high electrical conductivity affording ZT values of 1. The optimization of the s/? ratio is difficult to achieve using current material formats, as these material constants are complementary. Recent areas of research are focusing on using nanostructural artifacts that introduce specific dislocations and boundary conditions that scatter the phonons. This disrupts the physical link between thermal (phonon) and electrical (electron) transport. The result is that ? is decreased without decreasing s. These material formats give ZT values of up to 2 which represent approximately 18% energy gain from waste heat recovery. The next challenge in developing the next generation of TE materials with superior performance is to tailor the interconnected thermoelectric physical parameters of the material system. In order to approach this problem, the fundamental physics of each parameter S, sigma, and ? need to be physically understood in their context of electron/phonon interaction for the construction of new high ZT thermoelectric devices. Is it possible to overcome the physical limit

  9. Advanced insider threat mitigation workshop instructional materials

    SciTech Connect

    Gibbs, Philip; Larsen, Robert; O Brien, Mike; Edmunds, Tom

    2008-11-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is a n update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios.

  10. Thermal conductivity of ordered-disordered material: a case study of superionic Ag2Te.

    PubMed

    Ouyang, Tao; Zhang, Xiaoliang; Hu, Ming

    2015-01-16

    Thermoelectric devices, which can generate electricity from waste heat, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. In the past few decades, the search for high-efficiency thermoelectrics has been guided by the concept of 'phonon-glass electron-crystal' (PGEC), i.e. an ideal thermoelectric material should have high carrier mobility and low thermal conductivity. Although remarkable progress has already been made along this line, the efficiency of thermoelectrics is still too poor to compete with other electricity producing methods. Ordered-disordered material, an emerging trend of high performance thermoelectrics under the concept of PGEC, is a new hot topic in the current thermoelectric research community. Taking superionic phase silver telluride (α-Ag2Te) as an example, we performed a comprehensive study of the thermal transport properties and of its physical mechanism by means of equilibrium molecular dynamic simulations. The results show that the thermal conductivity of α-Ag2Te is intrinsically very low. By analyzing the different contributions to the overall thermal conductivity, we revealed for the first time from atomistic simulations that the vibration of the Te(2-) sublattice dominates the thermal transport of α-Ag2Te, while the collision between the randomly diffusing Ag(+) ions and the Te(2-) sublattice yields a significant negative contribution to the thermal transport. We also studied the effect of isotropic compressive stain and carrier concentration on the thermal conductivity of α-Ag2Te. It has been found that the thermal conductivity can be largely reduced by applying compressive strain or with stoichiometric quantity modulation. Our studies shed light on the governing mechanism of thermal transport in ordered-disordered materials and could offer useful guidance for engineering the thermal transport properties of superionic conductors in terms of enhancing their thermoelectric

  11. Advanced Materials and Multifunctional Structures for Aerospace Vehicles

    DTIC Science & Technology

    2006-10-01

    through covalent integration of functional nanotubes ”, Advanced Functional Materials, 14(7) (2004) 643-648. 185 R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, and...on Advanced Materials for Multi Functional Structures in Aerospace Vehicles. The advanced synthesis, processing and the characterization techniques...when more than one primary function is performed either simultaneously or sequentially in time. These systems are based on metallic, ceramic and

  12. Analysis of an advanced technology subsonic turbofan incorporating revolutionary materials

    NASA Technical Reports Server (NTRS)

    Knip, Gerald, Jr.

    1987-01-01

    Successful implementation of revolutionary composite materials in an advanced turbofan offers the possibility of further improvements in engine performance and thrust-to-weight ratio relative to current metallic materials. The present analysis determines the approximate engine cycle and configuration for an early 21st century subsonic turbofan incorporating all composite materials. The advanced engine is evaluated relative to a current technology baseline engine in terms of its potential fuel savings for an intercontinental quadjet having a design range of 5500 nmi and a payload of 500 passengers. The resultant near optimum, uncooled, two-spool, advanced engine has an overall pressure ratio of 87, a bypass ratio of 18, a geared fan, and a turbine rotor inlet temperature of 3085 R. Improvements result in a 33-percent fuel saving for the specified misssion. Various advanced composite materials are used throughout the engine. For example, advanced polymer composite materials are used for the fan and the low pressure compressor (LPC).

  13. Advanced Microstructural Characterization for Development of Improved HgCdTe Detectors and Devices

    DTIC Science & Technology

    2014-09-21

    J. Smith. Atomic-Scale Characterization of II–VI Compound Semiconductors, Journal of Electronic Materials, (08 2013): 0. doi: 10.1007/s11664-013...Grown ZnTe/Si: A New Low-Cost Composite Substrate for 6.1A? III-V and II-VI Compound Semiconductors", by Y.Chen, G. Brill, P. Wijewarnasuriya, N. Dhar, X...Seattle, Nov. 27-29, 2012. 7) (invited paper) "Atomic-Scale characterization of II-VI compound semiconductors", by D.J. Smith, J.J. Kim, M.R

  14. Fundamental Characterization Studies of Advanced Photocatalytic Materials

    NASA Astrophysics Data System (ADS)

    Phivilay, Somphonh Peter

    Solar powered photocatalytic water splitting has been proposed as a method for the production of sustainable, non-carbon hydrogen fuel. Although much technological progress has been achieved in recent years in the discovery of advanced photocatalytic materials, the progress in the fundamental scientific understanding of such novel, complex mixed oxide and oxynitride photocatalysts has significantly lagged. One of the major reasons for this slow scientific progress is the limited number of reported surface characterization studies of the complex bulk mixed oxide and oxynitride photocatalyst systems. Although photocatalytic splitting of water by bulk mixed oxide and oxynitride materials involves both bulk (generation of excited electrons and holes) and surface phenomena (reaction of H2O with excited electrons and holes at the surface), the photocatalysis community has almost completely ignored the surface characteristics of such complex bulk photocatalysts and correlates the photocatalytic properties with bulk properties. Some of the most promising photocatalyst systems (NaTaO3, GaN, (Ga1-xZnx)(N1-xOx) and TaON) were investigated to establish fundamental bulk/surface structure photoactivity relationships. The bulk molecular and electronic structures of the photocatalysts were determined with Raman and UV-vis spectroscopy. Photoluminescence (PL) and transient PL spectroscopy were provided insight into how recombination of photogenerated electrons is related to the photocatalysis activity. The chemical states and atomic compositions of the surface region of the photocatalysts were determined with high resolution X-ray photoelectron spectroscopy (˜1-3 nm) and high sensitivity-low energy ion scattering spectroscopy (˜0.3 nm). The new insights obtained from surface characterization clarified the role of La and Ni promoters species for the NaTaO3 photocatalyst system. The La2O3 additive was found to be a structural promoter that stabilizes small NaTaO3 nanoparticles (NPs

  15. Microstructure and a Nucleation Mechanism for Nanoprecipitates In PbTe-AgSbTe2

    SciTech Connect

    Ke, X.; Chen, C.; Yang, J.; Wu, L.; Zhou, J.; Li, Q.; Zhu, Y.; Kent, P.R.C.

    2009-10-02

    Many recent advances in thermoelectric (TE) materials are attributed to their nanoscale constituents. Determination of the nanocomposite structures has represented a major experimental and computational challenge and eluded previous attempts. Here we present the first atomically resolved structures of high performance TE material PbTe-AgSbTe{sub 2} by transmission electron microscopy imaging and density functional theory calculations. The results establish an accurate structural characterization for PbTe-AgSbTe{sub 2} and identify the interplay of electric dipolar interactions and strain fields as the driving mechanism for nanoprecipitate nucleation and aggregation.

  16. New Advances in SuperConducting Materials

    ScienceCinema

    None

    2016-07-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

  17. Development of advanced thermoelectric materials, phase A

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work performed on the chemical system characterized by chrome sulfide, chrome selenide, lanthanum selenide, and lanthanum sulfide is described. Most materials within the chemical systems possess the requisites for attractive thermoelectric materials. The preparation of the alloys is discussed. Graphs show the Seebeck coefficient, electrical resistivity, and thermal conductivity of various materials within the chemical systems. The results of selected doping are included.

  18. Vapor-Phase Stoichiometry and Heat Treatment of CdTe Starting Material for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Liu, Hao-Chieh; Fang, Rei; Brebrick, R. F.

    1998-01-01

    Six batches of CdTe, having total amounts of material from 99 to 203 g and gross mole fraction of Te, X(sub Te), 0.499954-0.500138, were synthesized from pure Cd and Te elements. The vapor-phase stoichiometry of the assynthesized CdTe batches was determined from the partial pressure of Te2, P(sub Te2) using an optical absorption technique. The measured vapor compositions at 870 C were Te-rich for all of the batches with partial pressure ratios of Cd to Te2, P(sub Cd)/P(sub Te2), ranging from 0.00742 to 1.92. After the heat treatment of baking under dynamic vacuum at 870 C for 8 min, the vapor-phase compositions moved toward that of the congruent sublimation, i.e. P(sub Cd)/P(sub Te2) = 2.0, with the measured P(sub Cd)/P(sub Te2) varying from 1.84 to 3.47. The partial pressure measurements on one of the heat-treated samples also showed that the sample remained close to the congruent sublimation condition over the temperature range 800-880 C.

  19. Ba{sub 2}TeO as an optoelectronic material: First-principles study

    SciTech Connect

    Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; Singh, David J.; Siegrist, Theo

    2015-05-21

    The band structure, optical, and defects properties of Ba{sub 2}TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba{sub 2}TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical bandgap [Besara et al., J. Solid State Chem. 222, 60 (2015)]. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba{sub 2}TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneous formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.

  20. Ba2TeO as an optoelectronic material: First-principles study

    DOE PAGES

    Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; ...

    2015-05-21

    The band structure, optical and defects properties of Ba2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneous formation of themore » donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.« less

  1. Ba2TeO as an optoelectronic material: First-principles study

    SciTech Connect

    Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; Siegrist, Theo; Singh, David J.

    2015-05-21

    The band structure, optical and defects properties of Ba2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneous formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.

  2. Advanced processing and properties of superhard materials

    SciTech Connect

    Narayan, J.

    1995-06-01

    The author reviews fundamental aspects of Superhard Materials with hardness close to that of diamond. These materials include cubic boron nitride (c-BN), carbon nitride ({beta}-C{sub 3}N{sub 4}) and diamondlike carbon. Since these materials are metastable at normal temperatures and pressures, novel methods of synthesis and processing of these materials are required. This review focuses on synthesis and processing, detailed materials characterization and properties of c-BN and {beta}C{sub 3}N{sub 4} and diamondlike carbon films.

  3. Advanced materials for solid oxide fuel cells

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  4. Advanced Insider Threat Mitigation Workshop Instructional Materials

    SciTech Connect

    Gibbs, Philip; Larsen, Robert; O'Brien, Mike; Edmunds, Tom

    2009-02-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.

  5. Thermoelectric study of crossroads material MnTe via sulfur doping

    SciTech Connect

    Xie, Wenjie Populoh, Sascha; Sagarna, Leyre; Trottmann, Matthias; Gałązka, Krzysztof; Xiao, Xingxing; Liu, Yufei; He, Jian; Weidenkaff, Anke

    2014-03-14

    Here, we report thermoelectric study of crossroads material MnTe via iso-electronic doping S on the Te-site. MnTe{sub 1-x}S{sub x} samples with nominal S content of x = 0.00, 0.05, and 0.10 were prepared using a melt-quench method followed by pulverization and spark plasma sintering. The X-ray powder diffraction, scanning electron microscopy, and ZAF-corrected compositional analysis confirmed that S uniformly substitutes Te up to slightly over 2%. A higher content of S in the starting materials led to the formation of secondary phases. The thermoelectric properties of MnTe{sub 1-x}S{sub x} samples were characterized by means of Seebeck coefficient, electrical conductivity, and thermal conductivity measurements from 300 K to 773 K. Furthermore, Hall coefficient measurements and a single parabolic band model were used to help gain insights on the effects of S-doping on the scattering mechanism and the carrier effective mass. As expected, S doping not only introduced hole charge carriers but also created short-range defects that effectively scatter heat-carrying phonons at elevated temperatures. On the other hand, we found that S doping degraded the effective mass. As a result, the ZT of MnTe{sub 0.9}S{sub 0.1} was substantially enhanced over the pristine sample near 400 K, while the improvement of ZT became marginal at elevated temperatures. A ZT ∼ 0.65 at 773 K was obtained in all three samples.

  6. Crystallization Times of Ge-Te Phase Change Materials as a Function of Composition

    SciTech Connect

    S Raoux; H Cheng; M Caldwell; H Wong

    2011-12-31

    The crystallization times of Ge-Te phase change materials with variable Ge concentrations (29.5-72.4 at. %) were studied. A very strong dependence of the crystallization time on the composition for as-deposited, amorphous films was confirmed, with a minimum for the stoichiometric composition GeTe. The dependence is weaker for melt-quenched, amorphous material and crystallization times are between one to almost four orders of magnitude shorter than for as-deposited materials. This is promising for applications because recrystallization from the melt-quenched phase is the relevant process for optical and solid state memory, and fast crystallization and weak dependence on compositional variations are desirable.

  7. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  8. New Advance in SuperConducting Materials

    SciTech Connect

    2009-03-02

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  9. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  10. Broadband Phonon Scattering in PbTe-based Materials Driven Near the Peierls Phase Transition by Strain or Alloying

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Murphy, Ronan; Murray, Eamonn; Fahy, Stephen

    Efficient thermoelectric energy conversion is highly desirable as 60% of the consumed energy is wasted as heat. Low lattice thermal conductivity is one of the key factors leading to high thermoelectric efficiency of a material. However, the major obstacle in the design of such materials is the difficulty in efficiently scattering phonons across the frequency spectrum. Using first principles calculations, we predict that driving PbTe materials close to a Peierls-like phase transition could be a powerful strategy to solve this problem. We illustrate this concept by applying tensile [001] strain to PbTe and its alloys with another rock-salt IV-VI material, PbSe; and by alloying PbTe with a IV-VI Peierls-distorted material, GeTe. This induces extremely soft optical modes, which increase acoustic-optical phonon coupling and decrease phonon lifetimes at all frequencies. We show that PbTe, Pb(Se,Te) and (Pb,Ge)Te alloys driven near the phase transition in the described manner could have the lattice thermal conductivity considerably lower than that of PbTe. The proposed concept may open new opportunities for the development of more efficient thermoelectric materials. This work was supported by Science Foundation Ireland and the Marie-Curie Action COFUND under Starting Investigator Research Grant 11/SIRG/E2113.

  11. Rapid Set Materials for Advanced Spall Repair

    DTIC Science & Technology

    2010-08-01

    for compressive strength , flexural strength , and slant shear bond strength . Table 2 and Table 3 provide the material performance matrix details and... Shear Bond Strength Flexural Strength A High High High B Moderate High Moderate C Moderate Low Moderate D Low Low Low Table 3. Material Ranking

  12. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  13. Challenge to advanced materials processing with lasers in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu

    2003-02-01

    Japan is one of the most advanced countries in manufacturing technology, and lasers have been playing an important role for advancement of manufacturing technology in a variety of industrial fields. Contribution of laser materials processing to Japanese industry is significant for both macroprocessing and microprocessing. The present paper describes recent trend and topics of industrial applications in terms of the hardware and the software to show how Japanese industry challenges to advanced materials processing using lasers, and national products related to laser materials processing are also briefly introduced.

  14. Advanced Materials and Cell Components for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2009-01-01

    This is an introductory paper for the focused session "Advanced Materials and Cell Components for NASA's Exploration Missions". This session will concentrate on electrochemical advances in materials and components that have been achieved through efforts sponsored under NASA's Exploration Systems Mission Directorate (ESMD). This paper will discuss the performance goals for components and for High Energy and Ultra High Energy cells, advanced lithium-ion cells that will offer a combination of higher specific energy and improved safety over state-of-the-art. Papers in this session will span a broad range of materials and components that are under development to enable these cell development efforts.

  15. RF Sputtered ZnTe:N as CdS/CdTe Solar Cell Back-Contact Material

    NASA Astrophysics Data System (ADS)

    Ma, X.

    1999-04-01

    The most frequently used electrical contact to CdTe thin-film polycrystalline solar cells on glass involves the use of copper. However, Cu is known to be a fast diffuser in many semiconductors and is suspected of leading to some deterioration of performance of CdTe solar cells under extreme conditions. In this work we report on the development of a reactively sputtered ZnTe:N back contact on solar cells. Promising low-resistive nitrogen-doped ZnTe films were obtained. Efficiencies up to 10.8 percent were obtained for solar cells fabricated with a ZnTe:N/Au back contact scheme. Comparison of cell performances using ZnTe:N and Cu/Au back-contacts is presented.

  16. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  17. Advanced Hybrid Materials for Aerospace Propulsion Applications (Briefing Charts)

    DTIC Science & Technology

    2013-02-01

    Viewgraph 3. DATES COVERED (From - To) February 2013- April 2013 4. TITLE AND SUBTITLE Advanced hybrid materials for aerospace propulsion applications ...Many material improvements are needed for specific aerospace propulsion applications . Because the industrial community in extremely risk-averse, the...activities focused on inert materials for solid rocket propulsion applications , including the development of alternative high-temperature thermosetting

  18. Local Bonding Arrangements in Ge2Sb2Te5: Importance of Ge and Te Bonding in Optical Memory Materials

    SciTech Connect

    Baker, D. A.

    2007-02-02

    Studies of amorphous (a-) semiconductors have been driven by technological advances as well as fundamental theories. Observation of electrical switching, for example, fueled early interest in a-chalcogenides. More recently a-chalcogenide switching has been applied quite successfully to DVD technology where the quest for the discovery of better-suited materials continues. Thus, switching grants researchers today with an active arena of technological as well as fundamental study. On the theoretical front, bond constraint theory and rigidity theory provide a powerful framework for understanding the structure and properties of a-materials. Applications of these theories to switching in a-chalcogenides holds the promise of finding the best composition suited for switching applications. EXAFS spectroscopy is an ideally suited technique to investigate the switching properties of these materials. Results of previous EXAFS experiments will be presented and viewed through the lens of bond constraint theory.

  19. Advanced materials for radiation-cooled rockets

    NASA Astrophysics Data System (ADS)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-11-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  20. Advanced materials for radiation-cooled rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  1. Lignin-Derived Advanced Carbon Materials

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori

    2015-11-16

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon.

  2. Lignin-Derived Advanced Carbon Materials.

    PubMed

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-07

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed.

  3. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  4. Development of Advanced Ill-Nitride Materials

    DTIC Science & Technology

    2008-09-24

    doping, p-n junctions, and InGaN/InN quantum well structures for terahertz emitters; and (iii) develop AlInN materials lattice-matched to GaN for... GaN and InN- based materials by molecular beam epitaxy (MBE). Work is focused on three areas: (i) extend on our pioneering work on high...temperature nitrogen-rich growth of GaN , where we have demonstrated a new growth space for realizing high quality GaN materials and devices including world

  5. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-09-01

    conditions of static loads; various theories have been advanced to predict the onset and progress of these individual damage events. • The approach taken in...composite laminates, one common approach is the well-known "first ply failure" theory (see e.g. Tsai and Hahn [l]). The basic assumption in the theory ...edge interlaminar stresses provides a physical x tai,-ntion of the edge delamination phenomenon; a suitable theory defining t he conditions for its

  6. Advanced lubrication systems and materials. Final report

    SciTech Connect

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  7. New Advance in SuperConducting Materials

    ScienceCinema

    None

    2016-07-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  8. Advanced composite materials for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Bowles, David E.

    1988-01-01

    The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

  9. Advances in Anisotropic Materials for Optical Switching

    DTIC Science & Technology

    2010-09-16

    large change in the effective refractive index of the material , comparable to that obtained at transformation of a liquid into vapor. Liquid...crystall ine materials (LCs), both low·molecular weight as well as polymeric, make feasible such large changes of effective refractive index without a...frequencies and thus are uniqucly suitable for designing opt ical struc tures that maXimize the effect of changing birefringence/orientation on

  10. Flow chemistry meets advanced functional materials.

    PubMed

    Myers, Rebecca M; Fitzpatrick, Daniel E; Turner, Richard M; Ley, Steven V

    2014-09-22

    Flow chemistry and continuous processing techniques are beginning to have a profound impact on the production of functional materials ranging from quantum dots, nanoparticles and metal organic frameworks to polymers and dyes. These techniques provide robust procedures which not only enable accurate control of the product material's properties but they are also ideally suited to conducting experiments on scale. The modular nature of flow and continuous processing equipment rapidly facilitates reaction optimisation and variation in function of the products.

  11. Materials of construction for advanced coal conversion systems

    SciTech Connect

    Nangia, V.K.

    1982-01-01

    This book describes materials of construction, and materials problems for equipment used in advanced coal conversion systems. The need for cost effective industrial operation is always a prime concern, particularly in this age of energy consciousness. Industry is continually seeking improved materials for more efficient systems. The information presented here is intended to be of use in the design and planning of these systems. Coal conversion and utilization impose severe demands on construction materials because of high temperature, high pressure, corrosive/erosive, and other hostile environmental factors. Successful economic development of these processes can be achieved only to the extent that working materials can withstand increasingly more aggressive operating conditions. The book, which reviews present and past work on the behavior of materials in the environments of advanced coal conversion systems, is divided into three parts: atmospheric fluidized bed combustion, coal gasification and liquefaction, and advanced power systems.

  12. Symmetry-protected ideal Weyl semimetal in HgTe-class materials

    PubMed Central

    Ruan, Jiawei; Jian, Shao-Kai; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-01-01

    Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of in-plane compressive strain, could be materials in nature realizing ideal Weyl semimetals with four pairs of Weyl nodes and topological surface Fermi arcs. Generically, we find that the HgTe-class materials with nontrivial band inversion and noncentrosymmetry provide a promising arena to realize ideal Weyl semimetals. Such ideal Weyl semimetals could further provide a unique platform to study emergent phenomena such as the interplay between ideal Weyl fermions and superconductivity in the half-Heusler compound LaPtBi. PMID:27033588

  13. Symmetry-protected ideal Weyl semimetal in HgTe-class materials.

    PubMed

    Ruan, Jiawei; Jian, Shao-Kai; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-04-01

    Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of in-plane compressive strain, could be materials in nature realizing ideal Weyl semimetals with four pairs of Weyl nodes and topological surface Fermi arcs. Generically, we find that the HgTe-class materials with nontrivial band inversion and noncentrosymmetry provide a promising arena to realize ideal Weyl semimetals. Such ideal Weyl semimetals could further provide a unique platform to study emergent phenomena such as the interplay between ideal Weyl fermions and superconductivity in the half-Heusler compound LaPtBi.

  14. Symmetry-protected ideal Weyl semimetal in HgTe-class materials

    NASA Astrophysics Data System (ADS)

    Ruan, Jiawei; Jian, Shao-Kai; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-04-01

    Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of in-plane compressive strain, could be materials in nature realizing ideal Weyl semimetals with four pairs of Weyl nodes and topological surface Fermi arcs. Generically, we find that the HgTe-class materials with nontrivial band inversion and noncentrosymmetry provide a promising arena to realize ideal Weyl semimetals. Such ideal Weyl semimetals could further provide a unique platform to study emergent phenomena such as the interplay between ideal Weyl fermions and superconductivity in the half-Heusler compound LaPtBi.

  15. Symmetry-protected ideal Weyl semimetal in HgTe-class materials

    NASA Astrophysics Data System (ADS)

    Jian, Shao-Kai; Ruan, Jiawei; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep and novel physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of inplane compressive strain, could be the first materials in nature realizing ideal Weyl semimetals with four pairs of Weyl nodes and topological surface Fermi arcs. Generically, we find that the HgTe-class materials with nontrivial band inversion and noncentrosymmetry provide a promising arena to realize ideal Weyl semimetals. Such ideal Weyl semimetals could further provide a unique platform to study emergent phenomena such as the interplay between ideal Weyl fermions and superconductivity in the half-Heusler compound LaPtBi.

  16. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  17. Advancing Sustainable Materials Management: Facts and Figures Report

    EPA Pesticide Factsheets

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  18. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  19. Advanced Engineering Materials: Products from Super Stuff. Resources in Technology.

    ERIC Educational Resources Information Center

    Jacobs, James A.

    1993-01-01

    Discusses the development of "smart" or advanced materials such as ceramics, metals, composites, and polymers. Provides a design brief, a student learning activity with outcomes, quiz, and resources. (SK)

  20. Advances in glazing materials for windows

    SciTech Connect

    Not Available

    1994-11-01

    No one type of glazing is suitable for every application. Many materials are available that serve different purposes. Moreover, consumers may discover that they need two types of glazing for a home because of the directions that the windows face and the local climate. To make wise purchases, consumers should first examine their heating and cooling needs and prioritize desired features such as daylighting, solar heating, shading, ventilation, and aesthetic value. Research and development into types of glazing have created a new generation of materials that offer improved window efficiency and performance for consumers. While this new generation of glazing materials quickly gains acceptance in the marketplace, the research and development of even more efficient technology continues.

  1. Lignin-Derived Advanced Carbon Materials

    DOE PAGES

    Chatterjee, Sabornie; Saito, Tomonori

    2015-11-16

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less

  2. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); Chu, Sang-Hyon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Stoakley, Diane M. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  3. Ferrite Materials for Advanced Multifunction Microwave Systems Applications

    DTIC Science & Technology

    2006-07-05

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Ferrite Materials for Advanced Multifunction Microwave Systems Applications Award No. (Grant) N00014-03-1-0070 PR...were also used in this work. (200 words) 14. SUBJECT TERMS 15. NUMBER OF PAGES Microwave ferrites , yttrium iron garnet, lithium ferrites , hexagonal...Unlimited COVER PAGE FINAL REPORT to the UNITED STATES OFFICE OF NAVAL RESEARCH Ferrite Materials for Advanced Multifunction Microwave Systems

  4. Advance Abrasion Resistant Materials for Mining

    SciTech Connect

    Mackiewicz-Ludtka, G.

    2004-06-01

    The high-density infrared (HDI) transient-liquid coating (TLC) process was successfully developed and demonstrated excellent, enhanced (5 times higher than the current material and process) wear performance for the selected functionally graded material (FGM) coatings under laboratory simulated, in-service conditions. The mating steel component exhibited a wear rate improvement of approximately one and a half (1.5) times. After 8000 cycles of. wear testing, the full-scale component testing demonstrated that the coating integrity was still excellent. Little or no spalling was observed to occur.

  5. ADVANCED ABRASION RESISTANT MATERIALS FOR MINING

    SciTech Connect

    Ludtka, G.M.

    2004-04-08

    The high-density infrared (HDI) transient-liquid coating (TLC) process was successfully developed and demonstrated excellent, enhanced (5 times higher than the current material and process) wear performance for the selected functionally graded material (FGM) coatings under laboratory simulated, in-service conditions. The mating steel component exhibited a wear rate improvement of approximately one and a half (1.5) times. After 8000 cycles of wear testing, the full-scale component testing demonstrated that the coating integrity was still excellent. Little or no spalling was observed to occur.

  6. Electrical properties of Cr-doped Sb2Te3 phase change material

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Liu, Bo; Xia, Yangyang; Zheng, Yonghui; Song, Sannian; Cheng, Yan; Song, Zhitang; Feng, Songlin

    2016-10-01

    Phase Change Memory (PCM) is regarded as one of the most promising candidates for the next-generation nonvolatile memory. Its storage medium, phase change material, has attracted continuous exploration. Sb2Te3 is a high-speed phase change material matrix with low crystallization temperature. Cr-doped Sb2Te3 (CST) films with suitable composition have been studied and proved to be a promising novel phase change material with high speed and good thermal stability. In this paper, detailed Rs-T characteristics and Hall characteristics of the CST films are studied. We find that, when more parts of the film crystallizes into the ordered structure, the activation energy for electrical conduction (Eσ) decreases, indicating that the semiconductor property is weakened. And with the increase of Cr-dopants, Eσ of the As-deposited (As-de) amorphous CST films decreases, thus the thermal stability of resistance is improved. Hall results show that Sb2Te3 and CST films are all in P-type. For As-de amorphous films, with the increase of Cr-dopants, the carrier mobility decreases all along, while the carrier density decreases at first and then increases. For the crystalline films, with the increase of Cr-dopants, the carrier mobility decreases, while the carrier density increases.

  7. Microstructure evolution of the phase change material TiSbTe

    NASA Astrophysics Data System (ADS)

    Chen, Yongjin; Zhang, Bin; Ding, Qingqing; Deng, Qingsong; Cheng, Yan; Song, Zhitang; Li, Jixue; Zhang, Ze; Han, Xiaodong

    2016-10-01

    The crystallization process and crystal structure of the phase change material TiSbTe alloy have been successfully established, which is essential for applying this alloy in phase change memory. Specifically, transmission electron microscopy (TEM) analyses of the film annealed in situ were used in combination with selected-area electron diffraction (SAED) and radial distribution function (RDF) analyses to investigate the structural evolution from the amorphous phase to the polycrystalline phase. Moreover, the presence of structures with medium-range order in amorphous TST, which is beneficial to high-speed crystallization, was indicated by the structure factors S(Q)s. The crystallization temperature was determined to be approximately 170°C, and the grain size varied from several to dozens of nanometers. As the temperature increased, particularly above 200°C, the first single peak of the rG(r) curves transformed into double shoulder peaks due to the increasing impact of the Ti-Te bonds. In general, the majority of Ti atoms enter the SbTe lattice, whereas the remainder of the Ti atoms aggregate, leading to the appearance of TiTe2 phase separation, as confirmed by the SAED patterns, high-angle annular dark field scanning transmission electron microscopy (HAADFSTEM) images and the corresponding energy-dispersive X-ray (EDX) mappings.

  8. Composite Materials for Advanced Global Mobility Concepts

    DTIC Science & Technology

    2000-10-01

    materials: examples include impregnation with phenolic or other resins, lamination with Kevlar tape, and lamination with a phenolic-resin skin... nanofibers or nanotubes, and crushed calcined cokes can add significantly to the strength and tailorability of the foams; unidirectional expansion

  9. Evaluation of advanced materials. Final report

    SciTech Connect

    Wright, I.G.; Clauer, A.H.; Shetty, D.K.; Tucker, T.R.; Stropki, J.T.

    1982-11-18

    Cemented tungsten carbides with a binder level in the range of 5 to 6 percent exhibited the best resistance to erosion for this class of materials. Other practical cermet meterials were diamond - Si/SiC, Al/sub 2/O/sub 3/-B/sub 4/C-Cr, and B/sub 4/C-Co. SiAlON exhibited erosion resistance equivalent to the best WC-cermet. The only coating system to show promise of improved erosion resistance was CVD TiB/sub 2/ on cemented TiB/sub 2/-Ni. Cracking and/or spalling of a TiC coating and a proprietary TMT coating occurred in the standard slurry erosion test. Ranking of cemented tungsten carbide materials in the laboratory erosion test was the same as that found in service in the Wilsonville pilot plant. Specimens from the Fort Lewis pilot plant which performed well in service exhibited low erosion in the laboratory test. A substitute slurry, was found to be 2 to 4 times more erosive than the coal-derived slurry 8 wt% solids. Ranking of materials in the substitute slurry was nearly identical to that in the coal-derived slurry. Three modes of erosion were: ductile cutting; elastic-plastic indentation and fracture; and intergranular fracture. Erosion of a given material was closely related to its microstructure. In the substitute slurry, the angle-dependence of erosion of two forms of SiC, hot-pressed and sintered, were similar, but the sintered material eroded slower. Laser fusing of preplaced powder mixtures can produce cermet-like structures with potential for erosive and sliding wear resistance. TiC particles in Stellite 6 matrix proved less prone to cracking than WC particles in the same matrix. 74 figures, 14 tables.

  10. Using advanced electron microscopy for the characterization of catalytic materials

    NASA Astrophysics Data System (ADS)

    Pyrz, William D.

    Catalysis will continue to be vitally important to the advancement and sustainability of industrialized societies. Unfortunately, the petroleum-based resources that currently fuel the energy and consumer product needs of an advancing society are becoming increasingly difficult and expensive to extract as supplies diminish and the quality of sources degrade. Therefore, the development of sustainable energy sources and the improvement of the carbon efficiency of existing chemical processes are critical. Further challenges require that these initiatives are accomplished in an environmentally friendly fashion since the effects of carbon-based emissions are proving to be a serious threat to global climate stability. In this dissertation, materials being developed for sustainable energy and process improvement initiatives are studied. Our approach is to use materials characterization, namely advanced electron microscopy, to analyze the targeted systems at the nano- or Angstrom-scale with the goal of developing useful relationships between structure, composition, crystalline order, morphology, and catalytic performance. One area of interest is the complex Mo-V-M-O (M=Te, Sb, Ta, Nb) oxide system currently being developed for the selective oxidation/ammoxidation of propane to acrylic acid or acrylonitrile, respectively. Currently, the production of acrylic acid and acrylonitrile rely on propylene-based processes, yet significant cost savings could be realized if the olefin-based feeds could be replaced by paraffin-based ones. The major challenge preventing this feedstock replacement is the development of a suitable paraffin-activating catalyst. Currently, the best candidate is the Mo-V-Nb-Te-O complex oxide catalyst that is composed of two majority phases that are commonly referred to as M1 and M2. However, there is a limited understanding of the roles of each component with respect to how they contribute to catalyst stability and the reaction mechanism. Aberration

  11. PREFACE: Advanced Materials for Demanding Applications

    NASA Astrophysics Data System (ADS)

    McMillan, Alison; Schofield, Stephen; Kelly, Michael

    2015-02-01

    This was a special conference. It was small enough (60+ delegates) but covering a wide range of topics, under a broad end-use focussed heading. Most conferences today either have hundreds or thousands of delegates or are small and very focussed. The topics ranged over composite materials, the testing of durability aspects of materials, and an eclectic set of papers on radar screening using weak ionized plasmas, composites for microvascular applications, composites in space rockets, and materials for spallation neutron sources etc. There were several papers of new characterisation techniques and, very importantly, several papers that started with the end-user requirements leading back into materials selection. In my own area, there were three talks about the technology for the ultra-precise positioning of individual atoms, donors, and complete monolayers to take modern electronics and optoelectronics ideas closer to the market place. The President of the Institute opened with an experience-based talk on translating innovative technology into business. Everyone gave a generous introduction to bring all-comers up to speed with the burning contemporary issues. Indeed, I wish that a larger cohort of first-year engineering PhD students were present to see the full gamut of what takes a physics idea to a success in the market place. I would urge groups to learn from Prof Alison McMillan (a Vice President of the Institute of Physics) and Steven Schofield, to set up conferences of similar scale and breadth. I took in more than I do from mega-meetings, and in greater depth. Professor Michael Kelly Department of Engineering University of Cambridge

  12. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-07-01

    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  13. Polymers Advance Heat Management Materials for Vehicles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  14. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  15. Advanced Functional Materials for Energy Related Applications

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush

    The current global heavy dependency on fossil fuels gives rise to two critical problems: I) fossil fuels will be depleted in the near future; II) the release of green house gas CO2 generated by the combustion of fossil fuels contributes to global warming. To potentially address both problems, this dissertation documents three primary areas of investigation related to the development of alternative energy sources: electrocatalysts for fuel cells, photocatalysts for hydrogen generation, and photoreduction catalysts for converting CO2 to CH4. Fuel cells could be a promising source of alternative energy. Decreasing the cost and improving the durability and power density of Pt/C as a catalyst for reducing oxygen are major challenges for developing fuel cells. To address these concerns, we have synthesized a Nitrogen-Sulfur-Iron-doped porous carbon material. Our results indicate that the synthesized catalyst exhibits not only higher current density and stability but also higher tolerance to crossover chemicals than the commercial Pt/C catalyst. More importantly, the synthetic method is simple and inexpensive. Using photocatalysts and solar energy is another potential alternative solution for energy demand. We have synthesized a new biomimetic heterogeneous photocatalyst through the incorporation of homogeneous complex 1 [(i-SCH 2)2NC(O)C5H4N]-Fe2(CO) 6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). As photosensitizer ZrPF absorbs the visible light and produces photoexcited electrons that can be transferred through axial covalent bond to di-nuclear complex 1 for hydrogen generation. Additionally, we have studied the photoreduction of CO2 to CH4 using self-doped TiO2 (Ti+3@TiO 2) as photocatalytic materials. The incorporation of Ti3+ into TiO2 structures narrows the band gap, leading to significantly increased photocatalytic activity for the reduction of CO2 into renewable hydrocarbon fuel in the presence of water vapor under visible

  16. Advanced STEM Characterization of Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Dey, Sanchita

    Nanoscale materials are the key structures in determining the properties of many technologically-important materials. Two such important nanoscale materials for different technological applications are investigated in this dissertation. They are: Fischer-Tropsch (FT) catalysts and irradiated metallic bi-layers. Catalytic activity depends on the structural parameters such as size, shape, and distribution on support. On the other hand, the radiation resistance of the model metallic multi-layers is influenced by the presence of interphase, phase-boundaries, and grain-boundaries. The focus of this dissertation is to use different TEM and STEM techniques to understand the structure of these materials. This dissertation begins with a review of the microscopy techniques used in the experiments. Then, in the next two chapters, literature review followed by results and discussions on the two above-mentioned nano materials are presented. Future research directions are included in the concluding chapter. To obtain three-dimensional morphological information of the FT catalysts during reduced/active state, STEM tomography is used. The oxidized state and reduced state is clarified by using STEM-EELS (in the form of spectrum imaging). We used a special vacuum transfer tomography holder and ex-situ gas assembly for reduction, and the reduction parameters are optimized for complete reduction. It was observed that the particle was reduced with 99.99% H2, and at 400°C for 15 minutes. The tomographic results in before-reduction condition depict that the Co-oxide particles are distributed randomly inside the alumina support. After reduction, the tomogram reveals that metallic Co nucleated and sintered towards the surface of the alumina support. The overall metallic Co distribution shows an outward segregation by subsurface diffusion mechanism. In the study of metallic bi-layer, He-irradiated gold twist grain boundary (AuTGB) was chosen as it is one of the least-studied systems in the

  17. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  18. Economic benefits of advanced materials in nuclear power systems

    NASA Astrophysics Data System (ADS)

    Busby, J. T.

    2009-07-01

    A key obstacle to the commercial deployment of advanced fast reactors is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors. However, cost estimates come with a large uncertainty since far fewer fast reactors have been built than light water reactor facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. Reductions in capital cost can result from design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. It is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost. Advanced materials may also allow improved safety and longer component lifetimes. This work examines the potential impact of advanced materials on the capital investment cost of fast nuclear reactors.

  19. Synthesis and characterization of advanced materials for Navy applications

    NASA Technical Reports Server (NTRS)

    Covino, J.; Lee, I.

    1994-01-01

    The synthesis of ceramics and ceramic coatings through the sol-gel process has extensive application with the United States Navy and a broad range of potential commercial applications as well. This paper surveys seven specific applications for which the Navy is investigating these advanced materials. For each area, the synthetic process is described and the characteristics of the materials are discussed.

  20. Temperature Evolution of Excitonic Absorptions in Cd(1-x)Zn(x)Te Materials

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Henry, Ross

    2007-01-01

    The studies consist of measuring the frequency dependent transmittance (T) and reflectance (R) above and below the optical band-gap in the UV/Visible and infrared frequency ranges for Cd(l-x),Zn(x),Te materials for x=0 and x=0.04. Measurements were also done in the temperature range from 5 to 300 K. The results show that the optical gap near 1.49 eV at 300 K increases to 1.62 eV at 5 K. Finally, we observe sharp absorption peaks near this gap energy at low temperatures. The close proximity of these peaks to the optical transition threshold suggests that they originate from the creation of bound electron-hole pairs or excitons. The decay of these excitonic absorptions may contribute to a photoluminescence and transient background response of these back-illuminated HgCdTe CCD detectors.

  1. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  2. Characterization of advanced preprocessed materials (Hydrothermal)

    SciTech Connect

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  3. Experiments investigating advanced materials under thermomechanical loading

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1988-01-01

    Many high temperature aircraft and rocket engine components experience large mechanical loads as well as severe thermal gradients and transients. These nonisothermal conditions are often large enough to cause inelastic deformations, which are the ultimate cause for failure in those parts. A way to alleviate this problem is through improved engine designs based on better predictions of thermomechanical material behavior. To address this concern, an experimental effort was recently initiated within the Hot Section Technology (HOST) program at Lewis. As part of this effort, two new test systems were added to the Fatigue and Structures Lab., which allowed thermomechanical tests to be conducted under closely controlled conditions. These systems are now being used for thermomechanical testing for the Space Station Receiver program, and will be used to support development of metal matrix composites.

  4. Materials for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.

    1985-01-01

    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  5. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    SciTech Connect

    Sides, Scott; Kemper, Travis; Larsen, Ross; Graf, Peter

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  6. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  7. Surface chemical deposition of advanced electronic materials

    NASA Astrophysics Data System (ADS)

    Bjelkevig, Cameron

    The focus of this work was to examine the direct plating of Cu on Ru diffusion barriers for use in interconnect technology and the substrate mediated growth of graphene on boron nitride for use in advanced electronic applications. The electrodeposition of Cu on Ru(0001) and polycrystalline substrates (with and without pretreatment in an iodine containing solution) has been studied by cyclic voltammetry (CV), current--time transient measurements (CTT), in situ electrochemical atomic force microscopy (EC-AFM), and X-ray photoelectron spectroscopy (XPS). The EC-AFM data show that at potentials near the OPD/UPD threshold, Cu crystallites exhibit pronounced growth anisotropy, with lateral dimensions greatly exceeding vertical dimensions. XPS measurements confirmed the presence and stability of adsorbed I on the Ru surface following pre-treatment in a KI/H2SO4 solution and following polarization to at least -200 mV vs. Ag/AgCl. CV data of samples pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD peak. The kinetics of the electrodeposited Cu films was investigated by CTT measurements and applied to theoretical models of nucleation. The data indicated that a protective I adlayer may be deposited on an airexposed Ru electrode as the oxide surface is electrochemically reduced, and that this layer will inhibit reformation of an oxide during the Cu electroplating process. A novel method for epitaxial graphene growth directly on a dielectric substrate of systematically variable thickness was studied. Mono/multilayers of BN(111) were grown on Ru(0001) by atomic layer deposition (ALD), exhibiting a flat (non-nanomesh) R30(✓3x✓3) structure. BN(111) was used as a template for growth of graphene by chemical vapor deposition (CVD) of C2H4 at 1000 K. Characterization by LEED, Auger, STM/STS and Raman indicate the graphene is in registry with the BN substrate, and exhibits a HOPG-like 0 eV bandgap density

  8. SYNTHESIS AND CHARACTERIZATION OF ADVANCED MAGNETIC MATERIALS

    SciTech Connect

    Monica Sorescu

    2004-09-22

    The work described in this grant report was focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T = Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe (80-20 wt %) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x = 0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co (80-20 wt %) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which were published in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Materials Chemistry and Physics. The contributions reveal for the first time in literature the effect of

  9. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  10. JOINING OF ADVANCED HIGH-TEMPERATURE MATERIALS

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.

    2009-05-14

    Various compositions in the Ag-CuOx system are being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. Prior work has shown that the melting temperature, and therefore the potential operational temperature, of these materials can be increased by alloying with palladium. The current study examines the effects of palladium addition on the joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with three different families of filler metals: Ag-CuO, 5Pd-Ag-CuO, and 15Pd-Ag-CuO. In general it was found that palladium leads to a small-to-moderate decrease in joint strength, particularly in low copper oxide compositions filler metals. However the effect is likely acceptable if a higher temperature air braze filler metal is desired. In addition, a composition was found for each filler metal series in which the joint failure mechanism undergoes a transition, typically from ductile to brittle failure. In each case, this composition corresponds approximately to the silver-rich boundary composition of the liquid miscibility gap in each system at the temperature of brazing.

  11. Research and development of HgZnTe as an infrared material

    NASA Technical Reports Server (NTRS)

    Wahi, A. K.; Lindau, I.; Spicer, W. E.

    1989-01-01

    Interfacial morphology and Fermi level pinning behavior at the interfaces of Al, Ag, and Pt with UHV-cleaved CdTe and ZnTe have been studied using X-ray and ultraviolet photoemission spectroscopies. Results are compared to metal/HgCdTe interface formation, where the weak HgTe bond and consequent ease of Hg loss strongly influence semiconductor disruption and metal-semiconductor intermising. For Al/CdTe, the strong Al-Te reaction yields a significantly more extensive Al-Te reacted region than has been observed for HgCdTe. The Al/ZnTe interface is observed to be more abrupt than Al/CdTe. The final Fermi level pinning positions, Ef-Evbm for Al, Ag, and Pt on p-type CdTe and p-ZnTe have been determined. Efi is found to be roughly the same for both CdTe and ZnTe, with the value for ZnTe lying approximately 0.2 eV closer to the VBM for all three metals. From these results, one would expect Schottky barriers of about the same height for these metals on p-CdTe and p-ZnTe; and also that, in principle, metal interfaces with the two alloys HgCdTe and HgZnTe would have the same properties. Comparisons and implications for electrical behavior of metal contacts to the alloys are discussed.

  12. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  13. Materials Data on Lu11Te4 (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-07-24

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Na3(Mn2Te3)2 (SG:12) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Ag(TeMo)6 (SG:12) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-03-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Te4Pt3 (SG:12) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on ZrCu2Te3 (SG:12) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Li2TeO3 (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Co(TePd)2 (SG:72) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Hf(Te2Cl3)2 (SG:2) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Ta(TeBr3)2 (SG:2) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Bi(TeBr2)2 (SG:2) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Ta(TeCl3)2 (SG:2) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Hf(Te4Cl3)2 (SG:2) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Ta7(Te12I5)2 (SG:2) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Li4TeO5 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Dy2Te5O13 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-06

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on La2CdTe4 (SG:122) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Pu(TeO3)2 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-05-01

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Na3GeTe3 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on SiTe2 (SG:164) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-22

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Tl4CuTe3 (SG:140) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Sm(SbTe2)2 (SG:122) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on CoGeTe (SG:61) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on GeTeRh (SG:61) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on KAg3Te2 (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-22

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on K2Te4O9 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on K2Te2O5 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on TeAuBr8 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Bi2Te2Se (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on AgTe (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Nb3GeTe6 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Ca4Al6TeO12 (SG:217) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Sr4Al6TeO12 (SG:217) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Al6Cd4TeO12 (SG:217) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Te2OsCl12 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Th2TeN2 (SG:139) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Cs2TeBr6 (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Zr2Te2P (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on UTl2(TeO4)2 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on UTl2(TeO4)2 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on TePbO3 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Y6AgTe2 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-07-24

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Y6Te2Pd (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Lu7Te (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Lu8Te (SG:189) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Lu2Te4O11 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Y7Te2 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Lu6AgTe2 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Lu6CuTe2 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Y6Te2Rh (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on NpTeAs (SG:129) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on AgTe3 (SG:229) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Ge9(Sb5Te12)2 (SG:1) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on TiTe3O8 (SG:206) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on SrCu(TeO3)2 (SG:213) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-22

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on RbSmTe2 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-05-24

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on KSmTe2 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on NaSmTe2 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-05-24

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Y5(FeTe)2 (SG:63) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on TaCoTe2 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on KGaTe2 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Cd(GaTe2)2 (SG:82) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on KAlTe2 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on In2HgTe4 (SG:82) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Zn(GaTe2)2 (SG:82) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Al7Te10 (SG:155) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Zn(InTe2)2 (SG:82) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Ga3Te3I (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ga2HgTe4 (SG:82) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Cd(InTe2)2 (SG:82) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Al3Te3I (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on PrTe (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Pr2Te2O7 (SG:227) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on TlTe (SG:140) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Ta4Te16Pd3 (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on TaTe4Ir (SG:31) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Te2W (SG:31) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on NbTe4Ir (SG:31) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on TaTe5Pt (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Be4TeO7 (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on MgTe (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-18

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on FeAgTe2 (SG:164) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Rb3Ti3Te11 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on ErTe3 (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on In2HgTe4 (SG:119) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on MnTe2 (SG:205) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Te3WICl6 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on NaTe (SG:60) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-05-16

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ag7Te4 (SG:191) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Te2AsCNF6 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-05-13

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on GaTe (SG:194) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Np3Te4 (SG:220) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-22

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on PrTe3 (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Zr2TeBr12 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on K2Cu2Te5 (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on CdTe (SG:186) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Sr3Te4O11 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on InGaTe2 (SG:140) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Li3TeHO4 (SG:11) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Ce3Te4 (SG:220) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on GaTeCl (SG:58) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on NdTeF (SG:129) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on NdTe2 (SG:129) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Rb(Zr3Te4)4 (SG:174) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Rb2Te3 (SG:62) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Rb(TeMo)3 (SG:176) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on RbTeHOF4 (SG:9) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Re(TeCl6)2 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on CrTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Rb4Te2S8O15 (SG:60) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-05-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Te3P2O11 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Te8Rh3 (SG:148) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on TeRh (SG:194) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Te2Rh (SG:164) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Ni3TeO6 (SG:146) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on TlCrTe2 (SG:164) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Co2TeCl2O3 (SG:11) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Co2(GeTe)3 (SG:148) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Co2(SnTe)3 (SG:148) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on InTeBr (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on GaAgTe2 (SG:122) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Tl2TeO6 (SG:150) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Dy7(TeIr)2 (SG:44) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-07-14

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Te2Ru (SG:58) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Cr2TeO6 (SG:136) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Cu2SnTe3 (SG:44) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Cu2SnTe3 (SG:9) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on CuTe (SG:59) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on NiTe (SG:194) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Te2AuI (SG:51) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on CsCr5Te8 (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-08-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on HoTe2ClO5 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on NdTe (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-07-14

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Lu7(TePd)2 (SG:44) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Lu7(NiTe)2 (SG:44) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Ge(TeO3)2 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on TiFeTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on ZrFeTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on ScCoTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on LiAgTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on TiTeOs (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on NaLiTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on CaNiTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on LaCoTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on SrTePd (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on VFeTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Li2TeO3 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Ti3Te4 (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-03-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ga2Te5 (SG:87) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Rb(TeO3)2 (SG:227) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on CoTe2 (SG:164) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on SbTeI (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Fe2Te2W(CO)10 (SG:2) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on SrTe5O11 (SG:10) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on CrTe4Au (SG:10) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on TmTlTe2 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-18

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on HoTlTe2 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-15

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on CdTeMoO6 (SG:113) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Cr2AgTe4 (SG:227) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Hf5FeTe3 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Co5Te4Cl4O11 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on LiTeO3 (SG:34) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Li2SnTeO6 (SG:34) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Li2TiTeO6 (SG:34) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Bi2TeI (SG:166) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on BiTe (SG:164) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Bi4Te7Pb (SG:164) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Cd2TeCl2O3 (SG:56) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ag3TeIO4 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on TeBrO3F5 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on AlTeI7 (SG:7) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Ba(InTe2)2 (SG:66) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on CuTeO3 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Nb2TeO8 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on TeS7Br2 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on TeS7Cl2 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on ZnTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on TaFeTe3 (SG:11) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Sb16Te3 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Sb8Te3 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on LaTe (SG:221) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on CeTe (SG:221) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-18

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on NiTe2 (SG:164) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on NaTeF5 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on GaCuTe2 (SG:122) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on BaLa2Te5O14 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Nd2Te2W2O13 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Pr2Te4MoO14 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on BaZnTeCl2O3 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on V2Zn3TeO10 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Nd2Te4MoO14 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Ni3TeMo2O11 (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Sb2Te2Se (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Cr2CuTe4 (SG:227) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on HgTe (SG:221) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on HgTe (SG:152) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on HgTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on HgTe (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on V6Cu5Te12 (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on TeAuI (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on ZnTe (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on K4Cu8Te11 (SG:12) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Te2SO7 (SG:31) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Cr10Sb3Te7 (SG:1) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on MnTePd (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Ag2Te (SG:1) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Nd3Te4 (SG:220) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on TiTe2 (SG:164) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on KInTe2 (SG:140) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on In10Sb9Te (SG:2) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on TmTe (SG:194) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Tl3AgTe2 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on EuTe (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-03-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on CuTeO4 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-09-30

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on LaCrTeO6 (SG:1) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-09-30

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on KNaTe (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on NaLiTe (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Nb4Te9I4O (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Nb4Te17I4 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Nb4Te12I (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Cu(TeO3)4 (SG:1) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on TlBiTe2 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Bi2Te2S (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on BiTePd (SG:198) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-22

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on DyTlTe2 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-15

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on ErTlTe2 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-15

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on MnCoTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on MnFeTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on CrCoTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-21

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on CrFeTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-21

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on V(TeO3)4 (SG:1) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on TlTe (SG:137) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-05-01

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on RbTe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-21

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on RbTe (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-09-21

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on SrTeO3 (SG:5) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-05-16

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on HoTeClO3 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Ga2TeSe2 (SG:109) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Cd(Ga3Te5)2 (SG:5) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Cs4Zr3Te16 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on CsNb(CuTe2)2 (SG:33) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on CsUCuTe3 (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on CsUTiTe5 (SG:51) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on CsTa(CuTe2)2 (SG:33) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Influence of substrate materials on the properties of CdTe thin films grown by hot-wall epitaxy

    NASA Astrophysics Data System (ADS)

    Bilevych, Ye.; Soshnikov, A.; Darchuk, L.; Apatskaya, M.; Tsybrii, Z.; Vuychik, M.; Boka, A.; Sizov, F.; Boelling, O.; Sulkio-Cleff, B.

    2005-02-01

    Growth of high-quality CdTe thin films by hot-wall epitaxy (HWE) under different temperature conditions and the control of their physical, electrical and structural properties have been examined by various ways. CdTe (1 1 0), Zn 0.04Cd 0.96Te (1 1 1), Hg 0.2Cd 0.8Te (1 1 1), Si (1 1 1) and BaF 2 (1 1 1) were used as substrates. The obtained films have the cut-off wavelength at 0.84-0.85 μm and the transmission of about 55-60% out of the fundamental absorption domain. The current-voltage investigations have shown that the contact properties strongly depend on the contact material and contact fabrication method and less depend on substrate materials. The film-specific resistances (4-7)×10 4 Ω cm were determined. The CdTe deposition (layer thickness about 1000 Å) on Cd xHg 1-xTe resulted in significant increase in photodiodes electrical parameters. All samples showed the crystalline structure according to the XRD data with strong influence on lattice mismatch between CdTe and substrate materials. Atomic force microscope (AFM) investigations have shown a smooth and defect-free surface with a roughness range of 15-100 nm for 50 μm of basic length.

  16. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  17. Coherent phonon study of (GeTe){sub l}(Sb{sub 2}Te{sub 3}){sub m} interfacial phase change memory materials

    SciTech Connect

    Makino, Kotaro Saito, Yuta; Fons, Paul; Kolobov, Alexander V.; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2014-10-13

    The time-resolved reflectivity measurements were carried out on the interfacial phase change memory (iPCM) materials ([(GeTe){sub 2}(Sb{sub 2}Te{sub 3}){sub 4}]{sub 8} and [(GeTe){sub 2}(Sb{sub 2}Te{sub 3}){sub 1}]{sub 20}) as well as conventional Ge{sub 2}Sb{sub 2}Te{sub 5} alloy at room temperature and above the RESET-SET phase transition temperature. In the high-temperature phase, coherent phonons were clearly observed in the iPCM samples while drastic attenuation of coherent phonons was induced in the alloy. This difference strongly suggests the atomic rearrangement during the phase transition in iPCMs is much smaller than that in the alloy. These results are consistent with the unique phase transition model in which a quasi-one-dimensional displacement of Ge atoms occurs for iPCMs and a conventional amorphous-crystalline phase transition takes place for the alloy.

  18. Characterization of detector grade CdZnTe material from Redlen Technologies

    SciTech Connect

    Duff, Martine C.; Burger, Arnold; Groza, Michael; Buliga, Vladimir; Bradley, John P.; Dai, Zurong R.; Teslich, Nick; Black, David R.; Awadalla, Salah A.; Mackenzie, Jason; Chen, Henry

    2008-10-24

    CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. This large band gap material shows great promise for use as a gamma radiation spectrometer. Historically, the performance of CZT has typically been adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity) and secondary phases (SP). The synthesis of CZT material has improved greatly with the primary performance limitation being attributed to mainly SP. In this presentation, we describe the extensive characterization of detector grade material that has been treated with post growth annealing to remove the SPs. Some of the analytical methods used in this study included polarized, cross polarized and transmission IR imaging, I-V curves measurements, synchrotron X-ray topography and electron microscopy.

  19. Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bhandari, Khagendra P.

    Solar energy is Earth's primary source of renewable energy and photovoltaic solar cells enable the direct conversion of sunlight into electricity. Crystalline silicon solar cells and modules have dominated photovoltaic technology from the beginning and they now constitute more than 90% of the PV market. Thin film (CdTe and CIGS) solar cells and modules come in second position in market share. Some organic, dye-sensitized and perovskite solar cells are emerging in the market but are not yet in full commercial scale. Solar cells made from colloidal nanocrystalline materials may eventually provide both low cost and high efficiency because of their promising properties such as high absorption coefficient, size tunable band gap, and quantum confinement effect. It is also expected that the greenhouse gas emission and energy payback time from nanocrystalline solar PV systems will also be least compared to all other types of PV systems mainly due to the least embodied energy throughout their life time. The two well-known junction architectures for the fabrication of quantum dot based photovoltaic devices are the Schottky junction and heterojunction. In Schottky junction cells, a heteropartner semiconducting material is not required. A low work function metal is used as the back contact, a transparent conducting layer is used as the front contact, and the layer of electronically-coupled quantum dots is placed between these two materials. Schottky junction solar cells explain the usefulness of nanocrystalline materials for high efficiency heterojunction solar cells. For heterojunction devices, n-type semiconducting materials such as ZnO , CdS or TiO2 have been used as suitable heteropartners. Here, PbS quantum dot solar cells were fabricated using ZnO and CdS semiconductor films as window layers. Both of the heteropartners are sputter-deposited onto TCO coated glass substrates; ZnO was deposited with the substrate held at room temperature and for CdS the substrate was at 250

  20. Mechanisms of fatigue damage and crack growth in advanced materials

    NASA Astrophysics Data System (ADS)

    Ritchie, Robert O.

    2001-03-01

    In terms of in-service failures, cyclic fatigue is the most prevalent form of fracture. Despite the wealth of information on fatigue failures in traditional structural materials such as (ductile) metals and alloys, far less is understood about the susceptibility of the newer advanced materials, such as (brittle) intermetallics, ceramics and their composites. In this presentation, the mechanics and mechanisms of fatigue damage and crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile metallic materials, and corresponding behavior in the more brittle advanced materials. This is achieved by considering the process of subcritical crack growth as a mutual competition between intrinsic mechanisms of microstructural damage ahead of the crack tip, which promote crack growth, and extrinsic mechanisms of crack-tip shielding behind the tip, which impede it. This approach is shown to be important for the understanding of the structural fatigue properties of advanced materials, such as monolithic and composite ceramics, and a range of intermetallics (e.g., TiAl, MoSi2, Nb3Al), as the mechanisms of fatigue in these brittle materials are conceptually distinct from that associated with the well known metal fatigue. Examples of the application and life-prediction methodologies for such materials in fatigue-critical situations will be given from the aerospace and bioengineering industries.

  1. First-principles calculation of lattice thermal conductivity in crystalline phase change materials: GeTe, Sb2Te3 , and Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Campi, Davide; Paulatto, Lorenzo; Fugallo, Giorgia; Mauri, Francesco; Bernasconi, Marco

    2017-01-01

    Thermal transport is a key feature for the operation of phase change memory devices which rest on a fast and reversible transformation between the crystalline and amorphous phases of chalcogenide alloys upon Joule heating. In this paper we report on the ab initio calculations of bulk thermal conductivity of the prototypical phase change compounds Ge2Sb2Te5 and GeTe in their crystalline form. The related Sb2Te3 compound is also investigated for the sake of comparison. Thermal conductivity is obtained from the solution of the Boltzmann transport equation with phonon scattering rates computed within density functional perturbation theory. The calculations show that the large spread in the experimental data on the lattice thermal conductivity of GeTe is due to a variable content of Ge vacancies which at concentrations realized experimentally can halve the bulk thermal conductivity with respect to the ideal crystal. We show that the very low thermal conductivity of hexagonal Ge2Sb2Te5 of about 0.45 Wm -1K-1 measured experimentally is also resulting from disorder in the form of a random distribution of Ge/Sb atoms in one sublattice.

  2. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  3. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  4. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    SciTech Connect

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-10-21

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  5. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  6. Nondestructive testing of advanced materials using sensors with metamaterials

    NASA Astrophysics Data System (ADS)

    Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin

    2016-11-01

    This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.

  7. Electronic properties of SnTe-class topological crystalline insulator materials

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Wang, Na; Huang, Huaqing; Duan, Wenhui

    2016-11-01

    The rise of topological insulators in recent years has broken new ground both in the conceptual cognition of condensed matter physics and the promising revolution of the electronic devices. It also stimulates the explorations of more topological states of matter. Topological crystalline insulator is a new topological phase, which combines the electronic topology and crystal symmetry together. In this article, we review the recent progress in the studies of SnTe-class topological crystalline insulator materials. Starting from the topological identifications in the aspects of the bulk topology, surface states calculations, and experimental observations, we present the electronic properties of topological crystalline insulators under various perturbations, including native defect, chemical doping, strain, and thickness-dependent confinement effects, and then discuss their unique quantum transport properties, such as valley-selective filtering and helicity-resolved functionalities for Dirac fermions. The rich properties and high tunability make SnTe-class materials promising candidates for novel quantum devices. Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0301000) and the National Natural Science Foundation of China (Grant No. 11334006).

  8. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.

    PubMed

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong

    2016-08-01

    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  9. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  10. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  11. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    SciTech Connect

    Ren, Fei; Schmidt, Robert D; Case, Eldon D; An, Ke

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  12. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  13. Crystal growth and physical property of Bi-Sb-Te-Se topological insulator materials, and Cu-Bi-Se and Sn-In-Te topological superconductors

    NASA Astrophysics Data System (ADS)

    Gu, Genda; Yang, Alina; Schneeloch, J.; Zhong, R. D.; Xu, Z. J.; Tranquada, J. M.; Pan, Z. H.; Si, W. D.; Shi, X. Y.; Li, Q.; Valla, T.

    2013-03-01

    The discovery of 3D topological insulator materials and topological superconductor opens up a new research field in the condensed matter physics. We have grown a number of Bi-Sb-Te-Se topological insulator, and Cu-Bi-Se and Sn-In-Te topological superconductor single crystals. We have measured the physical properties on these single crystals. We have studied the effect of growth condition and impurity on the bulk electrical conductivity of these single crystals. We try to answer two questions for the topological insulator materials if it is possible to grow the bulk-insulating topological insulator single crystals and Which maximum resistivity of these topological insulator single crystals we can grow. For the topological superconductor, we have got the bulk superconducting single crystals with a maximum Tc =4.5K. DOE under Contract No. DE-AC02-98CH10886 and the DOE Center for Emergent Superconductivity.

  14. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  15. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  16. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  17. Recent Advances in Two-Dimensional Materials beyond Graphene.

    PubMed

    Bhimanapati, Ganesh R; Lin, Zhong; Meunier, Vincent; Jung, Yeonwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael S; Cooper, Valentino R; Liang, Liangbo; Louie, Steven G; Ringe, Emilie; Zhou, Wu; Kim, Steve S; Naik, Rajesh R; Sumpter, Bobby G; Terrones, Humberto; Xia, Fengnian; Wang, Yeliang; Zhu, Jun; Akinwande, Deji; Alem, Nasim; Schuller, Jon A; Schaak, Raymond E; Terrones, Mauricio; Robinson, Joshua A

    2015-12-22

    The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.

  18. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  19. Institute for Advanced Materials at University of Louisville

    SciTech Connect

    Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L; Willing, G A; Robert W, Cohn

    2009-10-29

    In this project, a university-wide, academic center has been established entitled Institute for Advanced Materials and Renewable Energy. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostats and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established Institute for Advanced Materials at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute's efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped PIs to

  20. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  1. Disorder-induced anomalously signed Hall effect in crystalline GeTe/Sb{sub 2}Te{sub 3} superlattice-like materials

    SciTech Connect

    Tong, H.; Yu, N. N.; Yang, Z.; Cheng, X. M.; Miao, X. S.

    2015-08-21

    Opposite to the almost persistent p-type conductivity of the crystalline chalcogenides along the GeTe-Sb{sub 2}Te{sub 3} tie line, n-type Hall mobility is observed in crystalline GeTe/Sb{sub 2}Te{sub 3} superlattice-like material (SLL) with a short period length. We suggest that this unusual carrier characteristic originates from the structural disorder introduced by the lattice strain and dangling bonds at the SLL interfaces, which makes the crystalline SLLs behave like the amorphous chalcogenides. Detailed structural disorder in crystalline SLL has been studied by Raman scattering, X-ray photoelectron spectroscopy, as well as Variable-energy positron annihilation spectroscopy measurements. First-principles calculations results show that this structural disorder gives rise to three-site junctions that dominate the charge transport as the period length decreases and result in the anomalously signed Hall effect in the crystalline SLL. Our findings indicate a similar tetrahedral structure in the amorphous and crystalline states of SLLs, which can significantly reduce the entropy difference. Due to the reduced entropy loss and increased resistivity of crystalline phase introduced by disorder, it is not surprising that the SLLs exhibit extremely lower RESET current and power consumption.

  2. Materials and Component Development for Advanced Turbine Systems

    SciTech Connect

    Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

    2008-10-01

    In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

  3. 77 FR 6463 - Definition of the Term “Financial, Material, or Technological Support” Under the Côte d'Ivoire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ..., Material, or Technological Support'' Under the C te d'Ivoire, Darfur, and Democratic Republic of the Congo... Department of the Treasury's Office of Foreign Assets Control (``OFAC'') is amending the C te d'Ivoire... OFAC administers the C te d'Ivoire Sanctions Regulations, 31 CFR part 543 (the ``CDISR''), the...

  4. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  5. Advanced Electrical Materials and Components Development: An Update

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  6. Behaviour of advanced materials impacted by high energy particle beams

    NASA Astrophysics Data System (ADS)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  7. A New nBn IR Detection Concept Using HgCdTe Material

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Boulard, F.; Ferron, A.; Ballet, Ph.; Hassis, W.

    2015-09-01

    This paper presents a new HgCdTe-based heterostructure to perform quantum infrared detection. The structure is based on the unipolar barrier concept, introduced by White in the 1980s for HgCdTe. The driving concept is the use of a large gap barrier layer to impede the flow of majority carriers (electrons on the conduction band in the case of n-type material) while facilitating the transport of minority (photo) carriers (holes on the valence band). The issue encountered here is the formation of a small potential barrier on the valence band, blocking photocarriers and therefore killing the quantum efficiency. The idea is to optimize the structure with an asymmetric barrier: abrupt on the contact side to efficiently block the majority carriers, and gradual on the absorption layer side to plane down the remaining potential barrier for the collected photocarriers. The concept has been studied by finite element modeling simulation and showed promising results. An optimal design has been identified in the middle wave band and molecular beam epitaxy layers have been grown then processed. First experimental characterization of the electro-optical properties of such structures showed promising features: 60% quantum efficiency and low turn-on voltage have been measured on single pixels.

  8. Microstructure and electrical properties of Sb2Te phase-change material

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Li, Tao; Rao, Feng; Song, Sannian; Liu, Bo; Song, Zhitang

    2016-10-01

    Phase Change Memory (PCM) has great potential for commercial applications of next generation non-volatile memory (NVM) due to its high operation speed, high endurance and low power consumption. Sb2Te (ST) is a common phase-change material and has fast crystallization speed, while thermal stability is relatively poor and its crystallization temperature is about 142°C. According to the Arrhenius law, the extrapolated failure temperature is about 55°C for ten years. When heated above the crystallization temperature while below the melting point, its structure can be transformed from amorphous phase to hexagonal phase. Due to the growth-dominated crystallization mechanism, the grain size of ST film is large and the diameter of about 300 nm is too large compared with Ge2Sb2Te5 (GST), which may deteriorate the device performance. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were employed to study the microstructures and the results indicate that the crystal plane is {110}. In addition, device cells were manufactured and their current-voltage (I-V) and resistance-voltage characteristics were tested, and the results reveal that the threshold voltage (Vth) of ST film is 0.87 V. By researching the basic properties of ST, we can understand its disadvantages and manage to improve its performance by doping or other proper methods. Finally, the improved ST can be a candidate for optical discs and PCM.

  9. History of the "Detector Materials Engineering" Crystal Growth Process for Bulk Hg1- x Cd x Te

    NASA Astrophysics Data System (ADS)

    Higgins, W. M.; Nelson, D. A.; Roy, R. G.; Murosako, R. P.; Lancaster, R. A.; Tower, J.; Norton, P.

    2013-11-01

    This paper reviews the history and technology of a bulk Hg1- x Cd x Te crystal growth process that was developed in the early 1980s at Honeywell Electro-Optics Division (presently BAE Systems, Electronic Solutions). The crystal growth process name, DME, was an acronym for the department name: Detector Materials Engineering. This was an accelerated crucible rotation technique (ACRT) vertical traveling heater method growth process. Crystal growth occurred in the pseudobinary Hg1- x Cd x Te system. ACRT mixing allowed the lower-density, higher- x-value Hg1- x Cd x Te growth nutrient in the upper region of the ampoule to replenish the depleted melt and allowed the growth of constant- x-value, higher-density Hg1- x Cd x Te. The material grown by this research and production growth process yielded single crystals that had improved purity, compositional uniformity, precipitate density, and reproducibility in comparison with solid-state recrystallization and other bulk Hg1- x Cd x Te growth techniques. Radial and longitudinal nonuniformities in x-value for Hg1- x Cd x Te were reduced to <0.0008/cm. The net electrically active background impurities did not exceed 1 × 1014 cm-3. Electron mobilities in excess of 1.5 × 106 cm2/V-s were observed at 77 K. Structural defects of less than 104 cm-2 were measured. Te precipitates were not observed. As a result of these material improvements, long-wavelength infrared (LWIR) photoconductive devices fabricated from DME material had highly desired performance characteristics.

  10. Multichannel Spectroscopic Ellipsometry for CdTe Photovoltaics: from Materials and Interfaces to Solar Cells

    NASA Astrophysics Data System (ADS)

    Koirala, Prakash

    growth. Information from RT-SE at a single point during solar cell stack deposition assists in the development of a model that has been used for mapping the properties of the completed cell stack, which can then be correlated with device performance. Independent non-uniformities in the layers over the full area of the cell stack enable optimization of cell performance combinatorially. The polycrystalline CdS/CdTe thin-film solar cell in the superstrate configuration has been studied by SE using glass side illumination whereby the single reflection from the glass/film-stack interface is collected whereas that from the ambient/glass interface and those from multiple glass/film-stack reflections are rejected. The SE data analysis applies an optical model consisting of a multilayer stack with bulk and interface layers. The dielectric functions epsilonfor the solar cell component materials were obtained by variable-angle and in-situ SE. Variability in the properties of the materials are introduced through free parameters in analytical expressions for the dielectric functions. In the SE analysis of the complete cell, a step-wise procedure ranks all free parameters of the model, including thicknesses and those defining the spectra in epsilon, according to their ability to reduce the root-mean-square deviation between simulated and measured SE spectra. The results for the best fit thicknesses compare well with electron microscopy. From the optical model, including all best-fit parameters, the solar cell quantum efficiency (QE) can be simulated without free parameters, and comparisons with QE measurements have enabled the identification of losses. The capabilities have wide applications in off-line photovoltaic module mapping and in-line monitoring of coated glass at intermediate stages of production. Mapping spectroscopic ellipsometry (M-SE) has been applied in this dissertation research as an optimization procedure for polycrystalline CdS/CdTe solar cell fabrication on TCO

  11. Report on sodium compatibility of advanced structural materials.

    SciTech Connect

    Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T.

    2012-07-09

    This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four

  12. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  13. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    SciTech Connect

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis; Fallgren, Andrew James; Jarman, Ken; Li, Shelly; Meier, Dave; Miller, Mike; Osburn, Laura Ann; Pereira, Candido; Dasari, Venkateswara Rao; Ticknor, Lawrence O.; Yoo, Tae-Sic

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  14. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    PubMed

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

  15. Te/C nanocomposites for Li-Te Secondary Batteries

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  16. Te/C nanocomposites for Li-Te Secondary Batteries.

    PubMed

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-22

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li(+)/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm(-3)), excellent cyclability (ca. 705 mA h cm(-3) over 100 cycles), and fast rate capability (ca. 550 mA h cm(-3) at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  17. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the

  18. Mishap risk control for advanced aerospace/composite materials

    NASA Technical Reports Server (NTRS)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  19. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    SciTech Connect

    Shu, Michael J.; Zalden, Peter; Chen, Frank; Weems, Ben; Chatzakis, Ioannis; Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S.; Hoffmann, Matthias C.; Wuttig, Matthias; Lindenberg, Aaron M.

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  20. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    SciTech Connect

    Poole, B R; Nelson, S D; Langdon, S

    2005-05-05

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.