Science.gov

Sample records for advanced techniques developed

  1. Advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1975-01-01

    The development of an operational computer program, the Procedures and Performance Program (PPP), is reported which provides a procedures recording and crew/vehicle performance monitoring capability. The PPP provides real time CRT displays and postrun hardcopy of procedures, difference procedures, performance, performance evaluation, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data, and via magnetic tape transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP.

  2. Advance crew procedures development techniques: Procedures generation program requirements document

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.

    1974-01-01

    The Procedures Generation Program (PGP) is described as an automated crew procedures generation and performance monitoring system. Computer software requirements to be implemented in PGP for the Advanced Crew Procedures Development Techniques are outlined.

  3. Continuation of advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Evans, M. E.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1976-01-01

    An operational computer program, the Procedures and Performance Program (PPP) which operates in conjunction with the Phase I Shuttle Procedures Simulator to provide a procedures recording and crew/vehicle performance monitoring capability was developed. A technical synopsis of each task resulting in the development of the Procedures and Performance Program is provided. Conclusions and recommendations for action leading to the improvements in production of crew procedures development and crew training support are included. The PPP provides real-time CRT displays and post-run hardcopy output of procedures, difference procedures, performance data, parametric analysis data, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data and via transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP. Interface is provided with the all digital trajectory program, the Space Vehicle Dynamics Simulator (SVDS) to support initial procedures timeline development.

  4. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  5. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  6. Techniques for developing approximate optimal advanced launch system guidance

    NASA Technical Reports Server (NTRS)

    Feeley, Timothy S.; Speyer, Jason L.

    1991-01-01

    An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

  7. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  8. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1994-01-01

    The effort, which was focused on the research and development of advanced materials for use in Thermal Protection Systems (TPS), has involved chemical and physical testing of refractory ceramic tiles, fabrics, threads and fibers. This testing has included determination of the optical properties, thermal shock resistance, high temperature dimensional stability, and tolerance to environmental stresses. Materials have also been tested in the Arc Jet 2 x 9 Turbulent Duct Facility (TDF), the 1 atmosphere Radiant Heat Cycler, and the Mini-Wind Tunnel Facility (MWTF). A significant part of the effort hitherto has gone towards modifying and upgrading the test facilities so that meaningful tests can be carried out. Another important effort during this period has been the creation of a materials database. Computer systems administration and support have also been provided. These are described in greater detail below.

  9. Developments and advances concerning the hyperpolarisation technique SABRE.

    PubMed

    Mewis, Ryan E

    2015-10-01

    To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. PMID:26264565

  10. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Lacson, Jamie; Collazo, Julian

    1997-01-01

    During the period June 1, 1996 through May 31, 1997, the main effort has been in the development of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested and evaluated for thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out by using many different instruments and methods, ranging from intensive elemental analysis to testing the physical attributes of a material. The material development concentrated on two key areas: (1) development of coatings for carbon/carbon composites, and (2) development of ultra-high temperature ceramics (UHTC). This report describes the progress made in these two areas of research during this contract period.

  11. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1995-01-01

    The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.

  12. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  13. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    SciTech Connect

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  14. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  15. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  16. Advanced imaging techniques for the study of plant growth and development

    PubMed Central

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P.; Benfey, Philip N.

    2014-01-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. PMID:24434036

  17. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In the case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of

  18. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub

  19. Development of Experimental Techniques Using LVP (Large Volume Press) at GSECARS Beamlines, Advanced Photon Source (in Japanese with English abstract)

    SciTech Connect

    Nishiyama, N.; Wang, Y.

    2009-09-09

    GSECARS (GeoSoilEnviroCARS, the University of Chicago) operates a bending magnet and an undulator beamlines at Sector 13, Advanced Photon Source. Experimental technique for High Pressure X-ray Tomographic Microscope (HPXTM) using monochromatized X-rays has been developed. The module for HPXTM also has shear deformation capability, which enables us to perform HPXTM experiments for microstructure developed by shear deformation under high pressure. A combination of Deformation DIA (D-DIA) and monochromatic X-rays has been developed for quantitative deformation experiments under pressure above 10 GPa. Deformation experiments of e-iron was performed at pressures up to 19 GPa and temperatures up to 700 K.

  20. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  1. Advanced radiographic imaging techniques.

    NASA Technical Reports Server (NTRS)

    Beal, J. B.; Brown, R. L.

    1973-01-01

    Examination of the nature and operational constraints of conventional X-radiographic and neutron imaging methods, providing a foundation for a discussion of advanced radiographic imaging systems. Two types of solid-state image amplifiers designed to image X rays are described. Operational theory, panel construction, and performance characteristics are discussed. A closed-circuit television system for imaging neutrons is then described and the system design, operational theory, and performance characteristics are outlined. Emphasis is placed on a description of the advantages of these imaging systems over conventional methods.

  2. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  3. Development of a corrosion detection experiment to evaluate conventional and advanced NDI techniques

    SciTech Connect

    Roach, D.

    1995-12-31

    The Aging Aircraft NDI Validation Center (AANC) was established by the Federal Aviation Administration Technical Center (FAATC) at Sandia National Laboratories in August of 1991. The goal of the AANC is to provide independent validation of technologies intended to enhance the structural inspection of aging commuter and transport aircraft. The deliverables from the AANC`s validation activities are assessments of the reliability of existing and emerging inspection technologies as well as analyses of the cost benefits to be derived from their implementation. This paper describes the methodology developed by the AANC to assess the performance of NDI techniques. In particular, an experiment being developed to evaluate corrosion detection devices will be presented. The experiment uses engineered test specimens, as well as complete aircraft test beds to provide metrics for NDI validation.

  4. Application and development of advanced Lorentz microscopy techniques for the study of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Beacham, Robert J.

    This PhD project presents an investigation into the development of magnetic imaging methods in the TEM and their application in imaging narrow domain walls in multilayer magnetic structures. Lorentz microscopy techniques are limited in quantitative magnetic imaging as this generally requires using scanning imaging modes which limits the capability of imaging dynamic processes. The first imaging method developed in this study is a phase gradient technique with the aim of producing quantitative magnetic contrast proportional to the magnetic induction of the sample whilst maintaining a live imaging mode. This method uses a specifically engineered, semi-electron-transparent graded wedge aperture to controllably perturb intensity in the back focal plane. The results of this study found that this method could produce magnetic contrast proportional to the sample induction, however the required gradient of the wedge aperture made this contrast close to the noise level with large associated errors. In the second part of this study we investigated the development of a technique aimed at gaining sub-microsecond temporal resolution within TEMs based on streak imaging. We are using ramped pulsed magnetic fields, applied across nanowire samples to both induce magnetic behaviour and detect the electron beam across the detector with respect to time. We are coupling this with a novel pixelated detector on the TEM in the form of a Medipix/Timepix chip capable of microsecond exposure times without adding noise. Running this detector in integral mode and allowing for practical limitations such as experiment time and aperture stability, the resultant streak images were taken in Fresnel, Foucault and low angle diffraction imaging modes. We found that while this method is theoretically viable, the limiting factor was the contrast of the magnetic signal in the streak and therefore the total image counts. Domain walls (DWs) in synthetic antiferromagnetically (SAF) coupled films patterned

  5. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  6. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-12-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ``builds in`` the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ``process capability`` is illustrated and a comparison of 10-keV x-ray and Co{sup 60} gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe`s Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  7. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  8. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S.; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M. )

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-kev x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co[sup 60] gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  9. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  10. Advanced metering techniques

    SciTech Connect

    Szydlowski, R.F.

    1993-01-01

    The goal of the US Department of Energy Federal Energy Management Program (FEMP) is to facilitate energy-efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools and procedures used to identify and evaluate efficiency improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy-use efficiency. To assist in implementing energy-efficiency measures, FEMP helps federal agencies with identifying efficiency opportunities and in implementing energy-efficiency and demand-side management programs at federal sites. As the lead laboratory for FEMP, Pacific Northwest Laboratory (PNL) provides technical assistance to federal agencies to better understand and characterize energy systems. The US Army Forces Command (FORSCOM) has tasked PNL to provide technical assistance to characterize and modernize energy systems at FORSCOM installations. As part of that technical assistance, PNL performed an in-depth examination of automatic meter-reading system technologies currently available. The operating characteristics and relative merits of all the major systems were reviewed in the context of applicability to federal installations. That review is documented in this report.

  11. Advance development of a technique for characterizing the thermomechanical properties of thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.

    1974-01-01

    The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.

  12. Advances in cell culture process development: tools and techniques for improving cell line development and process optimization.

    PubMed

    Sharfstein, Susan T

    2008-01-01

    At the 234th National Meeting of the American Chemical Society, held in Boston, MA, August 19-23, 2007, the ACS BIOT division held two oral sessions on Cell Culture Process Development. In addition, a number of posters were presented in this area. The critical issues facing cell culture process development today are how to effectively respond to the increase in product demands and decreased process timelines while maintaining robust process performance and product quality and responding to the Quality by Design initiative promulgated by the Food and Drug Administration. Two main areas were addressed in the presentations: first, to understand the effects of process conditions on productivity and product quality, and second, to achieve improved production cell lines. A variety of techniques to achieve these goals were presented, including automated flow cytometric analysis, a high-throughput cell analysis and selection method, transcriptional and epigenetic techniques for analysis of cell lines and cell culture systems, and novel techniques for glycoform analysis. PMID:18426245

  13. DEVELOPMENT OF ADVANCED IN SITU TECHNIQUES FOR CHEMISTRY MONITORING AND CORROSION MITIGATION IN SCWO ENVIRONMENTS

    EPA Science Inventory

    We propose to develop chemical and corrosion sensors for use in high subcritical and supercritical aqueous environments, to improve their precision and reliability, and to use them to characterize the fundamental properties of supercritical aqueous solutions. A better understandi...

  14. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  15. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  16. Advanced crew procedures development techniques: Procedures and performance program training plan

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.

    1975-01-01

    A plan developed to support the training of PPP users in the operations associated with PPP usage is described. This document contains an overview of the contents of each training session and a detailed outline to be used as the guideline for each session.

  17. Nuclear material investigations by advanced analytical techniques

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Kuri, G.; Martin, M.; Froideval, A.; Cammelli, S.; Orlov, A.; Bertsch, J.; Pouchon, M. A.

    2010-10-01

    Advanced analytical techniques have been used to characterize nuclear materials at the Paul Scherrer Institute during the last decade. The analysed materials ranged from reactor pressure vessel (RPV) steels, Zircaloy claddings to fuel samples. The processes studied included copper cluster build up in RPV steels, corrosion, mechanical and irradiation damage behaviour of PWR and BWR cladding materials as well as fuel defect development. The used advanced techniques included muon spin resonance spectroscopy for zirconium alloy defect characterization while fuel element materials were analysed by techniques derived from neutron and X-ray scattering and absorption spectroscopy.

  18. Advances in Procedural Techniques - Antegrade

    PubMed Central

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited “interventional” collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  19. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  20. Recent advancement of turbulent flow measurement techniques

    NASA Technical Reports Server (NTRS)

    Battle, T.; Wang, P.; Cheng, D. Y.

    1974-01-01

    Advancements of the fluctuating density gradient cross beam laser Schlieren technique, the fluctuating line-reversal temperature measurement and the development of the two-dimensional drag-sensing probe to a three-dimensional drag-sensing probe are discussed. The three-dimensionality of the instantaneous momentum vector can shed some light on the nature of turbulence especially with swirling flow. All three measured fluctuating quantities (density, temperature, and momentum) can provide valuable information for theoreticians.

  1. FINAL REPORT. DEVELOPMENT OF ADVANCED IN-SITU TECHNIQUES FOR CHEMISTRY MONITORING AND CORROSION MITIGATION IN SCWO ENVIRONMENTS

    EPA Science Inventory

    The principal objective of this work was to develop sensing technologies and corrosion monitoring techniques for use in Super Critical Water Oxidation (SCWO) systems. SCWO is currently being considered as a volume reduction technology for the pretreatment of Mixed Low Level Nucle...

  2. Development of an interatmospheric window wavelength (5-9 μm) infrared thermography with an advanced image processing technique

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Komiyama, Tatsuhito; Sakagami, Takahide; Kubo, Shiro

    2006-04-01

    Recently, deterioration of concrete structures before their design life has become a serious social problem in Japan. Nondestructive inspection techniques are required, for detecting defects and damages in concrete structures, such as subsurface void or delamination. As one of these techniques, the thermographic NDT can be applied as an effective NDT technique to inspect large area of the objective structure from distant place. In addition, it does not require any chemicals and application of physical excitation for inspection. However, the thermographic NDT has a shortcoming that the measurement results are affected by the reflection of atmospheric radiation due to the sunlight, sky or surrounding materials. Since most of the buildings in Japan are covered with luster materials with low emissivity, such as tile or mortal, infrared reflection on the surface is difficult to be neglected. To reduce the influence of these reflection noises, the infrared thermography with detectable wavelength from 5 to 8 μm, which coincides with absorption range of moisture, is utilized. In this research, a new infrared thermography with 5 to 8 μm wavelength range by applying a band pass filter and an uncooled microbolometer infrared array detector. Further, a new signal to noise (S/N) ratio improvement technique has been developed in order to compensate a deterioration of sensitivity due to the band pass filter.

  3. Avionics advanced development strategy

    NASA Technical Reports Server (NTRS)

    Dyer, D.

    1990-01-01

    Discussed here is the problem of how to put together an integrated, phased, and affordable avionics advanced development program that links and applies to operational, evolving, and developing programs/vehicles, as well as those in the planning phases. Collecting technology needs from individual programs/vehicles and proposed technology items from individual developers usually results in a mismatch and something that is unaffordable. A strategy to address this problem is outlined with task definitions which will lead to avionics advanced development items that will fit within an overall framework, prioritized to support budgeting, and support the scope of NASA space transportations needs.

  4. Time-correlated single photon counting: an advancing technique in a plate reader for assay development and high throughput screening

    NASA Astrophysics Data System (ADS)

    Näther, Dirk U.; Fenske, Roger; Hurteaux, Reynald; Majno, Sandra; Smith, S. Desmond

    2006-10-01

    A new plate reader (Nanotaurus) has been developed by Edinburgh Instruments that has the principle design features of a confocal microscope and utilises the technique of Time Correlated Single Photon Counting for data acquisition. The advantages of Fluorescence Lifetime Measurements in the nanosecond time scale and analysis methods to recover lifetime parameters are discussed based on experimental data. First working assays using changes of lifetime parameters are presented that clearly demonstrate the advantages of the new instrument for biochemical assays and show strong promise for cell-based assays, by utilising the independence of lifetime parameters from sample volume and concentration.

  5. Advanced Hydrogen Turbine Development

    SciTech Connect

    Marra, John

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  6. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  7. Advanced measurement techniques, part 1

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Carraway, Debra L.; Manuel, Gregory S.; Croom, Cynthia C.

    1987-01-01

    In modern laminar flow flight and wind tunnel research, it is important to understand the specific cause(s) of laminar to turbulent boundary layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The process of transition involves both the possible modes of disturbance growth, and the environmental conditioning of the instabilities by freestream or surface conditions. The possible modes of disturbance growth include viscous, inviscid, and modes which may bypass these natural ones. Theory provides information on the possible modes of disturbance amplification, but experimentation must be relied upon to determine which of those modes actually dominates the transition process in a given environment. The results to date of research on advanced devices and methods used for the study of transition phenomena in the subsonic and transonic flight and wind tunnel environments are presented.

  8. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  9. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  10. Infant Development: Recent Advances.

    ERIC Educational Resources Information Center

    Bremner, Gavin, Ed.; Slater, Alan, Ed.; Butterworth, George, Ed.

    Noting that the last 30 years have seen enormous increases in the understanding of infancy, this book examines the current state of knowledge regarding infant development. The book's contents stem from meetings of the British Infancy Research Group. Although the book was intended for advanced undergraduates, it would also be useful for advanced…

  11. Development of advanced image analysis techniques for the in situ characterization of multiphase dispersions occurring in bioreactors.

    PubMed

    Galindo, Enrique; Larralde-Corona, C Patricia; Brito, Teresa; Córdova-Aguilar, Ma Soledad; Taboada, Blanca; Vega-Alvarado, Leticia; Corkidi, Gabriel

    2005-03-30

    Fermentation bioprocesses typically involve two liquid phases (i.e. water and organic compounds) and one gas phase (air), together with suspended solids (i.e. biomass), which are the components to be dispersed. Characterization of multiphase dispersions is required as it determines mass transfer efficiency and bioreactor homogeneity. It is also needed for the appropriate design of contacting equipment, helping in establishing optimum operational conditions. This work describes the development of image analysis based techniques with advantages (in terms of data acquisition and processing), for the characterization of oil drops and bubble diameters in complex simulated fermentation broths. The system consists of fully digital acquisition of in situ images obtained from the inside of a mixing tank using a CCD camera synchronized with a stroboscopic light source, which are processed with a versatile commercial software. To improve the automation of particle recognition and counting, the Hough transform (HT) was used, so bubbles and oil drops were automatically detected and the processing time was reduced by 55% without losing accuracy with respect to a fully manual analysis. The system has been used for the detailed characterization of a number of operational conditions, including oil content, biomass morphology, presence of surfactants (such as proteins) and viscosity of the aqueous phase. PMID:15707687

  12. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  13. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    SciTech Connect

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  14. Advanced battery development

    NASA Astrophysics Data System (ADS)

    In order to promote national security by ensuring that the United States has an adequate supply of safe, assured, affordable, and environmentally acceptable energy, the Storage Batteries Division at Sandia National Laboratories (SNL), Albuquerque, is responsible for engineering development of advanced rechargeable batteries for energy applications. This effort is conducted within the Exploratory Battery Technology Development and Testing (ETD) Lead center, whose activities are coordinated by staff within the Storage Batteries Division. The ETD Project, directed by SNL, is supported by the U.S. Department of Energy, Office of Energy Systems Research, Energy Storage and Distribution Division (DOE/OESD). SNL is also responsible for technical management of the Electric Vehicle Advanced Battery Systems (EV-ABS) Development Project, which is supported by the U.S. Department of Energy's Office of Transportation Systems (OTS). The ETD Project is operated in conjunction with the Technology Base Research (TBR) Project, which is under the direction of Lawrence Berkeley Laboratory. Together these two projects seek to establish the scientific feasibility of advanced electrochemical energy storage systems, and conduct the initial engineering development on systems suitable for mobile and stationary commercial applications.

  15. Interpretation Techniques Development

    NASA Technical Reports Server (NTRS)

    Alford, W. L.

    1973-01-01

    The processes, algorithms and procedures for extraction and interpretation of ERTS-1 data are discussed. Analysis of data acquired temporally is possible through geometric correction, correlation, and registration techniques. The powerful techniques in image enhancement developed for the lunar and planetary programs are valuable for Earth Resources Survey programs. There is evidence that both optical and digital methods of spatial information extraction can provide valuable sources of data information the ERTS system. The techniques available, even for a limited number of bands and limited resolution can be effectively used to extract much of the information required by resource managers.

  16. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  17. Advanced strategic missile development

    NASA Astrophysics Data System (ADS)

    Strickler, R. L.

    1981-05-01

    The M-X program is taking two paths: (1) the current development and projected deployment of a survivable land based ICBM (the M-X) in a multiple protective structure system, and (2) a building block development of readiness posture and strategic futures technology that could be used for a wide range of projected needs in the event of major changes in the threat or the political climate. The blend of aerospace and civil engineering technologies which has resulted in the systems concept necessary to assure the continued survivability of the land based strategic missile force is summarized. Recent advanced technology development activities, which have been focused on systems upgrade options to the current ICBM force, basing options which may be required for special force elements, small missile options for airborne applications, penetration technology to counter SAM and ABM threats, and systems concepts for unique targeting requirements are reviewed.

  18. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  19. Gisting technique development

    NASA Astrophysics Data System (ADS)

    Bamberg, P. G.; Bahler, L. G.; Baker, J. M.; Kellett, H. G.

    1981-12-01

    This report documents the methods utilized to improve and simplify the procedure for operating reference templates and word models used in the key word recognition process. Commands necessary for the automatic generation of reference templates have been added and the procedure for word model generation has been automated. Test results show a modest performance improvement over previous methods. Recognition was improved with a 20-word English set from 33.5% to 41% operating at a threshold of 2.52 false alarms/hr/word. Techniques have also been developed for on-line reference generation that requires no auxiliary mass storage devices. These techniques are also described.

  20. Advances in Joining Techniques Used in Development of SPF/DB Titanium Sandwich Reinforced with Metal Matrices

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1985-01-01

    Three and four-sheet expanded titanium sandwich sheets have been developed at Douglas Aircraft Company, a division of McDonnell Douglas Corporation, under contract to NASA Langley Research Center. In these contracts, spot welding and roll seam welding are used to join the core sheets. These core sheets are expanded to the face sheets and diffusion bonded to form various type cells. The advantages of various cell shapes and the design parameters for optimizing the wing and fuselage concepts are discussed versus the complexity of the spot weld pattern. In addition, metal matrix composites of fibers in an aluminum matrix encapsulated in a titanium sheath are aluminum brazed successfully to the titanium sandwich face sheets. The strength and crack growth rate of the superplastic-formed/diffusion bonded (SPF/DB) titanium sandwich with and without the metal matrix composites are described.

  1. Development of an Advanced Technique for Mapping and Monitoring Sea and Lake Ice in Preparation for GOES-R Advanced Baseline Imager (ABI)

    NASA Astrophysics Data System (ADS)

    Nazari, R.; Temimi, M.; Khanbilvardi, R.; Romanov, P.

    2008-05-01

    In recent years, the uniqueness of the Earth's ice covered regions and their importance to the world is being increasingly recognized. They are considered vital and valuable for a variety of economic, environmental, and social reasons. Ice information can also improve weather and climate predictions. Observations show that Arctic ice is decreasing in both thickness and extent which will lead to the change in absorption of solar radiation and temperature of the earth. The increasing activity in ice-affected waters has led to a growing requirement for ice information and better mapping systems with improvements in both time and spatial resolution. A variety of Earth Observation sensors are used to map ice covered areas. Visible-Infrared sensors at moderate-resolution from polar orbiting satellites (NOAA-AVHRR, MODIS Aqua/ Terra) have been used extensively because of their easy accessibility. However, clouds, fog and low time resolutions limit the use of this type of sensor to fully meet operational ice mapping requirements, particularly in cloud- and fog ice zones. The primary objective of this research is to explore the potentials of mapping ice with the geostationary satellites which can provide a reasonably good time resolution and satisfactory spatial resolutions. The aim of this ongoing project is to develop an automated ice-mapping algorithm, which would make maximum use of GOES-R ABI's improved observing capabilities and to be the pioneer of creating daily ice maps from a geostationary satellite. Data collected by SEVIRI instrument onboard of Meteosat Second Generation (MSG) satellite have been used as a prototype. The Northern region of the Caspian Sea has been selected for algorithm development and calibration. The approach used in the algorithm development includes daily cloud-clear image compositing as well as pixel-by-pixel image classification using spectral criteria. All available spectral channels (reflectance and temperature) have been tested and used

  2. Development of cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It is pointed out that most advances of cosmic-ray physics have been directly related to the development of observational techniques. A review is presented of the history of the evolution of the techniques and equipment for the study of cosmic-ray physics, taking into account the new scientific advances accompanying each new development related to experimental technology. All of the early observations were performed by means of ionization chambers. These chambers had already been in use for a number of years, when they were first applied to the study of cosmic rays in the early years of this century. However, an application to the low-intensity cosmic radiation required special refinements. Attention is given to the design of suitable electrometers, the development of self-recording instruments, the 'tube counter', the development of the coincidence method, a cosmic-ray 'telescope', a magnetic lens for cosmic rays, an arrangement of Geiger-Mueller counters for the demonstration of secondary radiation, cloud chambers, scintillation counters, and air shower experiments.

  3. Advanced Hydrogen Turbine Development

    SciTech Connect

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  4. Advances in procedural techniques--antegrade.

    PubMed

    Wilson, William; Spratt, James C

    2014-05-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the "hybrid' approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited "interventional" collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  5. Developments in functional neuroimaging techniques

    SciTech Connect

    Aine, C.J.

    1995-03-01

    A recent review of neuroimaging techniques indicates that new developments have primarily occurred in the area of data acquisition hardware/software technology. For example, new pulse sequences on standard clinical imagers and high-powered, rapidly oscillating magnetic field gradients used in echo planar imaging (EPI) have advanced MRI into the functional imaging arena. Significant developments in tomograph design have also been achieved for monitoring the distribution of positron-emitting radioactive tracers in the body (PET). Detector sizes, which pose a limit on spatial resolution, have become smaller (e.g., 3--5 mm wide) and a new emphasis on volumetric imaging has emerged which affords greater sensitivity for determining locations of positron annihilations and permits smaller doses to be utilized. Electromagnetic techniques have also witnessed growth in the ability to acquire data from the whole head simultaneously. EEG techniques have increased their electrode coverage (e.g., 128 channels rather than 16 or 32) and new whole-head systems are now in use for MEG. But the real challenge now is in the design and implementation of more sophisticated analyses to effectively handle the tremendous amount of physiological/anatomical data that can be acquired. Furthermore, such analyses will be necessary for integrating data across techniques in order to provide a truly comprehensive understanding of the functional organization of the human brain.

  6. The application of advanced analytical techniques to direct coal liquefaction

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1991-12-31

    Consol is coordinating a program designed to bridge the gap between the advanced, modern techniques of the analytical chemist and the application of those techniques by the direct coal liquefaction process developer, and to advance our knowledge of the process chemistry of direct coal liquefaction. The program is designed to provide well-documented samples to researchers who are utilizing techniques potentially useful for the analysis of coal derived samples. The choice of samples and techniques was based on an extensive survey made by Consol of the present status of analytical methodology associated with direct coal liquefaction technology. Sources of information included process developers and analytical chemists. Identified in the survey are a number of broadly characterizable needs. These categories include a need for: A better understanding of the nature of the high molecular weight, non-distillable residual materials (both soluble and insoluble) in the process streams; improved techniques for molecular characterization, heteroatom and hydrogen speciation and a knowledge of the hydrocarbon structural changes across coal liquefaction systems; better methods for sample separation; application of advanced data analysis methods; the use of more advanced predictive models; on-line analytical techniques; and better methods for catalyst monitoring.

  7. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  8. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  9. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  10. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  11. Advanced subsystems development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.

  12. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  13. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  14. The Advanced Space Plant Culture Device with Live Imaging Technique

    NASA Astrophysics Data System (ADS)

    Zheng, Weibo; Zhang, Tao; Tong, Guanghui

    The live imaging techniques, including the color and fluorescent imags, are very important and useful for space life science. The advanced space plant culture Device (ASPCD) with live imaging Technique, developed for Chinese Spacecraft, would be introduced in this paper. The ASPCD had two plant experimental chambers. Three cameras (two color cameras and one fluorescent camera) were installed in the two chambers. The fluorescent camera could observe flowering genes, which were labeled by GFP. The lighting, nutrient, temperature controling and water recycling were all independent in each chamber. The ASPCD would beed applied to investigate for the growth and development of the high plant under microgravity conditions on board the Chinese Spacecraft.

  15. Advanced Interconnect Development

    SciTech Connect

    Yang, Z.G.; Maupin, G.; Simner, S.; Singh, P.; Stevenson, J.; Xia, G.

    2005-01-27

    The objectives of this project are to develop cost-effective, optimized materials for intermediate temperature SOFC interconnect and interconnect/electrode interface applications and identify and understand degradation processes in interconnects and at their interfaces with electrodes.

  16. Advanced telemedicine development

    SciTech Connect

    Forslund, D.W.; George, J.E.; Gavrilov, E.M.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop a Java-based, electronic, medical-record system that can handle multimedia data and work over a wide-area network based on open standards, and that can utilize an existing database back end. The physician is to be totally unaware that there is a database behind the scenes and is only aware that he/she can access and manage the relevant information to treat the patient.

  17. Advanced development: Fuels

    NASA Astrophysics Data System (ADS)

    Ramohalli, K.

    1981-05-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  18. Advanced development: Fuels

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1981-01-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  19. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  20. Advanced uncooled sensor product development

    NASA Astrophysics Data System (ADS)

    Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T.

    2015-06-01

    The partnership between RVS, Seek Thermal and Freescale Semiconductor continues on the path to bring the latest technology and innovation to both military and commercial customers. The partnership has matured the 17μm pixel for volume production on the Thermal Weapon Sight (TWS) program in efforts to bring advanced production capability to produce a low cost, high performance product. The partnership has developed the 12μm pixel and has demonstrated performance across a family of detector sizes ranging from formats as small as 206 x 156 to full high definition formats. Detector pixel sensitivities have been achieved using the RVS double level advanced pixel structure. Transition of the packaging of microbolometers from a traditional die level package to a wafer level package (WLP) in a high volume commercial environment is complete. Innovations in wafer fabrication techniques have been incorporated into this product line to assist in the high yield required for volume production. The WLP seal yield is currently > 95%. Simulated package vacuum lives >> 20 years have been demonstrated through accelerated life testing where the package has been shown to have no degradation after 2,500 hours at 150°C. Additionally the rugged assembly has shown no degradation after mechanical shock and vibration and thermal shock testing. The transition to production effort was successfully completed in 2014 and the WLP design has been integrated into multiple new production products including the TWS and the innovative Seek Thermal commercial product that interfaces directly to an iPhone or android device.

  1. Crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.

    1975-01-01

    The study developed requirements, designed, developed, checked out and demonstrated the Procedures Generation Program (PGP). The PGP is a digital computer program which provides a computerized means of developing flight crew procedures based on crew action in the shuttle procedures simulator. In addition, it provides a real time display of procedures, difference procedures, performance data and performance evaluation data. Reconstruction of displays is possible post-run. Data may be copied, stored on magnetic tape and transferred to the document processor for editing and documentation distribution.

  2. Advanced fuel cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Baumert, B.; Claar, T. D.; Fousek, R. J.; Huang, H. S.; Kaun, T. D.; Krumpelt, M.; Minh, N.; Mrazek, F. C.; Poeppel, R. B.

    1985-01-01

    Fuel cell research and development activities at Argonne National Laboratory (ANL) during the period January through March 1984 are described. These efforts have been directed principally toward seeking alternative cathode materials to NiO for molten carbonate fuel cells. Based on an investigation of the thermodynamically stable phases formed under cathode conditions, a number of prospective alternative cathode materials have been identified. From the list of candidates, LiFeO2, Li2MnO3, and ZnO were selected for further investigation. During this quarter, they were doped to promote conductivity and tested for solubility and ion migration in the cell environment. An investigation directed to understanding in cell densification of anode materials was initiated. In addition, calculations were made to evaluate the practicality of controlling sulfur accumulation in molten carbonate fuel cells by bleed off of a portion of the anode gas that could be recycled to the cathode. In addition, a model is being developed to predict the performance of solid oxide fuel cells as a function of cell design and operation.

  3. Advanced Launch Development Program status

    NASA Technical Reports Server (NTRS)

    Colgrove, Roger

    1990-01-01

    The Advanced Launch System is a joint NASA - Air Force program originally directed to define the concept for a modular family of launch vehicles, to continue development programs and preliminary design activities focused primarily on low cost to orbit, and to offer maturing technologies to existing systems. The program was restructed in the spring of 1990 as a result of funding reductions and renamed the Advanced Launch Development Program. This paper addresses the program's status following that restructuring and as NASA and the Air Force commence a period of deliberation over future space launch needs and the budgetary resources available to meet those needs. The program is currently poised to protect a full-scale development decision in the mid-1990's through the appropriate application of program resources. These resources are concentrated upon maintaining the phase II system contractor teams, continuing the Space Transportation Engine development activity, and refocusing the Advanced Development Program demonstrated activities.

  4. Advanced Radiation Detector Development

    SciTech Connect

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  5. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  6. Develop Your Questioning Techniques

    ERIC Educational Resources Information Center

    Blanton, Patricia

    2009-01-01

    How much thought have you given to what you want your students to gain from your class? Far too often the emphasis on factual content overshadows the development of conceptual understanding, and accountability issues force us to present a wide-ranging curriculum in a short time period. As a beginning teacher, you are probably being directed to…

  7. Advanced analysis techniques for uranium assay

    SciTech Connect

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.; Beard, C. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  8. Development of an advanced, high-frequency GPR technique for the assessment of concrete structures: from modeling predictions to experimental results

    NASA Astrophysics Data System (ADS)

    Cheilakou, Eleni; Matikas, Theodore E.

    2016-04-01

    The main objective of this paper is to develop a portable, advanced and high operating frequency GPR prototype system, which will be able to provide an increased sensitivity and resolution in terms of defects detectability at a penetration depth range up to 40-50 cm in concrete. For this purpose, the theoretical assessment of multiple GPR antenna-frequency approaches was initially performed using electromagnetic wave simulation tools for the propagation of radar waves within concrete, aiming to predict the required antenna frequency and characteristics that are most effective in detecting internal concrete elements and defects of interest found in realistic structures. Form the modeling results obtained, which are described in this paper, a portable, advanced, single-channel GPR system was developed, which uses a highfrequency shielded dipole antenna in monostatic arrangement and operates at a central operating frequency of 2600 MHz. Finally, the evaluation of the performance of the developed GPR technology was carried out under laboratory conditions, where concrete samples of varying dimensions and with different embedded structural features of known characteristics were tested. The validation results produced from this study indicated the high potential and efficiency of the developed GPR device to accurately detect internal concrete features with superior resolution and with sufficient penetration for concrete to be adequately resolved in depths up to 40 cm.

  9. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  10. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M.; Weng, C.K.; Lindsay, R.W.

    1992-06-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  11. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M. . Dept. of Nuclear Engineering); Weng, C.K. . Dept. of Mechanical Engineering); Lindsay, R.W. )

    1992-01-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  12. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  13. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  14. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  15. [The role of electronic techniques for advanced neuroelectrophysiology].

    PubMed

    Wang, Min; Zhang, Lijun; Cao, Maoyong

    2008-12-01

    The rapid development in the fields of electroscience, computer science, and biomedical engineering are propelling the electrophysiologyical techniques. Recent technological advances have made it possible to simultaneously record the activity of large numbers of neurons in awake and behaving animals using implanted extracellular electrodes. Several laboratories use chronically implanted electrode arrays in freely moving animals because they allow stable recordings of discriminated single neurons and/or field potentials from up to hundreds of electrodes over long time periods. In this review, we focus on the new technologies for neuroelectrophysiology. PMID:19166233

  16. Advanced computer modeling techniques expand belt conveyor technology

    SciTech Connect

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  17. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  18. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  19. Recent Advances in Beam Diagnostic Techniques

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  20. Development of advanced thermoelectric materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of an advanced thermoelectric material for radioisotope thermoelectric generator (RTG) applications is reported. A number of materials were explored. The bulk of the effort, however, was devoted to improving silicon germanium alloys by the addition of gallium phosphide, the synthesis and evaluation of lanthanum chrome sulfide and the formulation of various mixtures of lanthanum sulfide and chrome sulfide. It is found that each of these materials exhibits promise as a thermoelectric material.

  1. Advances in laparoscopic urologic surgery techniques

    PubMed Central

    Abdul-Muhsin, Haidar M.; Humphreys, Mitchell R.

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  2. Advances in laparoscopic urologic surgery techniques.

    PubMed

    Abdul-Muhsin, Haidar M; Humphreys, Mitchell R

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  3. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  4. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  5. Development and demonstration of techniques for reducing occupational radiation doses during refueling outages. Tasks 7A/7B. Advanced outage management and radiation exposure control

    SciTech Connect

    Not Available

    1985-03-01

    Objectives of Tasks 7A and 7B were to develop and demonstrate computer based systems to assist plant management and staff in utilizing information more effectively to reduce occupational exposures received as a result of refueling outages, and to shorten the duration of the outage. The Advanced Outage Management (AOM) Tool (Task 7A) is an automated outage planning system specifically designed to meet the needs of nuclear plant outage management. The primary objective of the AOM tool is to provide a computerized system that can manipulate the information typically associated with outage planning and scheduling to furnish reports and schedules that more accurately project the future course of the outage. The Radiation Exposure Control (REC) Tool (Task 7B) is a computerized personnel radiation exposure accounting and management system designed to enable nuclear plant management to project and monitor total personnel radiation exposure on a real-time basis. The two systems were designed to operate on the same computer system and interface through a common database that enables information sharing between plant organizations not typically interfaced. This interfacing provides outage planners with a means of incorporating occupational radiation exposure as a factor for making decisions on the course of an outage.

  6. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  7. Advanced airfoil design empirically based transonic aircraft drag buildup technique

    NASA Technical Reports Server (NTRS)

    Morrison, W. D., Jr.

    1976-01-01

    To systematically investigate the potential of advanced airfoils in advance preliminary design studies, empirical relationships were derived, based on available wind tunnel test data, through which total drag is determined recognizing all major aircraft geometric variables. This technique recognizes a single design lift coefficient and Mach number for each aircraft. Using this technique drag polars are derived for all Mach numbers up to MDesign + 0.05 and lift coefficients -0.40 to +0.20 from CLDesign.

  8. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  9. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  10. Recent advances in DNA sequencing techniques

    NASA Astrophysics Data System (ADS)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  11. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  12. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  13. Advanced mid-IR Solid-State Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong

    2005-01-01

    This paper reviews the state-of-the-art 2-micron solid-state laser developments. A world record one-Joule-per-pulse energy laser system and an advanced thermal management with fully conductive cooled laser technique are discussed

  14. Evaluation of Advanced Retrieval Techniques in an Experimental Online Catalog.

    ERIC Educational Resources Information Center

    Larson, Ray R.

    1992-01-01

    Discusses subject searching problems in online library catalogs; explains advanced information retrieval (IR) techniques; and describes experiments conducted on a test collection database, CHESHIRE (California Hybrid Extended SMART for Hypertext and Information Retrieval Experimentation), which was created to evaluate IR techniques in online…

  15. ARPA advanced fuel cell development

    SciTech Connect

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  16. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  17. Astronomy helps advance medical diagnosis techniques

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Effective treatment of cancer relies on the early detection and removal of cancerous cells. Unfortunately, this is when they are hardest to spot. In the case of breast cancer, now the most prevalent form of cancer in the United Kingdom, cancer cells tend to congregate in the lymph nodes, from where they can rapidly spread throughout the rest of the body. Current medical equipment can give doctors only limited information on tissue health. A surgeon must then perform an exploratory operation to try to identify the diseased tissue. If that is possible, the diseased tissue will be removed. If identification is not possible, the doctor may be forced to take away the whole of the lymphatic system. Such drastic treatment can then cause side effects, such as excessive weight gain, because it throws the patient's hormones out of balance. Now, members of the Science Payloads Technology Division of the Research and Science Support Department, at ESA's science, technology and engineering research centre (ESTEC) in the Netherlands, have developed a new X-ray camera that could make on-the-spot diagnoses and pinpoint cancerous areas to guide surgeons. Importantly, it would be a small device that could be used continuously during operations. "There is no photography involved in the camera we envisage. It will be completely digital, so the surgeon will study the whole lymphatic system and the potentially cancerous parts on his monitor. He then decides which parts he removes," says Dr. Tone Peacock, Head of the Science Payloads Technology Division. The ESA team were trying to find a way to make images using high-energy X-rays because some celestial objects give out large quantities of X-rays but little visible light. To see these, astronomers need to use X-ray cameras. Traditionally, this has been a bit of a blind spot for astronomers. ESA's current X-ray telescope, XMM-Newton, is in orbit now, observing low energy, so-called 'soft' X-rays. European scientists have always wanted to

  18. Astronomy helps advance medical diagnosis techniques

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Effective treatment of cancer relies on the early detection and removal of cancerous cells. Unfortunately, this is when they are hardest to spot. In the case of breast cancer, now the most prevalent form of cancer in the United Kingdom, cancer cells tend to congregate in the lymph nodes, from where they can rapidly spread throughout the rest of the body. Current medical equipment can give doctors only limited information on tissue health. A surgeon must then perform an exploratory operation to try to identify the diseased tissue. If that is possible, the diseased tissue will be removed. If identification is not possible, the doctor may be forced to take away the whole of the lymphatic system. Such drastic treatment can then cause side effects, such as excessive weight gain, because it throws the patient's hormones out of balance. Now, members of the Science Payloads Technology Division of the Research and Science Support Department, at ESA's science, technology and engineering research centre (ESTEC) in the Netherlands, have developed a new X-ray camera that could make on-the-spot diagnoses and pinpoint cancerous areas to guide surgeons. Importantly, it would be a small device that could be used continuously during operations. "There is no photography involved in the camera we envisage. It will be completely digital, so the surgeon will study the whole lymphatic system and the potentially cancerous parts on his monitor. He then decides which parts he removes," says Dr. Tone Peacock, Head of the Science Payloads Technology Division. The ESA team were trying to find a way to make images using high-energy X-rays because some celestial objects give out large quantities of X-rays but little visible light. To see these, astronomers need to use X-ray cameras. Traditionally, this has been a bit of a blind spot for astronomers. ESA's current X-ray telescope, XMM-Newton, is in orbit now, observing low energy, so-called 'soft' X-rays. European scientists have always wanted to

  19. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing

  20. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  1. Report on Advanced Detector Development

    SciTech Connect

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  2. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  3. Advanced imaging techniques for the detection of breast cancer.

    PubMed

    Jochelson, Maxine

    2012-01-01

    Mammography is the only breast imaging examination that has been shown to reduce breast cancer mortality. Population-based sensitivity is 75% to 80%, but sensitivity in high-risk women with dense breasts is only in the range of 50%. Breast ultrasound and contrast-enhanced breast magnetic resonance imaging (MRI) have become additional standard modalities used in the diagnosis of breast cancer. In high-risk women, ultrasound is known to detect approximately four additional cancers per 1,000 women. MRI is exquisitely sensitive for the detection of breast cancer. In high-risk women, it finds an additional four to five cancers per 100 women. However, both ultrasound and MRI are also known to lead to a large number of additional benign biopsies and short-term follow-up examinations. Many new breast imaging tools have improved and are being developed to improve on our current ability to diagnose early-stage breast cancer. These can be divided into two groups. The first group is those that are advances in current techniques, which include digital breast tomosynthesis and contrast-enhanced mammography and ultrasound with elastography or microbubbles. The other group includes new breast imaging platforms such as breast computed tomography (CT) scanning and radionuclide breast imaging. These are exciting advances. However, in this era of cost and radiation containment, it is imperative to look at all of them objectively to see which will provide clinically relevant additional information. PMID:24451711

  4. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  5. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines. PMID:18357673

  6. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  7. Developing a career advancement program.

    PubMed

    Pinette, Shirley L

    2003-01-01

    Have you ever asked yourself, "What will I be doing five or ten years from now?" "Will I be doing the same thing I'm doing right now?" How would you feel if the answer were "yes"? I often wonder if any of my employees think the same thing. If they do, and the answer is "yes," just how does that make them feel? A day's work for managers can run the gamut--from billing and coding, to patient issues, to staff performance reviews, to CQI, to JCAHO-just to name a few. We're NEVER bored. Can we say the same of our employees, or do they do the same thing day in and day out? If so, it's no wonder that attitudes may become negative and motivation and productivity may decline. What are we as healthcare managers and administrators doing to value and continually train our employees so that staff morale, productivity and patient satisfaction remain high? What are we doing to keep those highly motivated employees motivated and challenged so that they don't get bored and want to move across town to our neighboring hospital or healthcare center? What are we doing to stop our employees from developing the "same job, different day" attitude? A Career Ladder program holds many benefits and opportunities for the motivated employee who seeks and needs additional challenges on the job. It affords them opportunities to learn new skills, demonstrate initiative, accept additional responsibilities and possibly advance into new positions. It also affords them opportunities to grow, to be challenged and to feel like an important and valued member of the radiology team and radiology department. For the manager, a Career Ladder program affords opportunities to retain valuable employees, attract new high-quality employees and maintain a workforce of well-trained highly motivated employees, which in turn will provide high quality products and services to our customers. A Career Ladder program is a "win-win" situation for everyone. For the last twelve months, I have been working with other

  8. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  9. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  10. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  11. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  12. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  13. Advances in the Rising Bubble Technique for discharge measurement

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  14. Advances in Antiviral vaccine development

    PubMed Central

    Graham, Barney S.

    2013-01-01

    Summary Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. While early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  15. Advances in antiviral vaccine development.

    PubMed

    Graham, Barney S

    2013-09-01

    Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. Although early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high-throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  16. Development of Advanced Alloys using Fullerenes

    NASA Technical Reports Server (NTRS)

    Sims, J.; Wasz, M.; O'Brien, J.; Callahan, D. L.; Barrera, E. V.

    1994-01-01

    Development of advanced alloys using fullerenes is currently underway to produce materials for use in the extravehicular mobility unit (EMU). These materials will be directed toward commercial usages as they are continually developed. Fullerenes (of which the most common is C(sub 60)) are lightweight, nanometer size, hollow molecules of carbon which can be dispersed in conventional alloy systems to enhance strength and reduce weight. In this research, fullerene interaction with aluminum is investigated and a fullerene-reinforced aluminum alloy is being developed for possible use on the EMU. The samples were manufactured using standard commercial approaches including powder metallurgy and casting. Alloys have been processed having 1.3, 4.0 and 8.0 volume fractions of fullerenes. It has been observed that fullerene dispersion is related to the processing approach and that they are stable for the processing conditions used in this research. Emphasis will be given to differential thermal analysis and wavelength dispersive analysis of the processed alloys. These two techniques are particularly useful in determining the condition of the fullerenes during and after processing. Some discussion will be given as to electrical properties of fullerene-reinforced materials. Although the aluminum and other advanced alloys with fullerenes are being developed for NASA and the EMU, the properties of these materials will be of interest for commercial applications where specific Dual-Use will be given.

  17. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  18. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  19. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  20. Development of advanced seal verification

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kosten, Susan E.; Abushagur, Mustafa A.

    1992-01-01

    The purpose of this research is to develop a technique to monitor and insure seal integrity with a sensor that has no active elements to burn-out during a long duration activity, such as a leakage test or especially during a mission in space. The original concept proposed is that by implementing fiber optic sensors, changes in the integrity of a seal can be monitored in real time and at no time should the optical fiber sensor fail. The electrical components which provide optical excitation and detection through the fiber are not part of the seal; hence, if these electrical components fail, they can be easily changed without breaking the seal. The optical connections required for the concept to work does present a functional problem to work out. The utility of the optical fiber sensor for seal monitoring should be general enough that the degradation of a seal can be determined before catastrophic failure occurs and appropriate action taken. Two parallel efforts were performed in determining the feasibility of using optical fiber sensors for seal verification. In one study, research on interferometric measurements of the mechanical response of the optical fiber sensors to seal integrity was studied. In a second study, the implementation of the optical fiber to a typical vacuum chamber was implemented and feasibility studies on microbend experiments in the vacuum chamber were performed. Also, an attempt was made to quantify the amount of pressure actually being applied to the optical fiber using finite element analysis software by Algor.

  1. Weldability and joining techniques for advanced fossil energy system alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M.

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  2. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  3. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  4. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  5. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  6. Gastroenterology in developing countries: Issues and advances

    PubMed Central

    Mandeville, Kate L; Krabshuis, Justus; Ladep, Nimzing Gwamzhi; Mulder, Chris JJ; Quigley, Eamonn MM; Khan, Shahid A

    2009-01-01

    Developing countries shoulder a considerable burden of gastroenterological disease. Infectious diseases in particular cause enormous morbidity and mortality. Diseases which afflict both western and developing countries are often seen in more florid forms in poorer countries. Innovative techniques continuously improve and update gastroenterological practice. However, advances in diagnosis and treatment which are commonplace in the West, have yet to reach many developing countries. Clinical guidelines, based on these advances and collated in resource-rich environments, lose their relevance outside these settings. In this two-part review, we first highlight the global burden of gastroenterological disease in three major areas: diarrhoeal diseases, hepatitis B, and Helicobacter pylori. Recent progress in their management is explored, with consideration of future solutions. The second part of the review focuses on the delivery of clinical services in developing countries. Inadequate numbers of healthcare workers hamper efforts to combat gastroenterological disease. Reasons for this shortage are examined, along with possibilities for increased specialist training. Endoscopy services, the mainstay of gastroenterology in the West, are in their infancy in many developing countries. The challenges faced by those setting up a service are illustrated by the example of a Nigerian endoscopy unit. Finally, we highlight the limited scope of many clinical guidelines produced in western countries. Guidelines which take account of resource limitations in the form of “cascades” are advocated in order to make these guidelines truly global. Recognition of the different working conditions facing practitioners worldwide is an important step towards narrowing the gap between gastroenterology in rich and poor countries. PMID:19533805

  7. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  8. Advancing Techniques of Radiation Therapy for Rectal Cancer.

    PubMed

    Patel, Sagar A; Wo, Jennifer Y; Hong, Theodore S

    2016-07-01

    Since the advent of radiation therapy for rectal cancer, there has been continual investigation of advancing technologies and techniques that allow for improved dose conformality to target structures while limiting irradiation of surrounding normal tissue. For locally advanced disease, intensity modulated and proton beam radiation therapy both provide more highly conformal treatment volumes that reduce dose to organs at risk, though the clinical benefit in terms of toxicity reduction is unclear. For early stage disease, endorectal contact therapy and high-dose rate brachytherapy may be a definitive treatment option for patients who are poor operative candidates or those with low-lying tumors that desire sphincter-preservation. Finally, there has been growing evidence that supports stereotactic body radiotherapy as a safe and effective salvage treatment for the minority of patients that locally recur following trimodality therapy for locally advanced disease. This review addresses these topics that remain areas of active clinical investigation. PMID:27238474

  9. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  10. Advance techniques for monitoring human tolerance to positive Gz accelerations

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1973-01-01

    Tolerance to positive g accelerations was measured in ten normal male subjects using both standard and advanced techniques. In addition to routine electrocardiogram, heart rate, respiratory rate, and infrared television, monitoring techniques during acceleration exposure included measurement of peripheral vision loss, noninvasive temporal, brachial, and/or radial arterial blood flow, and automatic measurement of indirect systolic and diastolic blood pressure at 60-sec intervals. Although brachial and radial arterial flow measurements reflected significant cardiovascular changes during and after acceleration, they were inconsistent indices of the onset of grayout or blackout. Temporal arterial blood flow, however, showed a high correlation with subjective peripheral light loss.

  11. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  12. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  13. DEVELOPMENT OF THE ADVANCED UTILITY SIMULATION MODEL

    EPA Science Inventory

    The paper discusses the development of the Advanced Utility Simulation Model (AUSM), developed for the National Acid Precipitation Assessment Program (NAPAP), to forecast air emissions of pollutants from electric utilities. USM integrates generating unit engineering detail with d...

  14. Hybrid inverse lithography techniques for advanced hierarchical memories

    NASA Astrophysics Data System (ADS)

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

    2014-03-01

    greatly improve the ability of ILT to optimize advanced embedded memory designs while retaining significant hierarchy and cell design symmetry, therefore, have good turnaround time and CD uniformity. This paper will explain the enhancements which have been developed in order to overcome the traditional difficulties listed above. These enhancements are in the categories of local CD control, global chip processing options, process window benefit, turn-around time and hierarchy retention.

  15. Recent advances in sample preparation techniques for effective bioanalytical methods.

    PubMed

    Kole, Prashant Laxman; Venkatesh, Gantala; Kotecha, Jignesh; Sheshala, Ravi

    2011-01-01

    This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article. PMID:21154887

  16. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  17. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  18. Full Endoscopic Spinal Surgery Techniques: Advancements, Indications, and Outcomes

    PubMed Central

    Yue, James J.; Long, William

    2015-01-01

    Advancements in both surgical instrumentation and full endoscopic spine techniques have resulted in positive clinical outcomes in the treatment of cervical, thoracic, and lumbar spine pathologies. Endoscopic techniques impart minimal approach related disruption of non-pathologic spinal anatomy and function while concurrently maximizing functional visualization and correction of pathological tissues. An advanced understanding of the applicable functional neuroanatomy, in particular the neuroforamen, is essential for successful outcomes. Additionally, an understanding of the varying types of disc prolapse pathology in relation to the neuroforamen will result in more optimal surgical outcomes. Indications for lumbar endoscopic spine surgery include disc herniations, spinal stenosis, infections, medial branch rhizotomy, and interbody fusion. Limitations are based on both non spine and spine related findings. A high riding iliac wing, a more posteriorly located retroperitoneal cavity, an overly distal or proximally migrated herniated disc are all relative contra-indications to lumbar endoscopic spinal surgery techniques. Modifications in scope size and visual field of view angulation have enabled both anterior and posterior cervical decompression. Endoscopic burrs, electrocautery, and focused laser technology allow for the least invasive spinal surgical techniques in all age groups and across varying body habitus. Complications include among others, dural tears, dysesthsia, nerve injury, and infection. PMID:26114086

  19. The Advanced Software Development and Commercialization Project

    SciTech Connect

    Gallopoulos, E. . Center for Supercomputing Research and Development); Canfield, T.R.; Minkoff, M.; Mueller, C.; Plaskacz, E.; Weber, D.P.; Anderson, D.M.; Therios, I.U. ); Aslam, S.; Bramley, R.; Chen, H.-C.; Cybenko, G.; Gallopoulos, E.; Gao, H.; Malony, A.; Sameh, A. . Center for Supercomputing Research

    1990-09-01

    This is the first of a series of reports pertaining to progress in the Advanced Software Development and Commercialization Project, a joint collaborative effort between the Center for Supercomputing Research and Development of the University of Illinois and the Computing and Telecommunications Division of Argonne National Laboratory. The purpose of this work is to apply techniques of parallel computing that were pioneered by University of Illinois researchers to mature computational fluid dynamics (CFD) and structural dynamics (SD) computer codes developed at Argonne. The collaboration in this project will bring this unique combination of expertise to bear, for the first time, on industrially important problems. By so doing, it will expose the strengths and weaknesses of existing techniques for parallelizing programs and will identify those problems that need to be solved in order to enable wide spread production use of parallel computers. Secondly, the increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more accurate engineering models that involve fluid and structural dynamics. In order to realize the above two goals, we are considering two production codes that have been developed at ANL and are widely used by both industry and Universities. These are COMMIX and WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor design and safety and as a design tool for the casting industry. The second is a three-dimensional structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These codes are currently available for both sequential and vector computers only. Our main goal is to port and optimize these two codes on shared memory multiprocessors. In so doing, we shall establish a process that can be followed in optimizing other sequential or vector engineering codes for parallel processors.

  20. Space transfer vehicle avionics advanced development needs

    NASA Technical Reports Server (NTRS)

    Huffaker, C. F.

    1990-01-01

    The assessment of preliminary transportation program options for the exploration initiative is underway. The exploration initiative for the Moon and Mars is outlined by mission phases. A typical lunar/Mars outpost technology/advanced development schedule is provided. An aggressive and focused technology development program is needed as early as possible to successfully support these new initiatives. The avionics advanced development needs, plans, laboratory facilities, and benefits from an early start are described.

  1. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS PROJECT SUMMARY

    SciTech Connect

    Alvin, M A

    2010-06-18

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760C (2600-3200F) with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

  2. Manufacturing development of DC-10 advanced rudder

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1979-01-01

    The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.

  3. NLS Advanced Development - Launch operations

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.

    1992-01-01

    Attention is given to Autonomous Launch Operations (ALO), one of a number of the USAF's National Launch System (NLS) Launch Operations projects whose aim is to research, develop and apply new technologies and more efficient approaches toward launch operations. The goal of the ALO project is to develop generic control and monitor software for launch operation subsystems. The result is enhanced reliability of system design, and reduced software development and retention of expert knowledge throughout the life-cycle of the system.

  4. Advanced-fuel-cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Arons, R. M.; Dusek, J. T.; Fraioli, A. V.; Kucera, G. H.; Sim, J. W.; Smith, J. L.

    1982-08-01

    Fuel cell research and development activities are described. The efforts are directed toward: (1) understanding of component behavior in molten carbonate fuel cells, and (2) developing alternative concepts for components. The principal focus was on the development of sintered gamma LiAlO2 electrolyte supports, stable NiO cathodes, and hydrogen diffusion barriers. Cell tests were performed to assess diffusion barriers and to study cathode voltage relaxation following current interruption.

  5. Recent development in chromatographic techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromatographic techniques play a significant role in the determination of analytes in complex matrices, separating individual sample components prior to their detection. In the analysis of contaminants and chemical residues in foods, gas chromatography (GC) and liquid chromatography (LC) are two m...

  6. Recent advances in microscopic techniques for visualizing leukocytes in vivo

    PubMed Central

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  7. Recent advances in microscopic techniques for visualizing leukocytes in vivo.

    PubMed

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  8. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  9. Advanced Child Development. Reference Book.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This document examines many aspects of parenting, child care, and child development and is designed to be used in conjunction with a curriculum guide as part of secondary laboratory-oriented courses. The 12 chapters covering course subject matter are as follows: (1) parenting; (2) prenatal and neonatal development; (3) factors affecting prenatal…

  10. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  11. Advanced probabilistic method of development

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1987-01-01

    Advanced structural reliability methods are utilized on the Probabilistic Structural Analysis Methods (PSAM) project to provide a tool for analysis and design of space propulsion system hardware. The role of the effort at the University of Arizona is to provide reliability technology support to this project. PSAM computer programs will provide a design tool for analyzing uncertainty associated with thermal and mechanical loading, material behavior, geometry, and the analysis methods used. Specifically, reliability methods are employed to perform sensitivity analyses, to establish the distribution of a critical response variable (e.g., stress, deflection), to perform reliability assessment, and ultimately to produce a design which will minimize cost and/or weight. Uncertainties in the design factors of space propulsion hardware are described by probability models constructed using statistical analysis of data. Statistical methods are employed to produce a probability model, i.e., a statistical synthesis or summary of each design variable in a format suitable for reliability analysis and ultimately, design decisions.

  12. Development of advanced macrosphelides: potent anticancer agents.

    PubMed

    Paek, Seung-Mann

    2015-01-01

    Synthetic approaches to macrosphelide derivatives, based on medicinal chemistry, are summarized. This review contains conventional medicinal chemistry approaches, combinatorial chemistry, fluorous tagging techniques and affinity chromatography preparation. In addition, advances in their apoptosis-inducing activities are also included. PMID:25764486

  13. Advanced photovoltaic-trough development

    SciTech Connect

    Spencer, R.; Yasuda, K.; Merson, B.

    1982-04-01

    The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

  14. Advanced-fuel-cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Arons, R. M.; Dusek, J. T.; Fraioli, A. V.; Kucera, G. H.; Sim, J. W.; Smith, J. L.

    1982-06-01

    The fuel cell research and development activities at Argonne National Laboratory (ANL) for the period October through December 1980. These efforts have been directed toward (1) developing alternative concepts for components of molten carbonate fuel cells, and (2) improving understanding of component behavior. The principal focus has been on development of gamma-LiAlO2 sinters as electrolyte structures. Green bodies were prepared by tape casting and then sintering beta-LiAlO2; this has produced gamma-LiAlO2 sinters of 69% porosity. In addition, a cathode prepared by sintering lithiated nickel oxide was tested in a 10-cm square cell.

  15. Microfluidic Techniques for Development of 3D Vascularized Tissue

    PubMed Central

    Hasan, Anwarul; Paul, Arghya; Vrana, Nihal Engin; Zhao, Xin; Memic, Adnan; Hwang, Yu-Shik; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2014-01-01

    Development of a vascularized tissue is one of the key challenges for the successful clinical application of tissue engineered constructs. Despite the significant efforts over the last few decades, establishing a gold standard to develop three dimensional (3D) vascularized tissues has still remained far from reality. Recent advances in the application of microfluidic platforms to the field of tissue engineering have greatly accelerated the progress toward the development of viable vascularized tissue constructs. Numerous techniques have emerged to induce the formation of vascular structure within tissues which can be broadly classified into two distinct categories, namely (1) prevascularization-based techniques and (2) vasculogenesis and angiogenesis-based techniques. This review presents an overview of the recent advancements in the vascularization techniques using both approaches for generating 3D vascular structure on microfluidic platforms. PMID:24906345

  16. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  17. Advanced Emissions Control Development Program

    SciTech Connect

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  18. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  19. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  20. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  1. Advanced technology satellite demodulator development

    NASA Technical Reports Server (NTRS)

    Ames, Stephen A.

    1989-01-01

    Ford Aerospace has developed a proof-of-concept satellite 8 phase shift keying (PSK) modulation and coding system operating in the Time Division Multiple Access (TDMA) mode at a data range of 200 Mbps using rate 5/6 forward error correction coding. The 80 Msps 8 PSK modem was developed in a mostly digital form and is amenable to an ASIC realization in the next phase of development. The codec was developed as a paper design only. The power efficiency goal was to be within 2 dB of theoretical at a bit error rate (BER) of 5x10(exp 7) while the measured implementation loss was 4.5 dB. The bandwidth efficiency goal was 2 bits/sec/Hz while the realized bandwidth efficiency was 1.8 bits/sec/Hz. The burst format used a preamble of only 40 8 PSK symbol times including 32 symbols of all zeros and an eight symbol unique word. The modem and associated special test equipment (STE) were fabricated mostly on a specially designed stitch-weld board although a few of the highest rate circuits were built on printed circuit cards. All the digital circuits were ECL to support the clock rates of from 80 MHz to 360 MHz. The transmitter and receiver matched filters were square-root Nyquist bandpass filters realized at the 3.37 GHz i.f. The modem operated as a coherent system although no analog phase locked (PLL) loop was employed. Within the budgetary constraints of the program, the approach to the demodulator has been proven and is eligible to proceed to the next phase of development of a satellite demodulator engineering model. This would entail the development of an ASIC version of the digital portion of the demodulator, and MMIC version of the quadrature detector, and SAW Nyquist filters to realize the bandwidth efficiency.

  2. Cognitive Development: An Advanced Textbook

    ERIC Educational Resources Information Center

    Bornstein, Marc H., Ed.; Lamb, Michael E., Ed.

    2011-01-01

    This new text consists of parts of Bornstein and Lamb's Developmental Science, 6th edition along with new introductory material that as a whole provides a cutting edge and comprehensive overview of cognitive development. Each of the world-renowned contributors masterfully introduces the history and systems, methodologies, and measurement and…

  3. Advances in HIV Microbicide Development

    PubMed Central

    Olsen, Joanna S.; Easterhoff, David; Dewhurst, Stephen

    2014-01-01

    There is an urgent need for a way to control the spread of the global HIV pandemic. A microbicide, or topical drug applied to the mucosal environment to block transmission, is a promising HIV prevention strategy. The development of a safe and efficacious microbicide requires a thorough understanding of the mucosal environment and it's role in HIV transmission. Knowledge of the key events in viral infection identifies points at which the virus might be most effectively targeted by a microbicide. The cervicovaginal and rectal mucosa play an important role in the innate defense against HIV, and microbicides must not interfere with these functions. In this review we discuss the current research on HIV microbicide development. PMID:22098355

  4. Development in laser peening of advanced ceramics

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  5. Advanced microbial check valve development

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.

    1980-01-01

    A flight certified assembly identified as a Microbial Check Valve (MCV) was developed and tested. The MCV is a canister packed with an iodinated anionic exchange resin. The device is used to destroy organisms in a water stream as the water passes through the device. The device is equally effective for fluid flow in either direction and its primary method of organism removal is killing rather than filtering. The MCV was successfully developed for the space shuttle to: disinfect fuel cell water; and prevent back contamination of the stored potable water supply. One version of the device consists of a high residual iodinated resin bed that imparts approximately 2 ppm of iodine to the fuel cell water as it flows to the potable water tanks. A second version of the device consists of a low residual iodinated resin bed. One of these low residual beds is located at each use port in the potable water system for the dual purpose of removing some iodine from the potable water as it is dispensed and also to prevent back contamination of the potable supply.

  6. Surgical techniques for advanced stage pelvic organ prolapse.

    PubMed

    Brown, Douglas N; Strauchon, Christopher; Gonzalez, Hector; Gruber, Daniel

    2016-02-01

    Pelvic organ prolapse is an extremely common condition, with approximately 12% of women requiring surgical correction over their lifetime. This manuscript reviews the most recent literature regarding the comparative efficacy of various surgical repair techniques in the treatment of advanced stage pelvic organ prolapse. Uterosacral ligament suspension has similar anatomic and subjective outcomes when compared to sacrospinous ligament fixation at 12 months and is considered to be equally effective. The use of transvaginal mesh has been shown to be superior to native tissue vaginal repairs with respect to anatomic outcomes but at the cost of a higher complication rate. Minimally invasive sacrocolpopexy appears to be equivalent to abdominal sacrocolpopexy (ASC). Robot-assisted sacrocolpopexy (RSC) and laparoscopic sacrocolpopexy (LSC) appear as effective as abdominal sacrocolpopexy, however, prospective studies of comparing long-term outcomes of ASC, LSC, and RSC in relation to health care costs is paramount in the near future. Surgical correction of advanced pelvic organ prolapse can be accomplished via a variety of proven techniques. Selection of the correct surgical approach is a complex decision process and involves a multitude of factors. When deciding on the most suitable surgical intervention, the chosen route must be individualized for each patient taking into account the specific risks and benefits of each procedure. PMID:26448444

  7. Advanced Mass Memory Concept Development

    NASA Astrophysics Data System (ADS)

    Sanchez, A. V.; Furano, G.; Ciccone, M.; Taylor, C.; Tejedor, N. G.; Knoblauch, M.; Parra Espada, P.; PrietoMateo, M.

    2008-08-01

    Current Solid State Mass Memory (SSMM) developments for space borne data handling systems are ad-hoc designs tailored f or a specific mission or mission class. This is mainly due to the technological constraints given b y the use of specific memory chips (SRAM, DRAM, DDRAM and in future FLASH), b y the interfaces towards other DHS units (packetwire, spacewire, custom) and, by the services that are needed in the SSMM unit (file store, mailbox, compression). Those designs n ormally lack of re-usability, and involve significant customization once ported to different systems. Within this work we will demonstrate that existing space technologies (including, hardware, interfaces and SW) already cover the building blocks required for an implementation of a scalable and modular SSMM, providing also a greater level of redundancy a nd greater capabilities with respect to existing designs. Providing that standard interfaces agreed for each building block, complex subsystems may be constructed from relatively simple individual blocks. By applying this approach the SSMM will be developed from already existing satellite technology a dapted to provide standard interfaces. This design a pproach also allows any block within the SSMM to be replaced without affecting the remaining blocks, thus decreasing development times and increasing the re-usability and adaptability between different missions, not mentioning the inherent redundancy. A nother key aspect in the SSMM design is the number of services implemented within the unit and their purpose. Several trade-off can be performed for example: should the SSMM provide a file system? If so, which kind of file system should be implemented? S hall the file system wrap up and enhance the functionality of another storage systems (e.g. packet store)? W hich kind of technology should be implemented to increase the resilience to failure? And many more. T his paper is intended to present the current conceptual view of a SSMM using a building

  8. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  9. Advanced infrared laser modulator development

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.; Wagner, R.; Gilden, M.

    1984-01-01

    A parametric study was conducted to develop an electrooptic waveguide modulator for generating continuous tunable sideband power from an infrared CO2 laser. Parameters included were the waveguide configurations, microstrip dimensions device impedance, and effective dielectric constants. An optimum infrared laser modulator was established and was fabricated. This modulator represents the state-of-the-art integrated optical device, which has a three-dimensional topology to accommodate three lambda/4 step transformers for microwave impedance matching at both the input and output terminals. A flat frequency response of the device over 20 HGz or = 3 dB) was achieved. Maximum single sideband to carrier power greater than 1.2% for 20 W microwave input power at optical carrier wavelength of 10.6 microns was obtained.

  10. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    RICHARD A. WAGNER

    1998-09-04

    This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of

  11. Advanced Refrigerator/Freezer Technology Development Project

    NASA Technical Reports Server (NTRS)

    Cairelli, James E.; Geng, Steven M.

    1999-01-01

    The Advanced Refrigerator/Freezer (R/F) Technology Development Project was initiated in 1994, on the basis of recommendations of a team of NASA Scientists and engineers, who assessed the need for advanced technology to support future life and biomedical sciences space flight missions. The project, which was cofunded by NASA's Office of Aerospace Technology and Life and Biomedical Sciences & Applications Division, has two phases. In the Phase I Advanced R/F Technology Assessment, candidate technologies were identified and ranked, on the basis of a combination of their effect on system performance and their risk of developmental success. In Phase II Technology Development, the advanced technologies with the highest combined ranking, which could be accomplished within the budgetary constraints, were pursued. The effort has been mainly by contract, with a modest in-house effort at the NASA Lewis Research Center. Oceaneering Space Systems (OSS) of Houston, Texas, was selected as the prime contractor for both contract phases.

  12. Development of far infrared detection techniques

    NASA Technical Reports Server (NTRS)

    Rieke, George

    1993-01-01

    This grant supports the development of a variety of advanced far infrared detection techniques that will be used in future NASA missions such as the Space Infrared Telescope Facility (SIRTF). These studies span the wavelength region of 30-200 microns and include development of focal planes and electronics that would utilize them. Efforts reported here represent collaborations among the University of Arizona's Steward Observatory; Lawrence Berkeley Laboratories (LBL); and the University of California at Berkeley. The overall goal of this program is to demonstrate extremely high performance detectors for low background applications between 30-200 microns. For the 40-120 micron region, the program is developing a 32x32 filled detector array. Previous work has demonstrated the required performance with a Z-Plane array architecture; we are now upgrading construction facilities and techniques to increase yields and reliability. We have completed the initial tradeoff analysis for the interconnects between the detectors and and readouts. We found satisfactory performance for both Flex-Cable and Tape Automated Bonding (TAB) devices, but analysis showed that an all-sapphire device would not meet our requirements. In addition, the effort continued to develop readouts that can operate close to the detector element temperature; success would substantially improve the manufacturability of the arrays. For the 100-200 micron range, previous work has demonstrated good performance with individual detector elements of stressed Ge:Ga; current efforts are to increase the quantum efficiency of these devices. Work continues to discover how to construct an alternate type of long wave detector, Ge:B Blocked Impurity Band devices. Following descoping of SIRTF, we are closing out the bolometer and refrigerator development. We documented the optical designs and approaches developed previously to meet the specific requirements of these detector types in terms of modulation of the signals for

  13. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    NASA Technical Reports Server (NTRS)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  14. Characterization techniques for semiconductors and nanostructures: a review of recent advances

    NASA Astrophysics Data System (ADS)

    Acher, Olivier

    2015-01-01

    Optical spectroscopy techniques are widely used for the characterization of semiconductors and nanostructures. Confocal Raman microscopy is useful to retrieve chemical and molecular information at the ultimate submicrometer resolution of optical microscopy. Fast imaging capabilities, 3D confocal ability, and multiple excitation wavelengths, have increased the power of the technique while making it simpler to use for material scientists. Recently, the development of the Tip Enhanced Raman Spectroscopy (TERS) has opened the way to the use of Raman information at nanoscale, by combining the resolution of scanning probe microscopy and chemical selectivity of Raman spectroscopy. Significant advances have been reported in the field of profiling the atomic composition of multilayers, using the Glow Discharge Optical Emission Spectroscopy technique, including real-time determination of etched depth by interferometry. This allows the construction of precise atomic profiles of sophisticated multilayers with a few nm resolution. Ellipsometry is another widely used technique to determine the profile of multilayers, and recent development have provided enhanced spatial resolution useful for the investigation of patterned materials. In addition to the advances of the different characterization techniques, the capability to observe the same regions at micrometer scale at different stages of material elaboration, or with different instrument, is becoming a critical issue. Several advances have been made to allow precise re-localization and co-localization of observation with different complementary characterization techniques.

  15. Development of "active correlation" technique

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    With reaching to extremely high intensities of heavy-ion beams new requirements for the detection system of the Dubna Gas-Filled Recoil Separator (DGFRS) will definitely be set. One of the challenges is how to apply the "active correlations" method to suppress beam associated background products without significant losses in the whole long-term experiment efficiency value. Different scenarios and equations to develop the method according this requirement are under consideration in the present paper. The execution time to estimate the dead time parameter associated with the optimal choice of the life-time parameter is presented.

  16. Advanced Electrical Materials and Component Development

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2003-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give a description and status of the internal and external research sponsored by NASA Glenn Research Center on soft magnetic materials, dielectric materials and capacitors, and high quality silicon carbide (SiC) atomically smooth substrates. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will be briefly discussed.

  17. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    SciTech Connect

    Iliescu, Bogdan; Haskal, Ziv J.

    2012-08-15

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  18. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  19. Advanced remote handling developments for high radiation applications

    SciTech Connect

    Herndon, J.N.; Kring, C.T.; Feldman, M.J.; Kuban, D.P.; Martin, H.L.; Rowe, J.C.; Hamel, W.R.

    1985-01-01

    The Remote Control Engineering Task of the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, and installation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System.

  20. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  1. Benefits of advanced software techniques for mission planning systems

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  2. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  3. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  4. Policy issues inherent in advanced technology development

    SciTech Connect

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  5. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS

    SciTech Connect

    M. A. Alvin

    2009-06-12

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760ºC with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

  6. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  7. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  8. Development of an advanced boron injection tank

    SciTech Connect

    Yamaguchi, Kaori; Yuasa, Tetsushi; Makihara, Yoshiaki; Okabe, Kazuharu; Ichioka, Takehiko

    1996-12-31

    Mitsubishi has developed a hybrid safety system. This is an optimum combination of active and passive safety systems that provides improved safety, higher reliability, and better economy. As one option of the passive safety systems, Mitsubishi is studying a passive boron injection system that uses an advanced boron injection tank (BIT). The boron injection system to be developed in this study is passive and does not use nitrogen gas as a driving force. These features realize the higher reliability and eliminate a bad influence of the nitrogen gas during natural circulation cooling in the reactor coolant system (RCS). The driving force of the boric acid water injection in our advanced BIT is the boiling and steam expansion due to the depressurization inside the tank. Mitsubishi carried out tests to verify that the injection mechanism of the advanced BIT is basically feasible.

  9. Advanced IGCC/Hydrogen Gas Turbine Development

    SciTech Connect

    York, William; Hughes, Michael; Berry, Jonathan; Russell, Tamara; Lau, Y. C.; Liu, Shan; Arnett, Michael; Peck, Arthur; Tralshawala, Nilesh; Weber, Joseph; Benjamin, Marc; Iduate, Michelle; Kittleson, Jacob; Garcia-Crespo, Andres; Delvaux, John; Casanova, Fernando; Lacy, Ben; Brzek, Brian; Wolfe, Chris; Palafox, Pepe; Ding, Ben; Badding, Bruce; McDuffie, Dwayne; Zemsky, Christine

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  10. Prospects for the development of advanced reactors

    SciTech Connect

    Semenov, B.A.; Kupitz, J.; Cleveland, J.

    1992-12-31

    Energy supply is an important prerequisite for further socio-economic development, especially in developing countries where the per capita energy use is only a very small fraction of that in industrialized countries. Nuclear energy is an essentially unlimited energy resource with the potential to provide this energy in the form of electricity, district heat and process heat under environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide a tremendous amount of experience has been accumulated during development, licensing, construction and operation of nuclear power reactors. The experience forms a sound basis for further improvements. Nuclear programmes in many countries are addressing the development of advanced reactors which are intended to have better economics, higher reliability and improved safety in order to overcome the current concerns of nuclear power. Advanced reactors now being developed could help to meet the demand for new plants in developed and developing countries, not only for electricity generation, but also for district heating, desalination and for process heat. The IAEA, as the only global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced nuclear power programmes and offers assistance to countries with an interest in exploratory or research programmes.

  11. Advanced PPA Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Aske, James; Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA s Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development work.

  12. Advanced helmet tracking technology developments for naval aviation

    NASA Astrophysics Data System (ADS)

    Brindle, James H.

    1996-06-01

    There is a critical need across the Services to improve the effectiveness of aircrew within the crewstation by capitalizing on the natural psycho-motor skills of the pilot through the use of a variety of helmet-mounted visual display and control techniques. This has resulted in considerable interest and significant ongoing research and development efforts on the part of the Navy, as well as the Army and the Air Force, in the technology building blocks associated with this area, such as advanced head position sensing or head tracking technologies, helmet- mounted display optics and electronics, and advanced night vision or image intensification technologies.

  13. Developments at the Advanced Design Technologies Testbed

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    2003-01-01

    A report presents background and historical information, as of August 1998, on the Advanced Design Technologies Testbed (ADTT) at Ames Research Center. The ADTT is characterized as an activity initiated to facilitate improvements in aerospace design processes; provide a proving ground for product-development methods and computational software and hardware; develop bridging methods, software, and hardware that can facilitate integrated solutions to design problems; and disseminate lessons learned to the aerospace and information technology communities.

  14. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  15. Advanced Cell Development and Degradation Studies

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; R. C. O'Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  16. Development of Advanced Alarm System for SMART

    SciTech Connect

    Jang, Gwi-sook; Seoung, Duk-hyun; Suh, Sang-moon; Lee, Jong-bok; Park, Geun-ok; Koo, In-soo

    2004-07-01

    A SMART-Alarm System (SMART-AS) is a new system being developed as part of the SMART (System-integrated Modular Advanced Reactor) project. The SMART-AS employs modern digital technology to implement the alarm functions of the SMART. The use of modern digital technology can provide advanced alarm processing in which new algorithms such as a signal validation, advanced alarm processing logic and other features are applied to improve the control room man-machine interfaces. This paper will describe the design process of the SMART-AS, improving the system reliability and availability using the reliability prediction tool, design strategies regarding the human performance topics associated with a computer-based SMART-AS and the results of the performance analysis using a prototype of the SMART-AS. (authors)

  17. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  18. Advanced Technology Development for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

  19. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  20. Advanced Solid Rocket Motor nozzle development status

    NASA Astrophysics Data System (ADS)

    Kearney, W. J.; Moss, J. D.

    1993-06-01

    This paper presents a status update of the design and development of an improved nozzle for the Advanced Solid Rocket Motor (ASRM). The ASRM nozzle incorporates advanced state-of-the-art design features and materials which contribute to enhanced safety, reliability, performance, and producibility for the space shuttle boosters. During 1992 the nozzle design progressed through a successful Preliminary Design Review (PDR). An improved ablative material development program also culminated in the selection of new standard and low density carbon cloth phenolic prepreg offering reduced variability and improved process attributes. A subscale motor test series to evaluate new materials and design features was also completed. An overview update of the matured design characteristics, supporting analysis, key development-program results and program status and plans is reported.

  1. Advanced Microgravity Acceleration Measurement Systems Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2002-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project at the NASA Glenn Research Center is part of the Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical (MEMS) acceleration sensor systems to replace existing electromechanical-sensor-based systems presently used to assess relative gravity levels aboard spacecraft. These systems are used in characterizing both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data has cross-disciplinary utility to the microgravity life and physical sciences and the structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, while providing enhanced stability.

  2. Advances in Poly(4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique.

    PubMed

    Della Pina, C; Busacca, C; Frontera, P; Antonucci, P L; Scarpino, L A; Sironi, A; Falletta, E

    2016-05-01

    Polyaniline (PANI) nanofibers are drawing a great deal of interest from academia and industry due to their multiple applications, especially in biomedical field. PANI nanofibers were successfully electrospun for the first time by MacDiarmid and co-workers at the beginning of the millennium and since then many efforts have been addressed to improve their quality. However, traditional PANI prepared from aniline monomer shows some drawbacks, such as presence of toxic (i.e., benzidine) and inorganic (salts and metals) co-products, that complicate polymer post-treatment, and low solubility in common organic solvents, making hard its processing by electrospinning technique. Some industrial sectors, such as medical and biomedical, need to employ materials free from toxic and polluting species. In this regard, the oxidative polymerization of N-(4-aminophenyl)aniline, aniline dimer, to produce poly(4-aminodiphenylaniline), P4ADA, a kind of PANI, represents an innovative alternative to the traditional synthesis because the obtained polymer results free from carcinogenic and/or polluting co-products, and, moreover, more soluble than traditional PANI. This latter feature can be exploited to obtain P4ADA nanofibers by electrospinning technique. In this paper we report the advances obtained in the P4ADA nanofibers electrospinnig. A comparison among polyethylene oxide (PEO), polymethyl methacrylate (PMMA) and polystyrene (PS), as the second polymer to facilitate the electrospinning process, is shown. In order to increase the conductivity of P4ADA nanofibers, two strategies were adopted and compared: selective insulating binder removal from electrospun nanofibers by a rinsing tratment, afterwards optimizing the minimum amount of binder necessary for the electrospinning process. Moreover, the effect of PEO/P4ADA weight ratio on the fibers morphology and conductivity was highlighted. PMID:27483933

  3. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  4. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  5. Some advanced testing techniques for concentrator photovoltaic cells and lenses

    SciTech Connect

    Wiczer, J.J.; Chaffin, R.J.; Hibray, R.E.

    1982-09-01

    The authors describe two separate test techniques for evaluating concentrator photovoltaic components. For convenient characterization of concentrator solar cells, they have developed a method for measuring the entire illuminated I-V curve of a photovoltaic cell with a single flash of intense simulated sunlight. This method reduces the heat input to the cell and the time required to test a cell, thus making possible quick indoor measurements of photovoltaic conversion efficiency at concentrated illumination levels without the use of elaborate cell mounting fixtures or heat sink attachments. The other test method provides a technique to analyze the spatially dependent, spectral distribution of intense sunlight collected and focused by lenses designed for use in photovoltaic concentrator systems. This information is important in the design of multijunction photovoltaic receivers, secondary concentrators, and in optimizing the performance of conventional silicon cell concentrator systems.

  6. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    PubMed

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

    2012-09-01

    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  7. Pediatric Cardiopulmonary Resuscitation: Advances in Science, Techniques, and Outcomes

    PubMed Central

    Topjian, Alexis A.; Berg, Robert A.; Nadkarni, Vinay M.

    2009-01-01

    More than 25% of children survive to hospital discharge after in-hospital cardiac arrests, and 5% to 10% survive after out-of-hospital cardiac arrests. This review of pediatric cardiopulmonary resuscitation addresses the epidemiology of pediatric cardiac arrests, mechanisms of coronary blood flow during cardiopulmonary resuscitation, the 4 phases of cardiac arrest resuscitation, appropriate interventions during each phase, special resuscitation circumstances, extracorporeal membrane oxygenation cardiopulmonary resuscitation, and quality of cardiopulmonary resuscitation. The key elements of pathophysiology that impact and match the timing, intensity, duration, and variability of the hypoxic-ischemic insult to evidence-based interventions are reviewed. Exciting discoveries in basic and applied-science laboratories are now relevant for specific subpopulations of pediatric cardiac arrest victims and circumstances (eg, ventricular fibrillation, neonates, congenital heart disease, extracorporeal cardiopulmonary resuscitation). Improving the quality of interventions is increasingly recognized as a key factor for improving outcomes. Evolving training strategies include simulation training, just-in-time and just-in-place training, and crisis-team training. The difficult issue of when to discontinue resuscitative efforts is addressed. Outcomes from pediatric cardiac arrests are improving. Advances in resuscitation science and state-of-the-art implementation techniques provide the opportunity for further improvement in outcomes among children after cardiac arrest. PMID:18977991

  8. Advanced techniques for constrained internal coordinate molecular dynamics.

    PubMed

    Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-04-30

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  9. Advanced Techniques for Constrained Internal Coordinate Molecular Dynamics

    PubMed Central

    Wagner, Jeffrey R.; Balaraman, Gouthaman S.; Niesen, Michiel J. M.; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle and torsional coordinates instead of a Cartesian coordinate representation. Freezing high frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed in order to make the CICMD method robust and widely usable. In this paper we have designed a new framework for 1) initializing velocities for non-independent CICMD coordinates, 2) efficient computation of center of mass velocity during CICMD simulations, 3) using advanced integrators such as Runge-Kutta, Lobatto and adaptive CVODE for CICMD simulations, and 4) cancelling out the “flying ice cube effect” that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this paper, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided “freezing and thawing” of degrees of freedom in the molecule on the fly during MD simulations, and is shown to fold four proteins to their native topologies. With these advancements we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  10. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  11. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  12. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  13. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  14. Advances in dental veneers: materials, applications, and techniques

    PubMed Central

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers. PMID:23674920

  15. Advances in dental local anesthesia techniques and devices: An update

    PubMed Central

    Saxena, Payal; Gupta, Saurabh K.; Newaskar, Vilas; Chandra, Anil

    2013-01-01

    Although local anesthesia remains the backbone of pain control in dentistry, researches are going to seek new and better means of managing the pain. Most of the researches are focused on improvement in the area of anesthetic agents, delivery devices and technique involved. Newer technologies have been developed that can assist the dentist in providing enhanced pain relief with reduced injection pain and fewer adverse effects. This overview will enlighten the practicing dentists regarding newer devices and methods of rendering pain control comparing these with the earlier used ones on the basis of research and clinical studies available. PMID:24163548

  16. Advanced techniques for characterization of ion beam modified materials

    DOE PAGESBeta

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  17. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  18. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  19. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  20. Advanced Cell Culture Techniques for Cancer Drug Discovery

    PubMed Central

    Lovitt, Carrie J.; Shelper, Todd B.; Avery, Vicky M.

    2014-01-01

    Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor. PMID:24887773

  1. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  2. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  3. Astronomy Development in Nigeria: Challenges and Advances

    NASA Astrophysics Data System (ADS)

    Okwe Chibueze, James

    2015-01-01

    Nigeria evidently has huge potentials to develop a strong astronomy community. Much of the strength lies in the great number of intelligent students with the potential of becoming good astronomers. Sadly, astronomy development in Nigeria has stagnated in the past decades owing to poor funding and/or indifferent attitude of the funding bodies, research-unfriendly environment, and non-existence of facilities. Currently, efforts toward fuelling advancement in astronomy are focused on building 'critical mass', establishing collaborations with universities/astronomy institutes outside Nigeria, converting out-of-use communication antennas into radio telescopes, and acquiring out-of-use telescopes for educational and low-level research purposes.

  4. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  5. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect

    Scharf, Mesa P.; Bower, Ward Isaac; Mills-Price, Michael A.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  6. Advanced heat pump research and development

    NASA Astrophysics Data System (ADS)

    Kuliasha, M. A.

    The Office of Building Energy Research and Development of the U.S. Department of Energy (DOE), has been funding R&D in advanced heat pumps and appliances since 1976. Much of that research has been managed for DOE by the Oak Ridge National Laboratory (ORNL). The objective of the Building Equipment Research (BER) program at ORNL has been to generate new concepts and develop a technology base for improving the energy efficiency and load characteristics of energy conversion equipment used in residential and commercial buildings. The research being pursued to achieve these objectives falls under three general areas: thermally activated heat pumps (TAHP), refrigeration systems, and building equipment systems. The TAHP work is concentrated on three technologies: (1) absorption heat pumps; (2) Stirling engine-driven heat pumps; and (3) internal combustion (IC) engine-driven heat pumps. Major project areas in refrigeration systems research include electric heat pumps, ground-coupled heat pumps, and refigerant mixtures. In the building equipment systems areas, project areas include advanced distribution systems, advanced insulation for appliances, and commercial building equipment.

  7. The advanced software development workstation project

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  8. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  9. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  10. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  11. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  12. Development of advanced acreage estimation methods

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1980-01-01

    The use of the AMOEBA clustering/classification algorithm was investigated as a basis for both a color display generation technique and maximum likelihood proportion estimation procedure. An approach to analyzing large data reduction systems was formulated and an exploratory empirical study of spatial correlation in LANDSAT data was also carried out. Topics addressed include: (1) development of multiimage color images; (2) spectral spatial classification algorithm development; (3) spatial correlation studies; and (4) evaluation of data systems.

  13. The advanced technology development center (ATDC)

    NASA Astrophysics Data System (ADS)

    Clements, Gregory R.

    2002-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a ``national resource'' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets: this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area (Phase 1); a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount (Phase 2); ``Iron Rocket'' Test Demonstrator (Phase 3); a Processing Facility with a Checkout and Control System (Phase 4); and Future Infrastructure Developments (Phase 5). Initial ATDC development will be completed in 2006. .

  14. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  15. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  16. The TPS Advanced Development Project for CEV

    NASA Technical Reports Server (NTRS)

    Reuther, James; Wercinski, Paul; Venkatapathy, Ethiraj; Ellerby, Don; Raiche, George; Bowman, Lynn; Jones, Craig; Kowal, John

    2006-01-01

    The CEV TPS Advanced Development Project (ADP) is a NASA in-house activity for providing two heatshield preliminary designs (a Lunar direct return as well as a LEO only return) for the CEV, including the TPS, the carrier structure, the interfaces and the attachments. The project s primary objective is the development of a single heatshield preliminary design that meets both Lunar direct return and LEO return requirements. The effort to develop the Lunar direct return capable heatshield is considered a high risk item for the NASA CEV development effort due to the low TRL (approx. 4) of the candidate TPS materials. By initiating the TPS ADP early in the development cycle, the intent is to use materials analysis and testing in combination with manufacturing demonstrations to reduce the programmatic risk of using advanced TPS technologies in the critical path for CEV. Due to the technical and schedule risks associated a Lunar return heatshield, the ADP will pursue a parallel path design approach, whereby a back-up TPS/heatshield design that only meets LEO return requirements is also developed. The TPS materials and carrier structure design concept selections will be based on testing, analysis, design and evaluation of scalability and manufacturing performed under the ADP. At the TPS PDR, the preferred programmatic strategy is to transfer the continued (detailed) design, development, testing and evaluation (DDT&E) of both the Lunar direct and LEO return designs to a government/prime contractor coordinated sub-system design team. The CEV prime contractor would have responsibility for the continued heatshield sub-system development. Continued government participation would include analysis, testing and evaluation as well as decision authority at TPS Final System Decision (FSD) (choosing between the primary and back-up heatshields) occurring between TPS PDR and TPS Critical Design Review (CDR). After TPS FSD the prime CEV contractor will complete the detailed design

  17. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  18. Develop Advanced Nonlinear Signal Analysis Topographical Mapping System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1997-01-01

    During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.

  19. [Recent advances in the techniques of protein-protein interaction study].

    PubMed

    Wang, Ming-Qiang; Wu, Jin-Xia; Zhang, Yu-Hong; Han, Ning; Bian, Hong-Wu; Zhu, Mu-Yuan

    2013-11-01

    Protein-protein interactions play key roles in the development of organisms and the response to biotic and abiotic stresses. Several wet-lab methods have been developed to study this challenging area,including yeast two-hybrid system, tandem affinity purification, Co-immunoprecipitation, GST Pull-down, bimolecular fluorescence complementation, fluorescence resonance energy transfer and surface plasmon resonance analysis. In this review, we discuss theoretical principles and relative advantages and disvantages of these techniques,with an emphasis on recent advances to compensate for limitations. PMID:24579310

  20. Advanced Electric Traction System Technology Development

    SciTech Connect

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  1. Advanced nickel-hydrogen spacecraft battery development

    NASA Astrophysics Data System (ADS)

    Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.

    1994-02-01

    Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.

  2. Advanced nickel-hydrogen spacecraft battery development

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.

    1994-01-01

    Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.

  3. Challenges in the Development of Advanced Reactors

    SciTech Connect

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  4. Advanced cryogenic propellant tank development status

    NASA Technical Reports Server (NTRS)

    Scholz, E. F.; Loechel, L. W.; Roberts, M. O.

    1992-01-01

    The design and development of cryogenic propellant tanks with reduced weight and production costs is described with reference to applications for the National Launch System. The development program focused on the use of an aluminum-lithium alloy to demonstrate the production capability, manufacturability, and strength inherent in the novel material. Other key parameters for the alloy include fracture toughness, stress-corrosion resistance, and conformance to NASA specifications for cryogenic propellant tanks. The commercially produced aluminum-lithium alloy product forms are shown to operate acceptably in the temperature range for cryogenic propellant tanks. The alloy under consideration and the tank design are important advances in the development of ultralightweight launch-vehicle structures.

  5. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  6. Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

  7. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  8. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  9. Modulation/demodulation techniques for satellite communications. Part 3: Advanced techniques. The nonlinear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.

  10. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  11. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  12. Development of ASTM standards in support of advanced ceramics development

    SciTech Connect

    Brinkman, C.R.; Quinn, G.D.; McClung, R.W.

    1993-01-01

    The ASTM Committee C-28 on Advanced Ceramics was organized in 1986 when it became apparent that ceramics were being considered for extensive use in such applications as heat engines in the automotive and aerospace industries. It was determined that these standards should be written for the production, inspection, testing, data analysis, reliability, and probabilistic design for utilization of advanced ceramics. Advanced ceramics include both monolithic and composite materials. The ASTM Committee C-28 is organized into five subcommittees as follows: Properties and performance, design and evaluation, characterization and processing, ceramic composites, and nomenclature. A summary overview is given of work performed to date and ongoing efforts in developing standards by these various subcommittees.

  13. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  14. Development of EMT, an advanced PIE apparatus

    SciTech Connect

    Nishino, Yasuharu; Amano, Hidetoshi; Kikuchi, Akira; Tashiro, Shingo

    1990-01-01

    The investigation of pellet/cladding interaction (PCI) and stress corrosion cracking (SCC) behavior in fuel cladding continues to be important in evaluating the integrity of light water reactor fuel rods. Particularly in high-burnup fuel, the possibility of SCC failure in the cladding is increased by severe pellet/cladding contact due to swelling, creep, and so on. To investigate SCC behavior in a fuel rod, an advanced postirradiation examination apparatus, the expanding mandrel test (EMT), was developed at the Reactor Fuel Examination Facility of the Japan Atomic Energy Research Institute. The apparatus tests local deformation by simulating the ridge formation in fuel rods in a reactor. This paper describes the technical development of the EMT apparatus, focusing on remote handling and automatic control.

  15. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  16. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  17. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie; Stetson, Howard K.

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  18. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  19. Advanced high temperature static strain sensor development

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.

    1986-01-01

    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.

  20. In-flight aeroelastic measurement technique development

    NASA Astrophysics Data System (ADS)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2003-11-01

    The initial concept and development of a low-cost, adaptable method for the measurement of static and dynamic aeroelastic deformation of aircraft during flight testing is presented. The method is adapted from a proven technique used in wind tunnel testing to measure model deformation, often referred to as the videogrammetric model deformation (or VMD) technique. The requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the proposed measurements and differences compared with that used for wind tunnel testing is given. Several error sources and their effects are identified. Measurement examples using the new technique, including change in wing twist and deflection as a function of time, from an F/A-18 research aircraft at NASA's Dryden Flight Research Center are presented.

  1. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  2. Recent advances in the surface forces apparatus (SFA) technique

    NASA Astrophysics Data System (ADS)

    Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H.

    2010-03-01

    The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

  3. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  4. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  5. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  6. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    PubMed

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  7. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  8. Development of Advanced Small Hydrogen Engines

    SciTech Connect

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  9. Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

  10. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  11. Recent developments in monoclonal antibody radiolabeling techniques

    SciTech Connect

    Srivastava, S.C.; Mease, R.C.

    1989-01-01

    Monoclonal antibodies (MAbs) have shown the potential to serve as selective carriers of radionuclides to specific in vivo antigens. Accordingly, there has been an intense surge of research activity in an effort to develop and evaluate MAb-based radiopharmaceuticals for tumor imaging (radioimmunoscintigraphy) and therapy (radioimmunotherapy), as well as for diagnosing nonmalignant diseases. A number of problems have recently been identified, related to the MAbs themselves and to radiolabeling techniques, that comprise both the selectivity and the specificity of the in vivo distribution of radiolabeled MAbs. This paper will address some of these issues and primarily discuss recent developments in the techniques for radiolabeling monoclonal antibodies that may help resolve problems related to the poor in vivo stability of the radiolabel and may thus produce improved biodistribution. Even though many issues are identical with therapeutic radionuclides, the discussion will focus mainly on radioimmunoscintigraphic labels. 78 refs., 6 tabs.

  12. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    SciTech Connect

    Garner, F.A.; Odette, G.R.

    1980-01-01

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs.

  13. Plasma Diagnostics Development for Advanced Rocket Engines

    NASA Astrophysics Data System (ADS)

    Glover, Timothy; Kittrell, Carter; Chan, Anthony; Chang-Diaz, Franklin

    2000-10-01

    The VASIMR (Variable Specific Impulse Magnetoplasma Rocket) engine is a next-generation rocket engine under development at the Johnson Space Center's Advanced Space Propulsion Laboratory. With an exhaust velocity up to 50 times that of chemical rocket engines such as the Space Shuttle Main Engine, the VASIMR concept promises fast, efficient interplanetary flight. Rice University has participated in VASIMR research since 1996 and at present is developing two new diagnostic probes: a retarding potential analyzer to measure the velocity of ions in the rocket's exhaust, and a moveable optical probe to examine the spectrum of the rocket's helicon plasma source. In support of the probe development, a test facility is under construction at Rice, consisting of a small electric rocket engine firing into a 2-m vacuum chamber. This engine, the MPD (magnetoplasmadynamic) thruster, dates from the 1960's and provides a well-characterized source plasma for testing of the probes under development. We present details of the ion energy analyzer and the facility under construction at Rice.

  14. Advanced development in chemical analysis of Cordyceps.

    PubMed

    Zhao, J; Xie, J; Wang, L Y; Li, S P

    2014-01-01

    Cordyceps sinensis, also called DongChongXiaCao (winter worm summer grass) in Chinese, is a well-known and valued traditional Chinese medicine. In 2006, we wrote a review for discussing the markers and analytical methods in quality control of Cordyceps (J. Pharm. Biomed. Anal. 41 (2006) 1571-1584). Since then this review has been cited by others for more than 60 times, which suggested that scientists have great interest in this special herbal material. Actually, the number of publications related to Cordyceps after 2006 is about 2-fold of that in two decades before 2006 according to the data from Web of Science. Therefore, it is necessary to review and discuss the advanced development in chemical analysis of Cordyceps since then. PMID:23688494

  15. Advanced biomaterials development from "natural products".

    PubMed

    Baier, R E

    1988-04-01

    Natural substances and structures can serve increasingly well as biomedical products, given recent advances in understanding of requirements for biocompatibility and of methods for their preservation and surface tailoring. A successful example is the derivation of limb salvaging vessels, used in arterial reconstructive surgery, from human umbilical cords. There are numerous opportunities for additional product development from the umbilical cords' main ingredient, Wharton's gel, ranging from biolubricants to wound-healing aids. Major problems yet to be overcome with natural starting materials are their propensity for calcification and eventual biodeterioration. Surface modification of biomaterials to exhibit desired degrees of interaction with contacting viable tissues promises the greatest beneficial results. General principles of bioadhesion have broad applicability, predicting material behavior in environments as diverse as blood, saliva, and seawater. PMID:3058928

  16. Development of advanced composite ceramic tool material

    SciTech Connect

    Huang Chuanzhen; Ai Xing

    1996-08-01

    An advanced ceramic cutting tool material has been developed by means of silicon carbide whisker (SiCw) reinforcement and silicon carbide particle (SiCp) dispersion. The material has the advantage of high bending strength and fracture toughness. Compared with the mechanical properties of Al{sub 2}O{sub 3}/SiCp(AP), Al{sub 2}O{sub 3}/SiCw(JX-1), and Al{sub 2}O{sub 3}/SiCp/SiCw(JX-2-I), it confirms that JX-2-I composites have obvious additive effects of both reinforcing and toughening. The reinforcing and toughening mechanisms of JX-2-I composites were studied based on the analysis of thermal expansion mismatch and the observation of microstructure. The cutting performance of JX-2-I composites was investigated primarily.

  17. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  18. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  19. A Secure Test Technique for Pipelined Advanced Encryption Standard

    NASA Astrophysics Data System (ADS)

    Shi, Youhua; Togawa, Nozomu; Yanagisawa, Masao; Ohtsuki, Tatsuo

    In this paper, we presented a Design-for-Secure-Test (DFST) technique for pipelined AES to guarantee both the security and the test quality during testing. Unlike previous works, the proposed method can keep all the secrets inside and provide high test quality and fault diagnosis ability as well. Furthermore, the proposed DFST technique can significantly reduce test application time, test data volume, and test generation effort as additional benefits.

  20. Coal and Coal Constituent Studies by Advanced EMR Techniques.

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.; Ceroke, P.J.

    1997-09-30

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, progress was made on a high frequency EMR system particularly appropriate for such studies and on low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles.

  1. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1998-09-30

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size on water nuclear spin relaxation, T2, were measured.

  2. COAL AND COAL CONSTITUENT STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson

    1997-03-28

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, progress was made on setting up a separate high frequency EMR system particularly appropriate for such studies and exploring the use of low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles.

  3. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1999-03-31

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size and type on water nuclear spin relaxation, T2, were measured and modeled.

  4. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  5. Advanced Extravehicular Activity Pressure Garment Requirements Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2014-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the by what method the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun, in other cases no effort has been initiated to close the gap. Status of ongoing efforts and potential approaches to open gaps are discussed.

  6. Advanced Gas Turbine (AGT) Technology Development Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the eleventh in the series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Standard Oil Company, and AiResearch Casting Company. This report covers plans and progress for the period July 1, 1985 through June 30, 1986. Technical progress during the reported period was highlighted by the 85-hour endurance run of an all-ceramic engine operating in the 2000 to 2250 F temperature regime. Component development continued in the areas of the combustion/fuel injection system, regenerator and seals system, and ceramic turbine rotor attachment design. Component rig testing saw further refinements. Ceramic materials showed continued improvements in required properties for gas turbine applications; however, continued development is needed before performance and reliability goals can be set.

  7. Advanced planar array development for space station

    NASA Astrophysics Data System (ADS)

    1987-06-01

    The results of the Advanced Planar Array Development for the Space Station contract are presented. The original objectives of the contract were: (1) to develop a process for manufacturing superstrate assemblies, (2) to demonstrate superstrate technology through fabrication and test, (3) to develop and analyze a preliminary solar array wing design, and (4) to fabricate a wing segment based on wing design. The primary tasks completed were designing test modules, fabricating, and testing them. LMSC performed three tasks which included thermal cycle testing for 2000 thermal cycles, thermal balance testing at the Boeing Environmental Test Lab in Kent, Washington, and acceptance testing a 15 ft x 50 in panel segment for 100 thermal cycles. The surperstrate modules performed well during both thermal cycle testing and thermal balance testing. The successful completion of these tests demonstrate the technical feasibility of a solar array power system utilizing superstrate technology. This final report describes the major elements of this contract including the manufacturing process used to fabricate modules, the tests performed, and the results and conclusions of the tests.

  8. Advanced Gas Turbine (AGT) technology development project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the final in a series of Technical Summary Reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorizrd under NASA Contract DEN3-167 and sponsored by the DOE. The project was administered by NASA-Lewis Research Center of Cleveland, Ohio. Plans and progress are summarized for the period October 1979 through June 1987. This program aims to provide the US automotive industry the high risk, long range technology necessary to produce gas turbine engines for automobiles that will reduce fuel consumption and reduce environmental impact. The intent is that this technology will reach the marketplace by the 1990s. The Garrett/Ford automotive AGT was designated AGT101. The AGT101 is a 74.5 kW (100 shp) engine, capable of speeds to 100,000 rpm, and operates at turbine inlet temperatures to 1370 C (2500 F) with a specific fuel consumption level of 0.18 kg/kW-hr (0.3 lbs/hp-hr) over most of the operating range. This final report summarizes the powertrain design, power section development and component/ceramic technology development.

  9. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  10. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  11. New Developments in LC-MS and Other Hyphenated Techniques

    SciTech Connect

    Belov, Mikhail E.; Kurulugama, Ruwan T.; Lopez-Ferrer, Daniel; Ibrahim, Yehia M.; Baker, Erin Shammel

    2011-06-21

    Extensive challenges faced by analytical chemists in studying real world complex samples such as biological body fluids, tissue samples, environmental and geological samples have lead to the development of advanced analytical approaches. The vast array of contemporary technologies can be categorized into two major areas: sample separation and mass spectrometry analysis. Current state-of-the-art sample separation methods include gas chromatography, high performance liquid chromatography, ultra high pressure liquid chromatography, solid phase extraction, capillary electrophoresis, and gas phase separation techniques such as ion mobility spectrometry. The recent trend in sample separation is to combine (or hyphenate) multiple techniques that employ different separation mechanisms to maximize separation efficiency. The most widely used combinations include two-dimensional gas chromatography, strong cation exchange or weak cation exchange chromatography followed by reversed-phase liquid chromatography, two-dimensional reversed-phase liquid chromatography, liquid chromatography followed by ion mobility spectrometry and two-dimensional electrophoresis techniques. The introduction of atmospheric pressure ionization techniques such as electrospray ionization and matrix assisted laser desorption ionization and variations of the two have drastically increased the impact of mass spectrometry on bioanalytical applications. Mass spectrometry itself has tremendously improved over the years in terms of sensitivity, detection limits, dynamic range and sequencing capabilities. Currently, mass spectrometers can attain zeptomolole detection limits with five orders of magnitude dynamic range. In this chapter, we summarize recent developments in hyphenated techniques and their applications to complex sample analysis.

  12. Advanced implementations of the iterative multi region technique

    NASA Astrophysics Data System (ADS)

    Kaburcuk, Fatih

    The integration of the finite-difference time-domain (FDTD) method into the iterative multi-region (IMR) technique, an iterative approach used to solve large-scale electromagnetic scattering and radiation problems, is presented in this dissertation. The idea of the IMR technique is to divide a large problem domain into smaller subregions, solve each subregion separately, and combine the solutions of subregions after introducing the effect of interaction to obtain solutions at multiple frequencies for the large domain. Solution of the subregions using the frequency domain solvers has been the preferred approach as such solutions using time domain solvers require computationally expensive bookkeeping of time signals between subregions. In this contribution we present an algorithm that makes it feasible to use the FDTD method, a time domain numerical technique, in the IMR technique to obtain solutions at a pre-specified number of frequencies in a single simulation. As a result, a considerable reduction in memory storage requirements and computation time is achieved. A hybrid method integrated into the IMR technique is also presented in this work. This hybrid method combines the desirable features of the method of moments (MoM) and the FDTD method to solve large-scale radiation problems more efficiently. The idea of this hybrid method based on the IMR technique is to divide an original problem domain into unconnected subregions and use the more appropriate method in each domain. The most prominent feature of this proposed method is to obtain solutions at multiple frequencies in a single IMR simulation by constructing time-limited waveforms. The performance of the proposed method is investigated numerically using different configurations composed of two, three, and four objects.

  13. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  14. Transcranial Doppler: Techniques and advanced applications: Part 2.

    PubMed

    Sharma, Arvind K; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  15. Recent advances in coupling capillary electrophoresis based separation techniques to ESI and MALDI MS

    PubMed Central

    Zhong, Xuefei; Zhang, Zichuan; Jiang, Shan; Li, Lingjun

    2014-01-01

    Coupling capillary electrophoresis (CE) based separation techniques to mass spectrometry creates a powerful platform for analysis of a wide range of biomolecules from complex samples because it combines the high separation efficiency of CE and the sensitivity and selectivity of MS detection. ESI and MALDI, as the most common soft ionization techniques employed for CE and MS coupling, offer distinct advantages for biomolecular characterization. This review is focused primarily on technological advances in combining CE and chip-based CE with ESI and MALDI MS detection in the past five years. Selected applications in the analyses of metabolites, peptides, and proteins with the recently developed CE-MS platforms are also highlighted. PMID:24170529

  16. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  17. Advances in Hot-Structure Development

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Glass, David E.

    2006-01-01

    The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic

  18. Development of Advanced Tools for Cryogenic Integration

    NASA Astrophysics Data System (ADS)

    Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.

    2004-06-01

    This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.

  19. MELCOR development for existing and advanced reactors

    SciTech Connect

    Summers, R.M.

    1993-12-31

    Recent efforts in MELCOR development to address previously identified deficiencies have resulted in release of MELCOR 1.8.2, a much-improved version of the code. Major new models have been implemented for direct containment heating, ice condensers, debris quenching, lower plenum debris behavior, core materials interactions` and radial relocation of debris. Significant improvements have also been made in the modeling of interfacial momentum exchange and in the modeling of fission product release, condensation/evaporation, and aerosol behavior. Efforts are underway to address two-phase hydrodynamics difficulties, to improve modeling of water condensation on structures and fine-scale natural circulation within the reactor vessel, and to implement CORCON-Mod3. Improvements are also being made to MELCOR`s capability to handle new features of the advanced light water reactor designs, including drainage of water films on connected heat structures, heat transfer from the external surface of the reactor vessel to a flooded cavity, and creep rupture failure of the lower head. Additional development needs in other areas are discussed.

  20. Hydroecology/ Ecohydrology: Development and Recent Advances

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Sadler, J. P.; Wood, P. J.

    2007-12-01

    Ecohydrology and hydroecology are making a mark on the environmental agenda, as evidenced by the proliferation of these terms in the academic literature, a new subject-specific journal/ text book, and wide occurrence of dedicated sessions at major conferences. In a practical context, consideration of hydroecological/ ecohydrological interactions is required to make management decisions about the water needs of riverine and wetland ecosystems versus people. In this presentation, we provide a perspective on the development of this 'emerging discipline' by reviewing the scientific literature, categorising bibliographic search data and using examples of current research to focus attention on a range of issues that require further evaluation and thought. Examples are drawn from studies of: alpine river systems, river flow variability and ecological response, and hydrological disturbance of exposed riverine sediment beetle communities. We suggest that a potential impediment to the development of ecohydrology/ hydroecology is the lack of a clear subject definition to acts as a focal point to unite the research community. Most importantly, we assert that it not simply the integration of hydrology and ecology that will determine the future prospects for ecohydrology/ hydroecology but the way in which this integrative science is conducted. We advocate a truly interdisciplinary (as opposed to multi-disciplinary) approach in which ecologists and hydrologists benefit from true synergy by embracing advances at the cutting- edge of both sciences. Such an approach should provide more perceptive answers to hydroecological/ ecohydrological problems and management questions.

  1. Development of Advanced Earth Observing Satellite (ADEOS)

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Toshiyuki; Iwasaki, Nobuo; Hara, Norikazu

    ADEOS ia a large satellite which could be called a polar orbiting platform. The weight is 3.5 tons and power is 4.5 KW at the end of three years of mission life. It is scheduled to be launched in early 1995 by the H-II launch vehicle from Tanegashima Space Center. ADEOS carries two core sensors and six Announcement Opportunity (AO) sensors. The core sensors are called the Ocean Color and Temperature Scanner (OCTS) and the Advanced Visible and Near Infrared Radiometer (ANVIR), which are being developed by NASDA. The AO sensors are the NASA Scatterometer (NSCAT), the NASA Total Ozone Mapping Spectrometer (TOMS), the Polarization and Directionality of Earth's Reflectances of CNES, the Interferometric Monitor for Greenhouse gases of MITI, the Improved Limb Atmospheric Spectrometer of Environment Agency (EA) of the Japanese government, and the EA Retroreflector In Space. This paper discusses the present status of the design and development of ADEOS putting emphasis on several features incorporated in the ADEOS bus system and several issues imposed at the system Preliminary Design Review.

  2. Developing an Advanced Environment for Collaborative Computing

    NASA Technical Reports Server (NTRS)

    Becerra-Fernandez, Irma; Stewart, Helen; DelAlto, Martha; DelAlto, Martha; Knight, Chris

    1999-01-01

    Knowledge management in general tries to organize and make available important know-how, whenever and where ever is needed. Today, organizations rely on decision-makers to produce "mission critical" decisions that am based on inputs from multiple domains. The ideal decision-maker has a profound understanding of specific domains that influence the decision-making process coupled with the experience that allows them to act quickly and decisively on the information. In addition, learning companies benefit by not repeating costly mistakes, and by reducing time-to-market in Research & Development projects. Group-decision making tools can help companies make better decisions by capturing the knowledge from groups of experts. Furthermore, companies that capture their customers preferences can improve their customer service, which translates to larger profits. Therefore collaborative computing provides a common communication space, improves sharing of knowledge, provides a mechanism for real-time feedback on the tasks being performed, helps to optimize processes, and results in a centralized knowledge warehouse. This paper presents the research directions. of a project which seeks to augment an advanced collaborative web-based environment called Postdoc, with workflow capabilities. Postdoc is a "government-off-the-shelf" document management software developed at NASA-Ames Research Center (ARC).

  3. Application development environment for advanced digital workstations

    NASA Astrophysics Data System (ADS)

    Valentino, Daniel J.; Harreld, Michael R.; Liu, Brent J.; Brown, Matthew S.; Huang, Lu J.

    1998-06-01

    One remaining barrier to the clinical acceptance of electronic imaging and information systems is the difficulty in providing intuitive access to the information needed for a specific clinical task (such as reaching a diagnosis or tracking clinical progress). The purpose of this research was to create a development environment that enables the design and implementation of advanced digital imaging workstations. We used formal data and process modeling to identify the diagnostic and quantitative data that radiologists use and the tasks that they typically perform to make clinical decisions. We studied a diverse range of radiology applications, including diagnostic neuroradiology in an academic medical center, pediatric radiology in a children's hospital, screening mammography in a breast cancer center, and thoracic radiology consultation for an oncology clinic. We used object- oriented analysis to develop software toolkits that enable a programmer to rapidly implement applications that closely match clinical tasks. The toolkits support browsing patient information, integrating patient images and reports, manipulating images, and making quantitative measurements on images. Collectively, we refer to these toolkits as the UCLA Digital ViewBox toolkit (ViewBox/Tk). We used the ViewBox/Tk to rapidly prototype and develop a number of diverse medical imaging applications. Our task-based toolkit approach enabled rapid and iterative prototyping of workstations that matched clinical tasks. The toolkit functionality and performance provided a 'hands-on' feeling for manipulating images, and for accessing textual information and reports. The toolkits directly support a new concept for protocol based-reading of diagnostic studies. The design supports the implementation of network-based application services (e.g., prefetching, workflow management, and post-processing) that will facilitate the development of future clinical applications.

  4. Asset health monitors: development, sustainment, advancement

    NASA Astrophysics Data System (ADS)

    Mauss, Fredrick J.

    2011-04-01

    Pacific Northwest National Laboratory (PNNL) has developed the Captive Carry Health Monitor Unit (HMU) and the Humidity Indicator HMU. Each of these devices provides end users information that can be used to ensure the proper maintenance and performance of the missile. These two efforts have led to the ongoing development and evolution of the next generation Captive Carry HMU and the next generation Humidity Indicator HMU. These next generation efforts are in turn, leading to the future of HMUs. This evolutionary development process inherently allows for direct and indirect impact toward new HMU functionality, operability and performance characteristics by influencing their requirements, testing, communications, data archival, and user interaction. Current designs allow systems to operate in environments outside the limits of typical consumer electronics for up to or exceeding 10 years. These designs are battery powered and typically provided in custom mechanical packages that employ sensors for temperature, shock/vibration, and humidity measurements. The data taken from these sensors is then analyzed onboard using unique algorithms. The algorithms are developed from test data and fielded prototypes. Onboard data analysis provides field users with a simple indication of missile exposure. The HMU provides missile readiness information to the user based on storage and use conditions observed. To continually advance current designs PNNL evaluates the potential for enhancing sensor capabilities by improving performance or power saving features, increasing algorithm and processing abilities, and adding new features. Future work at PNNL includes the utilization of power harvesting, using a defined wireless protocol, and defining a data/information structure. These efforts will lead to improved performance allowing the HMUs to benefit users with direct access to HMUs in the field as well as benefiting those with the ability to make strategic and high-level supply and

  5. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  6. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  7. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan; Arens, Ellen

    2011-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Pads A and B Launch Complex-39 tanks, which will be passed onto future launch programs, are 45 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and granular insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B liquid hydrogen tank, were accepted. There is a needind an opportunity, as the Shuttle program ends and work to upgrade the launch pads progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A nondestructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems.

  8. Advanced Emissions Control Development Program: Phase III

    SciTech Connect

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve high

  9. Developing Comprehension Skills via Advance Organizers.

    ERIC Educational Resources Information Center

    Vick, Marian L.; Lynn, Jo Ann

    Recent studies refuting the effectiveness of advance organizers in preparing students to comprehend text material have not met the conditions necessary for advance organizers to succeed. According to the assimilation theory, which holds that people learn by chaining what is known to what is to be learned, the following conditions must be met for…

  10. Characterization of PTFE Using Advanced Thermal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C.

    2010-10-01

    Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer used in numerous industrial applications. It is often referred to by its trademark name, Teflon. Thermal characterization of a PTFE material was carried out using various thermal analysis and thermophysical properties test techniques. The transformation energetics and specific heat were measured employing differential scanning calorimetry. The thermal expansion and the density changes were determined employing pushrod dilatometry. The viscoelastic properties (storage and loss modulus) were analyzed using dynamic mechanical analysis. The thermal diffusivity was measured using the laser flash technique. Combining thermal diffusivity data with specific heat and density allows calculation of the thermal conductivity of the polymer. Measurements were carried out from - 125 °C up to 150 °C. Additionally, measurements of the mechanical properties were carried out down to - 170 °C. The specific heat tests were conducted into the fully molten regions up to 370 °C.

  11. Advance techniques for monitoring human tolerance to +Gz accelerations.

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1972-01-01

    Standard techniques for monitoring the acceleration-stressed human subject have been augmented by measuring (1) temporal, brachial and/or radial arterial blood flow, and (2) indirect systolic and diastolic blood pressure at 60-sec intervals. Results show that the response of blood pressure to positive accelerations is complex and dependent on an interplay of hydrostatic forces, diminishing venous return, redistribution of blood, and other poorly defined compensatory reflexes.

  12. Added Value of Assessing Adnexal Masses with Advanced MRI Techniques

    PubMed Central

    Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.

    2015-01-01

    This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542

  13. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  14. Developing a gas rocket performance prediction technique

    NASA Technical Reports Server (NTRS)

    Morgenthaler, J. H.; Moon, L. F.; Stepien, W. R.

    1974-01-01

    A simple, semi-empirical performance correlation/prediction technique applicable to gaseous and liquid propellant rocket engines is presented. Excellent correlations were attained for over 100 test firings by adjusting the computation of the gaseous mixing of an unreactive, coaxial jet using a correlation factor, F, which resulted in prediction of the experimental combustion efficiency for each firing. Static pressure, mean velocity and turbulence intensity in the developing region of non-reactive coaxial jets, typical of those of coaxial injector elements were determined. Detailed profiles were obtained at twelve axial locations (extending from the nozzle exit for a distance of five diameters) downstream from a single element of the Bell Aerospace H2/O2 19-element coaxial injector. These data are compared with analytical predictions made using both eddy viscosity and turbulence kinetic energy mixing models and available computer codes. Comparisons were disappointing, demonstrating the necessity of developing improved turbulence models and computational techniques before detailed predictions of practical coaxial free jet flows are attempted.

  15. How have developments in molecular imaging techniques furthered schizophrenia research?

    PubMed Central

    Thompson, Judy L; Urban, Nina; Abi-Dargham, Anissa

    2010-01-01

    Molecular imaging techniques have led to significant advances in understanding the pathophysiology of schizophrenia and contributed to knowledge regarding potential mechanisms of action of the drugs used to treat this illness. The aim of this article is to provide a review of the major findings related to the application of molecular imaging techniques that have furthered schizophrenia research. This article focuses specifically on neuroreceptor imaging studies with PET and SPECT. After providing a brief overview of neuroreceptor imaging methodology, we consider relevant findings from studies of receptor availability, and dopamine synthesis and release. Results are discussed in the context of current hypotheses regarding neurochemical alterations in the illness. We then selectively review pharmacological occupancy studies and the role of neuroreceptor imaging in drug development for schizophrenia. PMID:21243081

  16. Development of advanced barium ferrite tape media

    NASA Astrophysics Data System (ADS)

    Shimizu, Osamu; Oyanagi, Masahito; Morooka, Atsushi; Mori, Masahiko; Kurihashi, Yuich; Tada, Toshio; Suzuki, Hiroyuki; Harasawa, Takeshi

    2016-02-01

    We developed an advanced particulate magnetic tape using fine barium ferrite (BaFe) particles for magnetic-tape storage systems. The new tape showed a signal-to-noise ratio (SNR) that was 3.5 dB higher than that of the commercially available BaFe tape used for the Linear Tape Open generation 6 tape-storage system, at a linear density of 300 kfci measured with a giant magnetoresistive head with a reader width of 0.45 μm. Such significant increase in SNR was achieved by reducing the magnetic particle volume from 1950 to 1350 nm3, while maintaining a sufficiently high thermal stability, improving the perpendicular squareness ratio from 0.66 to 0.83, and improving the surface roughness from 2.5 to 2.0 nm when measured by atomic force microscopy and from 2.4 to 0.9 nm when measured by optical interferometry. This paper describes the characteristics of the new BaFe particles and media, which are expected to be employed for future high-capacity linear-tape systems.

  17. Advanced CO2 Removal Technology Development

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Verma, Sunita; Forrest, Kindall; LeVan, M. Douglas

    2001-01-01

    The Advanced CO2 Removal Technical Task Agreement covers three active areas of research and development. These include a study of the economic viability of a hybrid membrane/adsorption CO2 removal system, sorbent materials development, and construction of a database of adsorption properties of important fixed gases on several adsorbent material that may be used in CO2 removal systems. The membrane/adsorption CO2 removal system was proposed as a possible way to reduce the energy consumption of the four-bed molecular sieve system now in use. Much of the energy used by the 4BMS is used to desorb water removed in the device s desiccant beds. These beds might be replaced by a desiccating membrane that moves the water from [he incoming stream directly into the outlet stream. The approach may allow the CO2 removal beds to operate at a lower temperature. A comparison between models of the 4BMS and hybrid systems is underway at Vanderbilt University. NASA Ames Research Center has been investigating a Ag-exchanged zeolites as a possible improvement over currently used Ca and Na zeolites for CO2 removal. Silver ions will complex with n:-bonds in hydrocarbons such as ethylene, giving remarkably improved selectivity for adsorption of those materials. Bonds with n: character are also present in carbon oxides. NASA Ames is also continuing to build a database for adsorption isotherms of CO2, N2, O2, CH4, and Ar on a variety of sorbents. This information is useful for analysis of existing hardware and design of new processes.

  18. Development of structural health monitoring techniques using dynamics testing

    SciTech Connect

    James, G.H. III

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  19. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  20. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  1. Advanced terahertz techniques for quality control and counterfeit detection

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  2. Advanced coding techniques for few mode transmission systems.

    PubMed

    Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

    2015-01-26

    We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol. PMID:25835899

  3. Coal and Coal Constituent Studies by Advanced EMR Techniques

    SciTech Connect

    Alex I. Smirnov; Mark J. Nilges; R. Linn Belford; Robert B. Clarkson

    1998-03-31

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. We have achieved substantial progress on upgrading the high field (HF) EMR (W-band, 95 GHz) spectrometers that are especially advantageous for such studies. Particularly, we have built a new second W-band instrument (Mark II) in addition to our Mark I. Briefly, Mark II features: (i) an Oxford custom-built 7 T superconducting magnet which is scannable from 0 to 7 T at up to 0.5 T/min; (ii) water-cooled coaxial solenoid with up to ±550 G scan under digital (15 bits resolution) computer control; (iii) custom-engineered precision feed-back circuit, which is used to drive this solenoid, is based on an Ultrastab 860R sensor that has linearity better than 5 ppm and resolution of 0.05 ppm; (iv) an Oxford CF 1200 cryostat for variable temperature studies from 1.8 to 340 K. During this grant period we have completed several key upgrades of both Mark I and II, particularly microwave bridge, W-band probehead, and computer interfaces. We utilize these improved instruments for HF EMR studies of spin-spin interaction and existence of different paramagnetic species in carbonaceous solids.

  4. Advanced experimental techniques for transonic wind tunnels - Final lecture

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    A philosophy of experimental techniques is presented, suggesting that in order to be successful, one should like what one does, have the right tools, stick to the job, avoid diversions, work hard, interact with people, be informed, keep it simple, be self sufficient, and strive for perfection. Sources of information, such as bibliographies, newsletters, technical reports, and technical contacts and meetings are recommended. It is pointed out that adaptive-wall test sections eliminate or reduce wall interference effects, and magnetic suspension and balance systems eliminate support-interference effects, while the problem of flow quality remains with all wind tunnels. It is predicted that in the future it will be possible to obtain wind tunnel results at the proper Reynolds number, and the effects of flow unsteadiness, wall interference, and support interference will be eliminated or greatly reduced.

  5. Faculty Development for Institutional Change: Lessons from an Advance Project

    ERIC Educational Resources Information Center

    Laursen, Sandra; Rocque, Bill

    2009-01-01

    The ADVANCE Institutional Transformation projects are remarkably diverse in their theories of action and choice of strategies. However, faculty development plays a role in many, and it was the central change strategy chosen by Leadership Education for Advancement and Promotion (LEAP), the 2002-2008 ADVANCE project at the University of Colorado at…

  6. Development of Backscatter X-Ray Imaging Techniques for Space Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2009-01-01

    This slide presentation reviews the development of backscatter x ray (BSX) imaging techniques to perform inspection of spacecraft components. The techniques are currently being enhanced to advance Non-Destructive Testing (NDT) methods for future space vehicle applications. The presentation includes an overview of x ray techniques, a description of current BSX applications used on the space shuttle, the development for Constellation applications, and the use of the system for foam applications.

  7. Advanced heat exchanger development for molten salts

    SciTech Connect

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  8. Advanced heat exchanger development for molten salts

    DOE PAGESBeta

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore » in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.« less

  9. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    SciTech Connect

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  10. Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques

    NASA Astrophysics Data System (ADS)

    Gannon, Paul Edward

    High energy conversion efficiency, decreased environmentally-sensitive emissions and fuel flexibility have attracted increasing attention toward solid oxide fuel cell (SOFC) systems for stationary, transportation and portable power generation. Critical durability and cost issues, however, continue to impede wide-spread deployment. Many intermediate temperature (600-800°C) planar SOFC systems employ metallic alloy interconnect components, which physically connect individual fuel cells into electric series, facilitate gas distribution to appropriate SOFC electrode chambers (fuel/anode and oxidant[air]/cathode) and provide SOFC stack mechanical support. These demanding multifunctional requirements challenge commercially-available and inexpensive metallic alloys due to corrosion and related effects. Many ongoing investigations are aimed at enabling inexpensive metallic alloys (via bulk and/or surface modifications) as SOFC interconnects (SOFC(IC)s). In this study, two advanced physical vapor deposition (PVD) techniques: large area filtered vacuum arc deposition (LAFAD), and filtered arc plasma-assisted electron beam PVD (FA-EBPVD) were used to deposit a wide-variety of protective nanocomposite (amorphous/nanocrystalline) ceramic thin-film (<5microm) coatings on commercial and specialty stainless steels with different surface finishes. Both bare and coated steel specimens were subjected to SOFC(IC)-relevant exposures and evaluated using complimentary surface analysis techniques. Significant improvements were observed under simulated SOFC(IC) exposures with many coated specimens at ˜800°C relative to uncoated specimens: stable surface morphology; low area specific resistance (ASR <100mO·cm 2 >1,000 hours); and, dramatically reduced Cr volatility (>30-fold). Analyses and discussions of SOFC(IC) corrosion, advanced PVD processes and protective coating behavior are intended to advance understanding and accelerate the development of durable and commercially-viable SOFC

  11. Advances in Current Rating Techniques for Flexible Printed Circuits

    NASA Technical Reports Server (NTRS)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  12. Advances in array detectors for X-ray diffraction techniques.

    PubMed

    Hanley, Quentin S; Denton, M Bonner

    2005-09-01

    Improved focal plane array detector systems are described which can provide improved readout speeds, random addressing and even be employed to simultaneously measure position, intensity and energy. This latter capability promises to rekindle interests in Laue techniques. Simulations of three varieties of foil mask spectrometer in both on- and off-axis configurations indicate that systems of stacked silicon detectors can provide energy measurements within 1% of the true value based on the use of single 'foils' and approximately 10000 photons. An eight-detector hybrid design can provide energy coverage from 4 to 60 keV. Energy resolution can be improved by increased integration time or higher flux experiments. An off-axis spectrometer design in which the angle between the incident beam and the detector system is 45 degrees results in a shift in the optimum energy response of the spectrometer system. In the case of a 200 microm-thick silicon absorber, the energy optimum shifts from 8.7 keV to 10.3 keV as the angle of incidence goes from 0 to 45 degrees. These new designs make better use of incident photons, lower the impact of source flicker through simultaneous rather than sequential collection of intensities, and improve the energy range relative to previously reported systems. PMID:16120985

  13. Advanced signal processing technique for damage detection in steel tubes

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel Kumar; Dao, Cac Minh; Dao, Kiet; Kundu, Tribikram

    2016-04-01

    In recent years, ultrasonic guided waves gained attention for reliable testing and characterization of metals and composites. Guided wave modes are excited and detected by PZT (Lead Zirconate Titanate) transducers either in transmission or reflection mode. In this study guided waves are excited and detected in the transmission mode and the phase change of the propagating wave modes are recorded. In most of the other studies reported in the literature, the change in the received signal strength (amplitude) is investigated with varying degrees of damage while in this study the change in phase is correlated with the extent of damage. Feature extraction techniques are used for extracting phase and time-frequency information. The main advantage of this approach is that the bonding condition between the transducer and the specimen does not affect the phase while it can affect the strength of recorded signal. Therefore, if the specimen is not damaged but the transducer-specimen bonding is deteriorated then the received signal strength is altered but the phase remains same and thus false positive predictions for damage can be avoided.

  14. Development of advanced global cloud classification schemes

    NASA Astrophysics Data System (ADS)

    Konvalin, Chris; Logar, Antonette M.; Lloyd, David; Corwin, Edward; Penaloza, Manuel; Feind, Rand E.; Welch, Ronald M.

    1997-01-01

    The problem of producing polar cloud masks for satellite imagery is an important facet of the research on global warming. For the past three years, our research on this topic has produced a series of classifiers. The first classifier used traditional statistical techniques, and, although the performance was reasonably good, better accuracy and faster classification speeds were desired. Neural network classifiers provided an improvement in both classification speed and accuracy but a single monolithic network proved difficult to train and was computationally expensive. A decomposition of the neural network into a hierarchical structure provided significant reductions in training time and some increase in accuracy. While this technique produced excellent results, to optimize its performance a minimal feature set and a highly accurate and easily computed switching mechanism must be identified. This paper presents recent developments in these two areas. Landsat Thematic Mapper (TM) data from the arctic and antarctic was used to test the network. A minimal feature set, which defines the elements of the network input vector, is desirable for both improving accuracy and reducing computation. A smaller input vector will reduce the number of weights which must be updated during training and concomitantly reduce training and testing times. Small input vectors are also desirable because of the oft-cited 'curse of dimensionality' which states the higher the dimension of the problem to be solved, the more difficult it will be for the network to find an acceptable solution. However, it is also known that if a network has insufficient information, it will not be possible to form an appropriate decision surface. In that case, additional features, and additional dimensions, are required. Finding the proper balance can be difficult. Previously, trial and error was used to find a 'good' selection of features for classification. Features were added individually and those which had no

  15. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  16. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  17. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  18. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  19. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1992-07-10

    Coherent anti-Stokes Raman Spectroscopy (CARS) is used to study the plasma-assisted chemical vapor deposition (PACVD) of TiB{sub 2}. CARS is applied to the dominent species in an inductively coupled B{sub 2}H{sub 6}/Ar rf plasma. Axial concentration profiles of diborane and hydrogen are probed in the plasma. A five-step mechanism is developed. Photochemical initiation of the chemical reaction is considered. 16 refs, 5 figs.(DLC)

  20. Applicability of Randomdec technique to flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. E., Jr.; Cole, H. A., Jr.

    1975-01-01

    The feasibility of Randomdec analysis to detect certain changes in a flight simulator system is studied. Results show that (1) additional studies are needed to ensure effectiveness; (2) a trade-off exists between development complexity and level of malfunction to be detected; and (3) although the system generally limits the input signals to less than about 5 Hz, higher frequency components in the range of 9 Hz and its harmonics are possible.

  1. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    SciTech Connect

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  2. [The research advance of measuring techniques on corneoscleral constitutive parameters].

    PubMed

    Bao, Fangjun; Deng, Manli; Wang, Qinmei

    2015-11-01

    The occurrence and development of myopia and keratoconus is closely related to the changes of scleral and corneal biomechanical properties. The accurate measurement of biomechanical properties for corneoscleral tissure is very important on diagnosis of eye diseases, improvement of ocular operation, ocular biological parameter measurement and invention of ophthalmic instrument. Corneoscleral tissue, composed of bundles of compact and staggered collagen fiber and extracellular matrix, constitute the outer surface of the eyeball. The inhomogeneous distribution of the diameter, gap and amount of collagen fiber, makes its biomechanical characteristics really complex, characterized by nonlinear, viscoelastic, anisotropic, regional variation and age-related variation and etc. With the development of medical diagnostic technology, the importance of the ocular biomechanical property measurement is increasingly recognized. Nevertheless, measuring technology on ocular biomechanics properties are still not well understood by the majority of ophthalmologists. In order to facilitate the researchers to select a suitable measuring platform and method, the development of international corneoscleral biomechanical propertiy measuring technology was reviewed in this article. PMID:26850590

  3. Automated angiogenesis quantification through advanced image processing techniques.

    PubMed

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  4. Advanced Gas Turbine (AGT) technology development

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A 74.5 kW (100 hp) automotive gas turbine was evaluated. The engine structure, bearings, oil system, and electronics were demonstrated and no shaft dynamics or other vibration problem were encountered. Areas identified during the five tests are the scroll retention features, and transient thermal deflection of turbine backplates. Modifications were designed. Seroll retention is addressed by modifying the seal arrangement in front of the gasifier turbine assembly, which will increase the pressure load on the scroll in the forward direction and thereby increase the retention forces. the backplate thermal deflection is addressed by geometric changes and thermal insulation to reduce heat input. Combustor rig proof testing of two ceramic combustor assemblies was completed. The combustor was modified to incorporate slots and reduce sharp edges, which should reduce thermal stresses. The development work focused on techniques to sinter these barrier materials onto the ceramic rotors with successes for both material systems. Silicon carbide structural parts, including engine configuration gasifier rotors (ECRs), preliminary gasifier scroll parts, and gasifier and power turbine vanes are fabricated.

  5. Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD

    PubMed Central

    Kume, Keiichiro

    2014-01-01

    The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364

  6. Materials issues in some advanced forming techniques, including superplasticity

    SciTech Connect

    Wadsworth, J.; Henshall, G.A.; Nieh, T.G.

    1995-08-22

    From mechanics and macroscopic viewpoints, the sensitivity of the flow stress of a material to the strain rate, i.e. the strain rate sensitivity (m), governs the development of neck formation and therefore has a strong influence on the tensile ductility and hence formability of materials. Values of strain rate sensitivity range from unity, for the case of Newtonian viscous materials, to less than 0.1 for some dispersion strengthened alloys. Intermediate values of m = 0.5 are associated with classical superplastic materials which contain very fine grain sizes following specialized processing. An overview is given of the influence of strain rate sensitivity on tensile ductility and of the various materials groups that can exhibit high values of strain rate sensitivity. Recent examples of enhanced formability (or extended tensile ductility) in specific regimes between m = 1 and m = 0.3 are described, and potential areas for commercial exploitation are noted. These examples include: internal stress superplasticity, superplastic ceramics, superplastic intermetallics, superplastic laminated composites, superplastic behavior over six orders of magnitude of strain rate in a range of aluminum-based alloys and composites, and enhanced ductility in Al-Mg alloys that require no special processing for microstructural development.

  7. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  8. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  9. Advanced system identification techniques for wind turbine structures with special emphasis on modal parameters

    SciTech Connect

    Bialasiewicz, J.T.

    1995-06-01

    The goal of this research is to develop advanced system identification techniques that can be used to accurately measure the frequency response functions of a wind-turbine structure immersed in wind noise. To allow for accurate identification, the authors have developed a special test signal called the Pseudo-Random Binary Sequence (PRBS). The Matlab program that generates this signal allows the user to interactively tailor its parameters for the frequency range of interest based on the response of the wind turbine under test. By controlling NREL`s Mobile Hydraulic Shaker System, which is attached to the wind turbine structure, the PRBS signal produces the wide-band excitation necessary to perform system identification in the presence of wind noise. The techniques presented here will enable researchers to obtain modal parameters from an operating wind turbine, including frequencies, damping coefficients, and mode shapes. More importantly, the algorithms they have developed and tested (so far using input-output data from a simulated structure) permit state-space representation of the system under test, particularly the modal state space representation. This is the only system description that reveals the internal behavior the system, such as the interaction between the physical parameters, and which, in contrast to transfer functions, is valid for non-zero initial conditions.

  10. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

    PubMed Central

    Holban, Alina Maria; Grumezescu, Valentina; Vasile, Bogdan Ştefan; Truşcă, Roxana; Cristescu, Rodica; Socol, Gabriel; Iordache, Florin

    2014-01-01

    Summary We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections. PMID:24991524

  11. Advanced measurements and techniques in high magnetic fields

    SciTech Connect

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film.

  12. Advances in bioanalytical techniques to measure steroid hormones in serum.

    PubMed

    French, Deborah

    2016-06-01

    Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC-MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC-MS/MS has now become a popular alternative owing to simplified sample preparation than for GC-MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum. PMID:27217264

  13. A precision star tracker utilizing advanced techniques and materials

    NASA Technical Reports Server (NTRS)

    Gates, R. F.; Mcaloon, K. J.

    1976-01-01

    An image dissector star tracker has been developed which operates in the photon counting mode making it possible to utilize all digital electronics. A unique pulse processing circuit allows bright stars to be tracked as well as dim stars. Thermal mechanical stability has been greatly enhanced by fabricating a housing with graphite/epoxy composite material with a linear coefficient of thermal expansion near zero. Test results indicate the +10 Mv stars can be acquired and tracked, while position variation with star intensity is less than 2 arc seconds from 2.5 Mv to +10 Mv. The noise equivalent angle for a +8 Mv star is 3 arc seconds. Polynominal correction for remaining cross-coupling and nonlinearity reduced error over total 1 x 1 deg field to 1.5 arc seconds.

  14. Continued Development of the Advanced Stirling Convertor (ASC)

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wood, J. Gary; Wilson, Kyle; Buffalino, Andrew; Frye, Patrick; Matejczyk, Dan; Penswick, L.B.

    2008-01-01

    The Advanced Stirling Convertor (ASC) is being developed under contract with the NASA Glenn Research Center (GRC) and is supported by NASA s Science Mission Directorate for potential use in future radioisotope power systems having significantly increased efficiency and higher specific power compared to the current thermoelectric systems. An ASC with a lower temperature (approx.650 C) Inconel heater head is currently being substituted into the DOE/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG) program with a predicted convertor efficiency of 34 percent (AC electrical out to heat input ) at a temperature ratio of 2.7 and is expected to deliver approximately 75 W(sub ac). Continued development of the higher temperature (approx.850 C) version using existing materials and fabrication techniques in the hot portions is reported on here. The higher temperature ASC is expected to have 38 percent efficiency (AC electrical out to heat input) at a temperature ratio of 3.1 and is expected to deliver approximately 88 W(sub ac). The high temperature ASC also has approximately 30 C higher rejection temperature, which allows for further reduced system mass because of the reduced radiator size. Six higher temperature and hermetically sealed convertors are being built under this effort for extended life testing at GRC.

  15. Development of Specialized Advanced Materials Curriculum.

    ERIC Educational Resources Information Center

    Malmgren, Thomas; And Others

    This course is intended to give students a comprehensive experience in current and future manufacturing materials and processes. It familiarizes students with: (1) base of composite materials; (2) composites--a very light, strong material used in spacecraft and stealth aircraft; (3) laminates; (4) advanced materials--especially aluminum alloys;…

  16. Advanced Electronics. Curriculum Development. Bulletin 1778.

    ERIC Educational Resources Information Center

    Eppler, Thomas

    This document is a curriculum guide for a 180-hour course in advanced electronics for 11th and 12th grades that has four instructional units. The instructional units are orientation, discrete components, integrated circuits, and electronic systems. The document includes a course flow chart; a two-page section that describes the course, lists…

  17. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  18. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  19. [Advances of minimally invasive technique in colorectal cancer surgery].

    PubMed

    Wang, Xishan

    2016-06-01

    Colorectal surgery is rapidly developing in the direction of minimally invasive surgery and functional surgery. New technology and ideas are constantly emerging recently. Laparoscopic colon surgery has already been recommended by NCCN guideline. However, laparoscopic rectal cancer surgery still needs to wait for survival and recurrence rates of long-term follow-up data for verification. In recent years, with the rapid progression of imaging equipment of laparoscope, the new 3D laparoscopic system will process image more quickly, and surgeons can get space depth feeling like open surgery only with a pair of glasses. The new 3D laparoscopic system has many advantages, and can also shorten the learning curve of the beginners. But it does not mean the traditional 2D laparoscopy has been out of date. It is admitted that dialectical view on the development of the technology and equipment is still required. New things also need the accumulation of time and validation, and the deficiency of imaging system remains to be improved. At present, the robotic colorectal cancer surgery is still in its infancy, and its application is relatively common in colon surgery. In respect of robotic rectal cancer surgery, it still lacks of long-term follow-up survival results for verification. To reduce physical and psychological trauma for patients is the goal of the surgeon. Surgeons are experiencing the change from minimally invasion to non-invasion. Natural orifice translumenal endoscopic surgery (NOTES) and natural orifice specimen extraction surgery (NOSES) arise at the historic moment. Among them, transanal total mesorectal excision (taTME) incorporates the concepts of NOTES, anal minimally invasive surgery and total mesorectum excision, guaranteeing the radical cure and no scar of abdomen, but it still needs multicenter, large sample and long-term follow-up clinical data to prove its safety, efficacy and indication. Therefore, surgical procedure is transforming from conventional

  20. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Technical Reports Server (NTRS)

    Miller, Glenn E.

    1994-01-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  1. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Astrophysics Data System (ADS)

    Miller, Glenn E.

    1994-10-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  2. Effects of age, system experience, and navigation technique on driving with an advanced traveler information system.

    PubMed

    Dingus, T A; Hulse, M C; Mollenhauer, M A; Fleischman, R N; McGehee, D V; Manakkal, N

    1997-06-01

    This paper explores the effects of age, system experience, and navigation technique on driving, navigation performance, and safety for drivers who used TravTek, an Advanced Traveler Information System. The first two studies investigated various route guidance configurations on the road in a specially equipped instrumented vehicle with an experimenter present. The third was a naturalistic quasi-experimental field study that collected data unobtrusively from more than 1200 TravTek rental car drivers with no in-vehicle experimenter. The results suggest that with increased experience, drivers become familiar with the system and develop strategies for substantially more efficient and safer use. The results also showed that drivers over age 65 had difficulty driving and navigating concurrently. They compensated by driving slowly and more cautiously. Despite this increased caution, older drivers made more safety-related errors than did younger drivers. The results also showed that older drivers benefited substantially from a well-designed ATIS driver interface. PMID:9302887

  3. Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source

    SciTech Connect

    Borreguero Calvo, Jose M; Campbell, Stuart I; Delaire, Olivier A; Doucet, Mathieu; Goswami, Monojoy; Hagen, Mark E; Lynch, Vickie E; Proffen, Thomas E; Ren, Shelly; Savici, Andrei T; Sumpter, Bobby G

    2014-01-01

    This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

  4. Automated Authorship Attribution Using Advanced Signal Classification Techniques

    PubMed Central

    Ebrahimpour, Maryam; Putniņš, Tālis J.; Berryman, Matthew J.; Allison, Andrew; Ng, Brian W.-H.; Abbott, Derek

    2013-01-01

    In this paper, we develop two automated authorship attribution schemes, one based on Multiple Discriminant Analysis (MDA) and the other based on a Support Vector Machine (SVM). The classification features we exploit are based on word frequencies in the text. We adopt an approach of preprocessing each text by stripping it of all characters except a-z and space. This is in order to increase the portability of the software to different types of texts. We test the methodology on a corpus of undisputed English texts, and use leave-one-out cross validation to demonstrate classification accuracies in excess of 90%. We further test our methods on the Federalist Papers, which have a partly disputed authorship and a fair degree of scholarly consensus. And finally, we apply our methodology to the question of the authorship of the Letter to the Hebrews by comparing it against a number of original Greek texts of known authorship. These tests identify where some of the limitations lie, motivating a number of open questions for future work. An open source implementation of our methodology is freely available for use at https://github.com/matthewberryman/author-detection. PMID:23437047

  5. Automated authorship attribution using advanced signal classification techniques.

    PubMed

    Ebrahimpour, Maryam; Putniņš, Tālis J; Berryman, Matthew J; Allison, Andrew; Ng, Brian W-H; Abbott, Derek

    2013-01-01

    In this paper, we develop two automated authorship attribution schemes, one based on Multiple Discriminant Analysis (MDA) and the other based on a Support Vector Machine (SVM). The classification features we exploit are based on word frequencies in the text. We adopt an approach of preprocessing each text by stripping it of all characters except a-z and space. This is in order to increase the portability of the software to different types of texts. We test the methodology on a corpus of undisputed English texts, and use leave-one-out cross validation to demonstrate classification accuracies in excess of 90%. We further test our methods on the Federalist Papers, which have a partly disputed authorship and a fair degree of scholarly consensus. And finally, we apply our methodology to the question of the authorship of the Letter to the Hebrews by comparing it against a number of original Greek texts of known authorship. These tests identify where some of the limitations lie, motivating a number of open questions for future work. An open source implementation of our methodology is freely available for use at https://github.com/matthewberryman/author-detection. PMID:23437047

  6. Developing the Dance Artist in Technique Class: The Alteration Task

    ERIC Educational Resources Information Center

    Aceto, Melanie

    2012-01-01

    For intermediate and advanced university students, technique class has traditionally been the place to study a particular teacher's style and to hone technical skills. This article suggests a pedagogy that broadens standard practice by focusing additionally on both performance principles and spontaneous problem solving in the technique classroom.…

  7. Advancing botnet modeling techniques for military and security simulations

    NASA Astrophysics Data System (ADS)

    Banks, Sheila B.; Stytz, Martin R.

    2011-06-01

    Simulation environments serve many purposes, but they are only as good as their content. One of the most challenging and pressing areas that call for improved content is the simulation of bot armies (botnets) and their effects upon networks and computer systems. Botnets are a new type of malware, a type that is more powerful and potentially dangerous than any other type of malware. A botnet's power derives from several capabilities including the following: 1) the botnet's capability to be controlled and directed throughout all phases of its activity, 2) a command and control structure that grows increasingly sophisticated, and 3) the ability of a bot's software to be updated at any time by the owner of the bot (a person commonly called a bot master or bot herder.) Not only is a bot army powerful and agile in its technical capabilities, a bot army can be extremely large, can be comprised of tens of thousands, if not millions, of compromised computers or it can be as small as a few thousand targeted systems. In all botnets, their members can surreptitiously communicate with each other and their command and control centers. In sum, these capabilities allow a bot army to execute attacks that are technically sophisticated, difficult to trace, tactically agile, massive, and coordinated. To improve our understanding of their operation and potential, we believe that it is necessary to develop computer security simulations that accurately portray bot army activities, with the goal of including bot army simulations within military simulation environments. In this paper, we investigate issues that arise when simulating bot armies and propose a combination of the biologically inspired MSEIR infection spread model coupled with the jump-diffusion infection spread model to portray botnet propagation.

  8. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  9. Cost and Schedule Analytical Techniques Development

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Final Report summarizes the activities performed by Science Applications International Corporation (SAIC) under contract NAS 8-40431 "Cost and Schedule Analytical Techniques Development Contract" (CSATD) during Option Year 3 (December 1, 1997 through November 30, 1998). This Final Report is in compliance with Paragraph 5 of Section F of the contract. This CSATD contract provides technical products and deliverables in the form of parametric models, databases, methodologies, studies, and analyses to the NASA Marshall Space Flight Center's (MSFC) Engineering Cost Office (PP03) and the Program Plans and Requirements Office (PP02) and other user organizations. Detailed Monthly Reports were submitted to MSFC in accordance with the contract's Statement of Work, Section IV "Reporting and Documentation". These reports spelled out each month's specific work performed, deliverables submitted, major meetings conducted, and other pertinent information. Therefore, this Final Report will summarize these activities at a higher level. During this contract Option Year, SAIC expended 25,745 hours in the performance of tasks called out in the Statement of Work. This represents approximately 14 full-time EPs. Included are the Huntsville-based team, plus SAIC specialists in San Diego, Ames Research Center, Tampa, and Colorado Springs performing specific tasks for which they are uniquely qualified.

  10. Development of Sampling Techniques For Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Coste, P.; Eiden, M.; Gromov, V.; Ilykorpi, T.; Kochan, H.; Re, E.; Richter, L.

    During the last 15 years, the European Space Agency has initiated the development of a number of sampling techniques for planetary surfaces, in the frame of its basic Technology and Research Programme (TRP). Sampling may be performed by means of drilling, coring, milling, grain scooping or picking, and penetration. The items addressed in particular are: the Sample Acquisition System (SAS) for the late Comet Nucleus Sample and Return mission; the Small Sample Acquisition and Distribution Tool (SSA/DT): the Mole and the Sampling Mole (SM). Some of these devices have found a direct application within an ESA planetary mission, as expected; in other cases, their concept was used and modified to fulfill updated requirements. Sampling or soil probing capabilities are included to various extents in these current or near-future ESA missions: the Huygens Probe (on NASA's CASSINI spacecraft), on its way to Titan surface; the RoLand Lander (on ROSETTA s/c), onto Comet Wirtanen; the Beagle2 Lander (carried by MARS EXPRESS s/c) sampling the Martian surface and sub- surface. Future sampling missions to Mercury, the Moon and to asteroids are being studied. Even more challenging missions to Venus are considered.

  11. Advanced technology's impact on compressor design and development - A perspective

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  12. Advanced technologies impact on compressor design and development: A perspective

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  13. Advanced Computational and Experimental Techniques for Nacelle Liner Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.; Nark, Douglas

    2009-01-01

    The Curved Duct Test Rig (CDTR) has been developed to investigate sound propagation through a duct of size comparable to the aft bypass duct of typical aircraft engines. The axial dimension of the bypass duct is often curved and this geometric characteristic is captured in the CDTR. The semiannular bypass duct is simulated by a rectangular test section in which the height corresponds to the circumferential dimension and the width corresponds to the radial dimension. The liner samples are perforate over honeycomb core and are installed on the side walls of the test section. The top and bottom surfaces of the test section are acoustically rigid to simulate a hard wall bifurcation or pylon. A unique feature of the CDTR is the control system that generates sound incident on the liner test section in specific modes. Uniform air flow, at ambient temperature and flow speed Mach 0.275, is introduced through the duct. Experiments to investigate configuration effects such as curvature along the flow path on the acoustic performance of a sample liner are performed in the CDTR and reported in this paper. Combinations of treated and acoustically rigid side walls are investigated. The scattering of modes of the incident wave, both by the curvature and by the asymmetry of wall treatment, is demonstrated in the experimental results. The effect that mode scattering has on total acoustic effectiveness of the liner treatment is also shown. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation to the convected Helmholtz equation are reported. The spectra of attenuation produced by the analytic model are similar to experimental results for both walls treated, straight and curved flow path, with plane wave and higher order modes incident. The numerical model is used to define the optimized resistance and reactance of a liner that significantly improves liner attenuation in the frequency range 1900-2400 Hz. A

  14. Recent Advances in Stable Isotope Techniques for N2O Source Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Baggs, E.; Mair, L.; Mahmood, S.

    2007-12-01

    The use of 13C, 15N and 18O enables us to overcome uncertainties associated with soil C and N processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, and are fundamental for examining interactions between C and N cycles. Here we will introduce the 15N-, 18O- and 13C-enrichment techniques we have developed to distinguish between different N2O-producing processes in situ in soils, presenting selected results, and will critically assess their potential, alone and in combination with molecular techniques, to help address key research questions for soil biogeochemistry and microbial ecology. We have developed 15N- 18O-enrichment techniques to distinguish between, and to quantify, N2O production during ammonia oxidation, nitrifier denitrification and denitrification. This provides a great advantage over natural abundance approaches as it enables quantification of N2O from each microbial source, which can be coupled with quantification of N2 production, and used to examine interactions between different processes and cycles. These approaches have also provided new insights into the N cycle and how it interacts with the C cycle. For example, we now know that ammonia oxidising bacteria significantly contribute to N2O emissions from soils, both via the traditionally accepted ammonia oxidation pathway, and also via denitrification (nitrifier denitrification) which can proceed even under aerobic conditions. We are also linking emissions from each source to diversity and activity of relevant microbial functional groups, for example through the development and application of a specific nirK primer for the nitrite reductase in ammonia oxidising bacteria. Recently, isotopomers have been proposed as an alternative for source partitioning N2O at natural abundance levels, and offers the potential to investigate N2O production from nitrate ammonification, and overcomes the

  15. Development of an Advanced Annular Combustor

    NASA Technical Reports Server (NTRS)

    Rusnak, J. P.; Shadowen, J. H.

    1969-01-01

    The objective of the effort described in this report was to determine the structural durability of a full-scale advanced annular turbojet combustor using ASTM A-1 type fuel and operating at conditions typical of advanced supersonic aircraft. A full-scale annular combustor of the ram-induction type was fabricated and subjected to a 325-hour cyclic endurance test at conditions representative of operation in a Mach 3.0 aircraft. The combustor exhibited extensive cracking and scoop burning at the end of the test program. But these defects had no appreciable effect on combustor performance, as performance remained at a high level throughout the endurance program. Most performance goals were achieved with pressure loss values near 6% and 8%, and temperature rise variation ratio (deltaTVR) values near 1.25 and l.22 at takeoff and cruise conditions, respectively. Combustion efficiencies approached l004 and the exit radial temperature profiles were approximately as desired.

  16. Development of Advanced Plant Habitat Flight Unit

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis J., Jr

    2013-01-01

    With NASA's current goals and resources moving forward to bring the idea of Manned Deep-Space missions from a long-thought concept to a reality, innovative research methods and expertise are being utilized for studies that integrate human needs with that of technology to make for the most efficient operations possible. Through the capability to supply food, provide oxygen from what was once carbon dioxide, and various others which help to make plant research one of the prime factors of future long-duration mission, the Advanced Plant Habitat will be the largest microgravity plant growth chamber on the International Space Station when it is launched in the near future (2014- 2015). Soon, the Advanced Plant Habitat unit will continue on and enrich the discoveries and studies on the long-term effects of microgravity on plants.

  17. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  18. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  19. Development of an interactive computer program for advance care planning

    PubMed Central

    Green, Michael J.; Levi, Benjamin H.

    2013-01-01

    Objective To describe the development of an innovative, multimedia decision aid for advance care planning. Background Advance care planning is an important way for people to articulate their wishes for medical care when they are not able to speak for themselves. Living wills and other types of advance directives are the most commonly used tools for advance care planning, but have been criticized for being vague, difficult to interpret, and inconsistent with individuals’ core beliefs and values. Results We developed a multimedia, computer-based decision aid for advance care planning (‘Making Your Wishes Known: Planning Your Medical Future’) to overcome many of the limitations of standard advance directive forms. This computer program guides individuals through the process of advance care planning, and unlike standard advance directives, provides tailored education, values clarification exercises, and a decision-making tool that translates an individual’s values and preferences into a specific medical plan that can be implemented by a health-care team. Pilot testing with 50 adult volunteers recruited from an outpatient primary care clinic showed high levels of satisfaction with the program. Further pilot testing with 34 cancer patients indicated that the program was perceived to be highly accurate at representing patients’ wishes. Conclusions This paper describes the development of an innovative decision aid for advance care planning that was designed to overcome common problems with standard advance directives. Preliminary testing suggests that it is acceptable to users and is accurate. PMID:18823445

  20. Advanced smoke meter development survey and analysis

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.; Penney, C. M.; Stanforth, C. M.; Shaffernocker, W. M.

    1984-01-01

    Ideal smoke meter characteristics are determined to provide a basis for evaluation of candidate systems. Five promising techniques are analyzed in detail to evaluate compilance with the practical smoke meter requirements. Four of the smoke measurement concepts are optical methods: Modulated Transmission (MODTRAN), Cross Beam Absorption Counter (CBAC), Laser Induced Incandescence (LIN), and Photoacoustic Spectroscopy (PAS). A rapid response filter instrument called a Taper Element Oscillating Microbalance (TEOM) is also evaluated. For each technique, the theoretical principles are described, the expected performance is determined, and the advantages and disadvantages are discussed The expected performance is evaluated against each of the smoke meter specifications, and the key questions for further study are given. The most promising smoke meter technique analyzed was MODTRAN, which is a variation on a direct transmission measurement. The soot-laden gas is passed through a transmission cell, and the gas pressure is modulated by a speaker.

  1. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  2. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  3. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  4. Vadose Zone Characterization Techniques Developed by EMSP Research

    SciTech Connect

    Guillen, Donna P.

    2003-02-24

    This paper discusses research contributions made by Environmental Management Science Program (EMSP) research in the area of geophysical characterization of the subsurface. The goal of these EMSP research projects is to develop combined high-resolution measurement and interpretation packages that provide accurate, timely information needed to characterize the vadose zone. Various types of geophysical imaging techniques can be used to characterize the shallow subsurface. Since individual geophysical characterization tools all have specific limitations, many different techniques are being explored to provide more widespread applicability over a range of hydrogeologic settings. A combination of laboratory, field, theoretical, and computational studies are necessary to develop our understanding of how contaminants move through the vadose zone. This entails field tests with field-hardened systems, packaging and calibration of instrumentation, data processing and analysis algorithms, forward and inverse modeling, and so forth. DOE sites are seeking to team with EMSP researchers to leverage the basic science research investment and apply these advances to address subsurface contamination issues that plague many U.S. Department of Energy (DOE) sites.

  5. State of the Art Assessment of Simulation in Advanced Materials Development

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher E.

    2008-01-01

    Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.

  6. Advances in Child Development: Theory and Research.

    ERIC Educational Resources Information Center

    Nesdale, Andrew R., Ed.; And Others

    This book consists of 31 papers focusing on aspects of child development. Mainly reports of research, papers are grouped topically into four sections dealing respectively with perceptual, language/communication, cognitive, and social development. Most of the nine papers in section 1 focus on the perceptual development of infants. Topics include…

  7. Early Childhood Development Policy Advances in Uganda

    ERIC Educational Resources Information Center

    Ejuu, Godfrey

    2012-01-01

    Knowledge of the history and development of early childhood development in Uganda is paramount if we are to know how far we have come and where we are going. This article explores the introduction of early childhood development in Ugandan policy and government interventions from 1960 to 2011. Data was obtained from a review of available early…

  8. Devices Materials and Processes for Nanoelectronics: Characterization with Advanced X-Ray Techniques Using Lab-Based and Synchrotron Radiation Sources

    SciTech Connect

    E Zschech; C Wyon; C Murray; G Schneider

    2011-12-31

    Future nanoelectronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nanostructures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nanoelectronics industry is reviewed. The focus of this paper is on the study of nanoscale device and on-chip interconnect materials, and materials for 3D IC integration as well.

  9. Advanced real-time dynamic scene generation techniques for improved performance and fidelity

    NASA Astrophysics Data System (ADS)

    Bowden, Mark H.; Buford, James A.; Mayhall, Anthony J.

    2000-07-01

    Recent advances in real-time synthetic scene generation for Hardware-in-the-loop (HWIL) testing at the U.S. Army Aviation and Missile Command (AMCOM) Aviation and Missile Research, Development, and Engineering Center (AMRDEC) improve both performance and fidelity. Modeling ground target scenarios requires tradeoffs because of limited texture memory for imagery and limited main memory for elevation data. High- resolution insets have been used in the past to provide better fidelity in specific areas, such as in the neighborhood of a target. Improvements for ground scenarios include smooth transitions for high-resolution insets to reduce high spatial frequency artifacts at the borders of the inset regions and dynamic terrain paging to support large area databases. Transport lag through the scene generation system, including sensor emulation and interface components, has been dealt with in the past through the use of sub-window extraction from oversize scenes. This compensates for spatial effects of transport lag but not temporal effects. A new system has been developed and used successfully to compensate for a flashing coded beacon in the scene. Other techniques have been developed to synchronize the scene generator with the seeker under test (SUT) and to model atmospheric effects, sensor optic and electronics, and angular emissivity attenuation.

  10. Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan

    PubMed Central

    Suzuki, Shigeru

    2014-01-01

    The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891

  11. Developing NDE Techniques for Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan; Youngquist, Robert

    2009-01-01

    Project: The Orion Crew Module (CM) and Service Module (SM) subsystems will require approximately 870 tube welds to be fabricated onsite at KSC O&C High Bay. A quick and reliable NDE technique is required to ensure efficient assembly and superior weld quality.

  12. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  13. Space Station propulsion - The Advanced Development Program at Lewis

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1985-01-01

    A reference configuration was established for the initial operating capability (IOC) station. The reference configuration has assumed hydrazine fueled thrusters as the propulsion system. This was to establish costing and as a reference for comparison when other propulsion systems are considered. An integral part of the plan to develop the Space Station is the advanced development program. The objective of this program is to provide advanced technology alternatives for the initial and evolutionary Space Station which optimize the system's functional characteristics in terms of performance, cost, and utilization. The portion of the Advanced Development Program that is concerned with auxiliary propulsion and the research and programmatic activities conducted are discussed.

  14. Space station propulsion: The advanced development program at Lewis

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1985-01-01

    A reference configuration was established for the initial operating capability (IOC) station. The reference configuration has assumed hydrazine fueled thrusters as the propulsion system. This was to establish costing and as a reference for comparison when other propulsion systems are considered. An integral part of the plan to develop the Space Station is the advanced development program. The objective of this program is to provide advanced technology alternatives for the initial and evolutionary Space Station which optimize the system's functional characteristics in terms of performance, cost, and utilization. The portion of the Advanced Development Program that is concerned with auxiliary propulsion and the research and programmatic activities conducted are discussed.

  15. Schedule Risks Due to Delays in Advanced Technology Development

    NASA Technical Reports Server (NTRS)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  16. Advanced Mating System Development for Space Applications

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2004-01-01

    This slide presentation reviews the development of space flight sealing and the work required for the further development of a dynamic interface seal for the use on space mating systems to support a fully androgynous mating interface. This effort has resulted in the advocacy of developing a standard multipurpose interface for use with all modern modular space architecture. This fully androgynous design means a seal-on-seal (SOS) system.

  17. Advances in Statistical Approaches Oncology Drug Development

    PubMed Central

    Ivanova, Anastasia; Rosner, Gary L.; Marchenko, Olga; Parke, Tom; Perevozskaya, Inna; Wang, Yanping

    2014-01-01

    We describe some recent developments in statistical methodology and practice in oncology drug development from an academic and an industry perspective. Many adaptive designs were pioneered in oncology, and oncology is still at the forefront of novel methods to enable better and faster Go/No-Go decision making while controlling the cost. PMID:25949927

  18. Advances in Technology, Education and Development

    ERIC Educational Resources Information Center

    Kouwenhoven, Wim, Ed.

    2009-01-01

    From 3rd to 5th March 2008 the International Association of Technology, Education and Development organised its International Technology, Education and Development Conference in Valencia, Spain. Over a hundred papers were presented by participants from a great variety of countries. Summarising, this book provides a kaleidoscopic view of work that…

  19. Advanced technology development multi-color holography

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1993-01-01

    This is the final report of the Multi-color Holography project. The comprehensive study considers some strategic aspects of multi-color holography. First, various methods of available techniques for accurate fringe counting are reviewed. These are heterodyne interferometry, quasi-heterodyne interferometry, and phase-shifting interferometry. Phase-shifting interferometry was found to be the most suitable for multi-color holography. Details of experimentation with a sugar solution are also reported where better than 1/200 of a fringe order measurement capability was established. Rotating plate glass phase shifter was used for the experimentation. The report then describes the possible role of using more than two wavelengths with special reference-to-object beam intensity ratio needs in multicolor holography. Some specific two- and three-color cases are also described in detail. Then some new analysis methods of the reconstructed wavefront are considered. These are deflectometry, speckle metrology, confocal optical signal processing, and phase shifting technique related applications. Finally, design aspects of an experimental breadboard are presented.

  20. Advanced Diagnostics for Developing High-Brightness Electron Beams

    SciTech Connect

    Ben-Zvi, I.; Babzien, M.; Malone, R.; Wang, X.-J.; Yakimenko, V.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  1. ADVANCED DIAGNOSTICS FOR DEVELOPING HIGH-BRIGHTNESS ELECTRON BEAMS.

    SciTech Connect

    BEN-ZVI,I.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  2. ALS liquid hydrogen turbopump: Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Shimp, Nancy R.; Claffy, George J.

    1989-01-01

    The point of departure (POD) turbopump concept was reviewed and finalized. The basis for the POD was the configuration presented in the Aerojet proposal. After reviewing this proposal concept, several modifications were made. These modifications include the following: (1) the dual pump discharge arrangement was changed to a single discharge; (2) commonality of the turbine inlet manifold with the advanced launch system (ALS) liquid oxygen (LOX) TPA was dropped for this program; (3) the turbine housing flange arrangement was improved by relocating it away from the first stage nozzles; (4) a ten percent margin (five percent diameter increase) was built into the impeller design to ensure meeting the required discharge pressure without the need for increasing speed; (5) a ten percent turbine power margin was imposed which is to be obtained by increasing turbine inlet pressure if required; and (6) the backup concept, as an alternative to the use of cast impellers, now incorporates forged/machined shrouded impellers, rather than the unshrouded type originally planned.

  3. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... certain claims of U.S. Patent No. 6,042,998. 75 FR. 44,015 (July 27, 2010). The complaint named two... COMMISSION In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and... for ] importation, and sale within the United States after importation of certain...

  4. Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord

    PubMed Central

    Andre, Jalal B.; Bammer, Roland

    2012-01-01

    Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

  5. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  6. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  7. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  8. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  9. Cost and schedule analytical techniques development

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This contract provided technical services and products to the Marshall Space Flight Center's Engineering Cost Office (PP03) and the Program Plans and Requirements Office (PP02) for the period of 3 Aug. 1991 - 30 Nov. 1994. Accomplishments summarized cover the REDSTAR data base, NASCOM hard copy data base, NASCOM automated data base, NASCOM cost model, complexity generators, program planning, schedules, NASA computer connectivity, other analytical techniques, and special project support.

  10. Development of Semi-Span Model Test Techniques

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Chokani, Ndaona; McGhee, Robert J.

    1996-01-01

    A computational investigation was performed to support the development of a semispan model test capability in the NASA Langley Research Center's National Transonic Facility. This capability is desirable for the testing of advanced subsonic transport aircraft at full-scale Reynolds numbers. A state-of-the-art three-dimensional Navier-Stokes solver was used to examine methods to improve the flow over a semi-span configuration. First, a parametric study is conducted to examine the influence of the stand-off height on the flow over the semispan model. It is found that decreasing the stand-off height, below the maximum fuselage radius, improves the aerodynamic characteristics of the semi-span model. Next, active sidewall boundary layer control techniques are examined. Juncture region blowing jets, upstream tangential blowing, and sidewall suction are found to improve the flow over the aft portion of the semispan model. Both upstream blowing and suction are found to reduce the sidewall boundary layer separation. The resulting near surface streamline patterns are improved, and found to be quite similar to the full-span results. Both techniques however adversely affect the pitching moment coefficient.

  11. Advanced Technology Development for Active Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark; Cattafesta, Louis N., III; Nishida, Toshikazu; Kurdila, Andrew J.

    2001-01-01

    Objectives include: (1) Develop electro-mechanical/acoustic models of a Helmholtz resonator possessing a compliant diaphragm coupled to a piezoelectric device; (2) Design and fabricate the energy reclamation module and active Helmholtz resonator; (3) Develop and build appropriate energy reclamation/storage circuit; (4) Develop and fabricate appropriate piezoelectric shunt circuit to tune the compliance of the active Helmholtz resonator via a variable capacitor; (5) Quantify energy reclamation module efficiency in a grazing-flow plane wave tube possessing known acoustic energy input; and (6) Quantify actively tuned Helmholtz resonator performance in grazing-flow plane wave tube for a white-noise input

  12. Computerized Television: New Developments in Television Production Techniques.

    ERIC Educational Resources Information Center

    Metallinos, Nikos

    Based on the notion that technological and artistic developments in the area of television production affect viewers' comprehension and appreciation of televised programs, this essay examines the impact of telecommunication advances on the industry. The first section briefly considers the technological advances of the last decade in major TV…

  13. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  14. Colorectal cancer development and advances in screening.

    PubMed

    Simon, Karen

    2016-01-01

    Most colon tumors develop via a multistep process involving a series of histological, morphological, and genetic changes that accumulate over time. This has allowed for screening and detection of early-stage precancerous polyps before they become cancerous in individuals at average risk for colorectal cancer (CRC), which may lead to substantial decreases in the incidence of CRC. Despite the known benefits of early screening, CRC remains the second leading cause of cancer-related deaths in the United States. Hence, it is important for health care providers to have an understanding of the risk factors for CRC and various stages of disease development in order to recommend appropriate screening strategies. This article provides an overview of the histological/molecular changes that characterize the development of CRC. It describes the available CRC screening methods and their advantages and limitations and highlights the stages of CRC development in which each screening method is most effective. PMID:27486317

  15. Colorectal cancer development and advances in screening

    PubMed Central

    Simon, Karen

    2016-01-01

    Most colon tumors develop via a multistep process involving a series of histological, morphological, and genetic changes that accumulate over time. This has allowed for screening and detection of early-stage precancerous polyps before they become cancerous in individuals at average risk for colorectal cancer (CRC), which may lead to substantial decreases in the incidence of CRC. Despite the known benefits of early screening, CRC remains the second leading cause of cancer-related deaths in the United States. Hence, it is important for health care providers to have an understanding of the risk factors for CRC and various stages of disease development in order to recommend appropriate screening strategies. This article provides an overview of the histological/molecular changes that characterize the development of CRC. It describes the available CRC screening methods and their advantages and limitations and highlights the stages of CRC development in which each screening method is most effective. PMID:27486317

  16. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  17. Classification of human colonic tissues using FTIR spectra and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Zwielly, A.; Argov, S.; Salman, A.; Bogomolny, E.; Mordechai, S.

    2010-04-01

    One of the major public health hazards is colon cancer. There is a great necessity to develop new methods for early detection of cancer. If colon cancer is detected and treated early, cure rate of more than 90% can be achieved. In this study we used FTIR microscopy (MSP), which has shown a good potential in the last 20 years in the fields of medical diagnostic and early detection of abnormal tissues. Large database of FTIR microscopic spectra was acquired from 230 human colonic biopsies. Five different subgroups were included in our database, normal and cancer tissues as well as three stages of benign colonic polyps, namely, mild, moderate and severe polyps which are precursors of carcinoma. In this study we applied advanced mathematical and statistical techniques including principal component analysis (PCA) and linear discriminant analysis (LDA), on human colonic FTIR spectra in order to differentiate among the mentioned subgroups' tissues. Good classification accuracy between normal, polyps and cancer groups was achieved with approximately 85% success rate. Our results showed that there is a great potential of developing FTIR-micro spectroscopy as a simple, reagent-free viable tool for early detection of colon cancer in particular the early stages of premalignancy among the benign colonic polyps.

  18. Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

    2002-01-01

    is a three-phase constituent composed of TCP and stringers of gamma phase in a matrix of gamma prime. An incoherent grain boundary separates the SRZ from the gammagamma prime microstructure of the superalloy. The SRZ is believed to form as a result of local chemistry changes in the superalloy due to the application of the diffusion aluminide bondcoat. Locally high surface stresses also appear to promote the formation of the SRZ. Thus, techniques that change the local alloy chemistry or reduce surface stresses have been examined for their effectiveness in reducing SRZ. These SRZ-reduction steps are performed on the test specimen or the turbine blade before the bondcoat is applied. Stressrelief heat treatments developed at NASA Glenn have been demonstrated to reduce significantly the amount of SRZ that develops during subsequent high-temperature exposures. Stress-relief heat treatments reduce surface stresses by recrystallizing a thin surface layer of the superalloy. However, in alloys with very high propensities to form SRZ, stress relief heat treatments alone do not eliminate SRZ entirely. Thus, techniques that modify the local chemistry under the bondcoat have been emphasized and optimized successfully at Glenn. One such technique is carburization, which changes the local chemistry by forming submicron carbides near the surface of the superalloy. Detailed characterizations have demonstrated that the depth and uniform distribution of these carbides are enhanced when a stress relief treatment and an appropriate surface preparation are employed in advance of the carburization treatment. Even in alloys that have the propensity to develop a continuous SRZ layer beneath the diffusion zone, the SRZ has been completely eliminated or reduced to low, manageable levels when this combination of techniques is utilized. Now that the techniques to mitigate SRZ have been established at Glenn, TCP phase formation is being emphasized in ongoing work under the UEET Program. The

  19. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  20. In vivo studies of brain development by magnetic resonance techniques.

    PubMed

    Inder, T E; Huppi, P S

    2000-01-01

    Understanding of the morphological development of the human brain has largely come from neuropathological studies obtained postmortem. Magnetic resonance (MR) techniques have recently allowed the provision of detailed structural, metabolic, and functional information in vivo on the human brain. These techniques have been utilized in studies from premature infants to adults and have provided invaluable data on the sequence of normal human brain development. This article will focus on MR techniques including conventional structural MR imaging techniques, quantitative morphometric MR techniques, diffusion weighted MR techniques, and MR spectroscopy. In order to understand the potential applications and limitations of MR techniques, relevant physical and biological principles for each of the MR techniques are first reviewed. This is followed by a review of the understanding of the sequence of normal brain development utilizing these techniques. MRDD Research Reviews 6:59-67, 2000. PMID:10899798

  1. Development of an advanced undergraduate course in acoustics

    NASA Astrophysics Data System (ADS)

    Gee, Kent L.; Neilsen, Tracianne B.; Sommerfeldt, Scott D.

    2016-03-01

    Within many physics undergraduate programs, acoustics is given only a cursory treatment, usually within an introductory course. Because acoustics is a natural vehicle for students to develop intuition about wave phenomena, an advanced undergraduate acoustics course has been developed at Brigham Young University. Although it remains an elective course, enrollment has increased steadily since its inception. The course has been taken by students in physics, applied physics, physics teaching, and mechanical and electrical engineering. In addition to providing training for students motivated by interest in undergraduate research, internship, employment, and graduate schooling opportunities in acoustics, the course facilitates connections between various areas of physics. Explicit connections are made to mechanics, electricity and magnetism, thermodynamics, optics, quantum mechanics, and experimental and computational laboratory courses. Active learning is emphasized through Just-in-Time-Teaching and course structure. Homework exercises are both theoretical and practical and often require making and interpreting of graphs. For example, students may model traffic noise as a series of uncorrelated monopoles or examine highway barrier effectiveness using Fresnel diffraction techniques. Additionally, students participate in resumé-building measurements and learn to report their results in the form of technical memoranda. Course evaluations and post-graduation student surveys rate it among the most valuable undergraduate student courses offered.

  2. Development of advanced acreage estimation methods

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1982-01-01

    The development of an accurate and efficient algorithm for analyzing the structure of MSS data, the application of the Akaiki information criterion to mixture models, and a research plan to delineate some of the technical issues and associated tasks in the area of rice scene radiation characterization are discussed. The AMOEBA clustering algorithm is refined and documented.

  3. Advancing Administrative Supports for Research Development

    ERIC Educational Resources Information Center

    Briar-Lawson, Katharine; Korr, Wynne; White, Barbara; Vroom, Phyllis; Zabora, James; Middleton, Jane; Shank, Barbara; Schatz, Mona

    2008-01-01

    Research administrative supports must parallel and reinforce faculty initiatives in research grant procurement. This article features several types of developments that draw on presentations at the National Association of Deans and Directors of Schools of Social Work meetings. Key changes in social work programs are addressed, including the…

  4. Advanced Child Development. Vocational Home Economics Education.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This curriculum guide, developed for use in secondary vocational home economics education in Texas, is correlated closely with the essential elements prescribed by the State Board of Education. The competencies in each guide are the essential elements, and the subcompetencies are the subelements prescribed in the Texas Administrative Codes for…

  5. Social and Personality Development: An Advanced Textbook

    ERIC Educational Resources Information Center

    Lamb, Michael E., Ed.; Bornstein, Marc H., Ed.

    2011-01-01

    This new text contains parts of Bornstein and Lamb's "Developmental Science, 6th edition", along with new introductory material, providing a cutting edge and comprehensive overview of social and personality development. Each of the world-renowned contributors masterfully introduces the history and systems, methodologies, and measurement and…

  6. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of

  7. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate

  8. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  9. Advanced development of a programmable power processor

    NASA Technical Reports Server (NTRS)

    Lukens, F. E.; Lanier, J. R., Jr.; Kapustka, R. E.; Graves, J.

    1980-01-01

    The need for the development of a multipurpose flexible programmable power processor (PPP) has increased significantly in recent years to reduce ever rising development costs. One of the program requirements the PPP specification will cover is the 25 kW power module power conversion needs. The 25 kW power module could support the Space Shuttle program during the 1980s and 1990s and could be the stepping stone to future large space programs. Trades that led to selection of a microprocessor controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Component selection and design considerations are also discussed.

  10. Advanced Software Development Workstation Project, phase 3

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ACCESS provides a generic capability to develop software information system applications which are explicitly intended to facilitate software reuse. In addition, it provides the capability to retrofit existing large applications with a user friendly front end for preparation of input streams in a way that will reduce required training time, improve the productivity even of experienced users, and increase accuracy. Current and past work shows that ACCESS will be scalable to much larger object bases.

  11. Advances and challenges in malaria vaccine development

    PubMed Central

    Wang, Ruobing; Smith, Joseph D.; Kappe, Stefan H.I.

    2010-01-01

    Malaria remains one of the most devastating infectious diseases that threaten humankind. Human malaria is caused by five different species of Plasmodium parasites, each transmitted by the bite of female Anopheles mosquitoes. Plasmodia are eukaryotic protozoans with more than 5000 genes and a complex life cycle that takes place in the mosquito vector and the human host. The life cycle can be divided into pre-erythrocytic stages, erythrocytic stages and mosquito stages. Malaria vaccine research and development faces formidable obstacles because many vaccine candidates will probably only be effective in a specific species at a specific stage. In addition, Plasmodium actively subverts and escapes immune responses, possibly foiling vaccine-induced immunity. Although early successful vaccinations with irradiated, live-attenuated malaria parasites suggested that a vaccine is possible, until recently, most efforts have focused on subunit vaccine approaches. Blood-stage vaccines remain a primary research focus, but real progress is evident in the development of a partially efficacious recombinant pre-erythrocytic subunit vaccine and a live-attenuated sporozoite vaccine. It is unlikely that partially effective vaccines will eliminate malaria; however, they might prove useful in combination with existing control strategies. Elimination of malaria will probably ultimately depend on the development of highly effective vaccines. PMID:20003658

  12. Advances in Super-Reltron source development

    SciTech Connect

    Miller, R.B.; Habiger, K.W.; Beggs, W.R. Jr.; Clifford, J.R.

    1995-11-01

    Super-Reltron High Power Microwave tubes use post-acceleration of a well-modulated beam and multiple cavity output sections to generate high power microwave pulses (100MW--1GW) with excellent efficiency (40--50%). In the past year the authors have continued their development of these tubes with emphasis being given to three specific topics: (1) Long-Pulse Operation. Recent experiments with their 1.3-GHz tube have demonstrated pulse durations in excess of one microsecond, producing energy per pulse in excess of 150 J. (2) Extended Frequency Coverage. The authors have developed a Super-Reltron-based HPM effects testing system which provides repetitive, high-power pulses over the frequency range of 0.7--11 GHz. (3). Extended Lifetime Designs. The authors have now developed Super-Reltron designs using thermionic cathodes, ceramic insulators, and gridless modulating cavities. These designs should give extended lifetime operation at reasonably high average power levels (>100 kW). In this paper they report their experimental results and theoretical design considerations related to each of these three topics.

  13. Visualization tool for advanced laser system development

    NASA Astrophysics Data System (ADS)

    Crockett, Gregg A.; Brunson, Richard L.

    2002-06-01

    Simulation development for Laser Weapon Systems design and system trade analyses has progressed to new levels with the advent of object-oriented software development tools and PC processor capabilities. These tools allow rapid visualization of upcoming laser weapon system architectures and the ability to rapidly respond to what-if scenario questions from potential user commands. These simulations can solve very intensive problems in short time periods to investigate the parameter space of a newly emerging weapon system concept, or can address user mission performance for many different scenario engagements. Equally important to the rapid solution of complex numerical problems is the ability to rapidly visualize the results of the simulation, and to effectively interact with visualized output to glean new insights into the complex interactions of a scenario. Boeing has applied these ideas to develop a tool called the Satellite Visualization and Signature Tool (SVST). This Windows application is based upon a series of C++ coded modules that have evolved from several programs at Boeing-SVS. The SVST structure, extensibility, and some recent results of applying the simulation to weapon system concepts and designs will be discussed in this paper.

  14. Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles

    SciTech Connect

    Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

    2003-12-01

    This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

  15. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  16. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  17. Techniques development for whale migration tracking

    NASA Technical Reports Server (NTRS)

    Goodman, R. M.; Norris, K. S.; Gibson, R. J.; Gentry, R.; Dougherty, E.; Hobbs, L.

    1973-01-01

    Effort leading to the completion of development and fabrication of expansible whale harnesses and whale-carried instrument pods is described, along with details of the gear. Early preparative effort for a January-February 1974 field expedition is reported.

  18. Active Correlation Technique: Status and Development

    SciTech Connect

    Tsyganov, Yury

    2010-04-30

    During the recent years, at the FLNR (JINR) a successful cycle of experiments has been accomplished on the synthesis of the superheavy elements with Z = 112-118 with {sup 48}Ca beam. From the viewpoint of the detection of rare decays and background suppression, this success was achieved due to the application of a new radical technique--the method of active correlations. The method employs search in a real-time mode for a pointer to a probable correlation like recoil-alpha for switching the beam off. In the case of detection in the same detector strip an additional alpha-decay event, of 'beam OFF' time interval is prolonged automatically.

  19. Recent developments in multiplexing techniques for immunohistochemistry

    PubMed Central

    Dixon, Angela R; Bathany, Cédric; Tsuei, Michael; White, Joshua; Barald, Kate F; Takayama, Shuichi

    2016-01-01

    Methods to detect immuno-labelled molecules at increasingly higher resolution, even when present at low levels, are revolutionizing immunohistochemistry (IHC). These technologies can be valuable for management and examination of rare patient tissue specimens, and for improved accuracy of early disease detection. The purpose of this mini-review is to highlight recent multiplexing methods that are candidates for more prevalent use in clinical research and potential translation to the clinic. Multiplex IHC methods, which permit identification of at least 3 and up to 30 discrete antigens, have been divided into whole section staining and spatially-patterned staining categories. Associated signal enhancement technologies that can enhance performance and throughput of multiplex IHC assays are also discussed. Each multiplex IHC technique, detailed herein, is associated with several advantages as well as tradeoffs that must be taken into consideration for proper evaluation and use of the methods. PMID:26289603

  20. Advanced Life Support Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    2001-01-01

    A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.

  1. Advanced Metallic Thermal Protection System Development

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.; Chen, R. R.; Schmidt, I. H.; Dorsey, J. T.; Poteet, C. C.; Bird, R. K.

    2002-01-01

    A new Adaptable, Robust, Metallic, Operable, Reusable (ARMOR) thermal protection system (TPS) concept has been designed, analyzed, and fabricated. In addition to the inherent tailorable robustness of metallic TPS, ARMOR TPS offers improved features based on lessons learned from previous metallic TPS development efforts. A specific location on a single-stage-to-orbit reusable launch vehicle was selected to develop loads and requirements needed to design prototype ARMOR TPS panels. The design loads include ascent and entry heating rate histories, pressures, acoustics, and accelerations. Additional TPS design issues were identified and discussed. An iterative sizing procedure was used to size the ARMOR TPS panels for thermal and structural loads as part of an integrated TPS/cryogenic tank structural wall. The TPS panels were sized to maintain acceptable temperatures on the underlying structure and to operate under the design structural loading. Detailed creep analyses were also performed on critical components of the ARMOR TPS panels. A lightweight, thermally compliant TPS support system (TPSS) was designed to connect the TPS to the cryogenic tank structure. Four 18-inch-square ARMOR TPS panels were fabricated. Details of the fabrication process are presented. Details of the TPSS for connecting the ARMOR TPS panels to the externally stiffened cryogenic tank structure are also described. Test plans for the fabricated hardware are presented.

  2. Advanced Stirling receiver development program, phase 1

    NASA Technical Reports Server (NTRS)

    Lurio, Charles A.

    1990-01-01

    Critical technology experiments were designed and developed to evaluate the Stirling cavity heat pipe receiver for a space solar power system. Theoretical criteria were applied to the design of a module for containing energy storage phase change material while avoiding thermal ratcheting. Zero-g drop tower tests, without phase change, were conducted to affirm that the bubble location required to avoid ratcheting could be achieved without the use of container materials that are wetted by the phase change material. A full scale module was fabricated, but not tested. A fabrication method was successfully developed for the sodium evaporator dome, with a sintered screen wick, to be used as the focal point for the receiver. Crushing of the screen during hydroforming was substantially reduced over the results of other researchers by using wax impregnation. Superheating of the sodium in the wick under average flux conditions is expected to be under 10K. A 2000K furnace which will simulate solar flux conditions for testing the evaporator dome was successfully built and tested.

  3. Advances in Therapeutic Development for Radiation Cystitis.

    PubMed

    Rajaganapathy, Bharathi Raja; Jayabalan, Nirmal; Tyagi, Pradeep; Kaufman, Jonathan; Chancellor, Michael B

    2014-01-01

    Radiation treatment for pelvic malignancies is typically associated with radiation injury to urinary bladder that can ultimately lead to radiation cystitis (RC). The late sequelae of radiation therapy may take many years to develop and include bothersome storage symptoms such as hematuria, which may be life-threatening in severe cases of hemorrhagic cystitis. Although no definitive treatment is currently available, various interventions are used for radiation and hemorrhagic cystitis including blood transfusion, bladder irrigation, intravesical instillation of substances such as alum, silver nitrate, prostaglandins or formalin, and fulguration of intravesical bleeding sites and surgery options such as supravesical urinary diversions and cystectomy. Effects of non-surgical treatments for radiation and hemorrhagic cystitis are of modest success and studies are lacking to control the effects caused by RC. When such measures have proven ineffective, use of bladder botulinum toxin injection has been reported. New therapy, such as intravesical immunosuppression with local tacrolimus formulation is being developed for the treatment of radiation hemorrhagic cystitis. PMID:26663493

  4. Advanced crew procedures development techniques: Procedures and performance program description

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Mangiaracina, A. A.

    1975-01-01

    The Procedures and Performance Program (PPP) for operation in conjunction with the Shuttle Procedures Simulator (SPS) is described. The PPP user interface, the SPS/PPP interface, and the PPP applications software are discussed.

  5. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  6. Development of advanced polymer nanocomposite capacitors

    NASA Astrophysics Data System (ADS)

    Mendoza, Miguel

    The current development of modern electronics has driven the need for new series of energy storage devices with higher energy density and faster charge/discharge rate. Batteries and capacitors are two of the most widely used energy storage devices. Compared with batteries, capacitors have higher power density and significant higher charge/discharge rate. Therefore, high energy density capacitors play a significant role in modern electronic devices, power applications, space flight technologies, hybrid electric vehicles, portable defibrillators, and pulse power applications. Dielectric film capacitors represent an exceptional alternative for developing high energy density capacitors due to their high dielectric constants, outstanding breakdown voltages, and flexibility. The implementation of high aspect ratio dielectric inclusions such as nanowires into polymer capacitors could lead to further enhancement of its energy density. Therefore, this research effort is focused on the development of a new series of dielectric capacitors composed of nanowire reinforced polymer matrix composites. This concept of nanocomposite capacitors combines the extraordinary physical and chemical properties of the one-dimension (1D) nanoceramics and high dielectric strength of polymer matrices, leading to a capacitor with improved dielectric properties and energy density. Lead-free sodium niobate (NaNbO3) and lead-containing lead magnesium niobate-lead titanate (0.65PMN-0.35PT) nanowires were synthesized following hydrothermal and sol-gel approaches, respectively. The as-prepared nanowires were mixed with a polyvinylidene fluoride (PVDF) matrix using solution-casting method for nanocomposites fabrication. The dielectric constants and breakdown voltages of the NaNbO3/PVDF and 0.65PMN-0.35PT/PVDF nanocomposites were measured under different frequency ranges and temperatures in order to determine their maximum energy (J/cm3) and specific (J/g) densities. The electrical properties of the

  7. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989

  8. Advanced Turbo-Charging Research and Development

    SciTech Connect

    2008-02-27

    The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger' because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.

  9. Chaste: using agile programming techniques to develop computational biology software.

    PubMed

    Pitt-Francis, Joe; Bernabeu, Miguel O; Cooper, Jonathan; Garny, Alan; Momtahan, Lee; Osborne, James; Pathmanathan, Pras; Rodriguez, Blanca; Whiteley, Jonathan P; Gavaghan, David J

    2008-09-13

    Cardiac modelling is the area of physiome modelling where the available simulation software is perhaps most mature, and it therefore provides an excellent starting point for considering the software requirements for the wider physiome community. In this paper, we will begin by introducing some of the most advanced existing software packages for simulating cardiac electrical activity. We consider the software development methods used in producing codes of this type, and discuss their use of numerical algorithms, relative computational efficiency, usability, robustness and extensibility. We then go on to describe a class of software development methodologies known as test-driven agile methods and argue that such methods are more suitable for scientific software development than the traditional academic approaches. A case study is a project of our own, Cancer, Heart and Soft Tissue Environment, which is a library of computational biology software that began as an experiment in the use of agile programming methods. We present our experiences with a review of our progress thus far, focusing on the advantages and disadvantages of this new approach compared with the development methods used in some existing packages. We conclude by considering whether the likely wider needs of the cardiac modelling community are currently being met and suggest that, in order to respond effectively to changing requirements, it is essential that these codes should be more malleable. Such codes will allow for reliable extensions to include both detailed mathematical models--of the heart and other organs--and more efficient numerical techniques that are currently being developed by many research groups worldwide. PMID:18565813

  10. Radio Astronomers Develop New Technique for Studying Dark Energy

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical

  11. The development of cryo-EM into a mainstream structural biology technique

    PubMed Central

    Nogales, Eva

    2016-01-01

    Single-particle cryo-electron microscopy (cryo-EM) has emerged over the last two decades as a technique capable of studying challenging systems that otherwise defy structural characterization. Recent technical advances have resulted in a ‘quantum leap’ in applicability, throughput and achievable resolution that has gained this technique worldwide attention. Here I discuss some of the major historical landmarks in the development of the cryo-EM field, ultimately leading to its present success. PMID:27110629

  12. Developing an Online Curriculum: Technologies and Techniques

    ERIC Educational Resources Information Center

    Porter, Lynnette R.

    2004-01-01

    This book acts as a guidebook for teachers and administrators as they look for support with their online education programs. It offers teaching suggestions for everything from course development to time management and community building. The book is designed to provide information to help teachers work more effectively with online tools, develop…

  13. Gestalt Therapy: Development, Theory, and Techniques.

    ERIC Educational Resources Information Center

    Witchel, Robert

    This paper presents a full review of the literature in the area of Gestalt Therapy and could be helpful in familiarizing people with this discipline. The roots contributing to the development of Gestalt therapy as presently practiced are explored briefly. Gestalt theory is presented in a developmental way, initially exploring the relationship…

  14. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    SciTech Connect

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton; Nellis, Gregory; Klein, Sanford

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  15. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  16. High-rate-long-distance fiber-optic communication based on advanced modulation techniques.

    PubMed

    Ivankovski, Y; Mendlovic, D

    1999-09-10

    The presence of fiber attenuation and chromatic dispersion is one of the major design aspects of fiber-optic communication systems when one addresses high-rate and long-distance digital data transmission. Conventional digital communication systems implement a modulation technique that generates light pulses at the fiber input end and tries to detect them at the fiber output end. Here an advanced modulation transmission system is developed based on knowledge of the exact dispersion parameters of the fiber and the principles of space-time mathematical analogy. The information encodes the phase of the input light beam (a continuous laser beam). This phase is designed such that, when the signal is transmitted through a fiber with a given chromatic dispersion, high peak pulses emerge at the output, which follows a desired bit pattern. Thus the continuous input energy is concentrated into short time intervals in which the information needs to be represented at the output. The proposed method provides a high rate-distance product even for fibers with high dispersion parameters, high power at the output, and also unique protection properties. Theoretical analysis of the proposed method, computer simulations, and some design aspects are given. PMID:18324062

  17. Commercial development of advanced PFBC technology

    SciTech Connect

    McClung, J.D.

    1995-12-31

    In the 1970s, the coal-fired power generation industry recognized that the declining price of electricity over the previous five decades was coming to an end. Maximum use had been made of existing cycle efficiencies and scale-up. As researchers looked for a new approach, the focus shifted from the fully developed Rankine cycle to a new array of coal-fired plants using combined-cycle technology. Now, coal-fired combined-cycle plants are being introduced that shift power production to the Brayton cycle. Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are two technologies at the forefront of this approach. The PFBC approach burns coal in a fluidized bed combustor at elevated pressure. The plant generates electricity from a gas turbine (expanding the hot, pressurized products of combustion) in addition to the conventional steam (bottoming) cycle. Such a plant can achieve thermal efficiencies of about 40 percent and have a levelized busbar cost below any competing coal-based technology. In addition to the economic benefits, the {open_quotes}built-in{close_quotes} feature of environmental control (SO{sub 2} and NO{sub x}) in the combustion process eliminates the need for external gas cleanup such as scrubbers. A PFBC can burn a wider range of coals than a pulverized-coal-fired (PCF) boiler and is simpler to operate and maintain than an IGCC power plant.

  18. Advanced lightweight optics development for space applications

    SciTech Connect

    Bilbro, James W.

    1998-01-15

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed.

  19. Advanced lightweight optics development for space applications

    NASA Astrophysics Data System (ADS)

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed.

  20. Advanced Power Regulator Developed for Spacecraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing.

  1. Development of advanced Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan

    1994-01-01

    The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.

  2. Development of advanced foams in microgravity

    NASA Astrophysics Data System (ADS)

    García-Moreno, Francisco; Babcsan, Norbert; Banhart, John; Andersson, Martin; Pugh, Robert J.; Kronberg, Bengt; Saint-Jalmes, Arnaud; Marze, Sébastien; Langevin, Dominique; Brunke, Oliver; Odenbach, Stefan; Cox, Simon; Hutzler, Stefan; Drenckhan, Wiebke; Weaire, Denis; Baumgärtner, Frank; Seeliger, Wolfgang; Argillier, Jean-François; Lange, Dieter

    2005-10-01

    Metallic and aqueous foams are challenging materials for both fundamental and applied research. They distinguish themselves from other materials by their very low density and, especially in the case of metallic foams, by high specific stiffness, good damping and high-energy absorption capability. They are therefore becoming increasingly popular for industrial applications. Driven by industry demand, efforts have been made in recent years to improve foam quality. Microgravity conditions are essential for further analysis and improvement of aqueous and metallic foams. Experimental devices for in situ and ex situ analysis were developed within this MAP project. Foam properties such as drainage, rupture events and foam density were analysed quantitatively, as well as the influence of external conditions like gas pressure and foaming gas. Hardness and wetting angles for different stabilising particles were compared; mica is proposed as a suitable candidate for aluminium foams. In the case of aqueous foams, surfactants and proteins are found to have a different microscopic origin of stabilisation. A monodisperse aqueous foam generator will be adapted for metallic foams. Foam stabilisation mechanisms and foam evolution simulations were performed. 2-D X-ray foam images were successfully simulated.

  3. Development of the role of director of advanced practice nursing.

    PubMed

    Rhodes, Catherine A; Fusilero, Jane; Williams, Christine M

    2010-01-01

    Advanced practice nurses (APNs) are integral to cost-effective delivery of health care in large health care organizations. Development of the leadership position of director of advanced practice nurses in a large teaching institution provides leadership to APNs in various settings, contributes to staff satisfaction, facilitates increased professional growth, and provides improved quality and fiscal outcomes. Job satisfaction, productivity, accountability, and communication may be enhanced through implementation of the role of director of advanced practice nursing and a committee structure of APNs, as was found in this academic health system. PMID:20306882

  4. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  5. NDE (nondestructive examination) development for ceramics for advanced heat engines

    SciTech Connect

    McClung, R.W. , Powell, TN ); Johnson, D.R. )

    1991-01-01

    The Department of Energy (DOE) Ceramic Technology for Advanced Heat Engines (CTAHE) project was initiated in 1983 to meet the ceramic technology needs of DOE's advanced heat engines programs (i.e., advanced gas turbines and low heat rejection diesels). The objective is to establish an industrial ceramic technology base for reliable and cost-effective high-temperature components. Reliability of ceramics was recognized as the major technology need. To increase the material reliability of current and new ceramics, advances were needed in component design methodology, materials processing technology, and data base/life prediction. Nondestructive examination (NDE) was identified as one of the key elements in the approach to high-reliability components. An assessment was made of the current status of NDE for structural ceramics, and a report was prepared containing the results and recommendations for needed development. Based on these recommendations, a long-range NDE development program has been established in the CTAHE project to address these needs.

  6. Development of advanced micromirror arrays by flip-chip assembly

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper presents the design, commercial prefabrication, modeling and testing of advanced micromirror arrays fabricated using a novel, simple and inexpensive flip-chip assembly technique. Several polar piston arrays and rectangular cantilever arrays were fabricated using flip-chip assembly by which the upper layers of the array are fabricated on a separate chip and then transferred to a receiving module containing the lower layers. Typical polar piston arrays boast 98.3% active surface area, highly planarized surfaces, low address potentials compatible with CMOS electronics, highly standardized actuation between devices, and complex segmentation of mirror surfaces which allows for custom aberration configurations. Typical cantilever arrays boast large angles of rotation as well as an average surface planarity of only 1.779 nm of RMS roughness across 100 +m mirrors. Continuous torsion devices offer stable operation through as much as six degrees of rotation while binary operation devices offer stable activated positions with as much as 20 degrees of rotation. All arrays have desirable features of costly fabrication services like five structural layers and planarized mirror surfaces, but are prefabricated in the less costly MUMPs process. Models are developed for all devices and used to compare empirical data.

  7. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  8. Advanced Power Regulator Developed for Spacecraft

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing. The advantages of this scheme are: 1) Because only a fraction of the power is processed through the dc-dc converter, the single- stage conversion efficiency is 94 to 98 percent; 2) Costly, high-efficiency dc-dc converters are not necessary for high end-to-end system efficiency; 3) The system is highly fault tolerant because the bypass connection will still deliver power if the dc-dc converter fails; and 4) The converters can easily be connected in parallel, allowing higher power systems to be built from a common building block. This new technology will be spaceflight tested in the Photovoltaic Regulator Kit Experiment

  9. Performance and operating results from the demonstration of advanced combustion techniques for wall-fired boilers

    SciTech Connect

    Sorge, J.N.; Baldwin, A.L.

    1993-11-01

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term performance of advanced overfire air and low NO{sub x} burners applied in a stepwise fashion to a 500 MW boiler. A 50 percent NO{sub x} reduction target has been established for the project. The focus of this paper is to present the effects of excess oxygen level and burner settings on NO{sub x} emissions and unburned carbon levels and recent results from the phase of the project when low NO{sub x} burners were used in conjunction with advanced overfire air.

  10. Development of a dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Vezzetti, C. F.; Hilten, J. S.; Lederer, P. S.

    1975-01-01

    The report deals with work continuing on the development of a method of producing sinusoidally varying pressures of at least 34 kPa zero-to-peak with amplitude variations within plus or minus 5% up to 2 kHz for the dynamic calibration of pressure transducers. Sinusoidally varying pressures of 34 kPa zero-to-peak were produced between 40 Hz and 750 Hz by vibrating a 10-cm column of a dimethyl siloxane liquid at 36gn zero-to-peak. Damping of the liquid column was accomplished by packing the fixture tube with a number of smaller diameter tubes.

  11. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  12. Unified Instrumentation: Examining the Simultaneous Application of Advanced Measurement Techniques for Increased Wind Tunnel Testing Capability

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A. (Editor); Bartram, Scott M.; Humphreys, William M., Jr.; Jenkins, Luther N.; Jordan, Jeffrey D.; Lee, Joseph W.; Leighty, Bradley D.; Meyers, James F.; South, Bruce W.; Cavone, Angelo A.; Ingram, JoAnne L.

    2002-01-01

    A Unified Instrumentation Test examining the combined application of Pressure Sensitive Paint, Projection Moire Interferometry, Digital Particle Image Velocimetry, Doppler Global Velocimetry, and Acoustic Microphone Array has been conducted at the NASA Langley Research Center. The fundamental purposes of conducting the test were to: (a) identify and solve compatibility issues among the techniques that would inhibit their simultaneous application in a wind tunnel, and (b) demonstrate that simultaneous use of advanced instrumentation techniques is feasible for increasing tunnel efficiency and identifying control surface actuation / aerodynamic reaction phenomena. This paper provides summary descriptions of each measurement technique used during the Unified Instrumentation Test, their implementation for testing in a unified fashion, and example results identifying areas of instrument compatibility and incompatibility. Conclusions are drawn regarding the conditions under which the measurement techniques can be operated simultaneously on a non-interference basis. Finally, areas requiring improvement for successfully applying unified instrumentation in future wind tunnel tests are addressed.

  13. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  14. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  15. Advanced Microgravity Acceleration Measurement Systems (AMAMS) Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2003-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project is part of NASA s Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical systems (MEMS) for acceleration sensor systems to replace existing electromechanical sensor systems presently used to assess relative gravity levels aboard spacecraft. These systems are used to characterize both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data is useful to the microgravity life sciences, microgravity physical sciences, and structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, with enhanced long-term calibration stability.

  16. Development of advanced technologies for biomass pyrolysis

    NASA Astrophysics Data System (ADS)

    Xu, Ran

    the entering vapors and gases to spin, providing good heat transfer and driving the condensed droplets to the wall through cyclonic action. This condenser design has been successfully demonstrated for the application on the pilot fluidized bed pyrolysis unit. After condensation, a stable aerosol is also typically formed which is difficult to be efficiently captured with conventional technologies. A pilot scale helicoidal rotary demister, a novel technology for removing persistent fine bio-oil droplets from gases using dynamic centrifugal forces, has been developed. The demister uses a helicoidal element, which consists of a metal sheet wound as a spiral, designed to rotate at high speeds within a cyclone body. Larger droplets are separated as they enter the cyclone housing, while the smaller droplets are carried by the gas into the helicoidal path of the rotating element, where they are centrifuged towards the outer collecting walls and, as a result of a specially designed baffle, may flow counter-currently to the gas and are drained out from the bottom of the rotating element. The mist-free gas leaves through a channel located at the center of the spiral. This unique demister design has demonstrated a high separation efficiency when tested offline with artificial submicron mist and tested online for demisting bio-oil aerosol on the pyrolysis unit. Bio-oil Upgrading: Very often, phase separation of bio-oil occurs naturally upon condensation of the bio-oil vapors, typically through the use of cyclonic condensers. The bio-oil is separated into an organic phase and an aqueous phase. Research has been conducted on the possibility to enhance the fuel properties and energy performance of the organic phase by reducing its water content, enhancing its heating value and improving its stability. Through the use of drying agents, a remarkable reduction of water content and an increase of heating value can be achieved. Moreover, the volumetric energy density can be greatly

  17. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  18. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. PMID:25348145

  19. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  20. Developing processing techniques for Skylab data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Morgenstern, J. P.

    1975-01-01

    The author has identified the following significant results. The effects of misregistration and the scan-line-straightening algorithm on multispectral data were found to be: (1) there is greatly increased misregistration in scan-line-straightening data over conic data; (2) scanner caused misregistration between any pairs of channels may not be corrected for in scan-line-straightened data; and (3) this data will have few pure field center pixels than will conic data. A program SIMSIG was developed implementing the signature simulation model. Data processing stages of the experiment were carried out, and an analysis was made of the effects of spatial misregistration on field center classification accuracy. Fifteen signatures originally used for classifying the data were analyzed, showing the following breakdown: corn (4 signatures), trees (2), brush (1), grasses, weeds, etc. (5), bare soil (1), soybeans (1), and alfalfa (1).