Science.gov

Sample records for advanced technology centers

  1. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  2. Center for Advanced Separation Technology

    SciTech Connect

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  3. Responding to Industry Demands: Advanced Technology Centers.

    ERIC Educational Resources Information Center

    Smith, Elizabeth Brient

    1991-01-01

    Discusses characteristics identified by the Center for Occupational Research and Development as indicative of fully functioning advanced technology centers, including the provision of training and retraining in such areas as design, manufacturing, materials science, and electro-optics; technology transfer; demonstration sites; needs assessment;…

  4. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  5. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  6. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  7. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  8. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  9. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  10. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  11. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  12. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  13. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    ERIC Educational Resources Information Center

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  14. Center for Advanced Technology Training (CATT) Feasibility Study.

    ERIC Educational Resources Information Center

    Albuquerque Technical Vocational Inst., NM.

    A study of the feasibility of establishing a Center for Advanced Technology Training (CATT) at the Albuquerque Technical Vocational Institute (TVI Community College, New Mexico) was conducted by members of the Albuquerque business community, government representatives, and college administrators. Phase 1 of the study was an examination of the…

  15. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky

  16. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  17. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  18. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  19. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  20. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  1. An Analysis of Collaborative Technology Advancements Achieved through the Center for Network Innovation and Experimentation

    DTIC Science & Technology

    2008-12-01

    COLLABORATIVE TECHNOLOGY ADVANCEMENTS ACHIEVED THROUGH THE CENTER FOR NETWORK INNOVATION AND EXPERIMENTATION by Eric L. Quarles December 2008...Advancements Achieved through the Center for Network Innovation and Experimentation 6. AUTHOR(S) Eric L. Quarles 5. FUNDING NUMBERS 7...cycles which the members of the Naval Postgraduate School Center for Network Innovation and Experimentation (CENETIX) participate. These experiments

  2. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Kostadin, Damevski

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  3. Advanced Measurement Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.

    1998-01-01

    Instrumentation systems have always been essential components of world class wind tunnels and laboratories. Langley continues to be on the forefront of the development of advanced systems for aerospace applications. This paper will describe recent advances in selected measurement systems which have had significant impact on aerospace testing. To fully understand the aerodynamics and aerothermodynamics influencing aerospace vehicles, highly accurate and repeatable measurements need to be made of critical phenomena. However, to maintain leadership in a highly competitive world market, productivity enhancement and the development of new capabilities must also be addressed aggressively. The accomplishment of these sometimes conflicting requirements has been the challenge of advanced measurement developers. However, several new technologies have recently matured to the point where they have enabled the achievement of these goals. One of the critical areas where advanced measurement systems are required is flow field velocity measurements. These measurements are required to correctly characterize the flowfield under study, to quantify the aerodynamic performance of test articles and to assess the effect of aerodynamic vehicles on their environment. Advanced measurement systems are also making great strides in obtaining planar measurements of other important thermodynamic quantities, including species concentration, temperature, pressure and the speed of sound. Langley has been on the forefront of applying these technologies to practical wind tunnel environments. New capabilities in Projection Moire Interferometry and Acoustics Array Measurement systems have extended our capabilities into the model deformation, vibration and noise measurement arenas. An overview of the status of these techniques and recent applications in practical environments will be presented in this paper.

  4. Center for Technology for Advanced Scientific Componet Software (TASCS)

    SciTech Connect

    Govindaraju, Madhusudhan

    2010-10-31

    Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB. We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This

  5. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    EPA Science Inventory

    This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

  6. Community College Advanced Technology Centers: Meeting America's Need for Integrated, Comprehensive Economic Development.

    ERIC Educational Resources Information Center

    Hinckley, Richard; And Others

    By entering into partnerships with business and industry, community colleges are able to offset the high cost of remaining current with training techniques, job market skill requirements, and state-of-the-art hardware. The construction of advanced technology centers (ATCs) located on community college campuses is one key element supporting these…

  7. Final Report for "Center for Technology for Advanced Scientific Component Software"

    SciTech Connect

    Svetlana Shasharina

    2010-12-01

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  8. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  9. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  10. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  11. The rehabilitation engineering research center for the advancement of cognitive technologies.

    PubMed

    Heyn, Patricia Cristine; Cassidy, Joy Lucille; Bodine, Cathy

    2015-02-01

    Barring few exceptions, allied health professionals, engineers, manufacturers of assistive technologies (ATs), and consumer product manufacturers have developed few technologies for individuals with cognitive impairments (CIs). In 2004, the National Institute on Disability Rehabilitation Research (NIDRR) recognized the need to support research in this emergent field. They funded the first Rehabilitation Engineering Research Center for the Advancement of Cognitive Technologies (RERC-ACT). The RERC-ACT has since designed and evaluated existing and emerging technologies through rigorous research, improving upon existing AT devices, and creating new technologies for individuals with CIs. The RERC-ACT has contributed to the development and testing of AT products that assist persons with CIs to actively engage in tasks of daily living at home, school, work, and in the community. This article highlights the RERC-ACT's engineering development and research projects and discusses how current research may impact the quality of life for an aging population.

  12. Control Center Technology Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Conference papers and presentations are compiled and cover evolving architectures and technologies applicable to flight control centers. Advances by NASA Centers and the aerospace industry are presented.

  13. C-130 Advanced Technology Center wing box conceptual design/cost study

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.; Foreman, C. R.; Silva, K.

    1992-01-01

    A conceptual design was developed by Northrop/LTV for an advanced C-130 Center Wing Box (CWB) which could meet the severe mission requirements of the SOF C-130 aircraft. The goals for the advanced technology CWB relative to the current C-130H CWB were: (1) the same acquisition cost; (2) lower operating support costs; (3) equal or lower weight; (4) a 30,000 hour service life for the SOF mission; and (5) minimum impact on the current maintenance concept. Initially, the structural arrangement, weight, external and internal loads, fatigue spectrum, flutter envelope and design criteria for the SOF C-130 aircraft CWB were developed. An advanced materials assessment was then conducted to determine the suitability of advanced materials for a 1994 production availability and detailed trade studies were performed on candidate CWB conceptual designs. Finally, a life-cycle cost analysis was performed on the advanced CWB. The study results showed that a hybrid composite/metallic CWB could meet the severe SOF design requirements, reduce the CWB weight by 14 pct., and was cost effective relative to an all metal beefed up C-130H CWB.

  14. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    SciTech Connect

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  15. Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    NASA Technical Reports Server (NTRS)

    Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based

  16. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  17. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  18. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  19. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema

    None

    2016-07-12

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  20. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    SciTech Connect

    Hules, J.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  1. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  2. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  3. Center for Healthcare Technologies

    SciTech Connect

    Carrano, A.V.

    1994-03-01

    In the U.S., we now spend about 13% of the gross domestic product (CDP) on healthcare. This figure represents nearly $3000 per year per man, woman, and child. Moreover, this expenditure is projected to grow to about 20% of the GDP by the year 2000. Medical research and development accounts for only about 3% of national healthcare spending, and technology development represents only a small fraction of that 3%. New technologies that are far more cost-effective than previous ones - such as minimally invasive surgical procedures, advanced automated diagnostics, and better information systems - could save the nation billions of dollars per year to say nothing of the potential reductions in pain and suffering. A center is described that will coordinate ongoing Laboratory research aimed at developing more cost-effective tools for use by the healthcare community. The new Center for Healthcare Technologies will have many long-term benefits for the region and the nation.

  4. Mississippi Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  5. Center for space microelectronics technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 1992 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during the past year. The report lists 187 publications, 253 presentations, and 111 new technology reports and patents in the areas of solid-state devices, photonics, advanced computing, and custom microcircuits.

  6. "Infotonics Technology Center"

    SciTech Connect

    Fritzemeier, L.; Boysel, M. B.; Smith, D. R.

    2004-09-30

    During this grant period July 15, 2002 thru September 30, 2004, the Infotonics Technology Center developed the critical infrastructure and technical expertise necessary to accelerate the development of sensors, alternative lighting and power sources, and other specific subtopics of interest to Department of Energy. Infotonics fosters collaboration among industry, universities and government and operates as a national center of excellence to drive photonics and microsystems development and commercialization. A main goal of the Center is to establish a unique, world-class research and development facility. A state-of-the-art microsystems prototype and pilot fabrication facility was established to enable rapid commercialization of new products of particular interest to DOE. The Center has three primary areas of photonics and microsystems competency: device research and engineering, packaging and assembly, and prototype and pilot-scale fabrication. Center activities focused on next generation optical communication networks, advanced imaging and information sensors and systems, micro-fluidic systems, assembly and packaging technologies, and biochemical sensors. With targeted research programs guided by the wealth of expertise of Infotonics business and scientific staff, the fabrication and packaging facility supports and accelerates innovative technology development of special interest to DOE in support of its mission and strategic defense, energy, and science goals.

  7. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  8. NASA Center for Climate Simulation (NCCS) Advanced Technology AT5 Virtualized Infiniband Report

    NASA Technical Reports Server (NTRS)

    Thompson, John H.; Bledsoe, Benjamin C.; Wagner, Mark; Shakshober, John; Fromkin, Russ

    2013-01-01

    The NCCS is part of the Computational and Information Sciences and Technology Office (CISTO) of Goddard Space Flight Center's (GSFC) Sciences and Exploration Directorate. The NCCS's mission is to enable scientists to increase their understanding of the Earth, the solar system, and the universe by supplying state-of-the-art high performance computing (HPC) solutions. To accomplish this mission, the NCCS (https://www.nccs.nasa.gov) provides high performance compute engines, mass storage, and network solutions to meet the specialized needs of the Earth and space science user communities

  9. The Center for Technology for Advanced Scientific Component Software (TASCS) Lawrence Livermore National Laboratory - Site Status Update

    SciTech Connect

    Epperly, T W

    2008-12-03

    This report summarizes LLNL's progress for the period April through September of 2008 for the Center for Technology for Advanced Scientific Component Software (TASCS) SciDAC. The TASCS project is organized into four major thrust areas: CCA Environment (72%), Component Technology Initiatives (16%), CCA Toolkit (8%), and User and Application Outreach & Support (4%). The percentage of LLNL's effort allocation is shown in parenthesis for each thrust area. Major thrust areas are further broken down into activity areas, LLNL's effort directed to each activity is shown in Figure 1. Enhancements, Core Tools, and Usability are all part of CCA Environment, and Software Quality is part of Component Technology Initiatives. The balance of this report will cover our accomplishments in each of these activity areas.

  10. National Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Rivers, Lee W.

    1992-01-01

    Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.

  11. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  12. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-01-01

    A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  13. JPRS Report, Science & Technology, Japan, Key Tech Center Advanced Communications Research

    DTIC Science & Technology

    2007-11-02

    connections have also transcended the barriers of individual industries, leading to interindustry communications. Thus this decade is worthy of being...overcoming factors in business that could interfere with implementation, there must be an approach supporting the technical aspects of interconnection. In this... approach the 21st century, several new technologies capable of renovat- ing current telecommunications networks and improving their operability have been

  14. Telemedicine & Advanced Technology Research Center (TATRC) Overview: Research Shaped to Meet Military Needs

    DTIC Science & Technology

    2011-06-01

    Technology BHSAI Medical Modeling & Simulation JPC Program Execution National ProgramsLogistics Security, Plans, Training, Travel Innovative and...SBIR CSI 400 450 Demonstrations & Field T-Med (P8) JPC -1 Other JPC Execution 5 6 & 8 300 350 Demonstrations , , , 200 250 & Field T-Med (P8...Other JPC Execution 100 150 Congressional Special Appropriations – RDT&E 0 50 SBIR JPC1 UNCLASSIFIED June 2011 Key Sources: CSI, AAMTI(P8), SBIR/STTR

  15. Recent advances in carbon-carbon substrate technology at NASA. Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O.; Yamaki, Y. Robert; Maahs, Howard G.

    1992-01-01

    A comparison of specific strengths of candidate high-temperature materials as a function of temperature is shown. From this comparison, it is apparent why there is an interest in carbon-carbon composites for applications as a strong, light-weight thermal protection system (TPS), or as hot structure, for applications above 2500 F. The lower bound of the carbon-carbon band is representative of the tensile strength of cross-ply Advanced Carbon-Carbon (ACC). The upper bound represents capabilities of various experimental carbon-carbon composites. Thin carbon-carbon composites, such as would be used as TPS panels or hot aero-structure, are usually constructed of layups of 2-D fabrics of carbon-fiber yarns (tows). Although the in-plane strengths of these composites can be very attractive, a major problem area is low interlaminar strength. The low interlaminar strength is the result of a relatively weak carbon matrix and poor interaction between the fibers and matrix. The purpose of this paper is to discuss strategies being employed to improve the interlaminar strengths of the materials at the upper bound of the carbon-carbon band, and to present some recent encouraging results. The emphasis of these strategies is to improve interlaminar shear and tensile strengths while maintaining, or even improving, the inplane properties.

  16. Science and Technology Centers.

    ERIC Educational Resources Information Center

    Danilov, Victor J.

    Science and technology centers, which are relative newcomers to the museum field, differ from traditional museums in a number of respects. They are concerned with furthering public understanding and appreciation of the physical and biological sciences, engineering, technology, and health and seek to accomplish this goal by making museums both…

  17. National Center for Advanced Manufacturing Overview

    NASA Technical Reports Server (NTRS)

    Vickers, John H.

    2000-01-01

    This paper presents a general overview of the National Center for Advanced Manufacturing, with an emphasis on Aerospace Materials, Processes and Environmental Technology. The topics include: 1) Background; 2) Mission; 3) Technology Development Approach; 4) Space Transportation Significance; 5) Partnering; 6) NCAM MAF Project; 7) NASA & Calhoun Community College; 8) Educational Development; and 9) Intelligent Synthesis Environment. This paper is presented in viewgraph form.

  18. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  19. Assessing Advanced Technology in CENATE

    SciTech Connect

    Tallent, Nathan R.; Barker, Kevin J.; Gioiosa, Roberto; Marquez, Andres; Kestor, Gokcen; Song, Shuaiwen; Tumeo, Antonino; Kerbyson, Darren J.; Hoisie, Adolfy

    2016-08-08

    PNNL's Center for Advanced Technology Evaluation (CENATE) is a new U.S. Department of Energy center whose mission is to assess and facilitate access to emerging computing technology. CENATE is assessing a range of advanced technologies, from evolutionary to disruptive. Technologies of interest include the processor socket (homogeneous and accelerated systems), memories (dynamic, static, memory cubes), motherboards, networks (network interface cards and switches), and input/output and storage devices. CENATE is developing a multi-perspective evaluation process based on integrating advanced system instrumentation, performance measurements, and modeling and simulation. We show evaluations of two emerging network technologies: silicon photonics interconnects and the Data Vortex network. CENATE's evaluation also addresses the question of which machine is best for a given workload under certain constraints. We show a performance-power tradeoff analysis of a well-known machine learning application on two systems.

  20. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  1. Advanced Cancer Detection Center

    DTIC Science & Technology

    2009-01-01

    patient reported outcomes. The technology that makes this possible is a PC card that accepts tone-dial (push-button) sounds and can playback pre- recorded ...then be recorded : The video resolution is adequate for many clinical applications. While not precise enough for pathological diagnosis, it is...appropriate samples at frequent intervals. State-of-the-art techniques must be used for sensitive and specific detection of candidate infectious

  2. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  3. State Technologies Advancement Collaborative

    SciTech Connect

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  4. Center for Computational Structures Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.

    1995-01-01

    The Center for Computational Structures Technology (CST) is intended to serve as a focal point for the diverse CST research activities. The CST activities include the use of numerical simulation and artificial intelligence methods in modeling, analysis, sensitivity studies, and optimization of flight-vehicle structures. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The key elements of the Center are: (1) conducting innovative research on advanced topics of CST; (2) acting as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); (3) strong collaboration with NASA scientists and researchers from universities and other government laboratories; and (4) rapid dissemination of CST to industry, through integration of industrial personnel into the ongoing research efforts.

  5. Advanced Training Technologies and Learning Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  6. Solar Technology Center

    SciTech Connect

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  7. Advanced Electronic Technology.

    DTIC Science & Technology

    1978-11-15

    It AD AObS 062 MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB F/S 9/S ADVANCED ELECTRONIC TECHNOLOGY .(U) NOV 78 A J MCLAUGHLIN. A L MCWHORTER...T I T U T E OF T E C H N O L O G Y L I N C O L N L A B O R A T O R Y ADVANCED ELECTRONIC TECHNOLOGY QUARTERLY TECKNICAL SUMMAR Y REPORT TO THE AIR...Division 8 (Solid State) on the Advanced Electronic Technology Program. Hi

  8. Center for Space Power and Advanced Electronics, Auburn University

    NASA Technical Reports Server (NTRS)

    Deis, Dan W.; Hopkins, Richard H.

    1991-01-01

    The union of Auburn University's Center for Space Power and Advanced Electronics and the Westinghouse Science and Technology Center to form a Center for the Commercial Development of Space (CCDS) is discussed. An area of focus for the CCDS will be the development of silicon carbide electronics technology, in terms of semiconductors and crystal growth. The discussion is presented in viewgraph form.

  9. Technology Development Center at NICT

    NASA Technical Reports Server (NTRS)

    Takefuji, Kazuhiro; Ujihara, Hideki

    2013-01-01

    The National Institute of Information and Communications Technology (NICT) is developing and testing VLBI technologies and conducts observations with this new equipment. This report gives an overview of the Technology Development Center (TDC) at NICT and summarizes recent activities.

  10. Advanced Technology for Engineering Education

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  11. Clean Air Technology Center Products

    EPA Pesticide Factsheets

    The Clean Air Technology Center provides resources for emerging and existing air pollution prevention and control technologies and provides public access to data and information on their use, effectiveness and cost.

  12. Human Factors Process Task Analysis Liquid Oxygen Pump Acceptance Test Procedure for the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.

    2002-01-01

    A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.

  13. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  14. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  15. Center for Space Microelectronics Technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents.

  16. Center for Space Microelectronics Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents.

  17. Advanced geothermal technologies

    SciTech Connect

    Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

    1988-01-01

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

  18. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-12-31

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  19. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-01-01

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  20. Advanced laptop and small personal computer technology

    NASA Technical Reports Server (NTRS)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  1. Advanced solar dynamic technology program

    NASA Technical Reports Server (NTRS)

    Calogeras, James

    1990-01-01

    Viewgraphs and discussion on Advanced Solar Dynamic Technology Program are presented. Topics covered include: advanced solar dynamic technology program; advanced concentrators; advanced heat receivers; power conversion systems; dished all metal honeycomb sandwich panels; Stirling cavity heat pipe receiver; Brayton solar receiver; and thermal energy storage technology.

  2. Advanced nuclear propulsion technologies

    SciTech Connect

    Cassenti, B.N. )

    1991-01-01

    Advanced nuclear propulsion can take on several forms. Radioactive thrust sheets directly use the decay of radioactive nuclei to provide propulsion. The fissioning of nuclei has been extensively studied for propulsion both analytically and experimentally. Fusion has been analytically examined as a means of providing propulsion during the last few decades. In the last decade, serious attention has been given to the direct annihilation of matter. Each of these technologies is discussed in this paper with the greatest emphasis on antiproton annihilation propulsion.

  3. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    proximity of the occupants to the airbag module; (5) the deployment time, which includes the time to sense the need for deployment, the inflator response parameters, the air bag response, and the reliability of the air bag. The requirements for an advanced air bag technology is discussed. These requirements includes that the system use information related to: (1) the crash severity; (2) the status of belt usage; (3) the occupant category; and (4) the proximity to the air bag to adjust air bag deployment. The parameters for the response of the air bag are: (1) deployment time; (2) inflator parameters; and (3) air bag response and reliability. The state of occupant protection advanced technology is reviewed. This review includes: the current safety restraint systems, and advanced technology characteristics. These characteristics are summarized in a table, which has information regarding the technology item, the potential, and an date of expected utilization. The use of technology and expertise at NASA centers is discussed. NASA expertise relating to sensors, computing, simulation, propellants, propulsion, inflatable systems, systems analysis and engineering is considered most useful. Specific NASA technology developments, which were included in the study are: (1) a capacitive detector; (2) stereoscopic vision system; (3) improved crash sensors; (4) the use of the acoustic signature of the crash to determine crash severity; and (5) the use of radar antenna for pre-crash sensing. Information relating to injury risk assessment is included, as is a summary of the areas of the technology which requires further development.

  4. Advanced geothermal technologies

    NASA Astrophysics Data System (ADS)

    Whetten, J. T.; Murphy, H. D.; Hanold, R. J.; Myers, C. W.; Dunn, J. C.

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the U.S. Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico was producing 10 MW thermal, and still climbing, proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction was demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive.

  5. Technologic advances in endodontics.

    PubMed

    Mortman, Rory E

    2011-07-01

    This article addresses technologic advances in endodontics pertaining to new and emerging technology. Cone-beam computed tomography and optical occurrence tomography are 2 new imaging technologies that can assist the practitioner in the diagnosis of pulpal disease. The self-adjusting file and the Apexum device can be used for instrumentation and bulk debridement of an apical lesion, respectively. Neodymium:yttrium-aluminum-garnet laser, erbium:chromium:yttrium-scandium-gallium-garnet laser, EndoActivator, EndoVac, and light-activated disinfection may assist the practitioner in cleaning the root canal system. Computed tomography-guided surgery shows promise in making endodontic surgery easier, as does mineral trioxide aggregate cement for regenerative endodontic procedures.

  6. Center for Advanced Energy Studies Program Plan

    SciTech Connect

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  7. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  8. Advanced Technological Education Survey 2012 Fact Sheet

    ERIC Educational Resources Information Center

    Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen

    2012-01-01

    This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…

  9. Advanced Technological Education Survey 2011 Fact Sheet

    ERIC Educational Resources Information Center

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2011-01-01

    This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…

  10. Advanced gearbox technology

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.

    1987-01-01

    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.

  11. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  12. One Micron Laser Technology Advancements at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  13. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  14. Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture

    SciTech Connect

    Zitney, S.

    2012-01-01

    Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2

  15. Advanced space transportation technologies

    NASA Technical Reports Server (NTRS)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  16. Advances in Genome Biology & Technology

    SciTech Connect

    Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

    2007-12-01

    This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

  17. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  18. Morgantown Energy Technology Center, technology summary

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  19. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  20. Technological advances for studying human behavior

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  1. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  2. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  3. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  4. Center for advanced microstructures and devices (CAMD)

    NASA Astrophysics Data System (ADS)

    Craft, B. C.; Feldman, M.; Morikawa, E.; Poliakoff, E. D.; Saile, V.; Scott, J. D.; Stockbauer, R. L.

    1992-01-01

    The new synchrotron-radiation facility, Center for Advanced Microstructures and Devices, at Louisiana State University is described with regard to the status of installation of the storage ring, implementation of the various programs, and construction of the first beamlines.

  5. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-05-31

    The programming and website for the advanced Technology Information System (TIS) have been completed. Over and above the LSDDP-TIS, the new system provides information on DOE's baseline technologies, technology data contained in DOE's databases, technologies assessed at FIU-HCET Technology Assessment Program (TAP), as well as links to other selected D&D sites with valuable technology information. The new name for the website is Gateway for Environmental Technology (GET). A super-vacuum type blasting system was tested for decontamination of 12-in pipe internal surfaces. The system operates on compressed air and propels grit media at high speed at wall surfaces. It is equipped with a vacuum system for collecting grit, dust, and debris. This technology was selected for further development. The electret ion chamber (EIC) system for measurement of alpha contamination on surfaces has been calibrated and is ready for demonstration and deployment. FIU-HCET is working with representatives from Fernald, Oak Ridge, Rocky Flats, and Savannah River to procure a demonstration and deployment site. Final arrangements are ongoing for the mock-up design for the glove box and tank size reduction technology assessments, including designing of support bases for tanks, a piping support system, and a mobilization plan for glove boxes and tanks from storage site to the PermaCon.

  6. Advanced Construction Technology Center Research

    DTIC Science & Technology

    1993-03-19

    Document No. 89- 35-06. PARK, T. Fabrication of lightweight ceramics through casing process at low sintering temperature . Ph.D. thesis, R.C. Buchanan...measures internal strain in concrete structures. Spectroscopic Fiber Optic Temperature Sensor. A fiber optic temperature sensor based on the spectral...measured and calibrated to the temperature of the fiber section. SUMMARY OF MOST IMPORTANT RESULTS: Polarimetric Qdtical Fiber Strain Sensor. A theoretical

  7. Process Engineering Technology Center Initiative

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.

    2001-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at KSC because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how KSC has benefited from PE and how KSC has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where KSC's PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  8. Advanced stitching technology

    NASA Technical Reports Server (NTRS)

    Scardino, Frank L.

    1992-01-01

    In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

  9. Advanced Refrigerator/Freezer Technology Development. Technology Assessment

    NASA Technical Reports Server (NTRS)

    Gaseor, Thomas; Hunter, Rick; Hamill, Doris

    1996-01-01

    The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.

  10. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    SciTech Connect

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01

    schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

  11. NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  12. TECHcitement: Advances in Technological Education, 2006

    ERIC Educational Resources Information Center

    American Association of Community Colleges (NJ1), 2006

    2006-01-01

    This publication includes 13 articles: (1) ATE [Advanced Technological Education] Attuned to Global Competition; (2) Materials Science Center Supplies Information on Often-Overlooked Field; (3) CSEC [Cyber Security Education Consortium] Builds Corps of Cyber Technicians; (4) KCTCS [Kentucky Community and Technical College System] Is U.S. Partner…

  13. Johnson Space Center Research and Technology 1997 Annual Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.

  14. Technology Assessments within NASA's Integrated Technology Assessment Center

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.

    2002-01-01

    NASA's Advanced Space Transportation Program (ASTP) founded the Integrated Technology Assessment Center (ITAC) to provide a comprehensive, systematic approach to identify long-term technology needs, to quantify payoffs for technology investments, and to assess the progress of ASTP-sponsored technology programs in the hypersonics/Earth-to-orbit area. To accomplish these goals, the ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. In the ITAC approach, concepts for transportation systems are first selected based on relevance to the ASTP. Models of these concepts are then developed and data on advanced technologies are collected. Projections of key technology characteristics with respect to the specific concepts of interest are made. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework. The probabilistic outputs are weighed against metrics of interest to ASTP and a multivariate decision making process is used to provide inputs for technology prioritization within the ASTP. At present, the ITAC program is working to evaluate a variety of technologies for three two-stage hypersonic vehicle concepts. Concepts include an all rocket, vertical take off-horizontal landing (VTHL) system, a horizontal takeoff-horizontal landing (HTHL) RBCC-propelled first stage/all rocket second stage system, and an HTHL turbine-based first stage/all rocket second stage system. This paper will provide a status update of the ITAC program including current results and plans.

  15. Technology Assessments within NASA's Integrated Technology Assessment Center

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.

    2002-01-01

    NASA's Advanced Space Transportation Program (ASTP) founded the Integrated Technology Assessment Center (ITAC) to provide a comprehensive, systematic approach to identify long-term technology needs, to quantify payoffs for technology investments, and to assess the progress of ASTP-sponsored technology programs in the hypersonics/Earth-to-orbit area. To accomplish these goals, the ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. In the ITAC approach, concepts for transportation systems are first selected based on relevance to the ASTP. Models of these concepts are then developed and data on advanced technologies are collected. Projections of key technology characteristics with respect to the specific concepts of interest are made. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework. The probabilistic outputs are weighed against metrics of interest to ASTP and a multivariate decision making process is used to provide inputs for technology prioritization within the ASTP. At present, the ITAC program is working to evaluate a variety of technologies for three two-stage hypersonic vehicle concepts. Concepts include an all rocket, vertical take off-horizontal landing (VTHL) system, a horizontal take-off-horizontal landing (HTHL) RBCC-propelled first stage/all rocket second stage system, and an HTHL turbine-based first stage/all rocket second stage system. This paper will provide a status update of the ITAC program including current results and plans.

  16. Process Engineering Technology Center Initiative

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.

    2002-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  17. NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education. Volumes 2 and 3

    NASA Technical Reports Server (NTRS)

    Coleman, Tommy L. (Editor); White, Bettie (Editor); Goodman, Steven (Editor); Sakimoto, P. (Editor); Randolph, Lynwood (Editor); Rickman, Doug (Editor)

    1998-01-01

    This volume chronicles the proceedings of the 1998 NASA University Research Centers Technical Conference (URC-TC '98), held on February 22-25, 1998, in Huntsville, Alabama. The University Research Centers (URCS) are multidisciplinary research units established by NASA at 11 Historically Black Colleges or Universities (HBCU's) and 3 Other Minority Universities (OMU's) to conduct research work in areas of interest to NASA. The URC Technical Conferences bring together the faculty members and students from the URC's with representatives from other universities, NASA, and the aerospace industry to discuss recent advances in their fields.

  18. Integrating Advanced Molecular Technologies into Public Health.

    PubMed

    Gwinn, Marta; MacCannell, Duncan R; Khabbaz, Rima F

    2017-03-01

    Advances in laboratory and information technologies are transforming public health microbiology. High-throughput genome sequencing and bioinformatics are enhancing our ability to investigate and control outbreaks, detect emerging infectious diseases, develop vaccines, and combat antimicrobial resistance, all with increased accuracy, timeliness, and efficiency. The Advanced Molecular Detection (AMD) initiative has allowed the Centers for Disease Control and Prevention (CDC) to provide leadership and coordination in integrating new technologies into routine practice throughout the U.S. public health laboratory system. Collaboration and partnerships are the key to navigating this transition and to leveraging the next generation of methods and tools most effectively for public health.

  19. Education of Advanced Biotechnologists of Kitakyushu National College of Technology

    NASA Astrophysics Data System (ADS)

    Kawahara, Hiroharu

    The Cell Engineering Center was established in October, 2003 to research and develop manufacturing technologies and cell engineering technologies with human cell lines, which boost their uniqueness. The center serves as a base for advancing industrial development and creating new industries in Kitakyushu City area. One of the features in this center's activities is to promote technology exchanges between the students and researchers in private firms and to facilitate developed biotechnologies transferred to the private sectors. The Cell Engineering Center aims to train the advanced biotechnologists who have abilities for applying for patents, international communications, and leaderships. In this work, the educational and research activities in the Cell Engineering Center will be reported.

  20. Advanced interdisciplinary technologies

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1990-01-01

    The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes.

  1. Advanced Materials Technology

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)

    1982-01-01

    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

  2. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  3. New advances in erectile technology

    PubMed Central

    Stein, Marshall J.; Lin, Haocheng

    2014-01-01

    New discoveries and technological advances in medicine are rapid. The role of technology in the treatment of erectile dysfunction (ED) will be widened and more options will be available in the years to come. These erectile technologies include external penile support devices, penile vibrators, low intensity extracorporeal shockwave, tissue engineering, nanotechnology and endovascular technology. Even for matured treatment modalities for ED, such as vacuum erectile devices and penile implants, there is new scientific information and novel technology available to improve their usage and to stimulate new ideas. We anticipate that erectile technologies may revolutionize ED treatment and in the very near future ED may become a curable condition. PMID:24489605

  4. Technology advances for magnetic bearings

    NASA Astrophysics Data System (ADS)

    Nolan, Steve; Hung, John Y.

    1996-03-01

    This paper describes the state-of-the-art in magnetic bearing technology and applications, and some of advances under development through the joint efforts of Rocketdyne Division of Rockwell International and Auburn University. Advances in the areas of nonlinear control systems design, digital controller implementation, and power electronics are discussed.

  5. ISE advanced technology

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.

    1991-01-01

    Information on Space Station Freedom scheduling problems and techniques are presented in viewgraph form. Topics covered include automated scheduling systems, user interface standards, benefits of interactive scheduling systems, incremental scheduling, software engineering, computer graphics interface, distributed resource management, and advanced applications.

  6. Technological Advances in Joining

    DTIC Science & Technology

    1981-08-01

    time required for hardfacing was reduced 50 percent and material costs were reduced as well. Microplasma-Arc Welding. Advances in equipment development...548-555 (1962). (14) Anonymous, "Plasma Arc Saves Hardfacing Time and Dollars", Welding Journal, 59 (2), 51-52 (1980). (15) Liebisch, M

  7. Center for Advanced Modeling and Simulation Intern

    SciTech Connect

    Gertman, Vanessa

    2010-01-01

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  8. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  9. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2016-07-12

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  10. National Wind Technology Center (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  11. Scientific foundations of advanced technology

    NASA Astrophysics Data System (ADS)

    Lymzin, V. N.

    The objective of increasing the efficiency of production is viewed as a complex scientific and engineering problem which includes the development of advanced processes, materials, and machinery on the basis of fundamental scientific research. Particular attention is given to a systems approach to the design of complex engineering structures and the use of computer-aided design and manufacturing. Some applications of advanced technology are discussed, such as machining by a pulsed laser plasma, the use of laser analyzers for the monitoring and control of technological and physicochemical processes, and vibrational technology applications. Other topics discussed include the development of metallurgical engineering, and automation in engineering industry.

  12. Technological advances in nontraditional orthodontics.

    PubMed

    Bonnick, Andrea M; Nalbandian, Mark; Siewe, Marianne S

    2011-07-01

    New technological advances have helped the orthodontic profession progress in traditional and surgical methods of treatment. The profession has seen transitions from traditional braces to self-ligating brackets, lingual braces, removable aligners, and more advanced technology, which have helped to address concerns that include but are not limited to better diagnostics, anchorage control, length of treatment, and esthetics. An increase in the number of adult patients seeking orthodontic treatment and the need for a timely efficient care will continue to drive technology and the use of cone beam computed tomography, miniscrews, piezocision, distraction osteogenesis, and bioengineering.

  13. Advances in flotation technology

    SciTech Connect

    Parekh, B.K.; Miller, J.D.

    1999-07-01

    The ability to selectively separate fine and coarse particles by flotation is the heart of most mineral processing operations. Significant developments in flotation technology are reflected in this proceedings including: equipment design and development, instrumentation and control, sulfides and precious metals, nonsulfide minerals, coal cleaning, and fundamentals.

  14. Advanced Technology Component Derating

    DTIC Science & Technology

    1992-02-01

    Mike, ’WSI: A Technology For Reliability,’ Yield Modeling And Defect Tolerance In VLSI 73. Meredith, John W., ’Microelectronics Reliability,’ IEEE Region...34Reterojunction Bipolar Digital ICs Using M=VD Material,’ IEEE Gallium Arsenide Tntegrated Circuit Symposium, 1986 156 121. Wilhems n, Finn, Yee

  15. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  16. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  17. Advanced ballistic range technology

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1994-01-01

    The research conducted supported two facilities at NASA Ames Research Center: the Hypervelocity Free-Flight Aerodynamic Facility and the 16-Inch Shock Tunnel. During the grant period, a computerized film-reading system was developed, and five- and six-degree-of-freedom parameter-identification routines were written and successfully implemented. Studies of flow separation were conducted, and methods to extract phase shift information from finite-fringe interferograms were developed. Methods for constructing optical images from Computational Fluid Dynamics solutions were also developed, and these methods were used for one-to-one comparisons of experiment and computations.

  18. Advanced composites technology

    SciTech Connect

    DeTeresa, S J; Groves, S E; Sanchez, R J

    1998-10-01

    The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.

  19. Advanced GPS Technologies (AGT)

    DTIC Science & Technology

    2015-05-01

    AND ADDRESS(ES) Air Force Research Laboratory,Space Vehicles Directorate,3550 Aberdeen Avenue SE , Kirtland AFB,NM,87117 8. PERFORMING ORGANIZATION...Inform Partnership Council about AFRL technology investments to improve affordability and performance of the GPS Space Segment Summary • Working in...development Exploring/opening paths to the future! Distribution A 2 \\.J ••• • AFRL Investments Supporting GPS Space Segment • AFRL is investigating

  20. Advanced Joining Technology

    DTIC Science & Technology

    1982-01-01

    cracking in welding of alloy 713C . Filler-metal thermal expansion characteristics and mechanical properties may influence HAZ soundness. Filler-metal...aluminum-, and titanium-base alloys ; superalloys (both nickel and cobalt base); and ceramics. The detailed review of ceramic-to-ceramic and ceramic...building. The Air Force has funded work on forming and joining of aluminum powder metal alloys , and the Army conducted a metals joining technology

  1. Advanced optical fuzing technology

    NASA Astrophysics Data System (ADS)

    von der Lippe, Christian M.; Liu, J. Jiang

    2005-09-01

    We are developing a robust and compact photonic proximity sensor for munition applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The photonic component development exploits pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies employed in the optical fuze design are vertical cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, and miniature lenses optics. This work will culminate in a robust, fully integrated, g-hardened component design suitable for proximity fuzing applications. This compact sensor will replace costly assemblies that are based on discrete lasers, photodetectors, and bulk optics. It will be mass manufacturable and impart huge savings for such applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  2. Advances in water resources technology

    NASA Astrophysics Data System (ADS)

    The presentation of technological advances in the field of water resources will be the focus of Advances in Water Resources Technology, a conference to be held in Athens, Greece, March 20-23, 1991. Organized by the European Committee for Water Resources Management, in cooperation with the National Technical University of Athens, the conference will feature state-of-the art papers, contributed original research papers, and poster papers. Session subjects will include surface water, groundwater, water resources conservation, water quality and reuse, computer modeling and simulation, real-time control of water resources systems, and institutions and methods for technology.The official language of the conference will be English. Special meetings and discussions will be held for investigating methods of effective technology transfer among European countries. For this purpose, a wide representation of research institutions, universities and companies involved in water resources technology will be attempted.

  3. Advanced Electronic Technology.

    DTIC Science & Technology

    1980-05-15

    Circuits )Group 23 3 1. Introduction 3 IT. -’iMNOS Memory 3 ITT. ’TRestructurable VLSI-"-’) 4 IV. 4Silicon Processin~g, 4 Computer Systems - Group 28 ,6...1 II I I DIGITAL INTEGRATED CIRCUITS GROUP 23 I. INTRODUCTION Scaling experiments, linking technologies and the development of CMOS design rules are...chips where the on-chip decoding is bypassed. B. Megabit Design The design of a 1-megabit memory chip has been initiated. Several key improvements over

  4. Overview of NASA Advanced Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Ashford, Rose; Jacobsen, R. A. (Technical Monitor)

    1998-01-01

    A General Overview of NASA Advanced Transportation Technologies Program is presented. The contents include: 1) Center-TRACON Automation System (CTAS) which provides automation tools to assist air traffic controllers in planning and controlling air traffic arriving into major airports; 2) Surface Movement Advisor (SMA) for expediting and optimizing aircraft operations on the airport surface; and 3) Terminal Area Productivity Program (TAP), which is aimed at improving airport throughput in instrument meteorological conditions to match that attainable in clear weather.

  5. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  6. Research and technology of the Lyndon Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1988 are highlighted. This year, reports are grouped in sections Space System Technology, Solar System Sciences, Space Transportation Technology, and Medical Sciences. Summary sections describing the role of Johnson Space Center in each program are followed by descriptions of significant tasks. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  7. Cosmos, an international center for advanced studies

    NASA Technical Reports Server (NTRS)

    Ryzhov, Iurii; Alifanov, Oleg; Sadin, Stanley; Coleman, Paul

    1990-01-01

    The concept of Cosmos, a Soviet operating center for aerospace activities, is presented. The main Cosmos participants are the Institute for Aerospace Education, the Institute for Research and Commercial Development, and the Department of Space Policy and Socio-Economic Studies. Cosmos sponsors a number of educational programs, basic research, and studies of the social impact of space-related technologies.

  8. Advanced engine technology

    SciTech Connect

    Heisler, H.

    1995-12-31

    This book provides a comprehensive reference for anyone wanting to study the way in which modern vehicle engines work, and why they are designed as they are. The book covers virtually all configurations of commercially-produced engines, and features the latest engine technology including up-to-date coverage of electronic engine management and exhaust emission control. Chapters cover valves and camshafts; camshaft chain belt and gear train drives; engine balance and vibration; combustion chamber design and engine performance; induction and exhaust systems; supercharging systems; carburetted fuel systems; fuel injection systems; ignition systems; engine testing equipment; diesel in-line fuel injection pump systems; diesel rotary and unit injector fuel injection pump systems; emission control; cooling and lubrication systems; and alternative power units.

  9. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  10. Advanced Aerogel Technology

    NASA Technical Reports Server (NTRS)

    Jones, Steven

    2013-01-01

    The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal

  11. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  12. Advanced Operating System Technologies

    NASA Astrophysics Data System (ADS)

    Cittolin, Sergio; Riccardi, Fabio; Vascotto, Sandro

    . Our work started in the second half of 1994, with a research agreement between CERN and Chorus Systemes (France), world leader in the micro-kernel OS technology. The Chorus OS is targeted to distributed real-time applications, and it can very efficiently support different "OS personalities" in the same environment, like Posix, UNIX, and a CORBA compliant distributed object architecture. Projects are being set-up to verify the suitability of our work for LHC applications, we are building a scaled-down prototype of the DAQ system foreseen for the CMS experiment at LHC, where we will directly test our protocols and where we will be able to make measurements and benchmarks, guiding our development and allowing us to build an analytical model of the system, suitable for simulation and large scale verification.

  13. TECHcitement: Advances in Technological Education.

    ERIC Educational Resources Information Center

    American Association of Community Colleges, Washington, DC.

    This publication includes seven articles. "ATE Grants Generate Life-Changing Experiences" discusses the National Science Foundation's (NSF) Advanced Technological Education (ATE) grants, which provide seed money and other support that community college educators use to enhance technical training and improve math and science instruction. "Phone…

  14. Evaluating State Advanced Technology Programs.

    ERIC Educational Resources Information Center

    Feller, Irwin

    1988-01-01

    Evaluation of state advanced technology programs has begun in response to budget reviews. Issues include: (1) political and institutional contexts of evaluation; (2) technical issues concerning outcome specifications, use of process indicators, and dependence on self-reported assessments; and (3) use of evaluation in policy making. (TJH)

  15. An overview of advanced nonvolatile memory technologies

    SciTech Connect

    Dressendorfer, P.V.

    1991-01-01

    This report is an overview of advanced nonvolatile memory technologies. The memory technologies discussed are: floating gate nonvolatile memory technologies; SNOS nonvolatile technology; ferroelectric technology; and thin film magnetic memories.

  16. About the Clean Air Technology Center

    EPA Pesticide Factsheets

    The Clean Air Technology Center provides resources for emerging and existing air pollution prevention and control technologies and provides public access to data and information on their use, effectiveness and cost.

  17. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  18. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2015-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center (GRC) with contractor Sunpower Inc. to develop high efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems. Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or Engineering Units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA Engineering Units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F Pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in FY2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical tests at NASA

  19. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  20. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  1. Search Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  2. Available Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  3. Advanced supersonic cruise aircraft technology

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Driver, C.

    1977-01-01

    A multidiscipline approach is taken to the application of the latest technology to supersonic cruise aircraft concept definition, and current problem areas are identified. Particular attention is given to the performance of the AST-100 advanced supersonic cruise vehicle with emphasis on aerodynamic characteristics, noise and chemical emission, and mission analysis. A recently developed aircraft sizing and performance computer program was used to determine allowable wing loading and takeoff gross weight sensitivity to structural weight reduction.

  4. Advanced technology's impact on compressor design and development - A perspective

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  5. Advanced technologies impact on compressor design and development: A perspective

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  6. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  7. Research and technology at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of current mission, the technical tools are developed needed to execute Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1989 Annual Report.

  8. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-01-31

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  9. Center for Instructional Technology: A Strategic Imperative

    ERIC Educational Resources Information Center

    Volzer, Debra; Weaver, Mark

    2004-01-01

    Ohio Dominican University, a small traditional Catholic Liberal Arts University steeped in the Dominican tradition, is in the midst of a technological metamorphosis. At the forefront of the change is the Center for Instructional Technology. Charged with supporting the development of technology enhanced, hybrid, and totally online curriculum, the…

  10. Technologies and the Secondary School Writing Center

    ERIC Educational Resources Information Center

    Inman, James A.

    2006-01-01

    Although the use of computers in secondary school writing centers has been pioneering in some instances, it has at other times been problematic. It is important to be clear at the outset that using particular technologies for the sake of those particular technologies is a bad idea. While technologies are always present in our lives, they are…

  11. Advanced technology commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.

    1991-01-01

    Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.

  12. Advances in lens implant technology

    PubMed Central

    Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

    2013-01-01

    Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of implants customized for each patient’s individual requirements. This review discusses the major advances in this field and focuses on the main challenge remaining – the treatment of presbyopia. The demand for correction of presbyopia is increasing, reflecting the global growth of the ageing population. Pearls and pitfalls of currently applied methods to correct presbyopia and different approaches under investigation, both in lens implant technology and in surgical technology, are discussed. PMID:23413369

  13. Appliance Standards and Advanced Technologies

    NASA Astrophysics Data System (ADS)

    Desroches, Louis-Benoit

    2011-11-01

    Energy efficiency has long been considered one of the most effective and least costly means of reducing national energy demand. The U.S. Department of Energy runs the appliances and commercial equipment standards program, which sets federal mandatory minimum efficiency levels for many residential appliances, commercial equipment, and lighting products. The Department uses an engineering-economic analysis approach to determine appropriate standard levels that are technologically feasible and economically justified (i.e., a net positive economic benefit to consumers and the nation as a whole). The program has been very successful and has significantly reduced national energy consumption. Efficiency is also a renewable resource, with many new, even more efficient technologies continuously replacing older ones. There are many promising advanced technologies on the horizon today that could dramatically reduce appliance and commercial equipment energy use even further.

  14. Gerald L. Epstein, PhD: director, center for science, technology, and security policy, American Association for the Advancement of Science (AAAS). Interview by Madeline Drexler.

    PubMed

    Epstein, Gerald L

    2009-12-01

    Over his entire career, Gerald Epstein has toiled at the nexus of science, technology, and security. From 2003 to 2009, he was Senior Fellow for Science and Security at the Center for Strategic and International Studies Homeland Security Program, where he worked on reducing biological weapons threats, improving national preparedness, and easing potential tensions between the scientific research and national security communities. Epstein came to CSIS from the Institute for Defense Analyses. From 1996 to 2001, he served in the White House Office of Science and Technology Policy. And from 1983 to 1989, and again from 1991 until its demise in 1995, Epstein worked at the Congressional Office of Technology Assessment, where he directed a study on the proliferation of weapons of mass destruction, alongside research on other global security topics. A recognized expert in biological risk reduction, Epstein was actually trained as a physicist, having received SB degrees in physics and electrical engineering from MIT, and a PhD in physics from the University of California at Berkeley. How, then, did he come to study the evolving threat from bioterrorism? "What compelled me about bioterrorism was that it was a stellar example of a topic that would lead to a train wreck between the scientific community and the security community unless they figured out how to work together," he said. "The distance between a laboratory and a very large consequence event is a lot shorter in biology than in any other field. I got into bioterrorism to help make sure that the security community doesn't get so scared of the science that it shuts it down, and that the science community isn't so oblivious of security concerns that it pays no attention to them." Epstein spoke on November 6, 2009, with contributing writer Madeline Drexler, author of Emerging Epidemics: The Menace of New Infections (Penguin, 2009), an updated version of an earlier volume. Drexler holds a visiting appointment at the

  15. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  16. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-07-31

    FIU-HCET personnel visited the Special Technologies Laboratory (STL) for discussions with the Principal Investigator (PI) of Laser Induced Fluorescence Imaging (LIFI) and for training in LIFI. Mr. Peter Gibbons, Tanks Retrieval Technology Integration Manager, visited FIU-HCET on July 20, 1999. Mr. Gibbons inspected the pipeline unplugging experimental facility at the HCET testing field. The detailed test bed construction, testing plan, and plugging material specifications were discussed.

  17. Advances in SIS receiver technology

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.

    1988-01-01

    Significant advances in SIS receiver technology since the last Asilomar meeting include: superconductor materials, integrated inductive tuning elements, and planar mounting structures. The effect of these advances is to push the upper frequency operating limit from about 600 to 1500 GHz, and to enhance the feasibility of focal plane arrays of heterodyne receivers. A fundamental high frequency operating limit of SIS mixers is set by the superconducting energy gap. A practical limitation for high frequency operation of SIS junctions is their parasitic capacitance and resistance. The performance of the mixer will be degraded by the Resistor-Capacitor rolloff. Several designs were reported for inductive elements integrated on the same substrate as the SIS junctions to tune out the bulk junction capacitance. Most millimeter SIS-based heterodyne receivers have used waveguide coupling structures. Technology has advanced to the state where programs that have a high probability of success can be defined to produce arrays of SIS receivers for frequencies as high as 1500 GHz.

  18. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200

  19. The Goddard Earth Sciences and Technology Center (GEST Center)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  20. Savannah River Technology Center monthly report, March 1995

    SciTech Connect

    1995-03-01

    Short summaries are given on the status of projects within the Savannah River Technology Center covering the following broad topical areas: Tritium; Separations; Environmental studies; Waste management; and General. Studies listed under this last area include: Reactor support; Site robotics support; Robotics for D and D; Robotics for mixed waste operation; Integrated demonstration of an underground storage tank; and Alliance for the Advancement of Robotic Technology (AART).

  1. NASA(Field Center Based) Technology Commercialization Centers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  2. SciDAC Visualization and Analytics Center for Enabling Technologies

    SciTech Connect

    Joy, Kenneth I.

    2014-09-14

    This project focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an "information big bang," which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision for our Center is to respond directly to that challenge by adapting, extending, creating when necessary and deploying visualization and data understanding technologies for our science stakeholders. Using an organizational model as a Visualization and Analytics Center for Enabling Technologies (VACET), we are well positioned to be responsive to the needs of a diverse set of scientific stakeholders in a coordinated fashion using a range of visualization, mathematics, statistics, computer and computational science and data management technologies.

  3. The New Center for Advanced Energy Studies

    SciTech Connect

    L.J. Bond; K. Kostelnik; R.A. Wharton; A. Kadak

    2006-06-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundation to enable future economic growth. The next generation energy workforce in the U.S. is a critical element in meeting both national and global energy needs. The Center for Advanced Energy Studies (CAES) was established in 2005 in response to U.S. Department of Energy (DOE) requirements. CAES, located at the new Idaho National Laboratory (INL), will address critical energy education, research, policy study and training needs. CAES is a unique joint partnership between the Battelle Energy Alliance (BEA), the State of Idaho, an Idaho University Consortium (IUC), and a National University Consortium (NUC). CAES will be based in a new facility that will foster collaborative academic and research efforts among participating institutions.

  4. Research and technology at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  5. Research and technology of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  6. Research and technology, Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  8. Advances in nondestructive evaluation technology

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1982-01-01

    Research at NASA Langley's Materials Characterization Instrumentation Section has followed the philosophy of improving the science base of nondestructive evaluation and advancing the state of the art of quantitative interpretability of physical measurements of materials. Details of several R&D programs choosen to highlight the last several years are given. Applications of these technologies are presented in the area of stress measurement, characterization of metal heat treatment, and evaluation of material internal structure. A second focus of the program is on quantitative transducers/measurements that have resulted in better data in irregular inhomogeneous materials such as composites. Examples are presented of new capabilities resulting from these advances that include fatigue and impact damage evaluation.

  9. Savannah River Technology Center monthly report

    SciTech Connect

    Not Available

    1992-10-01

    This document contains many small reports from personnel at the technology center under the umbrella topics of reactors, tritium, separations, environment, waste management, and general engineering. Progress and accomplishments are given.

  10. Rock Port Celebrates New Technology Center.

    ERIC Educational Resources Information Center

    Grones, Freda

    1997-01-01

    Discusses the advantages dome architecture gave to a new school technology center in Rock Port, Missouri. Advantages cover energy cost savings, lighting, storage space, aesthetics, accessibility, and convenience. (GR)

  11. Savannah River Technology Center, monthly report

    SciTech Connect

    Not Available

    1994-04-01

    This is the monthly report to detail the research currently being conducted at the Savannah River Technology Center. The areas of research are in Tritium, Seperation processes, Environmental Engineering, and Waste Management.

  12. A feasibility study for a manufacturing technology deployment center

    SciTech Connect

    Not Available

    1994-10-31

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  13. Advances in traction drive technology

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1983-01-01

    Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

  14. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  15. The Learning Technology Center at Vanderbilt University.

    ERIC Educational Resources Information Center

    Bransford, John

    1994-01-01

    Describes the Vanderbilt University (Tennessee) Learning Technology Center, including profile of the center's personnel; description of representative projects, such as the Jasper-Woodbury Problem Solving Series, a multimedia literacy program for grades K-3, and the Adult Literacy Program; and a list of 14 representative publications by center…

  16. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  17. RF Technologies for Advancing Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.

    2006-01-01

    This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.

  18. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A.Ebadian

    1999-02-28

    Search for decontamination technologies to be assessed at FIU-HCET continues. Bartlett Nuclear Inc. returned to FIU-HCET on February 15-19, 1999, to complete the demonstration of coating removal from concrete ceiling and aggressive contamination removal on uncoated concrete wall using their Robotic Climber. The design of test beds for large-scale technology demonstration of blockage locating and pipe unplugging has undergone major revision. The lab-scale test loop is also under modification. A new sampling system using isokinetic principles and consisting of thermistors, flow controller, and Wheatstone bridge will be installed on the flow loop. FIU-HCET International Coordinator attended the VII Steering Committee meeting in Lima, Peru, on February 11-12, 1999, and successfully introduced the Interactive Communication Website. Additional agenda items on the Website were proposed by the Steering Committee for upcoming committee meetings and working groups.

  19. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-06-30

    To enhance the measurement capability of EICs to alpha spectrometry, measurements at FIU-HCET were performed on different energy alpha sources, and response factors of ST electrets in 960-mL chamber were determined. Earlier, EIC was considered as only a charge-integrating device without spectrometric capability. This is a potentially significant development accomplished by FIU-HCET. It could appreciably lower the current cost of spectral characterization. FIU-HCET has been invited to participate in the Operating Engineers' National Hazmat program's assessment of the Mini Mitter, commercially known as the VitalSense{trademark} Telemetric Monitoring System. This evaluation is scheduled for early July 1999. Additional health and safety technology evaluations, in which FIU-HCET will also participate, are also scheduled for later in the summer. The Technology Information System (TIS), MISD, and DASD are now complete and accessible through the Internet website http://www.DandD.org/tis.

  20. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  1. Technologies for Learner-Centered Feedback

    ERIC Educational Resources Information Center

    Costello, Jane; Crane, Daph

    2013-01-01

    As the number, type, and use of technologies to support learning increases, so do the opportunities for using these technologies for feedback. Learner-centered feedback is a core to the teaching-learning process. It is related to assessment in describing how learners perform in their learning, their gain in knowledge, skills, and attitudes.…

  2. Join TTC! | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI Technology Transfer Center (TTC) offers a unique opportunity for training through the NCI TTC Fellowship program. TTC also has a unit dedicated to marketing these research opportunities and their underlying technologies to potential collaborators and licensees. | [google6f4cd5334ac394ab.html

  3. Educational Technology Center Third Year Report.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    The Educational Technology Center (ETC) was established by the National Institute of Education in October, 1983, in order to find ways of using the computer and other information technologies to teach science, mathematics, and computing more effectively. This report describes the ETC, presents its framework for research, and summarizes work on 11…

  4. Educational Technology Center First Year Report.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    The Educational Technology Center (ETC) was established by the National Institute of Education in October, 1983, in order to find ways of using the computer and other information technologies to teach science, mathematics, and computing more effectively. This report describes the ETC, presents its framework for research, and summarizes work on 14…

  5. Educational Technology Center Second Year Report.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    The Educational Technology Center (ETC) was established by the National Institute of Education in October, 1983, in order to find ways of using the computer and other information technologies to teach science, mathematics, and computing more effectively. This report describes the ETC, presents its framework for research, and summarizes work on 12…

  6. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-09-30

    The Princeton Plasma Physics Laboratory (PPPL) demonstration of the diamond wire cutting technology on the surrogate of the Tokamak Fusion Test Reactor (TFTR), Figure 1, was performed from August 23-September 3, 1999. The plated diamond wire, Figure 2, was successful in cutting through all components of the TFTR surrogate including stainless steel, inconel and graphite. The demonstration tested three different void fill materials (mortar with sand, Rheocell-15, and foam) and three cooling systems (water, air, and liquid nitrogen). The optimum combination was determined to be the use of the low-density concrete void fill, Rheocell-15 with an average density of 52 lbs/ft{sup 3}, using a water coolant. However, the liquid nitrogen performed better than expected with only minor problems and was considered to be a successful demonstration of the Bluegrass Concrete Cutting, Inc. proprietary liquid-nitrogen coolant system. Data from the demonstration is being calculated and a summary of the technology demonstration will be included in the October monthly report. An ITSR will be written comparing the diamond wire saw to the plasma arc (baseline) technology. The MTR Chemical Protective Suit, a proprietary new suit from Kimberly Clark, was evaluated from 8/9/99 to 8/12/99 at Beaver, WV. This particular suit was tested on subjects performing three different tasks: climbing through a horizontal confined space, vertical confined space (pit), and loading and unloading material using a wheel barrow. Multiple test subjects performed each task for 20 minutes each. Performance of the innovative suit was compared to two commonly used types of protective clothing. Vital statistics, including body temperature and heart rate, were continuously monitored and recorded by an authorized physician. A summary of the demonstration will be included in the October monthly report. Along with the MTR Chemical Protective Suit, the VitalSense{trademark} Telemetric Monitoring System from Mini Mitter

  7. Scientific Data Management Center for Enabling Technologies

    SciTech Connect

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  8. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  9. Technologies Advance UAVs for Science, Military

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  10. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    2000-01-31

    The Online Measurement of Decontamination project team received a commitment for a demonstration in May from the Sacramento (California) Municipal Utility District (SMUD) Rancho Seco site. Since this site is a member of the DOE Commercial Utilities Consortium, the demonstration will fulfill the DOE and commercial technology demonstration requirements. Discussion on deployment of the Integrated Vertical and Overhead Decontamination (IVOD) System at Rancho Seco was conducted; date for deployment tentatively scheduled for early spring. Based upon fictional requirements from SRS for a shiny monitor in a high-level waste tank, FIU-HCET developed and delivered a draft slurry monitor design and draft test plan. Experiments measuring slurry settling time for SRS slurry simulant at 10 wt% have been completed on FIU-HCET'S flow loop with SRS dip. The completed design package of the test mockup for evaluating Non-Intrusive Location of Buried Items Technologies was sent to Fluor Fernald and the Operating Engineers National Hazmat Program for review. Comments are due at the end of January. Preliminary experiments to determine size distribution of aerosols generated during metal cutting were performed. A 1/4-inch-thick iron plate was cut using a plasma arc torch, and the size distribution of airborne particles was measured using a multistage impactor. Per request of DOE-Ohio, FIU-HCET participated in a weeklong value engineering study for the characterization, decontamination, and dismantlement of their critical path facility.

  11. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  12. Advanced Thermionic Converter Technology Program

    NASA Astrophysics Data System (ADS)

    Luke, James R.

    2003-01-01

    A thermionic energy converter (TEC) is a direct energy conversion device, which converts heat to electricity with no moving parts. Thermionic converters are well suited to space nuclear power systems because of their high power density, high heat rejection temperature, and immunity to radiation. Several recent advances in thermionic energy conversion technology have greatly improved the efficiency of these devices. A research program was undertaken to independently confirm these advances, and to extend them to converters with practical geometry. The recent development of a stable cesium/oxygen vapor source has led to a significant improvement in performance. The addition of a small amount of oxygen to the cesium vapor can increase the emission current by a factor of three or more. The beneficial effects of oxygen are stable and reproducible. A TEC with a cold seal has been invented, which greatly simplifies construction, operation, and maintenance of the TEC. Electron reflection from the collector has been shown to reduce the performance of TEC's. Reflection suppressing materials were produced and tested. One sample showed evidence of reflection suppression, increasing the average output voltage by 0.16 V. Another sample did not. Research in this area is ongoing.

  13. Advanced Technology and Alternative Fuel Vehicles

    SciTech Connect

    Tuttle, J.

    2001-08-20

    This fact sheet provides a basic overview of today's alternative fuel choices--including biofuels, biodiesel, electricity, and hydrogen--alternative fuel vehicles, and advanced vehicle technology, such as hybrid electric vehicles, fuel cells and advanced drive trains.

  14. Manufacturing Technology Information Analysis Center: Knowledge Is Strength

    NASA Technical Reports Server (NTRS)

    Safar, Michal

    1992-01-01

    The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.

  15. Manufacturing Technology Information Analysis Center: Knowledge is strength

    NASA Astrophysics Data System (ADS)

    Safar, Michal

    1992-04-01

    The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.

  16. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  17. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  18. National Center for Advancing Translational Sciences

    MedlinePlus

    ... Groups Work with NCATS Research Team Advances Evatar Female Reproductive System Through its Tissue Chip for Drug Screening program, ... parasites and bacteria. More... Research Team Advances Evatar Female Reproductive System Through its Tissue Chip for Drug Screening program, ...

  19. Advanced Technology Development for Stirling Convertors

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-02-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

  20. Advanced Technology Development for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

  1. Accomplishments at NASA Langley Research Center in rotorcraft aerodynamics technology

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1988-01-01

    In recent years, the development of aerodynamic technology for rotorcraft has continued successfully at NASA LaRC. Though the NASA Langley Research Center is not the lead NASA center in this area, the activity was continued due to facilities and individual capabilities which are recognized as contributing to helicopter research needs of industry and government. Noteworthy accomplishments which contribute to advancing the state of rotorcraft technology in the areas of rotor design, airfoil research, rotor aerodynamics, and rotor/fuselage interaction aerodynamics are described. Rotor designs were defined for current helicopters and evaluated in wind tunnel testing. These designs have incorporated advanced airfoils defined analytically and also proven in wind tunnel tests. A laser velocimetry system has become a productive tool for experimental definition of rotor inflow/wake and is providing data for rotorcraft aerodynamic code validation.

  2. Advanced Gas Turbine (AGT) technology development project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the final in a series of Technical Summary Reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorizrd under NASA Contract DEN3-167 and sponsored by the DOE. The project was administered by NASA-Lewis Research Center of Cleveland, Ohio. Plans and progress are summarized for the period October 1979 through June 1987. This program aims to provide the US automotive industry the high risk, long range technology necessary to produce gas turbine engines for automobiles that will reduce fuel consumption and reduce environmental impact. The intent is that this technology will reach the marketplace by the 1990s. The Garrett/Ford automotive AGT was designated AGT101. The AGT101 is a 74.5 kW (100 shp) engine, capable of speeds to 100,000 rpm, and operates at turbine inlet temperatures to 1370 C (2500 F) with a specific fuel consumption level of 0.18 kg/kW-hr (0.3 lbs/hp-hr) over most of the operating range. This final report summarizes the powertrain design, power section development and component/ceramic technology development.

  3. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    NASA Technical Reports Server (NTRS)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  4. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  5. Micromachining technology for advanced weapon systems

    SciTech Connect

    Sniegowski, J.J.

    1996-12-31

    An overview of planned uses for polysilicon surface-micromachining technology in advanced weapon systems is presented. Specifically, this technology may allow consideration of fundamentally new architectures for realization of surety component functions.

  6. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  7. Technology Advances for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Russell, Damon Stuart

    The field of radio astronomy continues to provide fundamental contributions to the understanding of the evolution, and inner workings of, our universe. It has done so from its humble beginnings, where single antennas and receivers were used for observation, to today's focal plane arrays and interferometers. The number of receiving elements (pixels) in these instruments is quickly growing, currently approaching one hundred. For the instruments of tomorrow, the number of receiving elements will be in the thousands. Such instruments will enable researchers to peer deeper into the fabric of our universe and do so at faster survey speeds. They will provide enormous capability, both for unraveling today's mysteries as well as for the discovery of new phenomena. Among other challenges, producing the large numbers of low-noise amplifiers required for these instruments will be no easy task. The work described in this thesis advances the state of the art in three critical areas, technological advancements necessary for the future design and manufacturing of thousands of low-noise amplifiers. These areas being: the automated, cryogenic, probing of diameter100 mm indium phosphide wafers; a system for measuring the noise parameters of devices at cryogenic temperatures; and the development of low-noise, silicon germanium amplifiers for terahertz mixer receivers. The four chapters that comprise the body of this work detail the background, design, assembly, and testing involved in these contributions. Also included is a brief survey of noise parameters, the knowledge of which is fundamental to the design of low-noise amplifiers and the optimization of the system noise temperature for large, dense, interferometers.

  8. Johnson Space Center Research and Technology Report

    NASA Technical Reports Server (NTRS)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  9. Concept for Space Technology Advancement

    NASA Astrophysics Data System (ADS)

    Hansen, Jeremiah J.

    2005-02-01

    detection and avoidance, damage control and mitigation, and crew ejection systems. These systems, working together, will greatly increase survivability of crewed systems. Implicit in this varied list of technology and integration is industry risk. Aerospace industry must relearn to accept risk in space technology development in order to advance capability. All of these items wrap up in a total system view that will allow for more advanced, reliable capability in space.

  10. License Agreements | NCI Technology Transfer Center | TTC

    Cancer.gov

    Since the government cannot engage in the development, manufacture, and sale of products, the NCI Technology Transfer Center (TTC) makes its discoveries (and discoveries from nine other NIH Institutes) available to organizations that can assist in the further development and commercialization of these basic science discoveries, to convert them into public health benefits. | [google6f4cd5334ac394ab.html

  11. Goddard Earth Sciences and Technology Center (GEST)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  12. About TTC | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners, and helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class facilities, resources, and discoveries. Contact us to learn more. | [google6f4cd5334ac394ab.html

  13. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  14. Research and technology, 1991. Langley Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  15. Research and technology, 1989: Langley Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  16. Center for the Advancement of Health

    MedlinePlus

    ... YouTube CFAH PARTNERS Alliance for Quality Psychosocial Cancer Care Kellogg Health Scholars Program KP Burch Leadership Program Diversity Data Place, Migration & Health Network * The Center for ...

  17. Marshall Space Flight Center Technology Investments Overview

    NASA Technical Reports Server (NTRS)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  18. Center for Advanced Energy Studies (CAES) Strategic Plan

    SciTech Connect

    Kevin Kostelnik; Keith Perry

    2007-07-01

    Twenty-first century energy challenges include demand growth, national energy security, and global climate protection. The Center for Advanced Energy Studies (CAES) is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE) and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding the educational opportunities at the Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed this strategic plan based on the Balanced Scorecard approach. A Strategy Map (Section 7) summarizes the CAES vision, mission, customers, and strategic objectives. Identified strategic objectives encompass specific outcomes related to three main areas: Research, Education, and Policy. Technical capabilities and critical enablers needed to support these objectives are also identified. This CAES strategic plan aligns with and supports the strategic objectives of the four CAES institutions. Implementation actions are also presented which will be used to monitor progress towards fulfilling these objectives.

  19. Benefits of advanced technology in industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.

    1979-01-01

    This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.

  20. Latest Development in Advanced Sensors at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)

    2002-01-01

    Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.

  1. George C. Marshall Space Flight Center Research and Technology Report 2014

    NASA Technical Reports Server (NTRS)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler)

    2015-01-01

    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery.

  2. Integrated Technology Assessment Center (ITAC) Update

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)

    2002-01-01

    The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.

  3. The Hydrogen Technology Center at Wyle Laboratories

    NASA Astrophysics Data System (ADS)

    Wheelock, H.; Smith, D.; Frazier, J.

    1990-10-01

    A deactivated storable propellant test area with numerous test cells, large open concrete pads of up to 65-ft length, and two enclosed metal storage buildings, has been converted into a Hydrogen Technology Center. The conversion strategy involved extensive use of modified surplus equipment, well established testing technologies, and innovative engineering to obviate long-delivery time items. Simple, high heat flux water-to-cryogen heat exchangers are used to generate ambient temperature H2 and N gas. Hydrogen-fueled combustors were designed and fabricated to power the specialized heat exchangers required to support high-temperature hydrogen experiments. The facility has operated productively and safely since October, 1988.

  4. Research and technology, fiscal year 1986, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.

  5. Can advanced technology improve future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Snow, D. B.

    1981-01-01

    The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

  6. Center for Biophotonics Science and Technology (CBST).

    PubMed

    Chuang, Frank

    2004-01-01

    The Center for Biophotonics Science and Technology (CBST) is the only center in the country funded by the National Science Foundation and devoted to the study of light and radiant energy in biology and medicine. Our consortium of 10 world-class academic institutions and research laboratories is comprised of physical and life scientists, physicians and engineers - along with industry participants, educators and community leaders - working together to bring biophotonics to the forefront of mainstream science. The three main arms of CBST are (1) Science and Technology, (2) Education, and (3) Knowledge Transfer. The research sponsored by the center focuses on critical themes that are expected to have significant impact on current biomedical science and technology. Projects include the development of new methods in optical microscopy that work well beyond the diffraction limit; ultrafast, high-intensity X-ray lasers to resolve the structure of single biomolecules, and new devices and sensors for minimally - or noninvasive medical applications. CBST is developing a new curriculum, along with training materials, internships and research fellowships to introduce biophotonics to students and teachers at all educational levels. Finally, the knowledge transfer component of CBST is seeking to catalyze the rapid growth of biophotonics as a new technology sector by supplying intellectual capital and tools to stimulate the growth of new products and new companies. By coupling the center's biophotonics research projects with industry partners and sponsors, a unique R&D environment is created to expand the use of photons in the development of life sciences, bioengineering and health care.

  7. Identifying Advanced Technologies for Education's Future.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; Yin, Robert K.

    A study to determine how three advanced technologies might be applied to the needs of special education students helped inspire the development of a new method for identifying such applications. This new method, named the "Hybrid Approach," combines features of the two traditional methods: technology-push and demand-pull. Technology-push involves…

  8. Advanced cockpit technology for future civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Parrish, Russell V.

    1990-01-01

    A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

  9. Morpheus: Advancing Technologies for Human Exploration

    NASA Technical Reports Server (NTRS)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael

    2012-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional

  10. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  11. Center For Advanced Energy Studies Overview

    ScienceCinema

    Blackman, Harold

    2016-07-12

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  12. Center For Advanced Energy Studies Overview

    SciTech Connect

    Blackman, Harold

    2011-01-01

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  13. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  14. Low speed propellers: Impact of advanced technologies

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1980-01-01

    Sensitivity studies performed to evaluate the potential of several advanced technological elements on propeller performance, noise, weight, and cost for general aviation aircraft are discussed. Studies indicate that the application of advanced technologies to general aviation propellers can reduce fuel consumption in future aircraft an average of ten percent, meeting current regulatory noise limits. Through the use of composite blade construction, up to 25 percent propeller weight reduction can be achieved. This weight reduction in addition to seven percent propeller efficiency improvements through application of advanced technologies result in four percent reduction in direct operating costs, ten percent reduction in aircraft acquisition cost, and seven percent lower gross weight for general aviation aircraft.

  15. Center for Advanced Bioengineering for Soldier Survivability

    DTIC Science & Technology

    2012-06-01

    Wound Care, PI Boyan; Breast Cancer Targets, PI Boyan; and Chondral Lesions, PI Boyan). We had previously awarded four targeted seed grants for...Biocompatibility of Superhydrophobic Coated Polymers for Biomedical Applications” will develop technologies for preventing biofilm formation on polymeric...dental group is currently working on a BioMASK that could use the superhydrophobic coating technology. They are also working on reducing biofilm from

  16. NASA Northeast Regional Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Dunn, James P.

    2001-01-01

    This report is a summary of the primary activities and metrics for the NASA Northeast Regional Technology Transfer Center, operated by the Center for Technology Commercialization, Inc. (CTC). This report covers the contract period January 1, 2000 - March 31, 2001. This report includes a summary of the overall CTC Metrics, a summary of the Major Outreach Events, an overview of the NASA Business Outreach Program, a summary of the Activities and Results of the Technology into the Zone program, and a Summary of the Major Activities and Initiatives performed by CTC in supporting this contract. Between January 1, 2000 and March 31, 2001, CTC has facilitated 10 license agreements, established 35 partnerships, provided assistance 517 times to companies, and performed 593 outreach activities including participation in 57 outreach events. CTC also assisted Goddard in executing a successful 'Technology into the Zone' program.' CTC is pleased to have performed this contract, and looks forward to continue providing their specialized services in support of the new 5 year RTTC Contract for the Northeast region.

  17. Research and technology, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The NASA Lewis Research Center's research and technology accomplishments for fiscal year 1985 are summarized. The report is organized into five major sections covering aeronautics, aerospace technology, spaceflight systems, space station systems, and computational technology support. This organization of the report roughly parallels the organization of the Center into directorates. Where appropriate, subheadings are used to identify special topics under the major headings. Results of all research and technology work performed during the fiscal year are contained in Lewis-published technical reports and presentations prepared either by Lewis scientists and engineers or by contractor personnel. In addition, significant results are presented by university faculty or graduate students in technical sessions and in journals of the technical societies. For the reader who desires more information about a particular subject, the Lewis contact will provide that information or references. In 1985, five Lewis products were selected by Research and Development Magazine for IR-100 awards. All are described and identified. In addition, the Lewis Distinguished Paper for 1984 to 1985, which was selected by the Chief Scientist and a research advisory board, is included and so identified.

  18. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  19. Mission & Role | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  20. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  1. Innovative technology summary report: advanced worker protection system

    SciTech Connect

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), which was supported by the Department of Energy's (DOE's) Morgantown Energy Technology Center through a cost sharing research and development contract. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment.

  2. Research and technology: 1994 annual report of the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.

  3. Advanced Technology for Isolating Payloads in Microgravity

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    1997-01-01

    torque orientation and other experimental activities will occur continually, both inside and outside the station. Since all vibration sources cannot be controlled, the task of attenuating the disturbances is the only realistic alternative. Several groups have independently developed technology to isolate payloads from the space environment. Since 1970, Honeywell's Satellite Systems Division has designed several payload isolation systems and vibration attenuators. From 1987 to 1992, NASA's Lewis Research Center (LeRC) performed research on isolation technology and developed a 6 degree-of-freedom (DOF) isolator and tested the system during 70 low gravity aircraft flight trajectories. Beginning in early 1995, NASA's Marshall Space Flight Center (MSFC) and McDonnell Douglas Aerospace (MDA) jointly developed the STABLE (Suppression of Transient Accelerations By Levitation Evaluation) isolation system. This 5 month accelerated effort produced the first flight of an active microgravity vibration isolation system on STS-73/USML-02 in late October 1995. The Canadian Space Agency developed the Microgravity Vibration Isolation Mount (MIM) for isolating microgravity payloads and this system began operating on the Russian Mir Space Station in May 1996. The Boeing Defense & Space Group, Missiles & Space Division developed the Active Rack Isolation System (ARIS) for isolating payloads in a standard payload rack. ARIS was tested in September 1996 during the STS-79 mission to Mir. Although these isolation systems differ in their technological approach, the objective is to isolate payloads from disturbances. The following sections describe the technologies behind these systems and the different types of hardware used to perform isolation. The purpose of these descriptions is not to detail the inner workings of the hardware but to give the reader an idea of the technology and uses of the hardware components. Also included in the component descriptions is a paragraph detailing some of the

  4. Advances in gene technology: Human genetic disorders

    SciTech Connect

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  5. Technology Advancement of the Visible Nulling Coronagraph

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  6. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  7. The Center for Environmental Technology Innovative Technology Screening Process

    SciTech Connect

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology`s (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today`s environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET`s Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria.

  8. Policy issues inherent in advanced technology development

    SciTech Connect

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  9. Advancing Binaural Cochlear Implant Technology

    PubMed Central

    McAlpine, David

    2015-01-01

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology—ABCIT—as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies. PMID:26721929

  10. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  11. The Savannah River Technology Center, a leader in sensor technology

    SciTech Connect

    Stewart, W.C.

    1993-12-01

    This publication highlights the capabilities and achievements of the Savannah River Technology Center in the field of sensor technology. Sensors are developed to provide solutions for environmental and chemical analysis. Most of their sensor systems are based upon fiber optics. Fiber optic probes function in three main modes: as a reflected light probe, from opaque samples; as a transreflectance probe, which sample light reflected back from samples which can pass light; and a flow cell, which monitors light transmitted through a path which passes the process stream being tested. The sensor group has developed fiber optic based temperature probes, has combined fiber optics with sol-gel technology to monitor process streams using chemical indicators, has done development work on slip stream on-line sampling of chemical process streams, has developed software to aid in the analysis of chemical solutions, and has applied this technology in a wide range of emerging areas.

  12. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  13. Research and Technology, 1987, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)

    1987-01-01

    Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.

  14. [Advances in genetic modification technologies].

    PubMed

    Zhang, Baixue; Sun, Qixin; Li, Haifeng

    2015-08-01

    Genetic modification technology is a new molecular tool for targeted genome modification. It includes zinc finger nucleases (ZFN) technology, transcription activator-like effector nucleases (TALEN) technology and clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) (CRISPR-Cas) nucleases technology. All of these nucleases create DNA double-strand breaks (DSB) at chromosomal targeted sites and induce cell endogenous mechanisms that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway, resulting in targeted endogenous gene knock-out or exogenous gene insertion. In recent years, genetic modification technologies have been successfully applied to bacteria, yeast, human cells, fruit fly, zebra fish, mouse, rat, livestock, cynomolgus monkey, Arabidopsis, rice, tobacco, maize, sorghum, wheat, barley and other organisms, showing its enormous advantage in gene editing field. Especially, the newly developed CRISPR-Cas9 system arose more attention because of its low cost, high effectiveness, simplicity and easiness. We reviewed the principles and the latest research progress of these three technologies, as well as prospect of future research and applications.

  15. Center for Space Microelectronics Technology 1988-1989 technical report

    NASA Technical Reports Server (NTRS)

    Olsen, Peggy

    1990-01-01

    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents.

  16. Application of advanced computational technology to propulsion CFD

    NASA Astrophysics Data System (ADS)

    Szuch, John R.

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid dynamics (ICFM) to a state of practical application for aerospace propulsion system design. This paper presents an overview of efforts underway at NASA Lewis to advance and apply computational technology to ICFM. These efforts include the use of modern, software engineering principles for code development, the development of an AI-based user-interface for large codes, the establishment of a high-performance, data communications network to link ICFM researchers and facilities, and the application of parallel processing to speed up computationally intensive and/or time-critical ICFM problems. A multistage compressor flow physics program is cited as an example of efforts to use advanced computational technology to enhance a current NASA Lewis ICFM research program.

  17. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  18. Research and Technology 1990, Langley Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  19. TECHcitement: Advances in Technological Education, 2007

    ERIC Educational Resources Information Center

    Patton, Madeline

    2007-01-01

    This publication presents the following nine articles: (1) ATE [Advanced Technological Education] Readies Technicians for International Competition; (2) Technicians in Demand Worldwide; (3) Accreditation Board for Engineering and Technology Endorses International Protocols for Technicians; (4) Entrepreneurial Educator Creates InnovaBio to Meet…

  20. Technological Advances and the Study of Reading.

    ERIC Educational Resources Information Center

    Henk, William A.

    Recent technological advances in neuroanatomy and neurophysiology have unearthed structural and functional patterns in the brain that can be associated with severe reading disabilities. As a response, this paper examines several computer-driven technologies whose capabilities shed light on brain-related issues germane to reading, with the intent…

  1. Advancing Careers in Information Science and Technology

    ERIC Educational Resources Information Center

    Stanton, Wilbur W.; Templeton, Dennie E.; Chase, Joe D.; Rose, Melinda; Eaton, Carlotta

    2005-01-01

    The authors discuss the joining of 12 Virginia community colleges from the Appalachian region of southwestern Virginia with Radford University to form the Regional Technology Education Consortium (RTEC), a three-year project funded by the National Science Foundation Advanced Technological Education program and designed to develop articulation…

  2. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  3. Advanced clean coal utilization technologies

    SciTech Connect

    Moritomi, Hiroshi

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  4. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    An assessment is presented of three separate programs that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of a span-loaded cargo aircraft with the payload distributed along the wing. The second technology is the application of laminar flow control to the aircraft to reduce the aerodynamic drag. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel.

  5. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  6. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect

    Dennis, R.A.

    1995-12-01

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  7. Research and Technology at the John F. Kennedy Space Center 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  8. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  9. Advanced Lost Foam Casting Technology

    SciTech Connect

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  10. Advances in femtosecond laser technology

    PubMed Central

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  11. Advances in cold plasma technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens continue to be an issue on a variety of commodities, prompting research into novel interventions. Cold plasma is a nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. The prim...

  12. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  13. Advanced Cogeneration Technology Economic Optimization Study (ACTEOS)

    NASA Technical Reports Server (NTRS)

    Nanda, P.; Ansu, Y.; Manuel, E. H., Jr.; Price, W. G., Jr.

    1980-01-01

    The advanced cogeneration technology economic optimization study (ACTEOS) was undertaken to extend the results of the cogeneration technology alternatives study (CTAS). Cost comparisons were made between designs involving advanced cogeneration technologies and designs involving either conventional cogeneration technologies or not involving cogeneration. For the specific equipment cost and fuel price assumptions made, it was found that: (1) coal based cogeneration systems offered appreciable cost savings over the no cogeneration case, while systems using coal derived liquids offered no costs savings; and (2) the advanced cogeneration systems provided somewhat larger cost savings than the conventional systems. Among the issues considered in the study included: (1) temporal variations in steam and electric demands; (2) requirements for reliability/standby capacity; (3) availability of discrete equipment sizes; (4) regional variations in fuel and electricity prices; (5) off design system performance; and (6) separate demand and energy charges for purchased electricity.

  14. Center for BioBased Binders and Pollution Reduction Technology

    SciTech Connect

    Thiel, Jerry

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  15. 75 FR 28785 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Partially Closed Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT), National Institute of Standards...

  16. 76 FR 2662 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of partially closed meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT), National Institute of Standards...

  17. 75 FR 60082 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT), National Institute of Standards and...

  18. 76 FR 59659 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  19. 76 FR 29195 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  20. A feasibility study for advanced technology integration for general aviation

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.

    1980-01-01

    An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.

  1. 76 FR 39811 - International Center for Technology Assessment and the Center for Food Safety; Noxious Weed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... International Center for Technology Assessment and the Center for Food Safety (the petitioners) requested that...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service International Center for Technology Assessment and the Center for Food Safety; Noxious Weed Status of Kentucky Bluegrass Genetically...

  2. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  3. Deployable truss structure advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, J. E.; Dudeck, M. P.

    1986-01-01

    The 5-meter technology antenna program demonstrated the overall feasibility of integrating a mesh reflector surface with a deployable truss structure to achieve a precision surface contour compatible with future, high-performance antenna requirements. Specifically, the program demonstrated: the feasibility of fabricating a precision, edge-mounted, deployable, tetrahedral truss structure; the feasibility of adjusting a truss-supported mesh reflector contour to a surface error less than 10 mils rms; and good RF test performance, which correlated well with analytical predictions. Further analysis and testing (including flight testing) programs are needed to fully verify all the technology issues, including structural dynamics, thermodynamics, control, and on-orbit RF performance, which are associated with large, deployable, truss antenna structures.

  4. Advanced technologies to support earth orbiting systems

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Johnston, Gordon I.

    1992-01-01

    Within NASA, the Office of Aeronautics and Space Technology (OAST) is conducting a major, ongoing engineering research and technology program directed toward the support of future programs, with a major focus on technology for future space science missions. OAST is conducting a substantial effort to identify the technologies required to support the evolution of Mission to Planet Earth. The effort consists of studies, workshops, and technology research programs to explore: (1) new concepts for multisatellite, earth-observing instrumentation and sensor sets; (2) information system advances for continuous and reliable processing of terabit per day data streams; and (3) infrastructure development, including spacecraft bus technology and operations for substantial performance, cost, and reliabiltiy gains. This paper discusses the technological needs of future earth science systems, reviews current and planned activities, and highlights significant achievements in the research and technology program.

  5. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  6. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  7. Tiger Team Assessment, Energy Technology Engineering Center

    SciTech Connect

    Not Available

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  8. Modern Imaging Technology: Recent Advances

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  9. Advancing Sensor Technology for Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mercer, Carolyn R.

    2002-01-01

    NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.

  10. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  11. Advanced baffle materials technology development

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Vonbenken, C. J.; Halverson, W. D.; Evans, R. D.; Wollam, J. S.

    1991-10-01

    Optical sensors for strategic defense will require optical baffles to achieve adequate off-axis stray light rejection and pointing accuracy. Baffle materials must maintain their optical performance after exposure to both operational and threat environments. In addition, baffle materials must not introduce contamination which would compromise the system signal-to-noise performance or impair system mission readiness. Critical examination of failure mechanisms in current baffle materials are quite fragile and contribute to system contamination problems. Spire has developed technology to texture the substrate directly, thereby, removing minute, fragile interfaces subject to mechanical failure. This program has demonstrated that ion beam texturing produces extremely dark surfaces which are immune to damage from ordinary handling. This technology allows control of surface texture feature size and hence the optical wavelength at which the surface absorbs. The USAMTL/Spire program has produced dramatic improvements in the reflectance of ion beam textured aluminum without compromising mechanical hardness. In simulated launch vibration tests, this material produced no detectable contamination on adjacent catcher plates.

  12. Advanced nuclear energy analysis technology.

    SciTech Connect

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente JosÔe; Young, Michael Francis; Rochau, Gary Eugene

    2004-05-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems.

  13. Technology transfer needs and experiences: The NASA Research Center perspective

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.

    1992-01-01

    Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.

  14. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  15. Publications in academic medical centers: technology-facilitated culture clash.

    PubMed

    Berner, Eta S

    2014-05-01

    Academic culture has a set of norms, expectations, and values that are sometimes tacit and sometimes very explicit. In medical school and other health professions educational settings, probably the most common norm includes placing a high value on peer-reviewed research publications, which are seen as the major evidence of scholarly productivity. Other features of academic culture include encouraging junior faculty and graduate students to share their research results at professional conferences and lecturing with slides as a major way to convey information. Major values that faculty share with journal editors include responsible conduct of research and proper attribution of others' words and ideas. Medical school faculty also value technology and are often quick to embrace technological advances that can assist them in their teaching and research. This article addresses the effects of technology on three aspects of academic culture: education, presentations at professional meetings, and research publications.The technologies discussed include online instruction, dissemination of conference proceedings on the Internet, plagiarism-detection software, and new technologies deployed by the National Center for Biotechnology Information, the home of PubMed. The author describes how the ease of deploying new technologies without faculty changing their norms and behavior in the areas of teaching and research can lead to conflicts of values among key stakeholders in the academic medical community, including faculty, journal editors, and professional associations. The implications of these conflicts and strategies for managing them are discussed.

  16. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  17. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  18. Center for Advanced Biofuel Systems (CABS) Final Report

    SciTech Connect

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  19. NASA's Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1983-01-01

    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.

  20. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  1. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.

  2. Advanced Human Factors Engineering Tool Technologies.

    DTIC Science & Technology

    1987-03-20

    identified the types of tools they would like to see V developed to fill the existing technology gaps. The advanced tools were catego- rized using an...the prototype phase of development were considered candidates for inclusion. The advanced tools were next categorized using an eight point...role, application, status and cost. Decision criteria were then developed as the basis for the tradeoff process to aid in tool selection. To

  3. Routing and advanced display technologies within STOMPM

    NASA Astrophysics Data System (ADS)

    Mittu, Ranjeev; Uhlmann, Jeffrey K.; McCune, Justin

    1998-08-01

    This paper will discuss research conducted at the Naval Research Laboratory in the area of automated routing, advanced 3D displays and novel interface techniques for interacting with those displays. This research has culminated in the development of the strike optimized mission planing module (STOMPM). The STOMPM testbed incorporates new technologies/results in the aforementioned areas to address the deficiencies in current systems and advance the state of the art in military planing systems.

  4. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  5. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  6. NEMO: Advanced energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Lund, P.

    In this report, the contents and major results of the national research program on advanced energy system and technologies (NEMO) are presented. The NEMO-program was one of the energy research programs of the Ministry of Trade and Industry during 1988-1992. Helsinki University of Technology had the responsibility of the overall coordination of the program. NEMO has been the largest resource allocation into advanced energy systems in Finland so far. The total budget was 70 million FIM. The focus of the program has been in solar energy, wind power, and energy storage. Hydrogen and fuel cells have been included in smaller amount. On all major fields of the NEMO-program, useful and high quality results have been obtained. Results of international significance include among others arctic wind energy, new approaches for the energy storage problem in solar energy applications, and the development of a completely new storage battery. International collaboration has been given high priority. The NEMO-program has also been active in informing the industries of the various business and utilization possibilities that advanced energy technologies offer. For example, major demonstration plants of each technology group have been realized. It is recommended that the further R and D should be still more focused on commercial applications. Through research efforts at universities, a good technology base should be maintained, whereas the industries should take a stronger position in commercializing new technology. Parallel to technology R and D, more public resources should be allocated for market introduction.

  7. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  8. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  9. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  10. Assessment of Sensor Technologies for Advanced Reactors

    SciTech Connect

    Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.; Kisner, Roger A.; Britton, Jr, Charles L.; Wootan, D. W.; Anheier, Jr, N. C.; Diaz, A. A.; Hirt, E. H.; Chien, H. T.; Sheen, S.; Bakhtiari, Sasan; Gopalsami, S.; Heifetz, A.; Tam, S. W.; Park, Y.; Upadhyaya, B. R.; Stanford, A.

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributes to the design and implementation of AdvRx concepts.

  11. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  12. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    The objective of this paper is to provide an overview assessment of three separate programs at Langley Research Center that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of an span-loaded cargo aircraft with the payload distributed along the wing. This concept has the potential for reduced structural weights. The second technology is the application of laminar flow control (LFC) to the aircraft to reduce the aerodynamic drag. The use of LFC can reduce the fuel requirements during long-range cruise. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel. Coal-derived hydrogen as an aircraft fuel offers both the prospect for reduced dependence on petroleum fuels and improved performance for long-range aircraft.

  13. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  14. TECHcitement: Advances in Technological Education, 2004

    ERIC Educational Resources Information Center

    American Association of Community Colleges (NJ1), 2004

    2004-01-01

    This edition of "TECHcitement" contains the following articles: (1) ATE Program Leads to Student Success; (2) Doing Whatever It Takes for Aquaculture; (3) The Bridge to Biotech; (4) Girls See What They Can Do With Technology at Camp; (5) Students Advancing Solutions to Business Problems; (6) CREATE Recreates Technical Education in California; (7)…

  15. Next Steps: Water Technology Advances (Research)

    EPA Science Inventory

    This project will focus on contaminants and their impact on health, adequate removal of contaminants from various water systems, and water and resource recovery within treatment systems. It will develop the next generation of technological advances to provide guidance in support ...

  16. TECHcitement: Advances in Technology Education, 2008

    ERIC Educational Resources Information Center

    Patton, Madeline

    2008-01-01

    This publication presents the following articles: (1) Advanced Technological Education (ATE) Develops Student Recruitment and Retention Strategies; (2) Marketer Advises Tech Educators Appeal to Teens' Emotions, Desires to Do Something Important; (3) Digital Bridge Academy Gets At-Risk Students on Paths to Knowledge-Based Careers; (4) Project…

  17. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  18. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

  19. Technology advancement of an oxygen generation subsystem

    NASA Technical Reports Server (NTRS)

    Lee, M. K.; Burke, K. A.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    An oxygen generation subsystem based on water electrolysis was developed and tested to further advance the concept and technology of the spacecraft air revitalization system. Emphasis was placed on demonstrating the subsystem integration concept and hardware maturity at a subsystem level. The integration concept of the air revitalization system was found to be feasible. Hardware and technology of the oxygen generation subsystem was demonstrated to be close to the preprototype level. Continued development of the oxygen generation technology is recommended to further reduce the total weight penalties of the oxygen generation subsystem through optimization.

  20. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  1. Elderly people's interaction with advanced technology.

    PubMed

    Blažun, Helena; Vošner, Janez; Kokol, Peter; Saranto, Kaija; Rissanen, Sari

    2014-01-01

    Aging of population is an inevitable process by which the number of elderly people is increasing. Rapid development of information and communication technology (ICT) is changing basic needs of elderly people; therefore society should ensure opportunities for elderly to learn and use ICT in a way to manage their daily life activities and in this way enable them participation in the information and knowledge society. The purpose of the study was to find out whether elderly are acquainted with the advanced technology and to what extent they use it or they desire to use it. Within the single point study we interviewed 100 randomly selected elderly people from different geographical regions in Slovenia. Results showed the differences in the use of advanced technology by Slovenian regions; therefore in the future activities should be focused on organizing promotional and demonstrational activities including ICT courses to increase elderly's motivation for ICT interaction.

  2. Overview of advanced law enforcement electronic technology

    NASA Astrophysics Data System (ADS)

    Harden, W. R.

    1995-05-01

    Law enforcement and security management are using advanced electronic equipment to increase the effectiveness and efficiency of the budget restricted police officer force. Currently there is also significant national attention concerning the possible utilization of 'military' electronic hardware to implement the much sought after 'force multiplier' which can help to alleviate each jurisdictions economic restrictions. However, as we are now finding, the transfer of 'military' hardware for utilization by law enforcement personnel is not as economically viable as hoped. This paper will address some of the recent advances in electronic technology that are being derived from the military technology base. Additionally, comments are given concerning the economic impact as the technology is transferred to the law enforcement community.

  3. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1992-01-01

    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  4. NASA Advanced Refrigerator/Freezer Technology Development Project Overview

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.

    1995-01-01

    NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

  5. Center for Space Microelectronics Technology. 1993 Technical Report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents. The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents.

  6. Robotics Technology Development Program Cross Cutting and Advanced Technology

    SciTech Connect

    Harrigan, R.W.; Horschel, D.S.

    1994-04-01

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy`s complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems.

  7. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  8. Technology and application advancements of uncooled imagers

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Kohin, Margaret

    2005-05-01

    Having delivered over 30,000 uncooled microbolometer based thermal imaging engines, BAE Systems is the world's leading producer. Advancements in technology include the demonstration of broadband microbolometers on a 46 μm pixel pitch which have excellent sensitivity in the MWIR (NETD ~180 mK, 3-5 μm) and LWIR (NETD ~ 15 mK, 8-12 μm) wavebands. Application advancements include the development of a family of thermal weapons sights for the military which will replace current cooled systems with lighter, lower power systems and the introduction of a new generation of handheld and pole mounted thermal imagers for commercial markets.

  9. Electrochemical carbon dioxide concentrator advanced technology tasks

    NASA Technical Reports Server (NTRS)

    Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1975-01-01

    Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).

  10. Maneuvering technology for advanced fighter aircraft

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, Scott H.; Byers, Richard H.

    1992-01-01

    The need for increased maneuverability has its genesis from the first aerial combat engagement when two adversaries entangled themselves in a deadly aerial dance trying to gain the advantage over the other. It has only been in the past two decades that technologies have been investigated to increase aircraft control at maneuver attitudes that are typically dominated by highly separated flows. These separated flow regions are aggravated by advanced fighter aircraft shapes required to defeat an electronic enemy. This paper discusses passive and active devices that can be used to enhance the maneuverability of advanced fighter aircraft through vortex flow control, boundary layer control, and innovative flow manipulation.

  11. Center for Global Health announces grants to support portable technologies

    Cancer.gov

    NCI's Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm

  12. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  13. Scientific and educational center "space systems and technology"

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Loginov, Y. Y.; Zelenkov, P. V.

    2015-10-01

    The issues of engineers training in the aerospace university on the base of Scientific and Educational Center "Space Systems and Technology" are discussed. In order to improve the quality of education in the Siberian State Aerospace University the research work of students, as well as the practice- oriented training of engineers are introduced in the educational process. It was made possible as a result of joint efforts of university with research institutes of the Russian Academy of Science and industrial enterprises. The university experience in this area promotes the development of a new methods and forms of educational activities, including the project-oriented learning technologies, identifying promising areas of specialization and training of highly skilled engineers for aerospace industry and other institutions. It also allows you to coordinate the work of departments and other units of the university to provide the educational process in workshops and departments of the industrial enterprises in accordance with the needs of the target training. Within the framework of scientific and education center the students perform researches, diploma works and master's theses; the postgraduates are trained in advanced scientific and technical areas of enterprise development.

  14. Toward a statewide health information technology center (abbreviated version).

    PubMed

    Sittig, Dean F; Joe, John C

    2010-11-01

    With the passage of The American Reinvestment and Recovery Act of 2009 that includes the Health Care Information Technology for Economic & Clinical Health Act, the opportunity for states to develop a Health Information Technology Center (THITC) has emerged. The Center provides the intellectual, financial, and technical leadership along with the governance and oversight for all health information technology-related activities in the state. This Center would be a free-standing, not-for-profit, public-private partnership that would be responsible for operating one or more (in large states) Regional Health Information Technology Extension Centers (Extension Centers) along with several Regional Health Information Exchanges (HIEs) and one or more Regional Health Information Data Centers (Data Centers). We believe that if these features and functions could be developed, deployed, and integrated statewide, the health and welfare of the citizens of the state could be improved while simultaneously reducing the costs associated with the provision of care.

  15. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  16. Ceramic technology for advanced heat engines project

    SciTech Connect

    Not Available

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  17. Research and Technology 1998 Annual Report of the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the NASA Center responsible for preparing and launching space missions, the John F. Kennedy Space Center (KSC) is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. This edition of the KSC Research and Technology 1998 Annual Report covers the efforts of these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The following research areas are covered: Life Sciences; Mechanical Engineering; Environmental Engineering; Advanced Software; Atmospheric Science; Materials Science; Nondestructive Evaluation; Process/Industrial Engineering; Automation and Robotics; and Electronics and Instrumentation.

  18. Second NASA Advanced Composites Technology Conference

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    The conference papers are presented. The Advanced Composite Technology (ACT) Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. These papers will also be included in the Ninth Conference Proceedings to be published by the Federal Aviation Administration as a separate document.

  19. Advanced rotorcraft technology: Task force report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

  20. Advances in HTGR spent fuel treatment technology

    SciTech Connect

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners.

  1. Neural Reanimation Advances and New Technologies.

    PubMed

    Kim, Jennifer

    2016-02-01

    Facial paralysis can have a profound effect on the patient from both an aesthetic and functional point of view. Just as there are numerous etiologies of facial paresis, there are as many therapeutic options and variations of these options. The purpose of this article was to review the most current surgical options for neural reanimation of a damaged facial nerve, including recent advances in nerve repair, conduit technology, and nerve transfers, as well as emerging technology in translational research with biomedical engineering and tissue engineering.

  2. Advances in welding science and technology

    SciTech Connect

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1995-12-31

    Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments.

  3. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  4. Personnel screening with advanced multistatic imaging technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Sherif S.

    2013-05-01

    Personnel screening is demanded nowadays for securing air traffic as well as critical infrastructures. The millimeter-waves are able to penetrate clothes and detect concealed objects, making them an attractive choice for security screening. Imaging methods based on multistatic architecture can ensure high quality imagery in terms of resolution and dynamic range. Following the advances in semiconductor technology, fully electronic solutions delivering real-time imaging are becoming feasible. Furthermore, the continuously increasing capabilities of digital signal processing units allow for the utilization of digital-beamforming techniques for image reconstruction, thus offering new opportunities for imaging systems to use sophisticated operation modes. Based on these modern technologies, an advanced realization addressing personnel screening in E-band with planar multistatic sparse array design is demonstrated.

  5. Applied technology center business plan and market survey

    NASA Technical Reports Server (NTRS)

    Hodgin, Robert F.; Marchesini, Roberto

    1990-01-01

    Business plan and market survey for the Applied Technology Center (ATC), computer technology transfer and development non-profit corporation, is presented. The mission of the ATC is to stimulate innovation in state-of-the-art and leading edge computer based technology. The ATC encourages the practical utilization of late-breaking computer technologies by firms of all variety.

  6. CASTLE: an advanced technology partnership serving law enforcement

    NASA Astrophysics Data System (ADS)

    McCoig, Thomas M.

    1997-01-01

    The Center for Applied Science and Technology for Law Enforcement (CASTLE) is supported by the National Institute of Justice Office of Science and Technology and is establishing partnerships with the National Law Enforcement Corrections and Technology Center in Charleston, South Carolina. Additionally, CASTLE is working with the American Society of Crime Lab Directors (ASCLD) to direct effective interface with and support of state and local crime laboratories. Extremely sophisticated, often one-of-a-kind, equipment and very-capable scientific expertise are resident at U.S. federal government laboratories and, until recently, have not been applied often to law enforcement problems, particularly at the state and local level. While there have been a number of research and development programs at national laboratories sponsored by agencies such as the National Institute of Justice, most of these have been focused on long-term objectives to meet broad national needs. In discussions with local law enforcement personnel, it is apparent that there are much more immediate technology needs, which are not being addressed by nationwide programs, in fundamental areas including video and audio surveillance, trace and physical evidence sampling, and forensic laboratory analysis. In a pilot program, Oak Ridge National Laboratory (ORNL), a significant component of the nation's science and technology resources located in Tennessee, recently made a commitment to support law enforcement where possible with advanced technology. ORNL formed the Center for Applied Science and Technology for Law Enforcement (CASTLE), a partnership of scientific, university, private sector, and law enforcement personnel. The goal of the CASTLE program is to apply technology at the grassroots working level to both solve crimes, to improve safety to law enforcement personnel, and to improve the overall quality of law enforcement services within the United States.

  7. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  8. Recent advances in PLC hybrid integration technology

    NASA Astrophysics Data System (ADS)

    Ogawa, Ikuo; Kitagawa, Takeshi

    2003-07-01

    Opto-electronic hybrid integraiton using a silica-based planar lightwave circuit (PLC) platform is an attractive way to realize the various kinds of opto-electronic components required for future photonic networks. This paper briefly introduces the concept and basic techniques used for PLC hybrid integration, and describes recent advances in this field. We also report on several high-performance optical devices that we recently developed using this technology.

  9. Advances in lower-limb prosthetic technology.

    PubMed

    Laferrier, Justin Z; Gailey, Robert

    2010-02-01

    The boundaries once faced by individuals with amputations are quickly being overcome through biotechnology. Although there are currently no prosthetics capable of replicating anatomic function, there have been radical advancements in prosthetic technology, medical science, and rehabilitation in the past 30 years, vastly improving functional mobility and quality of life for individuals with lower-limb amputations. What once seemed impossible is rapidly becoming reality. The future seems limitless, and the replication of anatomic function now seems possible.

  10. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  11. Advanced radio over fiber network technologies.

    PubMed

    Novak, Dalma; Waterhouse, Rod

    2013-09-23

    The evolution of wireless communication networks supporting emerging broadband services and applications offers new opportunities for realizing integrated optical and wireless network infrastructures. We report on some of our recent activities investigating advanced technologies for next generation converged optical wireless networks. Developments in Active Antenna Systems, mobile fronthaul architectures, and 60 GHz fiber distributed wireless networks are described. We also discuss the potential for analog radio over fiber distribution links as a viable solution for meeting the capacity requirements of new network architectures.

  12. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  13. I-5/Gilman advanced technology bridge project

    NASA Astrophysics Data System (ADS)

    Lanza di Scalea, Francesco; Karbhari, Vistasp M.; Seible, Frieder

    2000-04-01

    The UCSD led I-5/Gilman Advanced Technology Bridge Project will design and construct a fully functional traffic bridge of advanced composite materials across Interstate 5 in La Jolla, California. Its objective is to demonstrate the use of advanced composite technologies developed by the aerospace industry in commercial applications to increase the life expectancy of new structures and for the rehabilitation of aging infrastructure components. The structure will be a 450 ft long, 60 ft wide cable-stayed bridge supported by a 150 ft A-frame pylon with two vehicular lanes, two bicycle lanes, pedestrian walkways and utility tunnels. The longitudinal girders and pylon will be carbon fiber shells filled with concrete. The transverse deck system will consist of hollow glass/carbon hybrid tubes and a polypropylene fiber reinforced concrete deck with an arch action. Selected cables will be composite. The bridge's structural behavior will be monitored to determine how advanced composite materials perform in civil infrastructure applications. The bridge will be instrumented to obtain performance and structural health data in real time and, where possible, in a remote fashion. The sensors applied to the bridge will include electrical resistance strain gages, fiberoptic Bragg gratings and accelerometers.

  14. Ceramic technology for advanced heat engines

    SciTech Connect

    Johnson, D.R.; Schulz, R.B.

    1994-10-01

    The Ceramic Technology Project was initiated in 1983 for the purpose of developing highly reliable structural ceramics for applications in advanced heat engines, such as automotive gas turbines and advanced heavy duty diesel engines. The reliability problem was determined to be a result of uncontrolled populations of processing flaws in the brittle, flaw-sensitive materials, along with microstructural features, such as grain boundary phases, that contribute to time dependent strength reduction in service at high temperatures. The approaches taken to develop high reliability ceramics included the development of tougher materials with greater tolerance to microstructural flaws, the development of advanced processing technology to minimize the size and number of flaws, and the development of mechanical testing methodology and the characterization of time dependent mechanical behavior, leading to a life prediction methodology for structural ceramics. The reliability goals of the program were largely met by 1993, but commercial implementation of ceramic engine components has been delayed by the high cost of the components. A new effort in Cost Effective Ceramics for Heat Engines was initiated in 1993 and is expected to develop the manufacturing technology leading to an order of magnitude cost reduction. The program has been planned for a five year period.

  15. Further advances in autostereoscopic technology at Dimension Technologies Inc.

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1992-06-01

    Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.

  16. Research and Technology: 2003 Annual Report of the John F Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.

  17. Electric Power Research Institute: environmental Control Technology Center.

    SciTech Connect

    1997-09-04

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved continued investigations into the Clear Liquor Scrubbing Process for the production of Anhydrous Calcium Sulfate (Anhydrite). The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the Carbon Injection System (the Pulse-jet Fabric Filter) remained idle this month in a cold-standby mode and were inspected regularly. From May 3-18, the NYSEG Kintigh Station and the ECTC were off-line for a two-week scheduled Station outage. During the ECTC outage, the major systems of the Center were inspected, and several preventive maintenance activities were completed. A listing of the major O&M outage activities completed during this period is presented in the Pilot/Mini-Pilot section of this report. In May 1997, an extension to the Anhydrite Production test block was started following the NYSEG outage. The extension to the Anhydrite Production test block is being funded by the Electric Power Research Institute (EPRI) after promising results from the original test program. Both EPRI and the Department of Energy (DOE) funded the original test program as part of the DOE`s Advanced Power Systems Program, whose mission is to accelerate the commercialization of affordable, high- efficiency, low-emission, coal-fueled electric generating technologies. While the pilot portion of the Anhydrite project was conducted on the 4.0 MW wet FGD pilot unit at EPRI`s Environmental Control Technology Center (ECTC) in Barker, New York, the extension mainly used the 0.4 MW Mini-Pilot wet FGD unit to reduce operating costs. The project is designed to develop an advanced FGD process that produces a useable byproduct, anhydrite (anhydrous calcium sulfate). The original CLS/Anhydrite process included three steps: chloride removal, clear liquor scrubbing, and anhydrite production. The final step in the process involved

  18. The Learner-Centered Paradigm of Education: Roles for Technology

    ERIC Educational Resources Information Center

    Reigeluth, Charles M.

    2014-01-01

    The learner-centered paradigm of education requires very different roles for technology, as well as for teachers and students, compared with the teacher-centered paradigm. Rather than almost exclusively serving the teacher for teaching, technology primarily serves the student for learning. It does so through four major roles: (1) keeping records…

  19. Validating a Technology Enhanced Student-Centered Learning Model

    ERIC Educational Resources Information Center

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  20. Information and Library Programs at the Technology Application Center (TAC).

    ERIC Educational Resources Information Center

    Burch, Eugene

    The Technology Application Center (TAC) at the University of New Mexico is one of six National Aeronautics and Space Administration (NASA) regional dissemination centers originally established to disseminate NASA technology to private industry on a regional basis. A fee is charged for TAC's services so it has been market oriented and has sought to…

  1. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  2. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  3. Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.

  4. National Advanced Drilling and Excavation Technologies Program

    SciTech Connect

    1993-06-15

    The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

  5. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  6. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  7. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  8. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  9. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  10. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  11. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  12. Final Report of the Advanced Coal Technology Work Group

    EPA Pesticide Factsheets

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  13. Advanced DNA assembly technologies in drug discovery.

    PubMed

    Tsvetanova, Billyana; Peng, Lansha; Liang, Xiquan; Li, Ke; Hammond, Linda; Peterson, Todd C; Katzen, Federico

    2012-05-01

    Recombinant DNA technologies have had a fundamental impact on drug discovery. The continuous emergence of unique gene assembly techniques resulted in the generation of a variety of therapeutic reagents such as vaccines, cancer treatment molecules and regenerative medicine precursors. With the advent of synthetic biology there is a growing need for precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes. In this article, we summarize the highlights of the recombinant DNA technology since its inception in the early 1970s, emphasizing on the most recent advances, and underscoring their principles, advantages and shortcomings. Current and prior cloning trends are discussed in the context of sequence requirements and scars left behind. Our opinion is that despite the remarkable progress that has enabled the generation and manipulation of very large DNA sequences, a better understanding of the cell's natural circuits is needed in order to fully exploit the current state-of-the-art gene assembly technologies.

  14. Advancements in MEMS materials and processing technology

    NASA Astrophysics Data System (ADS)

    Olivas, John D.; Bolin, Stephen

    1998-01-01

    From achievements in display imaging to air bag deployment, microelectromechanical systems are becoming more commonplace in everyday life. With an abundance of opportunities for innovative R&D in the field, the research trends are not only directed toward novel sensor and actuator development, but also toward further miniaturization, specifically achieving micro- and nanoscaled integrated systems. R&D efforts in space, military, and commercial applications are directing specific research programs focused on the area of materials science as an enabling technology to be exploited by researchers and to further push the envelope of micrometerscaled device technology. These endeavors are making significant progress in bringing this aspect of the microelectro-mechanical field to maturation through advances in materials and processing technologies.

  15. Advanced high-bandwidth optical fuzing technology

    NASA Astrophysics Data System (ADS)

    Liu, Jony J.; von der Lippe, Christian M.

    2005-10-01

    A robust and compact photonic proximity sensor is developed for optical fuze in munitions applications. The design of the optical fuze employed advanced optoelectronic technologies including high-power vertical-cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, SiGe ASIC driver, and miniature optics. The development combines pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories and synergizes the key optoelectronic technologies in components and system designs. This compact sensor will replace conventional costly assemblies based on discrete lasers, photodetectors, and bulky optics and provide a new capability for direct fire applications. It will be mass manufacturable in low cost and simplicity. In addition to the specific applications for gun-fired munitions, numerous civilian uses can be realized by this proximity sensor in automotive, robotics, and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  16. Advanced thermal management technologies for defense electronics

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  17. Mary S. Easton Center of Alzheimer's Disease Research at UCLA: advancing the therapeutic imperative.

    PubMed

    Cummings, Jeffrey L; Ringman, John; Metz, Karen

    2010-01-01

    The Mary S. Easton Center for Alzheimer's Disease Research (UCLA-Easton Alzheimer's Center) is committed to the "therapeutic imperative" and is devoted to finding new treatments for Alzheimer's disease (AD) and to developing technologies (biomarkers) to advance that goal. The UCLA-Easton Alzheimer's Center has a continuum of research and research-related activities including basic/foundational studies of peptide interactions; translational studies in transgenic animals and other animal models of AD; clinical research to define the phenotype of AD, characterize familial AD, develop biomarkers, and advance clinical trials; health services and outcomes research; and active education, dissemination, and recruitment activities. The UCLAEaston Alzheimer's Center is supported by the National Institutes on Aging, the State of California, and generous donors who share our commitment to developing new therapies for AD. The naming donor (Jim Easton) provided substantial funds to endow the center and to support projects in AD drug discovery and biomarker development. The Sidell-Kagan Foundation supports the Katherine and Benjamin Kagan Alzheimer's Treatment Development Program, and the Deane F. Johnson Alzheimer's Research Foundation supports the Deane F. Johnson Center for Neurotherapeutics at UCLA. The John Douglas French Alzheimer's Research Foundation provides grants to junior investigators in critical periods of their academic development. The UCLA-Easton Alzheimer's Center partners with community organizations including the Alzheimer's Association California Southland Chapter and the Leeza Gibbons memory Foundation. Collaboration with pharmaceutical companies, biotechnology companies, and device companies is critical to developing new therapeutics for AD and these collaborations are embraced in the mission of the UCLA-Easton Alzheimer's Center. The Center supports excellent senior 3 investigators and serves as an incubator for new scientists, agents, models, technologies

  18. Advanced technology airfoil research, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  19. Advanced Gas Turbine (AGT) Technology Development Project annual report

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company. The Project is administered by Mr. Thomas N. Strom, Project Manager, NASA-Lewis Research Center, Cleveland, Ohio. This report covers plans and progress for the period July 1, 1984 through June 30, 1985.

  20. First Aviation System Technology Advanced Research (AvSTAR) Workshop

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G. (Editor); Weathers, Del W. (Editor); Rosen, Robert (Technical Monitor); Edwards, Tom (Technical Monitor)

    2001-01-01

    This Conference Proceedings documents the results of a two-day NASA/FAA/Industry workshop that was held at the NASA Ames Research Center, located at Moffett Field, CA, on September 21-22, 2000. The purpose of the workshop was to bring together a representative cross section of leaders in air traffic management, from industry. FAA, and academia, to assist in defining the requirements for a new research effort, referred to as AvSTAR Aviation Systems Technology Advanced Research). The Conference Proceedings includes the individual presentation, and summarizes the workshop discussions and recommendations.

  1. Advanced Education and Technology Business Plan, 2010-13

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private…

  2. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  3. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  4. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  5. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  6. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  7. Advanced Material Intelligent Processing Center: Next Generation Scalable Lean Manufacturing

    DTIC Science & Technology

    2012-09-04

    machines and have made significant advances to automated tape laying (ATL) and automated fiber placement (AFP) technologies. Companies are moving...beyond standard thermoplastic and thermoset prepregs and are looking at placing 00A prepregs as well as dry fabrics. Today. Automated Tape Laying (ATL...References [1] Michael N. Grimshaw, " Automated Tape Laying ." in ASM Handbook Vol. 21 Composites.. ASM International, 2001. [2] Obaid Younossi. Michael

  8. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  9. IPIRG programs - advances in pipe fracture technology

    SciTech Connect

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  10. Advanced Technology System Scheduling Governance Model

    SciTech Connect

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  11. Emerging Technologies: Applications and Implications for School Library Media Centers.

    ERIC Educational Resources Information Center

    Craver, Kathleen W.

    This paper examines emerging information technologies and their implications for school library media centers. Because of the fluctuating situation regarding new innovations, only emerging technologies that specialists believe will occur within the next 5 to 10 years are discussed. For each technology mentioned, a brief description is given…

  12. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  13. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  14. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    SciTech Connect

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  15. Physics and Advanced Technologies 2001 Annual Report

    SciTech Connect

    Jacobs, R

    2002-05-09

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  16. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  17. AGT (Advanced Gas Turbine) technology project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated

  18. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  19. Advanced Modulation and Coding Technology Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions.

  20. Advanced interactive displays for deployable command and control centers

    NASA Astrophysics Data System (ADS)

    Jedrysik, Peter A.; Parada, Francisco E.; Stedman, Terrance A.; Zhang, Jingyuan

    2003-09-01

    Command and control in today's battlefield environment requires efficient and effective control of massive amounts of constantly changing information from a variety of databases and real-time sensors. Using advanced information technology for presentation and interactive control enables more extensive data fusion and correlation to present an accurate picture of the battlespace to commanders and their staffs. The Interactive DataWall being developed by the Advanced Displays and Intelligent Interfaces (ADII) technology team of the Air Force Research Laboratory's Information Directorate (AFRL/IF) is a strong contender for solving the information management problems facing the 21st century military commander. It provides an ultra high-resolution large screen display with multi-modal, wireless interaction. Commercial off-the-shelf (COTS) technology has been combined with specialized hardware and software developed in-house to provide a unique capability for multimedia data display and control. The technology once isolated to a laboratory environment has been packaged into deployable systems that have been successfully transitioned to support the warfighter in the field.

  1. Center for Advanced Signal and Imaging Sciences Workshop 2004

    SciTech Connect

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  2. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge Project

    NASA Technical Reports Server (NTRS)

    Wright, Maria Clara (Compiler)

    2015-01-01

    The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific technology idea that needs improvement and to then work with an external partner to develop that technology. This Challenge will enable competitive partnerships with outside entities that will increase the value by bringing leveraged resources. The selected proposal from the University of Florida will develop new lightweight technologies with radiation mitigation for spacecraft.

  3. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  4. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  5. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  6. Recent advances in polyethylene separator technology

    NASA Astrophysics Data System (ADS)

    Weighall, M. J.

    The well known technical and production benefits of polyethylene separator materials over other separator materials have prompted a dramatic increase in polyethylene separator usage in recent years. Separator trends in the United States from 1980 to 1996, and in Europe from 1987 to 1992, are shown. The manufacturing process for polyethylene separators is outlined, with particular emphasis on the latest advances in manufacturing technology. These improvements have resulted in a higher quality product, and also benefit the environment because of the sophisticated oil extraction and solvent recovery system. The product quality improvements resulting from the latest manufacturing technology include consistent conformance to dimensional specifications, low electrical resistance, close control of residual oil content, virtual elimination of pinholes, and good running properties on the battery manufacturers' plate enveloping machines. The material can also be manufactured with a very thin backweb to reduce electrical resistance still further.

  7. Advanced 3-V semiconductor technology assessment

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.

  8. Advanced teleoperation: Technology innovations and applications

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.; Bejczy, Antal K.; Kim, Won S.

    1994-01-01

    The capability to remotely, robotically perform space assembly, inspection, servicing, and science functions would rapidly expand our presence in space, and the cost efficiency of being there. There is considerable interest in developing 'telerobotic' technologies, which also have comparably important terrestrial applications to health care, underwater salvage, nuclear waste remediation and other. Such tasks, both space and terrestrial, require both a robot and operator interface that is highly flexible and adaptive, i.e., capable of efficiently working in changing and often casually structured environments. One systems approach to this requirement is to augment traditional teleoperation with computer assists -- advanced teleoperation. We have spent a number of years pursuing this approach, and highlight some key technology developments and their potential commercial impact. This paper is an illustrative summary rather than self-contained presentation; for completeness, we include representative technical references to our work which will allow the reader to follow up items of particular interest.

  9. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  10. 77 FR 3232 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... No: 2012-1184] DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT...

  11. 78 FR 292 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ...: 2012-31597] DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or...

  12. Biological Semiconductors | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Cancer Diagnostic Program and the Food and Drug Administration's Center for Devices and Radiological Health is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological semiconductors as diagnostic sensors.

  13. Technology at the "Center for Two Learners"

    ERIC Educational Resources Information Center

    Dismukes, Delisa; Yarbrough, Sondra; Zenanko, Marsha; Zenanko, Mike

    2004-01-01

    In this paper, an early component of the teacher education practicum program in the College of Education and Professional Studies at Jacksonville State University is described. This program includes an on-campus one-on-one tutorial that is facilitated through the Teaching/Learning Center (T/LC). The T/LC was established so that the JSU College of…

  14. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.

  15. Marshall Space Flight Center ECLSS technology activities

    NASA Technical Reports Server (NTRS)

    Wieland, Paul

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) technology activities are presented. Topics covered include: analytical development; ECLSS modeling approach; example of water reclamation modeling needs; and hardware development and testing.

  16. Ames Research Center Research and Technology 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  17. Advances in wearable technology for rehabilitation.

    PubMed

    Bonato, Paolo

    2009-01-01

    Assessing the impact of rehabilitation interventions on the real life of individuals is a key element of the decision-making process required to choose a rehabilitation strategy. In the past, therapists and physicians inferred the effectiveness of a given rehabilitation approach from observations performed in a clinical setting and self-reports by patients. Recent developments in wearable technology have provided tools to complement the information gathered by rehabilitation personnel via patient's direct observation and via interviews and questionnaires. A new generation of wearable sensors and systems has emerged that allows clinicians to gather measures in the home and community settings that capture patients' activity level and exercise compliance, the effectiveness of pharmacological interventions, and the ability of patients to perform efficiently specific motor tasks. Available unobtrusive sensors allow clinical personnel to monitor patients' movement and physiological data such as heart rate, respiratory rate, and oxygen saturation. Cell phone technology and the widespread access to the Internet provide means to implement systems designed to remotely monitor patients' status and optimize interventions based on individual responses to different rehabilitation approaches. This chapter summarizes recent advances in the field of wearable technology and presents examples of application of this technology in rehabilitation.

  18. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

  19. Space Station Freedom advanced photovoltaics and battery technology development planning

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.

    1993-01-01

    Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.

  20. Acquisition: Air Force Transition of Advanced Technology Programs to Military Applications

    DTIC Science & Technology

    2006-05-31

    Requirements Review and Assessment process examines capabilities in Global Strike, Homeland Security, Global Response, Global Mobility , Air and Space...Sum m ary of A dvanced T echnology D evelopm ent Projects R eview ed 23 Note: See footnotes at the end of the appendix. Advanced Technology...Armaments Center (AAC) Yes Yes No Yes Yes n/a10 (Cat 2B) Yes Yes Global Air Mobility Advanced Technologies

  1. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  2. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  3. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  4. Advanced wood heating technologies. Final report

    SciTech Connect

    Shelton, J.W.

    1984-08-01

    The residents of the State of New York make heavy use of wood fuel for residential heating. Many advanced technology wood heaters have been introduced recently, accompanied by impressive performance claims relating to increased energy efficiency, decreased creosote accumulation, and decreased emissions. These are important claims, since they translate into fuel conservation, increased safety through fewer chimney fires, and cleaner air. The focus of this project was to test and compare six advanced technology heaters and add-on devices, along with two reference conventional stoves, for energy efficiency, creosote accumulation, and emissions. The appliances were selected, with the assistance of a panel of experts, for their anticipated technical performance and potential market penetration in New York State. The wood heaters and add-on devices based on catalytic combustors performed especially well. Compared to the reference closed stove, the better catalytic stoves consumed up to about 40% less wood to produce the same amount of useful heat, and resulted in about 90% less creosote accumulation and about 70% to 90% less emissions. Equally impressive was the fact that these systems performed very well at all burn rates, including very low burn rates. The catalytic add-on devices exhibited lesser but still significantly improved performance. This project also included tests of some operator variables, efficiency testing methods, and some catalytic combustor design variables. 17 figures, 13 tables.

  5. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  6. The Manned Spacecraft Center and medical technology

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  7. Advanced Electric Traction System Technology Development

    SciTech Connect

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  8. Research and technology: 1986 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1986 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  9. Research and technology: 1985 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1985 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  10. Research and technology of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Descriptions of the research and technology activities at the Langley Research Center are given. Topics include laser development, aircraft design, aircraft engines, aerodynamics, remote sensing, space transportation systems, and composite materials.

  11. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    SciTech Connect

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  12. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  13. Recent advances in cytochrome c biosensing technologies.

    PubMed

    Manickam, Pandiaraj; Kaushik, Ajeet; Karunakaran, Chandran; Bhansali, Shekhar

    2017-01-15

    This review is an attempt, for the first time, to describe advancements in sensing technology for cytochrome c (cyt c) detection, at point-of-care (POC) application. Cyt c, a heme containing metalloprotein is located in the intermembrane space of mitochondria and released into bloodstream during pathological conditions. The release of cyt c from mitochondria is a key initiative step in the activation of cell death pathways. Circulating cyt c levels represents a novel in-vivo marker of mitochondrial injury after resuscitation from heart failure and chemotherapy. Thus, cyt c detection is not only serving as an apoptosis biomarker, but also is of great importance to understand certain diseases at cellular level. Various existing techniques such as enzyme-linked immunosorbent assays (ELISA), Western blot, high performance liquid chromatography (HPLC), spectrophotometry and flow cytometry have been used to estimate cyt c. However, the implementation of these techniques at POC application is limited due to longer analysis time, expensive instruments and expertise needed for operation. To overcome these challenges, significant efforts are being made to develop electrochemical biosensing technologies for fast, accurate, selective, and sensitive detection of cyt c. Presented review describes the cutting edge technologies available in the laboratories to detect cyt c. The recent advancements in designing and development of electrochemical cyt c biosensors for the quantification of cyt c are also discussed. This review also highlights the POC cyt c biosensors developed recently, that would prove of interest to biologist and therapist to get real time informatics needed to evaluate death process, diseases progression, therapeutics and processes related with mitochondrial injury.

  14. Advances in space technology: the NSBRI Technology Development Team.

    PubMed

    Maurer, R H; Charles, H K; Pisacane, V L

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  15. Advances in space technology: the NSBRI Technology Development Team

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Charles, H. K. Jr; Pisacane, V. L.

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  16. The Consortium for Advancing Renewable Energy Technology (CARET)

    NASA Technical Reports Server (NTRS)

    Gordon, E. M.; Henderson, D. O.; Buffinger, D. R.; Fuller, C. W.; Uribe, R. M.

    1998-01-01

    The Consortium for Advancing Renewable Energy (CARET) is a research and education program which uses the theme of renewable energy to build a minority scientist pipeline. CARET is also a consortium of four universities and NASA Lewis Research Center working together to promote science education and research to minority students using the theme of renewable energy. The consortium membership includes the HBCUs (Historically Black Colleges and Universities), Fisk, Wilberforce and Central State Universities as well as Kent State University and NASA Lewis Research Center. The various stages of this pipeline provide participating students experiences with a different emphasis. Some emphasize building enthusiasm for the classroom study of science and technology while others emphasize the nature of research in these disciplines. Still others focus on relating a practical application to science and technology. And, of great importance to the success of the program are the interfaces between the various stages. Successfully managing these transitions is a requirement for producing trained scientists, engineers and technologists. Presentations describing the CARET program have been given at this year's HBCU Research Conference at the Ohio Aerospace Institute and as a seminar in the Solar Circle Seminar series of the Photovoltaic and Space Environments Branch at NASA Lewis Research Center. In this report, we will describe the many positive achievements toward the fulfillment of the goals and outcomes of our program. We will begin with a description of the interactions among the consortium members and end with a description of the activities of each of the member institutions .

  17. CERT: Center of Excellence in Rotorcraft Technology

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The research objectives of this effort are to understand the physical processes that influence the formation of the tip vortex of a rotor in advancing flight, and to develop active and passive means of weakening the tip vortex during conditions when strong blade-vortex-interaction effects are expected. A combined experimental, analytical, and computational effort is being employed. Specifically, the following efforts are being pursued: 1. Analytical evaluation and design of combined elastic tailoring and active material actuators applicable to rotor blade tips. 2. Numerical simulations of active and passive tip devices. 3. LDV Measurement of the near and far wake behind rotors in forward flight.

  18. Land reclamation: Advances in research technology

    SciTech Connect

    Younos, T.; Diplas, P.; Mostaghimi, S.

    1992-01-01

    Land reclamation encompasses remediation of industrial wasteland, improvement of infertile land for agricultural production, preservation of wetlands, and restoration of disturbed areas. Land reclamation is an integral part of sustainable development which aims to reconcile economic productivity with environmental preservation. During the 1980s, significant progress was achieved in the application of advanced technologies to sustainable development projects. The goal of this international symposium was to serve as a forum to review current research and state-of-the-art technology dealing with various aspects of land reclamation, and provide an opportunity for professional interaction and exchange of information in a multi-disciplinary setting. The scope of the symposium was as broad as the topic itself. The keynote address by Professor John Cairns focused on a systems approach in land restoration projects and challenges facing scientists in global biotic impoverishment. Other topics discussed in ten mechanical sessions included development and applications of computer models, geographic information systems, remote sensing technology, salinity problems, surface and ground water monitoring, reclamation of mine areas, soil amendment methods and impacts, wetland restoration techniques, and land use planning for resource protection.

  19. [Advances in peroxide-based decontaminating technologies].

    PubMed

    Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

    2013-05-01

    With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants.

  20. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States.

  1. Phosphor Technology Center of Excellence: research, education, industrial interactions

    NASA Astrophysics Data System (ADS)

    Summers, Christopher J.

    1994-04-01

    A review is given of the participants and the research, education and industrial mission of the center. The Phosphor Technology Center of Excellence is established at the Georgia Institute of Technology with the University of Georgia, University of Florida, Pennsylvania State University, David Sarnoff Research Center and the American Display Consortium being charter members. The research mission addresses short, medium and long term needs in five technological areas; cathode ray tube, electroluminescence, field emission devices, plasma display panels and active-matrix liquid crystal display back-light phosphors through interactive university/industry technology groups. Outreach activities include the establishment of a phosphor database, industry analysis and short courses in addition to the conventional university education role. Specific science and technology programs are briefly described.

  2. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  3. Advanced Education and Technology Business Plan, 2010-13. Highlights

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    The Ministry of Advanced Education and Technology envisions Alberta's prosperity through innovation and lifelong learning. Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. This paper presents the highlights of the business…

  4. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  5. Advanced Stirling Convertor (ASC) Technology Maturation in Preparation for Flight

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Cornell, Peggy A.

    2012-01-01

    The Advanced Stirling Convertor (ASC) is being developed by an integrated team of Sunpower and National Aeronautics and Space Administration s (NASA s) Glenn Research Center (GRC). The ASC development, funded by NASA s Science Mission Directorate, started as a technology development effort in 2003 and has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency, low mass, and capability to meet long-life Radioisotope Power System (RPS) requirements. The technology has been adopted by the Department of Energy and Lockheed Martin Space Systems Company s Advanced Stirling Radioisotope Generator (ASRG), which has been selected for potential flight demonstration on Discovery 12. This paper provides an overview of the status of ASC development including the most recent ASC-E2 convertors that have been delivered to GRC and an introduction to the ASC-E3 and ASC flight convertors that Sunpower will build next. The paper also describes the technology maturation and support tasks being conducted at GRC to support ASC and ASRG development in the areas of convertor and generator extended operation, high-temperature materials, heater head life assessment, organics, nondestructive inspection, spring fatigue testing, and other reliability verification tasks.

  6. Applications technology satellites advanced mission study

    NASA Technical Reports Server (NTRS)

    Gould, L. M.

    1972-01-01

    Three spacecraft configurations were designed for operation as a high powered synchronous communications satellite. Each spacecraft includes a 1 kw TWT and a 2 kw Klystron power amplifier feeding an antenna with multiple shaped beams. One of the spacecraft is designed to be boosted by a Thor-Delta launch vehicle and raised to synchronous orbit with electric propulsion. The other two are inserted into a elliptical transfer orbit with an Atlas Centaur and injected into final orbit with an apogee kick motor. Advanced technologies employed in the several configurations include tubes with multiple stage collectors radiating directly to space, multiple-contoured beam antennas, high voltage rollout solar cell arrays with integral power conditioning, electric propulsion for orbit raising and on-station attitude control and station-keeping, and liquid metal slip rings.

  7. Advanced monolithic pixel sensors using SOI technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  8. Advanced information technology: Building stronger databases

    SciTech Connect

    Price, D.

    1994-12-01

    This paper discusses the attributes of the Advanced Information Technology (AIT) tool set, a database application builder designed at the Lawrence Livermore National Laboratory. AIT consists of a C library and several utilities that provide referential integrity across a database, interactive menu and field level help, and a code generator for building tightly controlled data entry support. AIT also provides for dynamic menu trees, report generation support, and creation of user groups. Composition of the library and utilities is discussed, along with relative strengths and weaknesses. In addition, an instantiation of the AIT tool set is presented using a specific application. Conclusions about the future and value of the tool set are then drawn based on the use of the tool set with that specific application.

  9. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

  10. Advances in uncooled technology at BAE SYSTEMS

    NASA Astrophysics Data System (ADS)

    Backer, Brian S.; Kohin, Margaret; Leary, Arthur R.; Blackwell, Richard J.; Rumbaugh, Roy N.

    2003-09-01

    BAE SYSTEMS has made tremendous progress in uncooled technology and systems in the last year. In this paper we present performance results and imagery from our latest 640x480 and 320x240 small pixel focal plane arrays. Both were produced using submicron lithography and have achieved our lowest NETDs to date. Testing of the 320x240 devices has shown TNETDs of 30mK at F/1. Video imagery from our 640 x 480 uncooled camera installed in a POINTER Unattended Aerial Vehicle is also shown. In addition, we introduce our newest commercial imaging camera core, the SCC500 and show its vastly improved characteristics. Lastly, plans for future advancements are outlined.

  11. Technological advances in electrospinning of nanofibers

    PubMed Central

    Teo, Wee-Eong; Inai, Ryuji; Ramakrishna, Seeram

    2011-01-01

    Progress in the electrospinning techniques has brought new methods for the production and construction of various nanofibrous assemblies. The parameters affecting electrospinning include electrical charges on the emerging jet, charge density and removal, as well as effects of external perturbations. The solvent and the method of fiber collection also affect the construction of the final nanofibrous architecture. Various techniques of yarn spinning using solid and liquid surfaces as well as surface-free collection are described and compared in this review. Recent advances allow production of 3D nanofibrous scaffolds with a desired microstructure. In the area of tissue regeneration and bioengineering, 3D scaffolds should bring nanofibrous technology closer to clinical applications. There is sufficient understanding of the electrospinning process and experimental results to suggest that precision electrospinning is a real possibility. PMID:27877375

  12. Computers & Technology in School Library Media Centers. Professional Growth Series.

    ERIC Educational Resources Information Center

    Bucher, Katherine Toth

    Technology is arriving in school libraries in unprecedented quantities, resulting in many changes in the school library media center. While most librarians agree that technology is wonderful, many are feeling the stress of rapid change and coping with the decisions made by educational policy makers. This looseleaf notebook, written for the novice,…

  13. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema

    None

    2016-07-12

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  14. Research and technology highlights of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Highlights of research accomplishments of the Lewis Research Center for fiscal year 1984 are presented. The report is divided into four major sections covering aeronautics, space communications, space technology, and materials and structures. Six articles on energy are included in the space technology section.

  15. Educational Technology Center Fourth Year Report. TR88-5.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    This report enumerates the activities of the Educational Technology Center (ETC) during 1987. The guide's theme for the year was Teaching with Technology. The report includes brief descriptions of five different types of research projects by area. In science education, the projects concerned with weight and density, heat and temperature, and the…

  16. Research & Technology Report Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  17. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  18. The Oklahoma Health Information Technology Regional Extension Center.

    PubMed

    Bratzler, Dale W

    2010-09-01

    With the passage of the Health Information Technology for Economic and Clinical Health Act (HITECH) the government has created a network of Health Information Technology Regional Extension Centers to provide direct technical assistance to primary care providers in small practices to adopt and meaningfully use electronic health records (EHR). Regional Extension Centers will work directly with practitioner offices to identify effective strategies to select, implement, and meaningfully use certified EHR technology. The Oklahoma Foundation for Medical Quality (OFMQ) was awarded the cooperative agreement to serve as the Regional Extension Center for the state, and is actively recruiting practices to provide support on implementation of an EHR. There is some urgency for physician practices to consider work with the Regional Extension Center since the federal matching funding for the program will be substantially reduced beginning in 2012, and because the incentive funds for a practice that adopts and meaningfully uses an EHR are reduced beginning in 2013.

  19. GHG MITIGATION TECHNOLOGY PERFORMANCE EVALUATIONS UNDERWAY AT THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper outlines the verification approach and activities of the Greenhouse Gas (GHG) Technology Verification Center, one of 12 independent verification entities operating under the U.S. EPA-sponsored Environmental Technology Verification (ETV) program. (NOTE: The ETV program...

  20. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  1. Advanced Joining Technology: Simple, Strong, and Secure

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The space-age materials that NASA employs in its spacecraft and satellites have different attributes than the building materials that can work for Earthly uses. These materials do not behave like the typical construction materials, and therefore, require new methods for construction. Work done at NASA s Langley Research Center in the realm of active solder joining has led to a new, self-bonding solder that enables high conductivity, as well as the metallic joining of carbon and ceramic materials to a wide range of metals. The original work involved evaluating high- and low-temperature joining technologies for joining carbon composite structures for use in thermal management and reusable launch vehicles. The initial plan for this innovation was to lower the weight of battery packs in satellites. It was a success. NASA scientists found use for this technology in fabricating a thermal management package for battery compartments in the Earth Observing System (EOS) satellites, but it is also being used by the Agency for space radiator panels. Because it is light, simple to use, and economical, NASA will likely find other uses for this solder, just as outside of the Space Agency, this unique bond is finding many practical applications.

  2. CCSDS - Advancing Spaceflight Technology for International Collaboration

    NASA Technical Reports Server (NTRS)

    Kearney, Mike; Kiely, Aaron; Yeh, Penshu; Gerner, Jean-Luc; Calzolari, Gian-Paolo; Gifford, Kevin; Merri, Mario; Weiss, Howard

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has been developing data and communications standards since 1982, with the objective of providing interoperability for enabling international collaboration for spaceflight missions. As data and communications technology has advanced, CCSDS has progressed to capitalize on existing products when available and suitable for spaceflight, and to develop innovative new approaches when available products fail. The current scope of the CCSDS architecture spans the end-to-end data architecture of a spaceflight mission, with ongoing efforts to develop and standardize cutting-edge technology. This manuscript describes the overall architecture, the position of CCSDS in the standards and international mission community, and some CCSDS processes. It then highlights in detail several of the most interesting and critical technical areas in work right now, and how they support collaborative missions. Special topics include: Delay/Disruption Tolerant Networking (DTN), Asynchronous Message Service (AMS), Multispectral/Hyperspectral Data Compression (MHDC), Coding and Synchronization, Onboard Wireless, Spacecraft Monitor and Control, Navigation, Security, and Time Synchronization/Correlation. Broad international participation in development of CCSDS standards is encouraged.

  3. Advanced Life Support Technologies and Scenarios

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  4. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  5. Advanced Technology Composite Fuselage-Structural Performance

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

    1997-01-01

    Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

  6. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  7. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; Fredrikson, H. G.; Olson, J. T.; Backman, B. F.

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  8. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  9. 78 FR 77662 - Notice of Availability (NOA) for General Purpose Warehouse and Information Technology Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Technology Center Construction (GPW/IT)--Tracy Site-- Environmental Assessment (EA); Finding of No... General Purpose Warehouse and Information Technology Center Construction (GPW/IT)--Tracy Site... the General Purpose Warehouse and Information Technology Center Construction (GPW/IT)--Tracy...

  10. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Blaze, Gina M.

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  11. Activities of the NASA/Marshall Space Flight Center pump stage technology team

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Mcconnaughey, P.; Eastland, A.

    1992-01-01

    In order to advance rocket propulsion technology, the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology has been formed at Marshall Space Flight Center (MSFC). The Consortium consists of three Teams: the turbine stage team, the pump stage team (PST), and the combustion devices team. The PST has formulated and is implementing a plan for pump technology development whose end product will be validated CFD codes suitable for application to pump components, test data suitable for validating CFD codes, and advanced pump components optimized using CFD codes. The PST's work during the fall of 1991 and the winter and spring of 1992 is discussed in this paper. This work is highlighted by CFD analyses of an advanced impeller design and collection of laser two-focus velocimeter data for the Space Shuttle Main Engine High Pressure Fuel Pump impeller.

  12. Benefits from synergies and advanced technologies for an advanced-technology space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.

    1991-01-01

    A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.

  13. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  14. Advanced Thermal Control Technologies for "CEV" (New Name: ORION)

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Westheimer, David; Ewert, Michael; Hasan, Mojib; Anderson, Molly; Tuan, George; Beach, Duane

    2007-01-01

    NASA is currently investigating several technology options for advanced human spaceflight. This presentation covers some recent developments that relate to NASA's Orion spacecraft and future Lunar missions.

  15. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  16. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  17. Summary of the National Technology Transfer and Advancement Act

    EPA Pesticide Factsheets

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  18. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  19. Advanced structures technology applied to a supersonic cruise arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1976-01-01

    The application of advanced technology to a promising aerodynamic configuration was explored to investigate the improved payload range characteristics over the configuration postulated during the National SST Program. The results of an analytical study performed to determine the best structural approach for design of a Mach number 2.7 arrow-wing supersonic cruise aircraft are highlighted. The data conducted under the auspices of the Structures Directorate of the National Aeronautics and Space Administration, Langley Research Center, established firm technical bases from which further trend studies were conducted to quantitatively assess the benefits and feasibility of using advanced structures technology to arrive at a viable advanced supersonic cruise aircraft.

  20. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...