Science.gov

Sample records for advanced testing line

  1. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    SciTech Connect

    Pope, N.G.; Yarbro, S.L.; Schreiber, S.B.; Day, R.S.

    1992-03-01

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas.

  2. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    SciTech Connect

    Barnes, J.W.; Yarbro, S.L.

    1987-01-01

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel.

  3. Installation and Final Testing of an On-Line, Multi-Spectrometer Fission Product Monitoring System (FPMS) to Support Advanced Gas Reactor (AGR) Fuel Testing and Qualification in the Advanced Test Reactor

    SciTech Connect

    J. K. Hartwell; D. M. Scates; M. W. Drigert; J. B. Walter

    2006-10-01

    The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR). The AGR will use helium coolant, a low-power-density ceramic core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) on-line detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation after October 1, 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled and tested in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the test plan for the irradiation monitoring, and the installation in the ATR basement. Preliminary on-line data may be available by the Conference date.

  4. High-Brightness Beam Generation and Characterization at the Advanced Photon Source Low-Energy Undulator Test Line Linac*

    NASA Astrophysics Data System (ADS)

    Lewellen, John; Biedron, Sandra; Borland, Michael; Hahne, Michael; Harkay, Katherine; Lumpkin, Alex; Milton, Stephen; Sereno, Nicholas; Travish, Gil

    2000-04-01

    Improvements to the Advanced Photon Source injector linac have been made to allow for the production and characterization of high-brightness beams in support of fourth-generation light source research. In particular, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) free-electron laser (FEL). We describe the enhancements to the linac operational and diagnostic capabilities that enabled self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm. Electron beam measurement techniques and recent results will be discussed. Beam properties are measured under the same operational conditions as those used for FEL studies. The nominal FEL beam parameters are as follows: 217 MeV beam energy; less than 0.15 mm-mrad normalized emittance; 100 A peak current from a 0.7-nC charge at a 7-psec bunch. * Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38

  5. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  6. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  7. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  8. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  9. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  10. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  11. First-Line Tests

    MedlinePlus

    ... always require further testing. Cutaneous porphyrias . Measuring total plasma porphyrins is effective for screening patients with skin ... any patient with skin manifestations due to Porphyria. Plasma porphyrins are seldom increased in other medical conditions. ...

  12. DESIGN OF AN ON-LINE, MULTI-SPECTROMETER FISSION PRODUCT MONITORING SYSTEM (FPMS) TO SUPPORT ADVANCED GAS REACTOR (AGR) FUEL TESTING AND QUALIFICATION IN THE ADVANCED TEST REACTOR

    SciTech Connect

    J. K. Hartwell; D. M. Scates; M. W. Drigert

    2005-11-01

    The US Department of Energy (DOE) is embarking on a series of tests of coated-particle reactor fuel for the Advanced Gas Reactor (AGR). As one part of this fuel development program a series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). The first test in this series (AGR-1) will incorporate six separate “capsules” irradiated simultaneously, each containing about 51,000 TRISO-coated fuel particles supported in a graphite matrix and continuously swept with inert gas during irradiation. The effluent gas from each of the six capsules must be independently monitored in near real time and the activity of various fission gas nuclides determined and reported. A set of seven heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based total radiation detectors have been designed, and are being configured and tested for use during the AGR-1 experiment. The AGR-1 test specification requires that the AGR-1 fission product measurement system (FPMS) have sufficient sensitivity to detect the failure of a single coated fuel particle and sufficient range to allow it to “count” multiple (up to 250) successive particle failures. This paper describes the design and expected performance of the AGR-1 FPMS.

  13. Advanced Vehicle Testing and Evaluation

    SciTech Connect

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  14. Advanced Duct Sealing Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2003-08-01

    Duct leakage has been identified as a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums or branches in the duct system. At each of these connections a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have typically shown that these seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory has been testing sealant durability for several years. Typical duct tape (i.e. fabric backed tapes with natural rubber adhesives) was found to fail more rapidly than all other duct sealants. This report summarizes the results of duct sealant durability testing of five UL 181B-FX listed duct tapes (three cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The first test involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars, and sheet metal ''collar-to-plenum joints'' pressurized with 200 F (93 C) air. The second test consisted of baking duct tape specimens in a constant 212 F (100 C) oven following the UL 181B-FX ''Temperature Test'' requirements. Additional tests were also performed on only two tapes using sheet metal collar-to-plenum joints. Since an unsealed flexible duct joint can have a variable leakage depending on the positioning of the flexible duct core, the durability of the flexible duct joints could not be based on the 10% of unsealed leakage criteria. Nevertheless, the leakage of the sealed specimens prior to testing could be considered as a basis for a failure criteria. Visual inspection was also documented throughout the tests. The flexible duct core-to-collar joints were inspected monthly, while the sheet metal collar-to-plenum joints were inspected

  15. Economic Evaluation of Companion Diagnostic Testing for EGFR Mutations and First-Line Targeted Therapy in Advanced Non-Small Cell Lung Cancer Patients in South Korea

    PubMed Central

    Lim, Eun-A; Bae, Eunmi; Lim, Jaeok; Shin, Young Kee; Choi, Sang-Eun

    2016-01-01

    Background As targeted therapy becomes increasingly important, diagnostic techniques for identifying targeted biomarkers have also become an emerging issue. The study aims to evaluate the cost-effectiveness of treating patients as guided by epidermal growth factor receptor (EGFR) mutation status compared with a no-testing strategy that is the current clinical practice in South Korea. Methods A cost-utility analysis was conducted to compare an EGFR mutation testing strategy with a no-testing strategy from the Korean healthcare payer’s perspective. The study population consisted of patients with stage 3b and 4 lung adenocarcinoma. A decision tree model was employed to select the appropriate treatment regimen according to the results of EGFR mutation testing and a Markov model was constructed to simulate disease progression of advanced non-small cell lung cancer. The length of a Markov cycle was one month, and the time horizon was five years (60 cycles). Results In the base case analysis, the testing strategy was a dominant option. Quality-adjusted life-years gained (QALYs) were 0.556 and 0.635, and total costs were $23,952 USD and $23,334 USD in the no-testing and testing strategy respectively. The sensitivity analyses showed overall robust results. The incremental cost-effectiveness ratios (ICERs) increased when the number of patients to be treated with erlotinib increased, due to the high cost of erlotinib. Conclusion Treating advanced adenocarcinoma based on EGFR mutation status has beneficial effects and saves the cost compared to no testing strategy in South Korea. However, the cost-effectiveness of EGFR mutation testing was heavily affected by the cost-effectiveness of the targeted therapy. PMID:27483001

  16. Advanced work capacity testing.

    PubMed

    Bretz, Károly J; Dános, László; Smudla, Szilvia; Pálosi, Adrienn

    2015-01-01

    The aim of this study is to describe an accurate work capacity testing which can be used in the industry, as well as in rehabilitation process. The first part of this paper is dealing with the NIOSH lifting equation, which is a tool used by occupational health and safety professionals. The second part of this paper summarizes the features and applications of the "ErgoScope" work simulator. Static and dynamic strength of upper and lower limbs, as well as whole body efforts can be measured. The equipment makes it possible to evaluate pushing, pulling, lifting and carrying activities comprising reaching, bending and stooping movements. In the third part of this paper we demonstrate handgrip force data recorded using the "ErgoScope" work simulator comparing with handgrip force data published in the literature. "ErgoScope" work simulator is capable to measure handgrip and pinch forces, suitable to evaluate fine motor skills, hand and finger dexterity, as well as reaction times. PMID:26294589

  17. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  18. NASDA's Advanced On-Line System (ADOLIS)

    NASA Technical Reports Server (NTRS)

    Yamamoto, Yoshikatsu; Hara, Hideo; Yamada, Shigeo; Hirata, Nobuyuki; Komatsu, Shigenori; Nishihata, Seiji; Oniyama, Akio

    1993-01-01

    Spacecraft operations including ground system operations are generally realized by various large or small scale group work which is done by operators, engineers, managers, users and so on, and their positions are geographically distributed in many cases. In face-to-face work environments, it is easy for them to understand each other. However, in distributed work environments which need communication media, if only using audio, they become estranged from each other and lose interest in and continuity of work. It is an obstacle to smooth operation of spacecraft. NASDA has developed an experimental model of a new real-time operation control system called 'ADOLIS' (ADvanced On-Line System) adopted to such a distributed environment using a multi-media system dealing with character, figure, image, handwriting, video and audio information which is accommodated to operation systems of a wide range including spacecraft and ground systems. This paper describes the results of the development of the experimental model.

  19. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  20. The Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1990-01-01

    The principal goals and design concepts of the Advanced Expander Test Bed (AETB) program are briefly reviewed. The AETB is planned as the focal point for the development and demonstration of high-performance oxygen/hydrogen engine technology and advanced component technology for the next space engine. The engine will operate at pressures up to 1200 psia over a wide range of conditions, easily accommodating mission-focused components. The discussion covers design requirements, design approach, conceptual design, the AETB cycle, and the AETB control system.

  1. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  2. Advances in gamma-ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1983-01-01

    Gamma ray line observations of solar flares, gamma ray transients, and the galactic center are reviewed and interpreted. Prospects of future line detections are discussed. Previously announced in STAR as N82-27200

  3. Recent Advances in Contextuality Tests

    NASA Astrophysics Data System (ADS)

    Thompson, Jayne; Kurzyński, Paweł; Lee, Su-Yong; Soeda, Akihito; Kaszlikowski, Dagomir

    2016-07-01

    Our everyday experiences support the hypothesis that physical systems exist independently of the act of observation. Concordant theories are characterized by the objective realism assumption whereby the act of measurement simply reveals preexisting well-defined elements of reality. In stark contrast quantum mechanics portrays a world in which reality loses its objectivity and is in fact created by observation. Quantum contextuality as first discovered by Bell [1] and Kochen-Specker [2] captures aspects of this philosophical clash between classical and quantum descriptions of the world. Here we briefly summarize some of the more recent advances in the field of quantum contextuality. We approach quantum contextuality through its close relation to Bell type nonlocal scenarios and highlight some of the rapidly developing tests and experimental implementations.

  4. Start up testing for the secure automated fabrication line

    SciTech Connect

    Gerber, E.W.; Benson, E.M.; Dahl, R.E.

    1986-10-21

    The Secure Automated Fabrication (SAF) Line has been designed and built by Westinghouse Hanford Company for the Department of Energy at the Hanford Site near Richland, Washington. The SAF Line will provide the capability for remote manufacture of fuel for Liquid Metal Reactors, and will supply fuel for the Fast Flux Test Facility (FFTF). The SAF process is highly automated and represents a major advancement in nuclear fuel manufacturing, offering significant improvements in product quality, productivity, safety, and accountability of Special Nuclear Materials. The construction phase of the project is complete, and testing has been initiated to accomplish start up of the plant for manufacture of FFTF fuel. This paper describes the test methodology used for SAF Line start up.

  5. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  6. Instrumentation advances for transonic testing

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1989-01-01

    New and improved instrumentation, like new and improved wind tunnels, provide capabilities which stimulate innovative research and discovery. During the past few years there have been a number of instrumentation developments which have aided and abetted the acquisition of more accurate aerodynamic data and have led to new physical insights as well. Some of these advances are reviewed, particularly in the area of thin film gages, hot wire anemometry, and laser instrumentation. A description is given of the instruments and/or techniques and some sample results are shown.

  7. Advanced Test Accelerator (ATA) injector

    SciTech Connect

    Jackson, C.H.; Bubp, D.G.; Fessenden, T.J.; Hester, R.E.; Neil, V.K.; Paul, A.C.; Prono, D.S.

    1983-03-09

    The ATA injector, developed from experience gained from the Experimental Test Accelerator (ETA) linac, has recently been completed. The injector consists of ten 0.25 MV cells that are used to develop 2.5 MV across a single diode gap. The 10 kA beam is extracted from a 500 cm/sup 2/ plasma cathode at average rates of up to 5 Hz and burst rates to 1 kHz. Pulsed power from 20 water filled blumleins is divided and introduced symmetrically through four ports on each cell. All major insulators are fabricated from filled epoxy castings. With these improvements, the ATA injector is smaller than the ETA injector; has a faster pulse response; has lower voltage stress on insulators and higher ultimate performance. Injector characterization tests began in October 1982. These tests include beam current, energy, and emittance measurements.

  8. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  9. The advanced solar cell orbital test

    NASA Technical Reports Server (NTRS)

    Marvin, D. C.; Gates, M.

    1991-01-01

    The motivation for advanced solar cell flight experiments is discussed and the Advanced Solar Cell Orbital Test (ASCOT) flight experiment is described. Details of the types of solar cells included in the test and the kinds of data to be collected are given. The orbit will expose the cells to a sufficiently high radiation dose that useful degradation data will be obtained in the first year.

  10. Stress Analysis and Permeability Testing of Cryogenic Composite Feed Line

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1999-01-01

    For the next generation Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV), the use of advanced composite materials is highly desirable and critical to the success of the mission. NASA Marshall Space Flight Center (MSFC) has been working with the aerospace industry for many years to develop and demonstrate the cryogenic composite propellant tanks and feed lines technologies. A 50.8-mm diameter composite feed line for the Clipper Graham (DCY.A) was developed and tested. The purpose of the program is to demonstrate the LH2 permeability, composite to composite and metal joints, as well as composite flange interface of the composite feed line. Stress analysis and permeability testing have been performed on this article. Recently, a larger composite feed line design is being investigated and developed at MSFC for potential use in future RLV. The diameter of the feed line is 203 mm and the overall length is approximately 2.2 meters. This one piece unlined feed line consists of three straight tubular sections joined by two 90 degree elbows. The material chosen is IM7/977-3 prepreg fabric. The lay-up pattern is [0/90, plus or minus 45]s and is built up to 18 plies to the flanges at both ends. A preliminary stress analysis has been conducted to identify potential critical stresses and to develop the finite element analysis (FEA) capability of composite feed lines. As expected, the critical stresses occurred at the rims of some flange holes and the onset of the tapered tubular sections. Further analysis is required to determine the loads, flange deflection, vibration, and combined maximum loads. Two permeability-testing apparatuses were also designed for both flat panel specimens and curved feed line sections after impact damage. A larger permeant gas exposed area is required to accurately determine the effect of impact damage on the permeability of the feed line materials. The flat panel tester was fabricated and assembled. Three test coupons were made of graphite

  11. EPA ALKALI SCRUBBING TEST FACILITY: ADVANCED PROGRAM

    EPA Science Inventory

    The report gives results of advanced testing (from June 1975 to February 1976) of 30,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for SO2 and particulate removal at TVA's Shawnee Power Station. No reliability problems were experienced in 1143 hours of lime testing wit...

  12. Design of an Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Mitchell, John C.; Tabata, William K.

    1993-01-01

    The final design of the Advanced Expander Test Bed (AETB) is discussed. The AETB is a cryogenic rocket ground test unit being designed and built for NASA to enable validation of mission-focused technologies for advanced space engines. Based on the split expander cycle, it will operate at a nominal thrust of 20,000 lbf, a chamber pressure of 1200 psia, and may be operated off-design over a wide range of throttling conditions and mixture ratios. The design approach and configuration of the major components are described.

  13. Advanced Stirling Convertor Testing at GRC

    NASA Technical Reports Server (NTRS)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  14. Tracking Spectral Noise Lines in Advanced LIGO Data

    NASA Astrophysics Data System (ADS)

    Beltz-Mohrmann, Gillian Dora; Weinstein, Alan J.; Kanner, Jonah

    2016-01-01

    The Advanced LIGO detectors are expected to make gravitational wave observations possible within the next few years. However, sharp spectral noise lines continue to obscure the data, and it is unknown if or how these lines wander over time. Therefore, we are developing a method that will track the frequencies of the various noise sources which appear in our data. Using Python for scripting, we utilize various signal processing techniques to identify the exact frequencies of the noise sources present in our time series. We then heterodyne to determine if and how a given spectral line wanders in frequency over time. This technique will provide beneficial insight for improving the quality of the data and the sensitivity to gravitational waves from spinning neutron stars and other astrophysical sources.

  15. The development of a portable, automatic, microwave transmission line test set

    NASA Astrophysics Data System (ADS)

    de La Fuente, Val; Karuschkat, Glenn; Simone, Frederick

    Existing test sets for flightline testing of microwave transmission lines are complex, semiportable systems requiring the piece-part testing of waveguides, antennas, and transmission line components in the aircraft. Moreover, these systems are not fully automated and require a large degree of manual intervention. Therefore, advances in test-set miniaturization and automatic control techniques can now be utilized to develop a fully portable, automatic test set for the flightline functional and diagnostic fault isolation testing of RF avionics and microwave transmission lines. A description is given of the proposed capabilities of such a tester, and the benefits expected to be derived from its use.

  16. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  17. Advanced recovery systems wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Geiger, R. H.; Wailes, W. K.

    1990-01-01

    Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-Ames 80 by 120 test sections of the National Full-Scale Aerodynamic Complex, Moffett Field, CA. The investigation was conducted to determine the aerodynamic characteristics of two scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems for the Next Generation Space Transportation System. Two models were tested during this investigation. Both the primary test article, a 1/9 geometric scale model with wing area of 1200 square feet and secondary test article, a 1/36 geometric scale model with wing area of 300 square feet, had an aspect ratio of 3. The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.

  18. 49 CFR 192.511 - Test requirements for service lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Test requirements for service lines. (a) Each segment of a service line (other than plastic) must be... test at the operating pressure when placed in service. (b) Each segment of a service line (other than...) gage. (c) Each segment of a service line (other than plastic) intended to be operated at pressures...

  19. 49 CFR 192.511 - Test requirements for service lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Test requirements for service lines. (a) Each segment of a service line (other than plastic) must be... test at the operating pressure when placed in service. (b) Each segment of a service line (other than...) gage. (c) Each segment of a service line (other than plastic) intended to be operated at pressures...

  20. 49 CFR 192.511 - Test requirements for service lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Test requirements for service lines. (a) Each segment of a service line (other than plastic) must be... test at the operating pressure when placed in service. (b) Each segment of a service line (other than...) gage. (c) Each segment of a service line (other than plastic) intended to be operated at pressures...

  1. 49 CFR 192.511 - Test requirements for service lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Test requirements for service lines. (a) Each segment of a service line (other than plastic) must be... test at the operating pressure when placed in service. (b) Each segment of a service line (other than...) gage. (c) Each segment of a service line (other than plastic) intended to be operated at pressures...

  2. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  3. Advanced coating lining systems for challenging chemical environments

    SciTech Connect

    Brupbacher, J.M.; Stiles, J.E.

    1997-08-01

    Advanced coatings and coating lining systems are being increasingly used by industry to protect process equipment in challenging chemical environments. This includes not only severe corrosive liquors encountered in many Chemical Process Industry streams, but also the high purity process liquors and rinse systems of the pharmaceutical and microelectronics industries. This paper discusses the design options for optimizing the performance of fluoropolymer-based coating systems for industry-specific applications such as these. Design factors discussed will include surface pre-treatment options, chemical and mechanical bonding systems, field-proven and advanced polymer barrier coatings, homogeneous and graded polymer barrier stacks, and imbedded permeation barriers. The processing techniques for applying engineered coatings will be discussed since processing also plays an important role in the design options available to individual coating applicators and ultimate performance of the coating system applied. Several case studies will be presented and discussed.

  4. On-Line NDE for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Nakagawa, N.; Inanc, F.; Thompson, R. B.; Junker, W. R.; Ruddy, F. H.; Beatty, J. M.; Arlia, N. G.

    2003-03-01

    This expository paper introduces the concept of on-line sensor methodologies for monitoring the integrity of components in next generation power systems, and explains general benefits of the approach, while describing early conceptual developments of suitable NDE methodologies. The paper first explains the philosophy behind this approach (i.e. the design-for-inspectability concept). Specifically, we describe where and how decades of accumulated knowledge and experience in nuclear power system maintenance are utilized in Generation IV power system designs, as the designs are being actively developed, in order to advance their safety and economy. Second, we explain that Generation IV reactor design features call for the replacement of the current outage-based maintenance by on-line inspection and monitoring. Third, the model-based approach toward design and performance optimization of on-line sensor systems, using electromagnetic, ultrasonic, and radiation detectors, will be explained. Fourth, general types of NDE inspections that are considered amenable to on-line health monitoring will be listed. Fifth, we will describe specific modeling developments to be used for radiography, EMAT UT, and EC detector design studies.

  5. Field tests of transgenic barley lines in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testing transgenic barley lines for FHB in the greenhouse does not necessarily give the same results as field tests. The objective of this project was to test 18 transgenic lines in replicated trials in an inoculated FHB nursery. Several programs have developed barley lines expressing anti-fungal a...

  6. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  7. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  8. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  9. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  10. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  11. Future Transient Testing of Advanced Fuels

    SciTech Connect

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  12. Advanced wing design survivability testing and results

    NASA Technical Reports Server (NTRS)

    Bruno, J.; Tobias, M.

    1992-01-01

    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  13. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  14. Telemetry Tests Of The Advanced Receiver II

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Bevan, Roland P.; Marina, Miguel

    1993-01-01

    Report describes telemetry tests of Advanced Receiver II (ARX-II): digital radio receiving subsystem operating on intermediate-frequency output of another receiving subsystem called "multimission receiver" (MMR), detecting carrier, subcarrier, and data-symbol signals transmitted by spacecraft, and extracts Doppler information from signals. Analysis of data shows performance of MMR/ARX-II system comparable and sometimes superior to performances of Blk-III/BPA and Blk-III/SDA/SSA systems.

  15. Irradiation Facilities at the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-12-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

  16. Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  17. Modal testing of advanced wind turbine systems

    SciTech Connect

    Osgood, R.M.

    1995-09-01

    The US Department of Energy (DOE), in conjunction with the US wind industry, is supporting the development of technology for advanced, higher efficiency wind energy conversion systems. Under the Advanced Wind Turbine (AAWT) Program, the DOE, through the National Renewable Energy Laboratory (NREL), will assist US industry in incorporating advanced wind turbine technology into utility-grade wind turbines. As part of the AWT Program, NREL is conducting a range of activities aimed at assisting the wind industry with system design analysis and testing. One major activity is NREL`s Full System Model Testing (FSMT) task. In 1993 and 1994, NREL`s FSMT team conducted model surveys on several wind turbine systems developed by industry, including Atlantic Orient Corporation`s AOC 15/50, R. Lynette and Associates` AWT-26 P1, and Carter Wind Turbines Incorporated`s CWT-300. This paper describes how these model surveys were carried out and how industry and NREL wind researchers used the experimental results to validate their analytical models.

  18. Testing Claims for On-Line Conferences.

    ERIC Educational Resources Information Center

    Selfe, Cynthia L.; Meyer, Paul R.

    1991-01-01

    Describes an exploratory study of gender and power relationships on Megabyte University, one particular on-line conference. Finds that, although results of the study are not definite, they do suggest that gender and power are present to some extent even in on-line conferences. (MG)

  19. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  20. Advance of the Ground Relay of the Line Protection

    NASA Astrophysics Data System (ADS)

    Inukai, Michihiko; Nishida, Tadashi; Noro, Jun; Matsuda, Akihiro

    This paper describes the advance of the ground relay of the line protection. First of all, we examined the ground fault in a resistively grounded power system. The protective relay detects the ground fault by the zero phase current in the system. There are two methods for the current input to the relay. One uses the residual circuit of CT secondary winding, and the other uses the CT tertiary winding. When the ground current is insufficient in the residual circuit, the CT tertiary winding is used. In order to omit the CT tertiary winding and to get more reliability, we reviewed the full-scale of relay and evaluating the error of CT. As result, almost all transmission lines could omit the CT tertiary winding. Next, we examined the ground fault with high fault resistance in a solidly grounded power system. When that fault occurs in the system, the PCM current differential relay acts by fault current. So, this relay possibly mal-operates when the CT secondary circuit is disconnected. Therefore, it uses a special CT to raise the reliability. Nowadays GIS has become small and the CT installation space has been decreased, it is needed to reduce these CT cores. In order to omit the special CT, we utilized the combination of the power relay and the rate of change of relay current. As a result, there is a prospect that the relay would not need the special CT. These improvements are effective to reduce cost too.

  1. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  2. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  3. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  4. Advanced liquid oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, G. L. E.; Suter, J. D.; Turner, S. G.

    1995-01-01

    Advanced methods of liquid oxygen (LO2) propellant conditioning were studied as part of an effort for increasing reliability and operability while reducing cost of future heavy lift launch vehicles. The most promising conditioning concept evaluated was no-bleed (passive recirculation) followed by low-bleed, helium injection, and use of a recirculation line. Full-scale cryogenic testing was performed with a sloped feedline test article to validate models of behavior of LO2 in the feedline and to prove no-bleed feasibility. Test data are also intended to help generate design guidelines for the development of a main propulsion system feed duct. A design-of-experiments matrix of over 100 tests was developed to test all four propellant conditioning concepts and the impact of design parameters on the concepts. Liquid nitrogen was used as the test fluid. The work for this project was conducted from October 1992 through January 1994 at the hydrogen cold flow facility of the west test area of MSFC. Test data have shown that satisfactory temperatures are being obtained for the no-bleed conditioning concept.

  5. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  6. Advanced Test Reactor Testing Experience: Past, Present and Future

    SciTech Connect

    Frances M. Marshall

    2005-04-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors -- US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead experiment, which allows for active monitoring and control of experiment conditions during the irradiation. The highest level of complexity of experiment is the pressurized water loop experiment, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

  7. 30 CFR 7.68 - Firing line terminals test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (1) The contact resistance shall not be greater than 1 ohm. (2) The No. 18 gauge wire shall not... line terminals test. (a) Test procedures. (1) The contact resistance through each firing line terminal shall be determined. (2) A 10-pound pull shall be applied to a No. 18 gauge wire that has been...

  8. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Marking the impact test line. 1203.11 Section 1203.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.11 Marking the impact test line. Prior...

  9. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Marking the impact test line. 1203.11 Section 1203.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.11 Marking the impact test line. Prior...

  10. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Marking the impact test line. 1203.11 Section 1203.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.11 Marking the impact test line. Prior...

  11. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Marking the impact test line. 1203.11 Section 1203.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.11 Marking the impact test line. Prior...

  12. Advanced tests of wet welded joints

    SciTech Connect

    Pachniuk, I.; Petershagen, H.; Pohl, R.; Szelagowski, P.; Drews, O.

    1994-12-31

    Wet Welding has in former times only been applied to secondary structural components. Nowadays wet welding has become an upcoming repair process due to high process flexibility, its low investment costs and its high versatility. Even the quality of the wet welded joints has been improved remarkably due to intensive and concentrated development activities. However, especially in the North Sea regions owners of offshore structures and classifying authorities still hesitate to recognize the process as a reliable alternative to dry hyperbaric welding repair methods. It therefore requires further activities especially in the field of data development for life prediction of such repaired components. Advanced testing methods are necessary, additional design criteria are to be developed and achievable weldment quality data are to be included in acknowledged and approved standards and recommendations to improve the credibility of the process and to solve the problem of quality assurance for wet welded joints. A comprehensive project, sponsored by the European Community under the Thermie Programme, is in progress to develop new testing procedures to generate the required data and design criteria for the future application of the wet welding process to main components of offshore structures. It is the aim of the project to establish additional fitness for purpose data for this process.

  13. Tests evaluate equipment to locate subsea lines

    SciTech Connect

    Bickham, K.L.

    1988-06-06

    Field tests of four pipe-locating sensors in the Gulf of Mexico indicate that a magnetic gradiometer array (GA) positioned by a remotely operated vehicle (ROV) can locate either buried or exposed pipelines in water as deep at 900 m (2,952 ft). The tests further led to recommendations for improvements in deploying equipment and operational procedures, especially for use in seas up to 2 m.

  14. Advanced Placement: More than a Test.

    ERIC Educational Resources Information Center

    Colwell, Richard

    1990-01-01

    Encourages music teachers to work with students interested in advanced placement (AP) music courses. Discusses the logistics and advantages of placing students in these courses. Describes the Advanced Placement Listening and Literature and the Advanced Placement Theory courses and examinations. Outlines the examination scoring method and looks at…

  15. Tungsten Contact and Line Resistance Reduction with Advanced Pulsed Nucleation Layer and Low Resistivity Tungsten Treatment

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi

    2010-09-01

    This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.

  16. Vacuum system for Advanced Test Accelerator

    SciTech Connect

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  17. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  18. Beryllium Use in the Advanced Test Reactor

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  19. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  20. 49 CFR 192.511 - Test requirements for service lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... leak tested in accordance with this section before being placed in service. If feasible, the service... more than 40 p.s.i. (276 kPa) gage must be tested to at least 90 p.s.i. (621 kPa) gage, except that each segment of a steel service line stressed to 20 percent or more of SMYS must be tested...

  1. 30 CFR 7.68 - Firing line terminals test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Firing line terminals test. 7.68 Section 7.68 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.68...

  2. Raytheon Advanced Miniature Cryocooler Characterization Testing

    NASA Astrophysics Data System (ADS)

    Conrad, T.; Yates, R.; Schaefer, B.; Bellis, L.; Pillar, M.; Barr, M.

    2015-12-01

    The Raytheon Advanced Miniature (RAM) cryocooler is a flight packaged, high frequency pulse tube cooler with an integrated surge volume and inertance tube. Its design has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, thermodynamic characterization data for the RAM cryocooler is presented along with details of its design specifications.

  3. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  4. Men with Advanced Prostate Cancer Might Consider Gene Test

    MedlinePlus

    ... html Men With Advanced Prostate Cancer Might Consider Gene Test Detection of genetic flaw could help predict ... suggests. Testing for inherited abnormalities in DNA repair genes could provide patients and family members important information ...

  5. Functional toxicology: tools to advance the future of toxicity testing.

    PubMed

    Gaytán, Brandon D; Vulpe, Chris D

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds-information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  6. Functional toxicology: tools to advance the future of toxicity testing

    PubMed Central

    Gaytán, Brandon D.; Vulpe, Chris D.

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  7. Tests Of Advanced Nickel/Hydrogen Cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1994-01-01

    Individual-pressure-vessel (IPV) nickel-hydrogen technology adanced with intention of improving cycle life and performance. One advancement to use 26 percent potassium hydroxide electrolyte to improve cycle life. Another to modify state-of-art cell design to eliminate identified failure modes.

  8. Verification testing of advanced environmental monitoring systems

    SciTech Connect

    Kelly, T.J.; Riggs, K.B.; Fuerst, R.G.

    1999-03-01

    This paper describes the Advanced Monitoring Systems (AMS) pilot project, one of 12 pilots comprising the US EPA`s Environmental Technology Verification (ETV) program. The aim of ETV is to promote the acceptance of environmental technologies in the marketplace, through objective third-party verification of technology performance.

  9. The Advanced Test Reactor Irradiation Facilities and Capabilities

    SciTech Connect

    S. Blaine Grover; Raymond V. Furstenau

    2007-03-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR’s unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments.

  10. External tank gaseous oxygen line simulated lightning tests

    NASA Technical Reports Server (NTRS)

    Smith, H. E.; Avery, R. M.

    1976-01-01

    Tests were made to evaluate the effects of lightning strikes on the shuttle external tank gaseous oxygen pressurization line. This line, designed to conduct gaseous oxygen may also act as a lightning conductor. Questions have been raised as to the potential hazard of this line as a lightning conductor with speculation as to the damage that might occur to the pressurization line, and the adjacent thermal protective surfaces, from a lightning strike. The region of investigation was from above the cone of the launch tower lightning protection to 15.24 km (50, 000 ft) altitude. Tests were performed on samples of thin wall stainless steel tubing filled with gaseous oxygen under simulated flight conditions. No specimen malfunctions occurred when the tests were conducted according to JSC specifications. Based on the JSC specifications and the results of these tests, it is concluded that a lightning strike will not cause a malfunction of the shuttle external tank gaseous oxygen line made of the representative material tested.

  11. Retractable pin dual in-line package test clip

    SciTech Connect

    Bandzuch, G.S.; Kosslow, W.J

    1993-12-31

    This invention is a Dual In-line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  12. Retractable pin dual in-line package test clip

    DOEpatents

    Bandzuch, Gregory S.; Kosslow, William J.

    1996-01-01

    This invention is a Dual In-Line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  13. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  14. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  15. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  16. Feasibility test of line sensors for optical tissue thickness estimation

    NASA Astrophysics Data System (ADS)

    Stüber, Patrick; Wissel, Tobias; Wagner, Benjamin; Schweikard, Achim; Ernst, Floris

    2015-05-01

    Purpose Line sensors are cheap, fast and have high quantum effciencies. Here, we investigate whether these sensors can replace an area image sensor for the purpose of tissue thickness measurements. Material and Methods As part of a subject study high dynamic range (HDR) images of three subjects were acquired with an area image sensor. To simulate a line sensor as realistic as possible single or multiple lines were extracted from these HDR images. Thereby, horizontally extracted lines correspond to a parallel orientation of the line sensor relative to the incident angle of a laser beam. Vertically extracted lines correspond to an orthogonal orientation. Then, optical features were determined and converted into a tissue thickness using a machine learning algorithm. Results For the tested subjects the worst root mean square error (RMSE) of the learning process was 0:385 mm. The best RMSE was 0:222 mm. For all subjects, the mean RMSE and the standard deviation of RMSE values decreases with a larger number of extracted lines. The orientation of the line sensor turned out to be important for the RMSE. Vertically oriented line sensors achieve lower RMSEs than horizontally oriented sensors because of the influence of the incident angle. Furthermore, the head-pose of the subject seems to be important for the accuracy. Conclusion Line sensors deliver comparable results to previously analysed area image sensors. Nevertheless, the scattering of the values is higher and the size and orientation of the sensor and the head-pose have an influence on the RMSE of the learning process. Therefore, line sensors are feasible for tissue thickness estimation but they are a trade-off between accuracy and speed.

  17. Raman mapping using advanced line-scanning systems: geological applications.

    PubMed

    Bernard, Sylvain; Beyssac, Olivier; Benzerara, Karim

    2008-11-01

    By allowing nondestructive chemical and structural imaging of heterogeneous samples with a micrometer spatial resolution, Raman mapping offers unique capabilities for assessing the spatial distribution of both mineral and organic phases within geological samples. Recently developed line-scanning Raman mapping techniques have made it possible to acquire Raman maps over large, millimeter-sized, zones of interest owing to a drastic decrease of the data acquisition time without losing spatial or spectral resolution. The synchronization of charge-coupled device (CCD) measurements with x,y motorized stage displacement has allowed dynamic line-scanning Raman mapping to be even more efficient: total acquisition time may be reduced by a factor higher than 100 compared to point-by-point mapping. Using two chemically and texturally complex geological samples, a fossil megaspore in a metamorphic rock and aragonite-garnet intergrowths in an Eclogitic marble, we compare here two recent versions of line-scanning Raman mapping systems and discuss their respective advantages and disadvantages in terms of acquisition time, image quality, spatial and imaging resolutions, and signal-to-noise ratio. We show that line-scanning Raman mapping techniques are particularly suitable for the characterization of such samples, which are representative of the general complexity of geological samples. PMID:19007458

  18. Advancements in application of thermoplastic powder coatings for railcar linings

    SciTech Connect

    Horton, D.; Loustaunau, P.J.

    1996-10-01

    Powder coatings offer many benefits for coating applications. These products offer zero VOC emissions and improved performance. Railcars have been largely excluded from these applications due to their physical size. With innovative coating materials and coating techniques, these parts may be economically lined with high performance polymer coatings.

  19. Advanced CMOS Radiation Effects Testing Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  20. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  1. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    NASA Technical Reports Server (NTRS)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertor (ASC-E2) convertors at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) Project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains in terms of operation of the ASRG during space missions.

  2. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    NASA Technical Reports Server (NTRS)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertors (ASCs)-E2 at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains the operation of the ASRG during space missions

  3. Flight test of the YF-23A Advanced Tactical Fighter

    SciTech Connect

    Metz, P. )

    1992-02-01

    The paper describes the approach used in flight tests of the YF-23A Advanced Tactical Fighter (ATF), the fighter which was conceived as a replacement for the F-1 Eagle and which combines stealth techologies with a supercruise capability while retaining the agility necessary in an air superiority fighter. Special attention is given to the flight test concept, flight test preparations, and test objectives. The test methods, the problems encountered, and the test results are described.

  4. Progression-free survival as a surrogate endpoint for overall survival in patients with third-line or later-line chemotherapy for advanced gastric cancer

    PubMed Central

    Liu, Liya; Yu, Hao; Huang, Lihong; Shao, Fang; Bai, Jianling; Lou, Donghua; Chen, Feng

    2015-01-01

    Background The correlation between overall survival (OS) and progression-free survival (PFS) has been evaluated in patients with metastatic or advanced gastric cancer who have received first-line and/or second-line chemotherapy. However, no corresponding analysis has been done for patients who have undergone third-line or later-line chemotherapy. Methods A total of 303 patients from the Phase II/III studies of apatinib were pooled (the Phase II study as a training data set, the Phase III study as a testing data set). Landmark analyses of PFS at 2 months from randomization were performed to minimize lead time bias. The Cox proportional hazard model was used to test for the significance effect of PFS rate at 2 months in predicting OS. Additionally, the PFS/OS correlations were evaluated by the normal induced copula (National Institute for Health and Care Excellence) estimation model. Results The median OS was 3.37 months (95% confidence interval 2.63–3.80) in patients who experienced progression at 2 months and 5.67 months in patients who did not (95% confidence interval 4.83–6.67; P<0.0001). Compared with patients who did not progress at 2 months, the adjusted hazard ratio for death was 3.39 (95% confidence interval 1.79–6.41; P<0.0001) for patients who experienced progression at 2 months. Moreover, the correlation of PFS/OS was 0.84 (95% confidence interval 0.74–0.90). Similar results were found in the testing data set. Conclusion These results indicate that PFS correlates strongly with OS, suggesting PFS may be a useful early endpoint for patients with advanced gastric cancer who have undergone third-line or later-line chemotherapy. These observations require prospective validation. PMID:25960663

  5. Advanced regenerator testing in the Raytheon dual-use cryocoolerr

    SciTech Connect

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-29

    Significant progress has been made on the Raytheon low cost space cryocooler called the Dual-Use Cryocooler (DUC). Most notably, the DUC has been integrated and tested with an advanced regenerator. The advanced regenerator is a drop-in replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  6. Advanced regenerator testing in the Raytheon dual-use cryocoolerr

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-01

    Significant progress has been made on the Raytheon low cost space cryocooler called the Dual-Use Cryocooler (DUC). Most notably, the DUC has been integrated and tested with an advanced regenerator. The advanced regenerator is a drop-in replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  7. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 38 peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2012 for yield, seed grade and size, and resistance to Sclerotinia minor and Sclerotium rolfsii. Among the 14 Spanish entries, the cultivar Tamnut 06 (3258 lbs/acre) and breeding line 140-1O...

  8. Arcjet Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Beck, Robin; Agrawal, Parul

    2014-01-01

    A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL. The compliant (high strain to failure) nature of the conformable ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. In May of 2013 the CA250 project executed an arcjet test series in the Ames IHF facility to evaluate a phenolic-based conformal system (named Conformal-PICA) over a range of test conditions from 40-400Wcm2. The test series consisted of four runs in the 13-inch diameter nozzle. Test models were based on SPRITE configuration (a 55-deg sphere cone), as it was able to provide a combination of required heat flux, pressure and shear within a single entry. The preliminary in-depth TC data acquired during that test series allowed a mid-fidelity thermal response model for conformal-PICA to be created while testing of seam models began to address TPS attachment and joining of multiple segments for future fabrication of large-scale aeroshells. Discussed in this paper are the results.

  9. Lining material tests for the AUGER PROJECT surface detector

    NASA Astrophysics Data System (ADS)

    Escobar, C. O.; Fauth, A. C.; Guzzo, M. M.; Shibuya, E. H.

    1999-03-01

    We are trying to obtain a suitable material to compose the lining of a water Cerenkov tank for the surface detector. part of a hybrid detector of the Auger Project. Results of tests were compared with DuPont 1073Tyvek TM and obtained a reasonable performance for (PVC+BaSO 4) material.

  10. 40 CFR 1054.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production-line testing? 1054.310 Section 1054.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... EQUIPMENT Production-line Testing § 1054.310 How must I select engines for production-line testing? (a) Test... each test period, randomly select and test an engine from the end of the assembly line for each...

  11. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  12. PHEBUS on-line aerosol monitor development test program

    SciTech Connect

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG&G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence.

  13. PHEBUS on-line aerosol monitor development test program

    SciTech Connect

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence.

  14. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  15. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  16. F/A-18 FAST Offers Advanced System Test Capability

    NASA Video Gallery

    NASA's Dryden Flight Research Center has modified an F/A-18A Hornet aircraft with additional research flight control computer systems for use as a Full-scale Advanced Systems Test Bed. Previously f...

  17. Line energy and the relation between advancing, receding, and young contact angles.

    PubMed

    Tadmor, Rafael

    2004-08-31

    The line energy associated with the triple phase contact line is a function of local surface defects (chemical and topographical); however, it can still be calculated from the advancing and receding contact angles to which those defects give rise. In this study an expression for the line energy associated with the triple phase contact line is developed. The expression relates the line energy to the drop volume, the interfacial energies, and the actual contact angle (be it advancing, receding, or in between). From the expression we can back calculate the equilibrium Young contact angle, theta0, as a function of the maximal advancing, thetaA, and minimal receding, thetaR, contact angles. To keep a certain maximal hysteresis between advancing and receding angles, different line energies are required depending on the three interfacial energies and the drop's volume V. We learn from the obtained expressions that the hysteresis is determined by some dimensionless parameter, K, which is some normalized line energy. The value of K required to keep a constant hysteresis (thetaA-thetaR) rises to infinity as we get closer to theta0 = 90 degrees. PMID:15323516

  18. Advancement and results in hostile fire indication using potassium line missile warning sensors

    NASA Astrophysics Data System (ADS)

    Montgomery, Joel; Montgomery, Marjorie; Hardie, Russell

    2014-06-01

    M&M Aviation has been developing and conducting Hostile Fire Indication (HFI) tests using potassium line emission sensors for the Air Force Visible Missile Warning System (VMWS) to advance both algorithm and sensor technologies for UAV and other airborne systems for self protection and intelligence purposes. Work began in 2008 as an outgrowth of detecting and classifying false alarm sources for the VMWS using the same K-line spectral discrimination region but soon became a focus of research due to the high interest in both machine-gun fire and sniper geo-location via airborne systems. Several initial tests were accomplished in 2009 using small and medium caliber weapons including rifles. Based on these results, the Air Force Research Laboratory (AFRL) funded the Falcon Sentinel program in 2010 to provide for additional development of both the sensor concept, algorithm suite changes and verification of basic phenomenology including variance based on ammunition type for given weapons platform. Results from testing over the past 3 years have showed that the system would be able to detect and declare a sniper rifle at upwards of 3km, medium machine gun at 5km, and explosive events like hand-grenades at greater than 5km. This paper will outline the development of the sensor systems, algorithms used for detection and classification, and test results from VMWS prototypes as well as outline algorithms used for the VMWS. The Falcon Sentinel Program will be outlined and results shown. Finally, the paper will show the future work for ATD and transition efforts after the Falcon Sentinel program completed.

  19. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  20. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  1. Advances in Significance Testing for Cluster Detection

    NASA Astrophysics Data System (ADS)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic

  2. Advanced Solar Cell Testing and Characterization

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Curtis, Henry; Piszczor, Michael

    2005-01-01

    The topic for this workshop stems from an ongoing effort by the photovoltaic community and U.S. government to address issues and recent problems associated with solar cells and arrays experienced by a number of different space systems. In April 2003, a workshop session was held at the Aerospace Space Power Workshop to discuss an effort by the Air Force to update and standardize solar cell and array qualification test procedures in an effort to ameliorate some of these problems. The organizers of that workshop session thought it was important to continue these discussions and present this information to the entire photovoltaic community. Thus, it was decided to include this topic as a workshop at the following SPRAT conference.

  3. Field Trial of LANL On-Line Advanced Enrichment Monitor for UF6 GCEP

    SciTech Connect

    Ianakiev, Kiril D.; Lombardi, Marcie; MacArthur, Duncan W.; Parker, Robert F.; Smith, Morag K.; Keller, Clifford; Friend, Peter; Dunford, Andrew

    2012-07-13

    The outline of this presentation is: (1) Technology basis of on-line enrichment monitoring; (2) Timescale of trial; (3) Description of installed equipment; (4) Photographs; (5) Results; (6) Possible further development; and (7) Conclusions. Summary of the good things about the Advanced Enrichment Monitor (AEM) performance is: (1) High accuracy - normally better than 1% relative, (2) Active system as accurate as passive system, (3) Fast and accurate detection of enrichment changes, (4) Physics is well understood, (5) Elegant method for capturing pressure signal, and (6) Data capture is automatic, low cost and fast. A couple of negative things are: (1) Some jumps in measured passive enrichment - of around +2% relative (due to clock errors?); and (2) Data handling and evaluation is off-line, expensive and very slow. Conclusions are: (1) LANL AEM is being tested on E23 plant at Capenhurst; (2) The trial is going very well; (3) AEM could detect production of HEU at potentially much lower cost than existing CEMO; (4) AEM can measure {sup 235}U assay accurately; (5) Active system using X-Ray source would avoid need for pressure measurement; (6) Substantial work lies ahead to go from current prototype to a production instrument.

  4. Advances in Solar System Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Eubanks, T. M.; Matsakis, D. N.; Martin, J. O.; Archinal, B. A.; McCarthy, D. D.; Klioner, S. A.; Shapiro, S.; Shapiro, I. I.

    1997-04-01

    The solar potential perturbs light propagating in the solar system, providing the basis for tests of gravity through Very Long Baseline Interferometry (VLBI) observations of radio waves from extragalactic radio sources. Such observations determine the γ parameter of the Parameterized Post Newtonian (PPN) expansion of the spacetime metric, with the effect being largest for raypaths close to the Sun. The determination of γ is currently improving rapidly, both due to improvements in the VLBI state-of-the-art, and the current ``quiet'' stage of the solar cycle, which facilitates observations of sources angularly close to the Sun. The VLBI data can be combined with recent estimates of the Nordtvedt parameter using Lunar Laser Ranging and determinations of the perihelion precession of Mercury to estimate both the PPN γ and β parameters, yielding γ = 0.99994 ± 0.00031 and β = 0.99981 ± 0.00026, together with a solar J2 estimate of (-1.8 ± 4.5) \\cdot 10-7. These data are thus consistent with General Relativity at the level of ~3 parts in 10^4 (one standard error).

  5. INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2007-09-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  6. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-21

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  7. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  8. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  9. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davies

    2004-10-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

  10. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  11. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The analytical methodology for advanced encapsulation designs for the development of photovoltaic modules is presented. Analytical models are developed to test optical, thermal, electrical and structural properties of the various encapsulation systems. Model data is compared to relevant test data to improve model accuracy and develop general principles for the design of photovoltaic modules.

  12. MLA FOREIGN LANGUAGE PROFICIENCY TESTS FOR TEACHERS AND ADVANCED STUDENTS.

    ERIC Educational Resources Information Center

    STARR, WILMARTH H.

    THE DEVELOPMENT AND EVALUATION OF THE MODERN LANGUAGE ASSOCIATION (MLA) FOREIGN LANGUAGE PROFICIENCY TESTS FOR TEACHERS AND ADVANCED STUDENTS ARE THE SUBJECTS OF THIS FINAL PROJECT REPORT. FOLLOWING AN ACCOUNT OF THE EVENTS THAT LED TO THE AWARDING OF A GOVERNMENT CONTRACT TO MLA TO DEVELOP NATIONALLY STANDARDIZED QUALIFICATION TESTS AND A…

  13. Advanced regenerator testing in the Raytheon dual-use cryocooler

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2013-09-01

    Significant progress has been made on the Raytheon Dual-Use Cooler (DUC) which is a low cost space cryocooler for long life, cost sensitive missions. The DUC has been integrated and tested with an advanced regenerator intended to be a direct replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  14. Boron-Lined Multichamber and Conventional Neutron Proportional Counter Tests

    SciTech Connect

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, multichamber proportional counter manufactured by LND, Inc. Also reported are results obtained with an earlier design of conventional, boron-lined, proportional counters from LND. This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detectors.

  15. Recent advances in nuclear physics through on-line isotope separation

    NASA Astrophysics Data System (ADS)

    Jenkins, David Gareth

    2014-12-01

    Nuclear physics is advancing rapidly at the precision frontier, where measurements of nuclear observables are challenging state-of-the-art nuclear models. A major contribution is associated with the increasing availability of accelerated beams of radioactive ions produced using the isotope separation on-line technique. These advances have come hand in hand with significant progress in the development of high-efficiency detector systems and improved target technologies which are invaluable in exploiting these beams to their full advantage. This article reviews some of the recent highlights in the field of nuclear structure profiting from these technological advances.

  16. Advanced Stirling Convertor Dynamic Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Hill, Dennis; Ursic, Joseph J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. This sequence includes testing at workmanship and flight acceptance levels interspersed with periods of extended operation to simulate prefueling and post fueling. The final step in the test sequence utilizes additional testing at flight acceptance levels to simulate launch. To better replicate the acceleration profile seen by an ASC incorporated into an ASRG, the input spectra used in testing the convertors was modified based on dynamic testing of the ASRG Engineering Unit (ASRG EU) at LM. This paper outlines the overall test approach, summarizes the test results from the ASRG EU, describes the incorporation of those results into the test approach, and presents the results of applying the test approach to the ASC-1 #3 and #4 convertors. The test results include data from several accelerometers mounted on the convertors as well as the piston position and output power variables.

  17. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  18. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    NASA Astrophysics Data System (ADS)

    Arnold, N. D.; Attig, J.; Banks, G.; Bechtold, R.; Beczek, K.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Biggs, J. A.; Borland, M.; Boerste, K.; Bosek, M.; Brzowski, W. R.; Budz, J.; Carwardine, J. A.; Castro, P.; Chae, Y.-C.; Christensen, S.; Clark, C.; Conde, M.; Crosbie, E. A.; Decker, G. A.; Dejus, R. J.; DeLeon, H.; Den Hartog, P. K.; Deriy, B. N.; Dohan, D.; Dombrowski, P.; Donkers, D.; Doose, C. L.; Dortwegt, R. J.; Edwards, G. A.; Eidelman, Y.; Erdmann, M. J.; Error, J.; Ferry, R.; Flood, R.; Forrestal, J.; Freund, H.; Friedsam, H.; Gagliano, J.; Gai, W.; Galayda, J. N.; Gerig, R.; Gilmore, R. L.; Gluskin, E.; Goeppner, G. A.; Goetzen, J.; Gold, C.; Gorski, A. J.; Grelick, A. E.; Hahne, M. W.; Hanuska, S.; Harkay, K. C.; Harris, G.; Hillman, A. L.; Hogrefe, R.; Hoyt, J.; Huang, Z.; Jagger, J. M.; Jansma, W. G.; Jaski, M.; Jones, S. J.; Keane, R. T.; Kelly, A. L.; Keyser, C.; Kim, K.-J.; Kim, S. H.; Kirshenbaum, M.; Klick, J. H.; Knoerzer, K.; Koldenhoven, R. J.; Knott, M.; Labuda, S.; Laird, R.; Lang, J.; Lenkszus, F.; Lessner, E. S.; Lewellen, J. W.; Li, Y.; Lill, R. M.; Lumpkin, A. H.; Makarov, O. A.; Markovich, G. M.; McDowell, M.; McDowell, W. P.; McNamara, P. E.; Meier, T.; Meyer, D.; Michalek, W.; Milton, S. V.; Moe, H.; Moog, E. R.; Morrison, L.; Nassiri, A.; Noonan, J. R.; Otto, R.; Pace, J.; Pasky, S. J.; Penicka, J. M.; Pietryla, A. F.; Pile, G.; Pitts, C.; Power, J.; Powers, T.; Putnam, C. C.; Puttkammer, A. J.; Reigle, D.; Reigle, L.; Ronzhin, D.; Rotela, E. R.; Russell, E. F.; Sajaev, V.; Sarkar, S.; Scapino, J. C.; Schroeder, K.; Seglem, R. A.; Sereno, N. S.; Sharma, S. K.; Sidarous, J. F.; Singh, O.; Smith, T. L.; Soliday, R.; Sprau, G. A.; Stein, S. J.; Stejskal, B.; Svirtun, V.; Teng, L. C.; Theres, E.; Thompson, K.; Tieman, B. J.; Torres, J. A.; Trakhtenberg, E. M.; Travish, G.; Trento, G. F.; Vacca, J.; Vasserman, I. B.; Vinokurov, N. A.; Walters, D. R.; Wang, J.; Wang, X. J.; Warren, J.; Wesling, S.; Weyer, D. L.; Wiemerslage, G.; Wilhelmi, K.; Wright, R.; Wyncott, D.; Xu, S.; Yang, B.-X.; Yoder, W.; Zabel, R. B.

    2001-12-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  19. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 23 commercially available peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2014 for agronomic traits (crop value, yield, seed grade, and characteristics) and resistance to soilborne diseases. Among the 16 runner entries evaluated, Tamrun OL11...

  20. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 21 peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2013 for agronomic traits (crop value, yield, seed grade, and characteristics) and resistance to diseases (Sclerotinia blight, southern blight, and Pythium and Rhizoctonia pod rot). Among th...

  1. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 20 commercially available peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2015 for agronomic traits (crop value, yield, seed grade, and characteristics). Environmental conditions in 2015 were not favorable for Sclerotinia blight, southern bl...

  2. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  3. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  4. Off-line test of the KISS gas cell

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshikazu; Watanabe, Yutaka; Imai, Nobuaki; Ishiyama, Hironobu; Jeong, Sun-Chan; Miyatake, Hiroari; Oyaizu, Michihiro; Kim, Yung Hee; Mukai, Momo; Matsuo, Yukari; Sonoda, Tetsu; Wada, Michiharu; Huyse, Mark; Kudryavtsev, Yuri; Van Duppen, Piet

    2013-12-01

    The KEK Isotope Separation System (KISS) has been constructed at RIKEN to study the β-decay properties of neutron-rich isotopes with neutron numbers around N = 126 for application to astrophysics. A key component of KISS is a gas cell filled with argon gas at a pressure of 50 kPa to stop and collect the unstable nuclei, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off-line tests to study the basic properties of the gas cell and of KISS using nickel and iron filaments placed in the gas cell.

  5. Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2008-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

  6. 49 CFR 192.725 - Test requirements for reinstating service lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this section, each disconnected service line must be tested in the same manner as a new service line, before being reinstated. (b) Each service line temporarily disconnected from the main must be tested from... bypass, any part of the original service line used to maintain continuous service need not be tested....

  7. Advanced Stirling Convertor Dynamic Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Hill, Dennis; Ursic, Joseph

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Converters (ASC) at NASA John H. Glenn Research Center undergo a vibration test sequence intended to simulate the vibration history of an ASC used in an ASRG for a space mission. This sequence includes testing at Workmanship and Flight Acceptance levels interspersed with periods of extended operation to simulate pre and post fueling. The final step in the test sequence utilizes additional testing at Flight Acceptance levels to simulate launch. To better replicate the acceleration profile seen by an ASC incorporated into an ASRG, the input spectra used in testing the convertors was modified based on dynamic testing of the ASRG Engineering Unit ( ASRG-EU) at Lockheed Martin. This paper presents the vibration test plan for current and future ASC units, including the modified input spectra, and the results of recent tests using these spectra. The test results include data from several accelerometers mounted on the convertors as well as the piston position and output power variables.

  8. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  9. Next Generation Advanced Video Guidance Sensor Development and Test

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Lee, Jimmy; Robertson, Bryan

    2009-01-01

    The Advanced Video Guidance Sensor (AVGS) was the primary docking sensor for the Orbital Express mission. The sensor performed extremely well during the mission, and the technology has been proven on orbit in other flights too. Parts obsolescence issues prevented the construction of more AVGS units, so the next generation of sensor was designed with current parts and updated to support future programs. The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been tested as a breadboard, two different brassboard units, and a prototype. The testing revealed further improvements that could be made and demonstrated capability beyond that ever demonstrated by the sensor on orbit. This paper presents some of the sensor history, parts obsolescence issues, radiation concerns, and software improvements to the NGAVGS. In addition, some of the testing and test results are presented. The NGAVGS has shown that it will meet the general requirements for any space proximity operations or docking need.

  10. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1982-01-01

    An analytical methodology for advanced encapsulation designs was developed. From these methods design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. Analytical models were developed to perform optical, thermal, electrical and analyses on candidate encapsulation systems. From these analyses several candidate systems were selected for qualification testing. Additionally, test specimens of various types are constructed and tested to determine the validity of the analysis methodology developed. Identified deficiencies and/or discrepancies between analytical models and relevant test data are corrected. Prediction capability of analytical models is improved. Encapsulation engineering generalities, principles, and design aids for photovoltaic module designers is generated.

  11. [Building and testing of Pickard Line-up Boom

    SciTech Connect

    Not Available

    1992-01-01

    The Packard Line-up Boom is a device for controlling the placing together of the ends of two sections of pipe for clamping and welding. Consistently better weld quality is possible because the optimum weld space is achieved and held constant throughout every stringer bead, regardless of the welding method. With the use of the Pickard Line-Up Boom, there will be a minimum of pipe movement while the stringer bead is being run. Since the welder can rely on conditions being the same throughout the weld, he can regulate the weld to eliminate backwelding almost entirely. During the grant period and with the assistance of DOE grant funds, Pickard Line-up Boom Associates (PLUBA) successfully completed Task 1, construction of the Packard Boom. PLUBA contracted with Sawyer Manufacturing Company (1031 North Columbia Place, Tulsa, Oklahoma) to construct the new boom. After completion of the new boom by Sawyer, the boom was successfully tested by PLUBA, thereafter PLUBA attempted to obtain lease agreements with pipeline contractors (Tasks 2 and 3). Toward the end of the project period, PLUBA entered into a license/marketing agreement with Sabre International with. the objective of first securing contracts outside of the United States. Once this is achieved and the Packard Boom is used successfully in the field, it is believed that pipeline contractors may be more willing to use the Packard Boom in the United States.

  12. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  13. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-01-01

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program initiated this quarter, provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principle activity during this first reporting period were preparing for and conducting a project kick-off meeting, working through plans for the project implementation, and beginning the conceptual design of the test section.

  14. A Test of the Instructional Strategy of Using Advance Organizers.

    ERIC Educational Resources Information Center

    Bastick, Tony

    This study tested the common assumption that lists of instructional objectives (LIOs) presented at the start of a lesson are used as advance organizers (AOs). Because traditional research designs have yielded conflicting results, an alternative design was used that sought to falsify the necessary association between the objectives and their use…

  15. 75 FR 75666 - Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...: On September 1, 2010, we published in the Federal Register (75 FR 53681) a notice inviting... in the September 1, 2010 notice (75 FR 53682-53683). We encourage eligible applicants to submit their... Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education...

  16. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  17. Results of Laboratory Testing of Advanced Power Strips

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  18. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  19. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    NASA Technical Reports Server (NTRS)

    Meer, Dave; Oriti, Sal

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, NASA?s Glenn Research Center (GRC) has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  20. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  1. Boron-Lined Multitube Neutron Proportional Counter Test

    SciTech Connect

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, “multitube” proportional counter manufactured by Centronic Ltd. (Surry, U.K. and Houston, TX). This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detector.

  2. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci.

    PubMed

    Wang, Xiaosong; Le Roy, Isabelle; Nicodeme, Edwige; Li, Renhua; Wagner, Richard; Petros, Christina; Churchill, Gary A; Harris, Stephen; Darvasi, Ariel; Kirilovsky, Jorge; Roubertoux, Pierre L; Paigen, Beverly

    2003-07-01

    Mapping quantitative trait loci (QTLs) with high resolution facilitates identification and positional cloning of the underlying genes. The novel approach of advanced intercross lines (AILs) generates many more recombination events and thus can potentially narrow QTLs significantly more than do conventional backcrosses and F2 intercrosses. In this study, we carried out QTL analyses in (C57BL/6J x NZB/BlNJ) x C57BL/6J backcross progeny fed either chow or an atherogenic diet to detect QTLs that regulate high-density lipoprotein cholesterol (HDL)concentrations, and in (C57BL/6J x NZB/BlNJ) F11 AIL progeny to confirm and narrow those QTLs. QTLs for HDL concentrations were found on chromosomes 1, 5, and 16. AIL not only narrowed the QTLs significantly more than did a conventional backcross but also resolved a chromosome 5 QTL identified in the backcross into two QTLs, the peaks of both being outside the backcross QTL region. We tested 27 candidate genes and found significant mRNA expression differences for 12 (Nr1i3, Apoa2, Sap, Tgfb2, Fgfbp1, Prom, Ppargc1, Tcf1, Ncor2, Srb1, App, and Ifnar). Some of these underlay the same QTL, indicating that expression differences are common and not sufficient to identify QTL genes. All the major HDL QTLs in our study had homologous counterparts in humans, implying that their underlying genes regulate HDL in humans. PMID:12805272

  3. Using Advanced Intercross Lines for High-Resolution Mapping of HDL Cholesterol Quantitative Trait Loci

    PubMed Central

    Wang, Xiaosong; Le Roy, Isabelle; Nicodeme, Edwige; Li, Renhua; Wagner, Richard; Petros, Christina; Churchill, Gary A.; Harris, Stephen; Darvasi, Ariel; Kirilovsky, Jorge; Roubertoux, Pierre L.; Paige, Beverly

    2003-01-01

    Mapping quantitative trait loci (QTLs)with high resolution facilitates identification and positional cloning of the underlying genes. The novel approach of advanced intercross lines (AILs) generates many more recombination events and thus can potentially narrow QTLs significantly more than do conventional backcrosses and F2 intercrosses. In this study, we carried out QTL analyses in (C57BL/6J × NZB/BlNJ)× C57BL/6J backcross progeny fed either chow or an atherogenic diet to detect QTLs that regulate high-density lipoprotein cholesterol (HDL)concentrations, and in (C57BL/6J × NZB/BlNJ)F11 AIL progeny to confirm and narrow those QTLs. QTLs for HDL concentrations were found on chromosomes 1, 5, and 16. AIL not only narrowed the QTLs significantly more than did a conventional backcross but also resolved a chromosome 5 QTL identified in the backcross into two QTLs, the peaks of both being outside the backcross QTL region. We tested 27 candidate genes and found significant mRNA expression differences for 12 (Nr1i3, Apoa2, Sap, Tgfb2, Fgfbp1, Prom, Ppargc1, Tcf1, Ncor2, Srb1, App, and Ifnar). Some of these underlay the same QTL, indicating that expression differences are common and not sufficient to identify QTL genes. All the major HDL QTLs in our study had homologous counterparts in humans, implying that their underlying genes regulate HDL in humans. PMID:12805272

  4. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  5. Future Opportunities for Advancing Glucose Test Device Electronics

    PubMed Central

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-01-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano “ink” composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, “ink,” and continuous processing development presents the opportunity for research collaboration with medical device designers. PMID:22027300

  6. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  7. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  8. Rotor Performance at High Advance Ratio: Theory versus Test

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2008-01-01

    Five analytical tools have been used to study rotor performance at high advance ratio. One is representative of autogyro rotor theory in 1934 and four are representative of helicopter rotor theory in 2008. The five theories are measured against three sets of well documented, full-scale, isolated rotor performance experiments. The major finding of this study is that the decades spent by many rotorcraft theoreticians to improve prediction of basic rotor aerodynamic performance has paid off. This payoff, illustrated by comparing the CAMRAD II comprehensive code and Wheatley & Bailey theory to H-34 test data, shows that rational rotor lift to drag ratios are now predictable. The 1934 theory predicted L/D ratios as high as 15. CAMRAD II predictions compared well with H-34 test data having L/D ratios more on the order of 7 to 9. However, the detailed examination of the selected codes compared to H-34 test data indicates that not one of the codes can predict to engineering accuracy above an advance ratio of 0.62 the control positions and shaft angle of attack required for a given lift. There is no full-scale rotor performance data available for advance ratios above 1.0 and extrapolation of currently available data to advance ratios on the order of 2.0 is unreasonable despite the needs of future rotorcraft. Therefore, it is recommended that an overly strong full-scale rotor blade set be obtained and tested in a suitable wind tunnel to at least an advance ratio of 2.5. A tail rotor from a Sikorsky CH-53 or other large single rotor helicopter should be adequate for this exploratory experiment.

  9. DSN advanced receiver: Breadboard description and test results

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.

    1987-01-01

    A breadboard Advanced Receiver for use in the Deep Space Network was designed, built, and tested in the laboratory. Field testing was also performed during Voyager Uranus encounter at DSS-13. The development of the breadboard is intended to lead towards implementation of the new receiver throughout the network. The receiver is described on a functional level and then in terms of more specific hardware and software architecture. The results of performance tests in the laboratory and in the field are given. Finally, there is a discussion of suggested improvements for the next phase of development.

  10. Resistance to Soybean Aphid Among Soybean Lines, Growth-chamber Tests, 2006 Through 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested for resistance to the soybean aphid (SBA, Aphis glycines) among several soybean lines, and rated lines as resistant or susceptible in seven tests. The ratings of plants with respect to SBA infestation differed among lines in all tests. Kosamame (PI 171451, test II), Bhart (PI 165989, tes...

  11. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production

    PubMed Central

    Lai, Tingfeng; Yang, Yuansheng; Ng, Say Kong

    2013-01-01

    From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA) annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX) amplification technology or the glutamine synthetase (GS) system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics. PMID:24276168

  12. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  13. Testing the Fraunhofer line discriminator by sensing fluorescent dye

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.

    1969-01-01

    The experimental Fraunhofer Line Discriminator (FLD) has detected increments of Rhodamine WT dye as small as 1 ppb in 1/2 meter depths. It can be inferred that increments considerably smaller than 1 ppb will be detectable in depths considerably greater than 1/2 meter. Turbidity of the water drastically reduces luminescence or even completely blocks the transmission of detectable luminescence to the FLD. Attenuation of light within the water by turbidity and by the dye itself are the major factors to be considered in interpreting FLD records and in relating luminescence coefficient to dye concentration. An airborne test in an H-19 helicopter established feasibility of operating the FLD from the aircraft power supply, and established that the rotor blades do not visibly affect the monitoring of incident solar radiation.

  14. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    NASA Technical Reports Server (NTRS)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  15. The E-beam resist test facility: performance testing and benchmarking of E-beam resists for advanced mask writers

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Jang, Il Yong; Mellish, Mac; Litt, Lloyd C.; Raghunathan, Ananthan; Hartley, John

    2012-11-01

    With each new generation of e-beam mask writers comes the ability to write leading edge photomasks with improved patterning performance and increased throughput. However, these cutting-edge e-beam tools are often used with older generation resists, preventing the end-user from taking full advantage of the tool's potential. The generation gap between tool and resist will become even more apparent with the commercialization of multi-beam mask writers, which are expected to be available for pilot line use around 2015. The mask industry needs resists capable of meeting the resolution, roughness, and sensitivity requirements of these advanced tools and applications. The E-beam Resist Test Facility (ERTF) has been established to fill the need for consortium-based testing of e-beam resists for mask writing applications on advanced mask writers out to the 11nm half-pitch node and beyond. SEMATECH and the College of Nanoscale Science and Engineering (CNSE) began establishing the ERTF in early 2012 to test e-beam resist samples from commercial suppliers and university labs against the required performance metrics for each application at the target node. Operations officially began on June 12, 2012, at which time the first e-beam resist samples were tested. The ERTF uses the process and metrology infrastructure available at CNSE, including a Vistec VB300 Vectorscan e-beam tool adjusted to operate at 50kv. Initial testing results show that multiple resists already meet, or are close to meeting, the resolution requirements for mask writing at the 11nm node, but other metrics such as line width roughness still need improvement. An overview of the ERTF and its capabilities is provided here. Tools, baseline processes, and operation strategy details are discussed, and resist testing and benchmarking results are shown. The long-term outlook for the ERTF and plans to expand capability and testing capacity, including resist testing for e-beam direct write lithography, are also

  16. Structural Dynamics Testing of Advanced Stirling Convertor Components

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  17. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  18. Advanced Short Takeoff and Vertical Landing (ASTOVL) Concepts Tested

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this cooperative program between NASA, Lockheed Corporation, and the Advanced Research and Projects Agency (ARPA), an advanced short takeoff and vertical landing (ASTOVL) model was tested in the 9- by 15-Foot Low-Speed Wind Tunnel at the NASA Lewis Research Center. The 10-percent scaled model was tested over a range of headwind velocities from 25 to 120 kn. This inlet/forebody test was a key part of an important Department of Defense program investigation enabling technologies for future high-performance ASTOVL aircraft. The Lockheed concept is focused on a shaft-coupled lift fan system centered around Pratt & Whitney's F119 power plant. As envisioned, a conventional takeoff and landing version (CTOL) would replace the U.S. Air Force's F-16's. The ASTOVL version would eventually replace Marine and, possibly, British Harrier aircraft. The ASTOVL and CTOL versions are scheduled to begin their manufacturing development phases in 2000. The purpose of this test was to acquire data pertinent to the inlet-forebody model. The test was very successful. Both steady-state and dynamic data were obtained. This small-scale testing, which is directed at reducing risks, may greatly reduce the risks on a full-scale aircraft.

  19. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  20. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  1. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  2. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  3. Advanced radial inflow turbine rotor program: Design and dynamic testing

    NASA Technical Reports Server (NTRS)

    Rodgers, C.

    1976-01-01

    The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).

  4. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  5. Advanced orbiting systems test-bedding and protocol verification

    NASA Technical Reports Server (NTRS)

    Noles, James; De Gree, Melvin

    1989-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has begun the development of a set of protocol recommendations for Advanced Orbiting Systems (SOS). The AOS validation program and formal definition of AOS protocols are reviewed, and the configuration control of the AOS formal specifications is summarized. Independent implementations of the AOS protocols by NASA and ESA are discussed, and cross-support/interoperability tests which will allow the space agencies of various countries to share AOS communication facilities are addressed.

  6. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    SciTech Connect

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley; Steven Taylor

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  7. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    SciTech Connect

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; K. Condie

    2011-06-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility (NSUF) in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  8. Temperature controlled material irradiation in the advanced test reactor

    NASA Astrophysics Data System (ADS)

    Ingram, F. W.; Palmer, A. J.; Stites, D. J.

    1998-10-01

    The United States Department of Energy (US DOE) has initiated the development of an Irradiation Test Vehicle (ITV) for fusion materials irradiation at the Advanced Test Reactor (ATR) in Idaho Falls, Idaho, USA. The ITV is capable of providing neutron spectral tailoring and individual temperature control for up to 15 experiment capsules simultaneously. The test vehicle consists of three In-Pile Tubes (IPTs) running the length of the reactor vessel. These IPTs are kept dry and test trains with integral instrumentation are inserted and removed through a transfer shield plate above the reactor vessel head. The test vehicle is designed to irradiate specimens as large as 2.2 cm in diameter, at temperatures of 250-800°C, achieving neutron damage rates as high as 10 displacements per atom per year. The high fast to thermal neutron flux ratio required for fusion materials testing is accomplished by using an aluminum filler to displace as much water as possible from the flux trap and surrounding the filler piece with a ring of replaceable neutron absorbing material. The gas blend temperature control system remains in place from test to test, thus hardware costs for new tests are limited to the experiment capsule train and integral instrumentation.

  9. 40 CFR 1042.305 - Preparing and testing production-line engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hours you operated your emission-data engine for certifying the engine family (see 40 CFR part... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Preparing and testing production-line... AND VESSELS Testing Production-line Engines § 1042.305 Preparing and testing production-line...

  10. The advanced receiver 2: Telemetry test results in CTA 21

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Bevan, R.; Marina, M.

    1991-01-01

    Telemetry tests with the Advanced Receiver II (ARX II) in Compatibility Test Area 21 are described. The ARX II was operated in parallel with a Block-III Receiver/baseband processor assembly combination (BLK-III/BPA) and a Block III Receiver/subcarrier demodulation assembly/symbol synchronization assembly combination (BLK-III/SDA/SSA). The telemetry simulator assembly provided the test signal for all three configurations, and the symbol signal to noise ratio as well as the symbol error rates were measured and compared. Furthermore, bit error rates were also measured by the system performance test computer for all three systems. Results indicate that the ARX-II telemetry performance is comparable and sometimes superior to the BLK-III/BPA and BLK-III/SDA/SSA combinations.

  11. Advanced Learners' Comprehension of Discourse Connectives: The Role of L1 Transfer across On-Line and Off-Line Tasks

    ERIC Educational Resources Information Center

    Zufferey, Sandrine; Mak, Willem; Degand, Liesbeth; Sanders, Ted

    2015-01-01

    Discourse connectives are important indicators of textual coherence, and mastering them is an essential part of acquiring a language. In this article, we compare advanced learners' sensitivity to the meaning conveyed by connectives in an off-line grammaticality judgment task and an on-line reading experiment using eye-tracking. We also assess the…

  12. Which strategy after first-line therapy in advanced colorectal cancer?

    PubMed Central

    Andrea, Coinu; Fausto, Petrelli; Francesca, Borgonovo Karen; Mary, Cabiddu; Mara, Ghilardi; Veronica, Lonati; Sandro, Barni

    2014-01-01

    Second-line therapy for advanced colorectal cancer is an integral part of the treatment strategy that needs to be set from the beginning for each patient, bearing in mind the expected toxicities of chosen treatments, the patient's clinical condition, comorbidities, preferences, the aims of the treatment and the molecular status. Furthermore, the distinction between lines of therapy is no longer absolute. The perspective of “continuum of care” includes switching chemotherapy prior to disease progression, maintenance therapy, drug "holidays" if needed, surgical resection of metastases in selected patients, and seems to allow a tailored treatment, in which patients are more likely to benefit from exposure to all active agents, which is known to correlate with overall survival. The scenario of second-line treatment has changed dramatically over the years and could currently benefit from several options including chemotherapy with a single agent or in combination and the addition of molecular-targeted agents developed in the last decade, such as epidermal growth factor receptor antibodies (cetuximab, panitumumab) and vascular endothelial growth factor-targeting agents (bevacizumab, aflibercept), with the possibility of bevacizumab use even beyond first progression. The purpose of this review is to summarize the most important scientific data supporting the use of chemotherapy and the new biologic agents in the second-line setting in advanced colorectal cancer. PMID:25083064

  13. Advanced photoresist for high-throughput i-line stepper applications

    NASA Astrophysics Data System (ADS)

    Canize, Anthony; Spiess, Walter; Ficner, Stanley A.; Lu, Ping-Hung; Dammel, Ralph R.; Perez, Yvette M.

    1995-06-01

    The use of i-line photolithography is finding increased importance in generating today's advanced semiconductor devices. The requirements in this area have led to the recent development of wide field i-line steppers whose large field sizes permit higher device throughput. The introductions of these wide field i-line steppers generate additional demands on the photoresist used in the manufacturing process. This paper describes the development of an advanced i-line photoresist for use in high-throughput applications. The requirements of this photoresist are high photospeed of the order of 75 mJ/cm2 to achieve targeted throughput requirements at low lamp power densities, high resolution of approximately 0.80 micrometers at NA equals 0.24 to satisfy device critical dimension requirements, and high resistance to thermal flow to permit further processing stages. The photoresist's formulation and processing were optimized to produce the desired performance characteristics. Exposure, focus latitude, photosensitivity, and resistance to thermal flow were determined and correlated with resin dissolution characteristics, relative photosensitizer concentration, softbake and post exposure bake temperatures.

  14. Clinical studies in the second line setting of advanced pancreatic cancer: are we making any progress?

    PubMed

    Ramfidis, Vassilios S; Strimpakos, Alexios S; Syrigos, Kostas N; Saif, Muhammad W

    2012-07-01

    Despite the enormous advances in clinical research in oncology, the prognosis of pancreatic carcinoma remains poor. The therapeutic options in this type of cancer are very limited, with modest results at present. In the 2012 American Society of Clinical Oncology (ASCO) Annual Meeting, four interesting trials on the second line treatment of pancreatic cancer were presented. The first study (Abstract #4017) with a phase II design suggested that maintenance therapy with sunitinib, after a complete course of standard first line treatment, was feasible and effective while the second phase I/II study (Abstract #4034) evaluated the role of trabedersen, an agent that inhibits TGF-β2 expression. Finally, the efficacy and toxicity of lapatinib combined with either FOLFOX (Abstract #e14533) or capecitabine (Abstract #e14569) were examined in the second line setting of pancreatic cancer. PMID:22797389

  15. Architecture and Functionality of the Advanced Life Support On-Line Project Information System (OPIS)

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriquez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Amcs Research Center (ARC) tu develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL(Trademark) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an R&TD status information hub that can potentially serve as the primary annual reporting mechanism. Using OPIS, ALS managers and element leads will be able to carry out informed research and technology development investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, and Control). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  16. An On-Line Technology Information System (OTIS) for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Boulanger, Richard; Hoganm John A.; Rodriquez, Luis

    2003-01-01

    An On-line Technology Information System (OTIS) is currently being developed for the Advanced Life Support (ALS) Program. This paper describes the preliminary development of OTIS, which is a system designed to provide centralized collection and organization of technology information. The lack of thorough, reliable and easily understood technology information is a major obstacle in effective assessment of technology development progress, trade studies, metric calculations, and technology selection for integrated testing. OTIS will provide a formalized, well-organized protocol to communicate thorough, accurate, current and relevant technology information between the hands-on technology developer and the ALS Community. The need for this type of information transfer system within the Solid Waste Management (SWM) element was recently identified and addressed. A SWM Technology Information Form (TIF) was developed specifically for collecting detailed technology information in the area of SWM. In the TIF, information is requested from SWM technology developers, based upon the Technology Readiness Level (TRL). Basic information is requested for low-TRL technologies, and more detailed information is requested as the TRL of the technology increases. A comparable form is also being developed for the wastewater processing element. In the future, similar forms will also be developed for the ALS elements of air revitalization, food processing, biomass production and thermal control. These ALS element-specific forms will be implemented in OTIS via a web-accessible interface,with the data stored in an object-oriented relational database (created in MySQLTM) located on a secure server at NASA Ames Research Center. With OTIS, ALS element leads and managers will be able to carry out informed research and development investment, thereby promoting technology through the TRL scale. OTIS will also allow analysts to make accurate evaluations of technology options. Additionally, the range

  17. Architecture and Functionality of the Advanced Life Support On-Line Project Information System

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriguez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects. Using OPIS, ALS managers and element leads will be able to carry out informed R&TD investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, Controls and Systems Analysis). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  18. Development of traveling wave resonator based test bed for high power transmission line component testing

    NASA Astrophysics Data System (ADS)

    Jha, Akhil; Harikrishna, JVS; Ajesh, P.; Anand, Rohit; Trivedi, Rajesh; Mukherjee, Aparajita

    2015-12-01

    India is responsible for delivery of 8+1(prototype) RF sources to ITER Organization. Each RF source will provide 2.5MW of RF power at 2 VSWR in the frequency range of 35 to 65MHz. Eight such RF sources will generate total 20MW of RF power. A large number of high power transmission line components are required for connecting various stages of RF source. To test these passive transmission line components at high power, prior to connecting with RF source system, a test facility is required. India is developing a 3MW test facility based on the concept of Traveling Wave Resonator (TWR) for testing of transmission line components. TWR is basically a ring resonator which will build high power under certain operation condition at resonant frequency (˜55MHz in this case). In TWR, power is fed to the ring via a directional coupler continuously which leads to development of high circulating power in the ring. The voltage and current magnitude inside the ring increases with the increasing circulating power. Detailed RF simulation and design of the TWR test bed has been done using high frequency simulator Microwave Studio (MWS). Calculations done for the ring gain, transmission loss, resonance frequency etc. and are verified with the simulation results. Concept validated using 3-1/8 inch prototype TWR test bed, where experiments were carried out with a ˜10dB (λ/4 coupled) coupler to feed the ring. Ring gain of ˜13.24dB (˜21times) was achieved with ˜0.17 dB of ring loss. Around 9.2 kW ring power is achieved with an input power of 440W. At present, the 3-1/8inch TWR test bed is being upgraded with a ˜15dB coupler to achieve ring gain ˜19-20dB (˜80-100 times). This concept will be finally adopted for 12inch TWR test bed to achieve 3MW ring power with ˜30-40kW of input power. In this paper, detailed design, simulation, test results out of prototype activity and future plan for establishing MW level transmission line test bed is described.

  19. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  20. Paclitaxel combined with capecitabine as first-line chemotherapy for advanced or recurrent gastric cancer.

    PubMed

    Yuan, Meiqin; Yang, Yunshan; Lv, Wangxia; Song, Zhengbo; Zhong, Haijun

    2014-07-01

    Chemotherapy is of crucial importance in advanced gastric cancer (AGC) patients, in order to obtain palliation of symptoms and improve survival. To date, no standard chemotherapy regimen has been established for AGC. The purpose of the present study was to evaluate the efficacy and toxicity of the combination regimen of paclitaxel and capecitabine (PX) as first-line chemotherapy in patients with advanced or recurrent gastric cancer. Patients with advanced or recurrent gastric cancer who were treated with PX as first-line chemotherapy between January 2001 and December 2012 at the Zhejiang Cancer Hospital (Hangzhou, China) were retrospectively investigated. Survival was evaluated using the Kaplan-Meier method. In total, 36 patients were enrolled, with a median age of 53.5 years and a Karnofsky performance status (KPS) score of ≥80. A median of 4 PX cycles were administered (range, 2-8 cycles). The median progression-free survival time was 3.7 months [95% confidence interval (CI), 2.9-4.5 months) and the median overall survival time was 12.0 months (95% CI, 9.8-14.1 months). From the 36 patients evaluated, one (2.8%) achieved a complete response, seven (19.4%) achieved a partial response, 24 (66.7%) exhibited stable disease and four (11.1%) exhibited progressive disease. The objective response rate was 22.2% (8/36), and the disease control rate was 88.9% (32/36). All 36 patients were assessed for treatment toxicity. Grade 3 or 4 adverse events included neutropenia (2.8% of patients), hand-foot syndrome (2.8%) and vomiting (2.8%). No neutropenic fever or treatment-related mortalities were observed. PX combination chemotherapy may be a valuable first-line therapy for advanced or recurrent gastric cancer. PMID:24959275

  1. In-Situ Creep Testing Capability for the Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2012-09-01

    An instrumented creep testing capability is being developed for specimens irradiated in Pressurized Water Reactor (PWR) coolant conditions at the Advanced Test Reactor (ATR). The test rig has been developed such that samples will be subjected to stresses ranging from 92 to 350 MPa at temperatures between 290 and 370 °C up to at least 2 dpa (displacement per atom). The status of Idaho National Laboratory (INL) efforts to develop the test rig in-situ creep testing capability for the ATR is described. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by INL to evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory (HTTL). Initial data from autoclave tests with 304 stainless steel (304 SS) specimens are reported.

  2. Advanced Test Reactor Capabilities and Future Irradiation Plans

    SciTech Connect

    Frances M. Marshall

    2006-10-01

    The Advanced Test Reactor (ATR), located at the Idaho National Laboratory (INL), is one of the most versatile operating research reactors in the Untied States. The ATR has a long history of supporting reactor fuel and material research for the US government and other test sponsors. The INL is owned by the US Department of Energy (DOE) and currently operated by Battelle Energy Alliance (BEA). The ATR is the third generation of test reactors built at the Test Reactor Area, now named the Reactor Technology Complex (RTC), whose mission is to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The current experiments in the ATR are for a variety of customers--US DOE, foreign governments and private researchers, and commercial companies that need neutrons. The ATR has several unique features that enable the reactor to perform diverse simultaneous tests for multiple test sponsors. The ATR has been operating since 1967, and is expected to continue operating for several more decades. The remainder of this paper discusses the ATR design features, testing options, previous experiment programs, future plans for the ATR capabilities and experiments, and some introduction to the INL and DOE's expectations for nuclear research in the future.

  3. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  4. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is

  5. Some tests of avalanche photodiodes produced by Advanced Photonix, Inc.

    SciTech Connect

    Foster, G.W.; Ronzhin, A.; Rusack, R.

    1995-08-01

    The goal of the measurements presented here is to check some parameters of the high gain avalanche photodiodes (APD`s) produced by Advanced Photonix, Inc. Samples with 16 mm and 5 mm diameter sensitive areas were tested. The tests were performed at FNAL. The new photomultiplier testing facility were used for gain measurements, linearity, and nonuniformity studies. The setup consists of laser with shifted wavelength of 440 nm, 10 Hz repetition rate and a pulse duration of 15 nsec. The laser light was transported to the APD by 1 mm diameter clear fiber. An amount of laser light was adjusted by rotating wheels of fixed light attenuation. The dynamic range of the APD, an amplifier (AMP) and an ADC was about 1000. To get the nonuniformity data the APD was mounted on a moveable stage under management and control of computer. The positioning of the fiber along sensitive surface of the APD was better than 100 microns.

  6. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  7. Testing and Implementation of Advanced Reynolds Stress Models

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1997-01-01

    A research program was proposed for the testing and implementation of advanced turbulence models for non-equilibrium turbulent flows of aerodynamic importance that are of interest to NASA. Turbulence models that are being developed in connection with the Office of Naval Research ARI in Non-equilibrium are provided for implementation and testing in aerodynamic flows at NASA Langley Research Center. Close interactions were established with researchers at Nasa Langley RC and refinements to the models were made based on the results of these tests. The models that have been considered include two-equation models with an anisotropic eddy viscosity as well as full second-order closures. Three types of non-equilibrium corrections to the models have been considered in connection with the ARI on Nonequilibrium Turbulence: conducted for ONR.

  8. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  9. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  10. Completion of the first NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover; John Maki; David Petti

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during

  11. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  12. Benchmark integration test for the Advanced Integration Matrix (AIM)

    NASA Astrophysics Data System (ADS)

    Paul, H.; Labuda, L.

    The Advanced Integration Matrix (AIM) studies and solves systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO) through the design and development of a ground-based facility for developing revolutionary integrated systems for joint human-robotic missions. This systems integration approach to addressing human capability barriers will yield validation of advanced concepts and technologies, establish baselines for further development, and help identify opportunities for system-level breakthroughs. Early ground-based testing of mission capability will identify successful system implementations and operations, hidden risks and hazards, unexpected system and operations interactions, mission mass and operational savings, and can evaluate solutions to requirements-driving questions; all of which will enable NASA to develop more effective, lower risk systems and more reliable cost estimates for future missions. This paper describes the first in the series of integration tests proposed for AIM (the Benchmark Test) which will bring in partners and technology, evaluate the study processes of the project, and develop metrics for success.

  13. Base Stock Policy in a Join-Type Production Line with Advanced Demand Information

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Mikihiko; Tsubouchi, Satoshi; Nakade, Koichi

    Production control such as the base stock policy, the kanban policy and the constant work-in-process policy in a serial production line has been studied by many researchers. Production lines, however, usually have fork-type, join-type or network-type figures. In addition, in most previous studies on production control, a finished product is required at the same time as arrival of demand at the system. Demand information is, however, informed before due date in practice. In this paper a join-type (assembly) production line under base stock control with advanced demand information in discrete time is analyzed. The recursive equations for the work-in-process are derived. The heuristic algorithm for finding appropriate base stock levels of all machines at short time is proposed and the effect of advanced demand information is examined by simulation with the proposed algorithm. It is shown that the inventory cost can decreases with little backlogs by using the appropriate amount of demand information and setting appropriate base stock levels.

  14. Synthesis and characterization of advanced durum wheat hybrids and addition lines with thinopyrum chromosomes.

    PubMed

    Jauhar, Prem P; Peterson, Terrance S

    2013-01-01

    Durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) is a natural hybrid-an allotetraploid between 2 wild species, Triticum urartu Tumanian (AA genome) and Aegilops speltoides Tausch (BB genome). Even at the allotetraploid level, durum wheat can tolerate chromosomal imbalance, for example, addition of alien chromosome 1E of diploid wheatgrass, Lophopyrum elongatum. Therefore, one way to broaden its genetic base is to add a desirable chromosome(s) from diploid wild relatives. We attempted chromosomal engineering with chromosomes of a diploid wheatgrass, Thinopyrum bessarabicum-a source of resistance to some diseases including Fusarium head blight. Several advanced hybrids and alien addition lines were studied using traditional cytology, multicolor fluorescent genomic in situ hybridization, and molecular markers. Hybrid derivatives varied in chromosome number from F1 to F8 generations and in backcross generations. In advanced generations, we exercised selection against 28-chromosome plants and in favor of 30-chromosome plants that helped recover 14 addition lines in the F8 generation, as indicated by the absence of segregation for 29-chromosome plants. Disomic additions showed regular meiosis with 15 bivalents, 14 of durum wheat, and 1 of Th. bessarabicum. The addition lines will facilitate further chromosome engineering work on durum wheat for broadening its genetic base. PMID:23396879

  15. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  16. Advances in Genetic Testing for Hereditary Cancer Syndromes.

    PubMed

    Thomas, Ellen; Mohammed, Shehla

    2016-01-01

    The ability to identify genetic mutations causing an increased risk of cancer represents the first widespread example of personalised medicine, in which genetic information is used to inform patients of their cancer risks and direct an appropriate strategy to minimise those risks. Increasingly, an understanding of the genetic basis of many cancers also facilitates selection of the most effective therapeutic options. The technology underlying genetic testing has been revolutionised in the years since the completion of the Human Genome Project in 2001. This has advanced knowledge of the genetic factors underlying familial cancer risk, and has also improved genetic testing capacity allowing a larger number of patients to be tested for a constitutional cancer predisposition. To use these tests safely and effectively, they must be assessed for their ability to provide accurate and useful results, and be requested and interpreted by health professionals with an understanding of their strengths and limitations. Genetic testing is increasing in its scope and ambition with each year that passes, requiring a greater proportion of the healthcare workforce to acquire a working knowledge of genetics and genetic testing to manage their patients safely and sensitively. PMID:27075345

  17. INEL advanced test reactor plutonium-238 production feasibility assessment

    SciTech Connect

    Schnitzler, B.G. )

    1993-01-10

    Results of a preliminary neutronics assessment indicate the feasibility of [sup 238]Pu production in the Idaho National Engineering Laboratory Advanced Test Reactor (ATR). Based on the results of this assessment, an annual production of 11.3 kg [sup 238]Pu can be achieved in the ATR. An annual loading of 102 kg [sup 237]Np is required for the particular target configuration and irradiation scenario examined. The [sup 236]Pu contaminant level is approximately 6 parts per million at zero cooling time. The product quality is about 90% [sup 238]Pu. Neptunium feedstock requirements, [sup 238]Pu production rates, or product purity can be optimized depending on their relative importances.

  18. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  19. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  20. Preliminary results from the advanced photovoltaic experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  1. On-Line Tutoring for Math Achievement Testing: A Controlled Evaluation

    ERIC Educational Resources Information Center

    Beal, Carole R.; Walles, Rena; Arroyo, Ivon; Woolf, Beverly P.

    2007-01-01

    We report the results of a controlled evaluation of an interactive on-line tutoring system for high school math achievement test problem solving. High school students (N = 202) completed a math pre-test and were then assigned by teachers to receive interactive on-line multimedia tutoring or their regular classroom instruction. The on-line tutored…

  2. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    SciTech Connect

    Bambade, P.; Alabau Pons, M.; Amann, J.; Angal-Kalinin, D.; Apsimon, R.; Araki, S.; Aryshev, A.; Bai, S.; Bellomo, P.; Bett, D.; Blair, G.; Bolzon, B.; Boogert, S.; Boorman, G.; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; Delahaye, Jean-Pierre; Deacon, L.; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

    2011-11-11

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  3. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Bambade, P.; Alabau Pons, M.; Amann, J.; Angal-Kalinin, D.; Apsimon, R.; Araki, S.; Aryshev, A.; Bai, S.; Bellomo, P.; Bett, D.; Blair, G.; Bolzon, B.; Boogert, S.; Boorman, G.; Burrows, P. N.; Christian, G.; Coe, P.; Constance, B.; Delahaye, J.-P.; Deacon, L.; Elsen, E.; Faus-Golfe, A.; Fukuda, M.; Gao, J.; Geffroy, N.; Gianfelice-Wendt, E.; Guler, H.; Hayano, H.; Heo, A.-Y.; Honda, Y.; Huang, J. Y.; Hwang, W. H.; Iwashita, Y.; Jeremie, A.; Jones, J.; Kamiya, Y.; Karataev, P.; Kim, E.-S.; Kim, H.-S.; Kim, S. H.; Komamiya, S.; Kubo, K.; Kume, T.; Kuroda, S.; Lam, B.; Lyapin, A.; Masuzawa, M.; McCormick, D.; Molloy, S.; Naito, T.; Nakamura, T.; Nelson, J.; Okamoto, D.; Okugi, T.; Oroku, M.; Park, Y. J.; Parker, B.; Paterson, E.; Perry, C.; Pivi, M.; Raubenheimer, T.; Renier, Y.; Resta-Lopez, J.; Rimbault, C.; Ross, M.; Sanuki, T.; Scarfe, A.; Schulte, D.; Seryi, A.; Spencer, C.; Suehara, T.; Sugahara, R.; Swinson, C.; Takahashi, T.; Tauchi, T.; Terunuma, N.; Tomas, R.; Urakawa, J.; Urner, D.; Verderi, M.; Wang, M.-H.; Warden, M.; Wendt, M.; White, G.; Wittmer, W.; Wolski, A.; Woodley, M.; Yamaguchi, Y.; Yamanaka, T.; Yan, Y.; Yoda, H.; Yokoya, K.; Zhou, F.; Zimmermann, F.

    2010-04-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  4. 12 CFR 1266.3 - Purpose of long-term advances; Proxy test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Purpose of long-term advances; Proxy test. 1266... Advances to Members § 1266.3 Purpose of long-term advances; Proxy test. (a) A Bank shall make long-term... housing finance assets. (b)(1) Prior to approving an application for a long-term advance, a Bank...

  5. 12 CFR 1266.3 - Purpose of long-term advances; Proxy test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Purpose of long-term advances; Proxy test. 1266... Advances to Members § 1266.3 Purpose of long-term advances; Proxy test. (a) A Bank shall make long-term... housing finance assets. (b)(1) Prior to approving an application for a long-term advance, a Bank...

  6. Advances in Educational and Psychological Testing: Theory and Applications. Evaluation in Education and Human Services Series.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K., Ed.; Zaal, Jac N., Ed.

    The 14 chapters of this book focus on the technical advances, advances in applied settings, and emerging topics in the testing field. Part 1 discusses methodological advances, Part 2 considers developments in applied settings, and Part 3 reviews emerging topics in the field of testing. Part 1 papers include: (1) "Advances in Criterion-Referenced…

  7. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    SciTech Connect

    Busby, Jeremy T

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  8. The Advanced Light Source U8 beam line, 20--300 eV

    SciTech Connect

    Heimann, P.; Warwick, T.; Howells, M.; McKinney, W.; Digennaro, D.; Gee, B.; Yee, D.; Kincaid, B.

    1991-10-01

    The U8 is a beam line under construction at the Advanced Light Source (ALS). The beam line will be described along with calculations of its performance and its current status. An 8 cm period undulator is followed by two spherical collecting mirrors, an entrance slit, spherical gratings having a 15{degree} deviation angle, a moveable exit slit, and refocusing and branching mirrors. Internal water cooling is provided to the metal M1 and M2 mirrors as well as to the gratings. Calculations have been made of both the flux output and the resolution over its photon energy range of 20--300 eV. The design goal was to achieve high intensity, 10{sup 12} photons/sec, at a high resolving power of 10,000. The U8 Participating Research Team (PRT) is planning experiments involving the photoelectron spectroscopy of gaseous atoms and molecules, the spectroscopy of ions and actinide spectroscopy.

  9. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    SciTech Connect

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  10. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    SciTech Connect

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  11. A systematic approach to advanced cockpit warning systems for air transport operations: Line pilot preferences

    NASA Technical Reports Server (NTRS)

    Williams, D. H.; Simpson, C. A.

    1976-01-01

    Line pilots (fifty captains, first officers, and flight engineers) from 8 different airlines were administered a structured questionnaire relating to future warning system design and solutions to current warning system problems. This was followed by a semantic differential to obtain a factor analysis of 18 different cockpit warning signals on scales such as informative/distracting, annoying/soothing. Half the pilots received a demonstration of the experimental text and voice synthesizer warning systems before answering the questionnaire and the semantic differential. A control group answered the questionnaire and the semantic differential first, thus providing a check for the stability of pilot preferences with and without actual exposure to experimental systems. Generally, the preference data obtained revealed much consistency and strong agreement among line pilots concerning advance cockpit warning system design.

  12. Acoustic test and analyses of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Brooks, B. M.; Metzger, F. B.

    1980-01-01

    Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.

  13. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  14. Safety Assurance for Irradiating Experiments in the Advanced Test Reactor

    SciTech Connect

    T. A. Tomberlin; S. B. Grover

    2004-11-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment.

  15. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  16. Development of an advanced respirator fit-test headform.

    PubMed

    Bergman, Michael S; Zhuang, Ziqing; Hanson, David; Heimbuch, Brian K; McDonald, Michael J; Palmiero, Andrew J; Shaffer, Ronald E; Harnish, Delbert; Husband, Michael; Wander, Joseph D

    2014-01-01

    Improved respirator test headforms are needed to measure the fit of N95 filtering facepiece respirators (FFRs) for protection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking) Advanced Headform (StAH) was developed for evaluating the fit of N95 FFRs. The StAH was developed based on the anthropometric dimensions of a digital headform reported by the National Institute for Occupational Safety and Health (NIOSH) and has a silicone polymer skin with defined local tissue thicknesses. Quantitative fit factor evaluations were performed on seven N95 FFR models of various sizes and designs. Donnings were performed with and without a pre-test leak checking method. For each method, four replicate FFR samples of each of the seven models were tested with two donnings per replicate, resulting in a total of 56 tests per donning method. Each fit factor evaluation was comprised of three 86-sec exercises: "Normal Breathing" (NB, 11.2 liters per min (lpm)), "Deep Breathing" (DB, 20.4 lpm), then NB again. A fit factor for each exercise and an overall test fit factor were obtained. Analysis of variance methods were used to identify statistical differences among fit factors (analyzed as logarithms) for different FFR models, exercises, and testing methods. For each FFR model and for each testing method, the NB and DB fit factor data were not significantly different (P > 0.05). Significant differences were seen in the overall exercise fit factor data for the two donning methods among all FFR models (pooled data) and in the overall exercise fit factor data for the two testing methods within certain models. Utilization of the leak checking method improved the rate of obtaining overall exercise fit factors ≥100. The FFR models, which are expected to achieve overall fit factors ≥ 100 on human subjects, achieved overall exercise fit factors ≥ 100 on the StAH. Further research is needed to evaluate the correlation of FFRs fitted on the StAH to FFRs

  17. Design considerations of the irradiation test vehicle for the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  18. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (HPI), with the brow parallel to the basic plane. Place a 5-kg (11-lb) preload ballast on top of the... helmet coinciding with the intersection of the surface of the helmet with the impact line planes...

  19. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  20. NASA's Advanced Life Support Systems Human-Rated Test Facility

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Tri, T. O.; Packham, N. J.

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  1. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  2. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  3. Radiological study on newly developed composite corn advance lines in Malaysia

    NASA Astrophysics Data System (ADS)

    Adekunle Olatunji, Michael; Bemigho Uwatse, Onosohwo; Uddin Khandaker, Mayeen; Amin, Y. M.; Faruq, G.

    2014-12-01

    Owing to population growth, there has been high demand for food across the world, and hence, different agricultural activities such as use of phosphate fertilizers, recycling of organic matters, etc, have been deployed to increase crop yields. In Malaysia, a total of nine composite corn advance lines have been developed at the Institute of Biological Sciences, University of Malaya and are being grown under different conditions with a bid to meet the average daily human need for energy and fiber intake. To this end, the knowledge of radioactivity levels in these corn advance lines are of paramount importance for the estimation of possible radiological hazards due to its consumption. Hence, the radioactivity concentrations of 226Ra, 228Ra and 40K in the corn have been determined using HPGe γ-ray spectrometry. The activity concentrations in the corn ranged from 0.05 to 19.18 Bq kg-1 for 226Ra, from 0.10 to 3.22 Bq kg-1 for 228Ra and from 26.4 to 129 Bq kg-1 for 40K. In order to ascertain the radiological safety of the population regarding maize consumption, the daily intakes of these radionuclides as well as the annual effective dose were estimated. The total effective dose obtained due to the ingestion of radionuclides via maize consumption is 15.39 μSv y-1, which is less than the international recommendations.

  4. Report on On-Line Trial Test for Fourth-Grade Students -- May 2009

    ERIC Educational Resources Information Center

    Verbic, Srdjan; Tomic, Boris; Kartal, Vesna

    2010-01-01

    On-line trial testing for fourth-grade students was an exploratory study realized as a part of the project "Developing annual test of students' achievement in Nature & Society" realized by Institute for Education Quality and Evaluation. Main ideas of the study were to explore possibilities for on-line testing at national level in Serbia, and to…

  5. Students Reflecting on Test Performance and Feedback: An On-Line Approach

    ERIC Educational Resources Information Center

    Fyfe, Georgina; Fyfe, Sue; Meyer, Jan; Ziman, Mel; Sanders, Kathy; Hill, Julie

    2014-01-01

    Undergraduate students accessing on-line tests in Human Biology in three Western Australian universities were asked to complete an on-line post-test reflective survey about their perceptions of their test performance in light of automated feedback. The survey allowed pre-determined choices and comment text boxes relating to students'…

  6. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  7. Economic evaluation of first-line and maintenance treatments for advanced non-small cell lung cancer: a systematic review

    PubMed Central

    Chouaïd, Christos; Crequit, Perinne; Borget, Isabelle; Vergnenegre, Alain

    2015-01-01

    During these last years, there have been an increased number of new drugs for non-small cell lung cancer (NSCLC), with a growing financial effect on patients and society. The purpose of this article was to review the economics of first-line and maintenance NSCLC treatments. We reviewed economic analyses of NSCLC therapies published between 2004 and 2014. In first-line settings, in unselected patients with advanced NSCLC, the cisplatin gemcitabine doublet appears to be cost-saving compared with other platinum doublets. In patients with nonsquamous NSCLC, the incremental cost-effectiveness ratios (ICERs) per life-year gained (LYG) were $83,537, $178,613, and more than $300,000 for cisplatin-pemetrexed compared with, respectively, cisplatin-gemcitabine, cisplatin-carboplatin-paclitaxel, and carboplatin-paclitaxel-bevacizumab. For all primary chemotherapy agents, use of carboplatin is associated with slightly higher costs than cisplatin. In all the analysis, bevacizumab had an ICER greater than $150,000 per quality-adjusted life-year (QALY). In epidermal growth factor receptor mutated advanced NSCLC, compared with carboplatin-paclitaxel doublet, targeted therapy based on testing available tissue yielded an ICER of $110,644 per QALY, and the rebiopsy strategy yielded an ICER of $122,219 per QALY. Compared with the triplet carboplatin-paclitaxel-bevacizumab, testing and rebiopsy strategies had ICERs of $25,547 and $44,036 per QALY, respectively. In an indirect comparison, ICERs per LYG and QALY of erlotinib versus gefitinib were $39,431 and $62,419, respectively. In anaplastic lymphoma kinase-positive nonsquamous advanced NSCLC, the ICER of first-line crizotinib compared with that of chemotherapy was $255,970 per QALY. For maintenance therapy, gefitinib had an ICER of $19,214 per QALY, erlotinib had an ICER of $127,343 per LYG, and pemetrexed had an ICER varying between $183,589 and $205,597 per LYG. Most recent NSCLC strategies are based on apparently no cost

  8. Advanced stellar compass deep space navigation, ground testing results

    NASA Astrophysics Data System (ADS)

    Betto, M.; Jørgensen, J. L.; Jørgensen, P. S.; Denver, T.

    2006-10-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks and the costs of the deep space missions. Navigation is the Achilles’ heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant. Nevertheless, up to now, ground navigation has been the only possible solution. The technological breakthrough of advanced star trackers, like the micro-advanced stellar compass (μASC) might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging.

  9. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  10. Advanced Communications Technology: Eighth District BOATRACS Test and Evaluation

    NASA Astrophysics Data System (ADS)

    1998-07-01

    One of the objectives of the Mobile Communications Infrastructure project is to conduct in-depth evaluations of mobile satellite systems that appear to meet Coast Guard communications requirements. The goal in testing these systems is to quantify how well they work and to provide some metrics to see how each of these systems could fit the needs of the Coast Guard. There are a variety of parameters that will be measured for each system. Most of the measurements are of the overall system, not the individual pieces. These parameters include coverage, availability, reliability, accuracy, interoperability, bandwidth, latency, ease of use, and cost. Some testing will be performed in the Advanced Communications Lab at the R&D Center, and some will be performed by placing systems on operational units for field testing. The Eight Coast Guard District has an extremely large AOR encompassing 26 States. The District is responsible for 1,200 miles of coastline and 10,300 miles of inland waterways. The major missions are Law Enforcement, Search and Rescue, and Pollution Response.

  11. Database requirements for the Advanced Test Accelerator project

    SciTech Connect

    Chambers, F.W.

    1984-11-05

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures.

  12. Beyond first-line chemotherapy for advanced pancreatic cancer: An expanding array of therapeutic options?

    PubMed Central

    Walker, Evan J; Ko, Andrew H

    2014-01-01

    While an increasing number of therapeutic options are now available for the first-line treatment of locally advanced or metastatic pancreatic cancer, the optimal choice for treatment in the second-line setting and beyond is less well defined. A variety of cytotoxic agents, either alone or in combination, have been evaluated, although primarily in the context of small single-arm or retrospective studies. Most regimens have been associated with median progression-free survival rates in the range of 2-4 mo and overall survival rates between 4-8 mo, highlighting the very poor prognosis of patients who are candidates for such treatment. Targeted therapies studied in this chemotherapy-refractory setting, meanwhile, have produced even worse efficacy results. In the current article, we review the clinical evidence for treatment of refractory disease, primarily in patients who have progressed on front-line gemcitabine-based chemotherapy. In the process, we highlight the limitations of the available data to date as well as some of the challenges in designing appropriate clinical trials in this salvage setting, including how to select an appropriate control arm given the absence of a well-established reference standard, and the importance of incorporating predictive biomarkers and quality of life measures whenever possible into study design. PMID:24605022

  13. Noninvasive prenatal screening or advanced diagnostic testing: caveat emptor.

    PubMed

    Evans, Mark I; Wapner, Ronald J; Berkowitz, Richard L

    2016-09-01

    The past few years have seen extraordinary advances in prenatal genetic practice led by 2 major technological advances; next-generation sequencing of cell-free DNA in the maternal plasma to noninvasively identify fetal chromosome abnormalities, and microarray analysis of chorionic villus sampling and amniotic fluid samples, resulting in increased cytogenetic resolution. Noninvasive prenatal screening of cell-free DNA has demonstrated sensitivity and specificity for trisomy 21 superior to all previous screening approaches with slightly lower performance for other common aneuploidies. These tests have rapidly captured an increasing market share, with substantial reductions in the number of chorionic villus sampling and amniocentesis performed suggesting that physicians and patients regard such screening approaches as an equivalent replacement for diagnostic testing. Simultaneously, many clinical programs have noted significant decreases in patient counseling. In 2012 the Eunice Kennedy Shriver National Institute of Child Health and Human Development funded a blinded comparison of karyotype with the emerging technology of array comparative genomic hybridization showing that in patients with a normal karyotype, 2.5% had a clinically relevant microdeletion or duplication identified. In pregnancies with an ultrasound-detected structural anomaly, 6% had an incremental finding, and of those with a normal scan, 1.6% had a copy number variant. For patients of any age with a normal ultrasound and karyotype, the chance of a pathogenic copy number variant is greater than 1%, similar to the age-related risk of aneuploidy in the fetus of a 38 year old. This risk is 4-fold higher than the risk of trisomy 21 in a woman younger than 30 years and 5- to 10-fold higher than the present accepted risk of a diagnostic procedure. Based on this, we contend that every patient, regardless of her age, be educated about these risks and offered the opportunity to have a diagnostic procedure with

  14. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  15. Development of an Advanced Respirator Fit-Test Headform

    PubMed Central

    Bergman, Michael S.; Zhuang, Ziqing; Hanson, David; Heimbuch, Brian K.; McDonald, Michael J.; Palmiero, Andrew J.; Shaffer, Ronald E.; Harnish, Delbert; Husband, Michael; Wander, Joseph D.

    2015-01-01

    Improved respirator test headforms are needed to measure the fit of N95 filtering facepiece respirators (FFRs) for protection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking) Advanced Headform (StAH) was developed for evaluating the fit of N95 FFRs. The StAH was developed based on the anthropometric dimensions of a digital headform reported by the National Institute for Occupational Safety and Health (NIOSH) and has a silicone polymer skin with defined local tissue thicknesses. Quantitative fit factor evaluations were performed on seven N95 FFR models of various sizes and designs. Donnings were performed with and without a pre-test leak checking method. For each method, four replicate FFR samples of each of the seven models were tested with two donnings per replicate, resulting in a total of 56 tests per donning method. Each fit factor evaluation was comprised of three 86-sec exercises: “Normal Breathing” (NB, 11.2 liters per min (lpm)), “Deep Breathing” (DB, 20.4 lpm), then NB again. A fit factor for each exercise and an overall test fit factor were obtained. Analysis of variance methods were used to identify statistical differences among fit factors (analyzed as logarithms) for different FFR models, exercises, and testing methods. For each FFR model and for each testing method, the NB and DB fit factor data were not significantly different (P > 0.05). Significant differences were seen in the overall exercise fit factor data for the two donning methods among all FFR models (pooled data) and in the overall exercise fit factor data for the two testing methods within certain models. Utilization of the leak checking method improved the rate of obtaining overall exercise fit factors ≥100. The FFR models, which are expected to achieve overall fit factors ≥ 100 on human subjects, achieved overall exercise fit factors ≥ 100 on the StAH. Further research is needed to evaluate the correlation of FFRs fitted on the StAH to

  16. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  17. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  18. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  19. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  20. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  1. SOYBEAN APHID ABUNDANCE AMONG CONTEMPORARY SOYBEAN LINES IN A GROWTH-CHAMBER TEST, 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance of soybean aphid was compared among eight contemporary soybean lines in a growth chamber test. All soybean lines had >500 soybean aphids per plant 2 wks after infestation. The number of soybean aphids per plant differed among lines, with Surge and 91B91 having more soybean aphids tha...

  2. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  3. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  4. NEUROANATOMICAL CORRELATES OF THE BENTON FACIAL RECOGNITION TEST AND JUDGMENT OF LINE ORIENTATION TEST

    PubMed Central

    Tranel, Daniel; Vianna, Eduardo; Manzel, Kenneth; Damasio, Hanna; Grabowski, Thomas

    2010-01-01

    Two of the most successful and widely used tests developed by Arthur Benton and colleagues are the Facial Recognition Test (FRT) and Judgment of Line Orientation test (JLO), which probe visuoperceptual and visuospatial functions typically associated with right hemisphere structures, especially parietal, occipitoparietal, and occipitotemporal structures. Taking advantage of a large database of focal lesion patients (the Iowa Neurological Patient Registry), we used a new lesion-deficit mapping technique to investigate the neuroanatomical correlates of FRT and JLO performance. For the FRT, there were 201 patients with relevant data; of these, 38 were impaired on the FRT, and failure was most strongly associated with lesions in the right posterior-inferior parietal and right ventral occipitotemporal (fusiform gyrus) areas. For the JLO, there were 181 patients with relevant data; of these, 23 were impaired on the JLO, and failure was most strongly associated with lesions in the right posterior parietal region. These findings put new empirical teeth in the localizing value of the FRT and JLO tests, and extend and sharpen previous work which had pointed to right posterior structures as being important for FRT and JLO performance. PMID:19051129

  5. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2004-10-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  6. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    SciTech Connect

    Grover, S.B.

    2004-10-06

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  7. Advanced biliary tract carcinomas: a retrospective multicenter analysis of first and second-line chemotherapy

    PubMed Central

    2014-01-01

    Background Gemcitabine/Cisplatin (Gem/CDDP) combination has demonstrated a clear survival advantage over gemcitabine alone and has become a new standard in advanced Biliary Tract Carcinoma (aBTC). However, Gemcitabine/Oxaliplatin (GEMOX) combination and Gemcitabine/Carboplatin (Gem/Carb) combination regimens have shown efficacy in phase II trials and there is no comparative study between different platinum salts. We assessed the efficacy and safety of different platinum-based chemotherapies at first line in aBTC patients. We also analysed the second-line chemotherapy. Methods Sixty-four consecutive patients with aBTC diagnosed between 1998 and 2010 were included for analysis. At first line chemotherapy, 44 patients received one day GEMOX regimen (gemcitabine 1000 mg/m2 and oxaliplatin 100 mg/m2 Day 1, every 2 weeks), and 20 patients received Gem/Carb regimen (gemcitabine at 1000 mg/m2 Days 1 and 8 with carboplatin delivered according to an area-under-the-curve (AUC) 5 at day 1, every 3 weeks). At second line, a total of 16 patients received a fluoropyrimidine-based chemotherapy. Results With GEMOX regimen, median progression-free survival (PFS) was 3.7 months (95%CI, 2.4 to 5) and median overall survival (OS) was 10.5 months (95%CI, 6.4 to14.7). The main toxicity was peripheral neuropathy (20% grade 2 and 7% grade 3). Grade 3/4 haematological toxicities were rare. With Gem/Carb regimen, PFS was 2.5 months (95%CI, 2.1 to 3.7) and OS was 4.8 months (95%CI, 3.7 to 5.8). The main grade 3/4 toxicities were haematological: anaemia (45%), thrombocytopenia (45%), and neutropenia (40%). At second-line, fluoropyrimidine-based chemotherapy was feasible in only a fourth of the patients. The median OS was 5.3 months (95%CI, 4.1 to 6.6), and median PFS was 4.0 months (95%CI, 2.6 to 5.5). Conclusions One day GEMOX regimen has a favourable toxicity profile and could be an alternative to standard Gem/CDDP regimen, in particular in unfit patients for CDDP. At second-line

  8. Neutron spectrum studies in the ATR (Advanced Test Reactor)

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.; Putnam, M.H.

    1990-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) has been and currently is used to provide irradiation fields to study the effects of intense radiation on samples of reactor materials. These samples include fuel, cladding, control and structural materials. The ATR is also used to irradiate target materials for the production of radionuclides used in industrial and medical applications as well as for scientific research. Routine monitoring of the thermal'' and fast'' neutron levels have been conducted during every operational cycle since its startup in 1970. The routine neutron dosimetry has been primarily accomplished using the {sup 59}Co(n,{gamma}){sup 60}Co reaction for thermal'' neutrons and the {sup 58}Ni(n,p) {sup 58}Co reaction for fast'' neutrons as described in ASTM standard methods E261, E262, and E264. Neutron spectrum studies have now been conducted in the epithermal and fast neutron energy ranges for the various capsule irradiation test facilities and the routine neutron monitoring locations. 7 refs., 5 figs., 1 tab.

  9. Temperature controlled material irradiation in the advanced test reactor

    SciTech Connect

    Furstenau, R.V.; Ingrahm, F.W.

    1995-12-31

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor`s principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor`s capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment `in-pile tube (IPT)` inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities.

  10. Development and Test of Blimp-Based Compact LIDAR Powewr-Line Inspection System

    NASA Astrophysics Data System (ADS)

    Pan, W. W.; Dou, Y. J.; Wang, G. L.; Wu, M. X.; Ren, R. G.; Xu, X.

    2015-03-01

    This paper introduces a compact LIDAR system designed to inspect overhead transmission line for maintenance purposes. This LIDAR system is carried by a small unmanned helium airship, which is guided by GPS and laser ranging to fly automatically along the power-line over a limited distance. The 3D coordinates of the power line, power tower and power line channel features are gathered by LIDAR. Test have been accomplished using this blimp-based compact LIDAR power-line inspection system. Its inspections of a 500kV power lines also shows the high efficient inspection, less risk to personnel and more inspections per day compared with manual inspection.

  11. AMS Ground Truth Measurements: Calibration and Test Lines

    SciTech Connect

    Wasiolek, P.

    2013-11-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  12. Advanced Utility Mercury-Sorbent Field-Testing Program

    SciTech Connect

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  13. Development Status of the Advanced Life Support On-Line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Cavazzoni, Jim; Brodbeck, Christina; Morrow, Rich; Ho, Michael; Kaehms, Bob; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. The core functionality of OPIS will launch in October of 2005. This paper presents the current OPIS development status. OPIS core functionality involves a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIS) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. The data will be stored in an object-oriented relational database (created in MySQL(R)) located on a secure server at NASA ARC. Upon launch, OPIS can be utilized by Managers to identify research and technology development gaps and to assess task performance. Analysts can employ OPIS to obtain.

  14. Effect of tree line advance on carbon storage in NW Alaska

    USGS Publications Warehouse

    Wilmking, M.; Harden, J.; Tape, K.

    2006-01-01

    We investigated the size, distribution, and temporal dynamics of ecosystem carbon (C) pools in an area of recent tree line advance, northwest Alaska. Repeat aerial photographs show forest cover increased ???10% in our study area since 1949. We sampled C pools of four principal ecosystem types, tussock tundra, shrub tundra, woodland, and forest, all located on a 600-800 year old river terrace. Significant differences between ecosystem C pools, both above ground and below ground existed. Tundra sites store >22.2 kg C/m2, shrub tundra sites and woodland sites store 9.7 kg C/m2 and 14.3 kg C/m2, respectively, and forest sites store 14.4 kg C/m2. Landscape variation of total ecosystem C was primarily due to organic soil C and was secondarily due to C stored in trees. Soil C/N profiles of shrub tundra sites and woodland sites showed similarities with forest site soils at surface and tundra site soils at depth. We hypothesize that tundra systems transformed to forest systems in this area under a progression of permafrost degradation and enhanced drainage. On the basis of C pool estimates for the different ecosystem types, conversion of tundra sites to forest may have resulted in a net loss of > 7.8 kg C/m2, since aboveground C gains were more than offset by belowground C losses to decomposition in the tundra sites. Tree line advance therefore might not increase C storage in high-latitude ecosystems and thus might not, as previously suggested, act as a negative feedback to warming. Key to this hypothesis and to its projection to future climate response is the fate of soil carbon upon warming and permafrost drainage. Copyright 2006 by the American Geophysical Union.

  15. Core design studies for advanced burner test reactor.

    SciTech Connect

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating

  16. 40 CFR 1045.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... require you to test production-line engines under this subpart, or under 40 CFR part 1068, subpart E, even... described in 40 CFR part 1068. Individual engines in families that pass these production-line testing requirements must also conform to all applicable regulations of this part and 40 CFR part 1068. (d) You may...

  17. 40 CFR 1045.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... require you to test production-line engines under this subpart, or under 40 CFR part 1068, subpart E, even... described in 40 CFR part 1068. Individual engines in families that pass these production-line testing requirements must also conform to all applicable regulations of this part and 40 CFR part 1068. (d) You may...

  18. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  19. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  20. Electrochemical test methods for advanced battery and semiconductor technology

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using

  1. Shrub line advance in Arctic and alpine tundra of the Yukon Territory

    NASA Astrophysics Data System (ADS)

    Myers-Smith, I. H.; Hik, D.

    2010-12-01

    Growing evidence indicates an expansion of canopy-forming woody shrubs up mountain slopes and northward into Arctic tundra. The correlation between warming and greening has been used to link climate change with shrub expansion; however, the exact mechanisms driving observed increases in canopy-forming shrubs are probably more complex. Shrub expansion that results in a change in canopy cover may modify the ecology of tundra ecosystems by changing understory plant composition, soil thermal dynamics, surface albedo, nutrient turnover times and carbon storage. We surveyed the abundance of all tundra willow species (Salix spp.) growing at three sites in the Yukon Territory: the mountains of the Kluane Region, the Richardson Mountains, and on Qikiqtaruk - Herschel Island in the Beaufort Sea. At the two mountainous sites, we collected sections from the largest stem of willow shrubs at shrub line (the maximum elevation at which canopy-forming shrubs grow) and below shrub line (at approximately 50% shrub cover) in a total of 16 valleys. At the coastal site we collected samples from each of the 4 vegetation types: the alluvial fan, ridges, tussock tundra and disturbed terrain. Shrub stems were thin-sectioned using a microtome, photographed with a microscope and ring widths were measured from the digital images. We compared age distributions of willow individuals at and below shrub line and found younger populations at higher elevations, particularly on warm, south-facing aspects. Younger willows at shrub line and a lack of significant mortality in the field surveys indicate that shrubs have advanced up slope at the mountainous sites. Photographic and long-term plot data indicate increases in cover and height of willow shrub patches at the coastal site. We compared growth rings to regional weather data, and found positive correlations between annual growth and summer temperatures. Our results indicate that willows grew most in years with a warm June and July. This evidence of

  2. Architecture-Based Unit Testing of the Flight Software Product Line

    NASA Technical Reports Server (NTRS)

    Ganesan, Dharmalingam; Lindvall, Mikael; McComas, David; Bartholomew, Maureen; Slegel, Steve; Medina, Barbara

    2010-01-01

    This paper presents an analysis of the unit testing approach developed and used by the Core Flight Software (CFS) product line team at the NASA GSFC. The goal of the analysis is to understand, review, and reconunend strategies for improving the existing unit testing infrastructure as well as to capture lessons learned and best practices that can be used by other product line teams for their unit testing. The CFS unit testing framework is designed and implemented as a set of variation points, and thus testing support is built into the product line architecture. The analysis found that the CFS unit testing approach has many practical and good solutions that are worth considering when deciding how to design the testing architecture for a product line, which are documented in this paper along with some suggested innprovennents.

  3. Development Approach of the Advanced Life Support On-line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA

  4. Power-conditioning system for the Advanced Test Accelerator

    SciTech Connect

    Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L.; Lee, F.D.; Reginato, L.L.; Rogers, D.; Speckert, G.C.

    1982-06-01

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.

  5. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    SciTech Connect

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs.

  6. Orbiter Reinforced Carbon-Carbon Advanced Sealant Systems: Screening Tests

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Lewis, Ronad K.; Norman, Ignacio; Chao, Dennis; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Oxidation protection for the Orbiter reinforced carbon-carbon (RCC consists of three components: silicon carbide coating, tetraethyl orthosilicate (TEOS) impregnated into the carbon substrate and a silicon based surface sealant (designated Type A). The Orbiter Type A sealant is being consumed each mission, which results in increased carbon-carbon substrate mass loss, which adversely impacts the mission life of the RCC components. In addition, the sealant loss in combination with launch pad contamination (salt deposit and zinc oxide) results in RCC pinholes. A sealant refurbishment schedule to maintain mission life and minimize affects of pin hole formation has been implemented in the Orbiter maintenance schedule. The objective of this investigation is to develop an advanced sealant system for the RCC that extends the refurbishment schedule by reducing sealant loss/pin hole formation and that can be applied to existing Orbiter RCC components. This paper presents the results of arc jet screening tests conducted on several sealants that are being considered for application to the Orbiter RCC.

  7. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  8. Original Article A phase I study of imexon plus gemcitabine as first-line therapy for advanced pancreatic cancer

    PubMed Central

    Cohen, Steven J.; Zalupski, Mark M.; Modiano, Manuel R.; Conkling, Paul; Patt, Yehuda Z.; Davis, Peg; Dorr, Robert T.; Boytim, Michelle L.; Hersh, Evan M.

    2010-01-01

    Purpose Imexon is an aziridine-derived iminopyrrolidone which has synergy with gemcitabine in pancreatic cancer cell lines. Gemcitabine is a standard therapy for pancreatic cancer. We performed a phase I trial of imexon and gemcitabine to evaluate safety, dose limiting toxicity (DLT), and maximum tolerated dose (MTD) in patients with advanced pancreatic cancer. Methods Patients with untreated locally advanced or metastatic pancreatic adenocarcinoma received therapy in sequential cohorts on regimen A (n=19; imexon 200 or 280 mg/m2 intravenously (IV) over 30 minutes days 1–5, 15–19 and gemcitabine 800 or 1,000 mg/m2 IV over 30 minutes on days 1,8,15 every 28 days) or regimen B (n=86; imexon 280–1,300 mg/m2 IV over 30–60 minutes days 1, 8, and 15 and gemcitabine 1,000 mg/m2 IV over 30 minutes on days 1, 8, and 15 every 28 days). Results One hundred-five patients received 340 treatment cycles (median 2, range 1–16). Patient characteristics: median age 63, 61% male, ECOG PS 0/1 50%/50%, 93% metastatic. DLT was abdominal cramping and pain, often with transient, acute diarrhea. Best response was confirmed partial response (PR) in 11.4%, 8.9% unconfirmed PR, and 48.1% with stable disease. There was a dose proportional increase in imexon AUC across the doses tested with terminal half-life 69 minutes at the MTD and no alteration of gemcitabine pharmacokinetics. Conclusions The recommended phase II dose of imexon is 875 mg/m2 with gemcitabine 1,000 mg/m2. DLT was acute abdominal pain and cramping. Encouraging antitumor responses support further evaluation of this combination in advanced pancreatic cancer. PMID:19855966

  9. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  10. Spectropolarimetric test of the relativistic disk model for the broad emission lines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Chen, Kaiyou; Halpern, Jules P.

    1990-01-01

    Previously, it was claimed that the broad emission lines of the radio galaxy Arp 102B can be fitted by the line profile from a simple relativistic Keplerian thin disk. It was argued that the lines originating from the relativistic accretion disk could be polarized due to electron scattering, which is likely to be the dominant opacity in the line-emitting region of Arp 102B. In the present work, the expected polarization properties of these broad emission lines are calculated. The percentage of polarization depends strongly on the inclination angle. For some angles, the red peak of the polarized, double-peaked line profile can be higher than the blue peak. This is in contrast to the total line profile, in which the blue peak is always higher than the red one. Spectropolarimetric observations could, therefore, provide an independent test of the relativistic disk model for the broad emission lines of Arp 102B and other active galactic nuclei.

  11. Advanced in-line metrology strategy for self-aligned quadruple patterning

    NASA Astrophysics Data System (ADS)

    Chao, Robin; Breton, Mary; L'herron, Benoit; Mendoza, Brock; Muthinti, Raja; Nelson, Florence; De La Pena, Abraham; Le, Fee li; Miller, Eric; Sieg, Stuart; Demarest, James; Gin, Peter; Wormington, Matthew; Cepler, Aron; Bozdog, Cornel; Sendelbach, Matthew; Wolfling, Shay; Cardinal, Tom; Kanakasabapathy, Sivananda; Gaudiello, John; Felix, Nelson

    2016-03-01

    Self-Aligned Quadruple Patterning (SAQP) is a promising technique extending the 193-nm lithography to manufacture structures that are 20nm half pitch or smaller. This process adopts multiple sidewall spacer image transfers to split a rather relaxed design into a quarter of its original pitch. Due to the number of multiple process steps required for the pitch splitting in SAQP, the process error propagates through each deposition and etch, and accumulates at the final step into structure variations, such as pitch walk and poor critical dimension uniformity (CDU). They can further affect the downstream processes and lower the yield. The impact of this error propagation becomes significant for advanced technology nodes when the process specifications of device design CD requirements are at nanometer scale. Therefore, semiconductor manufacturing demands strict in-line process control to ensure a high process yield and improved performance, which must rely on precise measurements to enable corrective actions and quick decision making for process development. This work aims to provide a comprehensive metrology solution for SAQP. During SAQP process development, the challenges in conventional in-line metrology techniques start to surface. For instance, critical-dimension scanning electron microscopy (CDSEM) is commonly the first choice for CD and pitch variation control. However, it is found that the high aspect ratio at mandrel level processes and the trench variations after etch prevent the tool from extracting the true bottom edges of the structure in order to report the position shift. On the other hand, while the complex shape and variations can be captured with scatterometry, or optical CD (OCD), the asymmetric features, such as pitch walk, show low sensitivity with strong correlations in scatterometry. X-ray diffraction (XRD) is known to provide useful direct measurements of the pitch walk in crystalline arrays, yet the data analysis is influenced by the incoming

  12. Advanced sluicing system test report for single shell tank waste retrieval integrated testing

    SciTech Connect

    Berglin, E.J.

    1997-05-29

    This document describes the testing performed by ARD Environmental, Inc., and Los Alamos Technical Associates of the LATA/ARD Advanced Sluicing System, in support of ACTR Phase 1 activities. Testing was to measure the impact force and pressures of sluicing streams at three different distances, as measured by the Government supplied load cell. Simulated sluicing of large simulated salt cake and hard pan waste coupons was also performed. Due to operational difficulties experienced with the Government supplied load cell, no meaningful results with respect to sluice stream impact pressure distribution or stream coherence were obtained. Sluice testing using 3000 psi salt cake simulants measured waste retrieval rates of approximately 12 Ml/day (17.6 ft{sup 3}/hr). Rates as high as 314 m{sup 3}/day (463 ft{sup 3}/hr) were measured against the lower strength salt cake simulants.

  13. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  14. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure

  15. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic

  16. 77 FR 8848 - Application for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Application for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information: Advanced Placement Test.... Full Text of Announcement I. Funding Opportunity Description Purpose of Program: The AP Test...

  17. 78 FR 19691 - Applications for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Applications for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information Advanced Placement Test... Announcement I. Funding Opportunity Description Purpose of Program: The AP Test Fee program awards grants...

  18. Budget impact analysis of first-line treatment with pazopanib for advanced renal cell carcinoma in Spain

    PubMed Central

    2013-01-01

    Background Due to economic constraints, cancer therapies are under close scrutiny by clinicians, pharmacists and payers alike. There is no published pharmacoeconomic evidence guiding the choice of first-line therapy for advanced renal cell carcinoma (RCC) in the Spanish setting. We aimed to develop a model describing the natural history of RCC that can be used in healthcare decision-making. We particularly analyzed the budget impact associated with the introduction of pazopanib compared to sunitinib under the Spanish National Healthcare System (NHS) perspective. Methods We developed a Markov model to estimate the future number of cases of advanced RCC (patients with favorable or intermediate risk) resulting either from initial diagnosis or disease progression after surgery. The model parameters were obtained from the literature. We assumed that patients would receive either pazopanib or sunitinib as first-line therapy until disease progression. Pharmacological costs and costs associated with the management of adverse events (AE) were considered. A univariate sensitivity analysis was undertaken in order to test the robustness of the results. Results The model predicted an adult RCC prevalence of 7.5/100,000 (1-year), 20.7/100,000 (3-year) and 32.5/100,000 (5-year). These figures are very close to GLOBOCAN reported RCC prevalence estimates of 7.6/100,000, 20.2/100,000 and 31.1/100,000, respectively. The model predicts 1,591 advanced RCC patients with favorable or intermediate risk in Spain in 2013. Annual per patient pharmacological costs were €32,365 and €39,232 with pazopanib and sunitinib, respectively. Annual costs associated with the management of AE were €662 and €974, respectively. Overall annual per patient costs were €7,179 (18%) lower with pazopanib compared to sunitinib. For every point increase in the percentage of patients treated with pazopanib, the NHS would save €67,236. If all the 1,591 patients predicted were treated with pazopanib, the

  19. The advanced computational testing and simulation toolkit (ACTS)

    SciTech Connect

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  20. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  1. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  2. Development and testing of advanced cryogenic thermal switch concepts

    NASA Astrophysics Data System (ADS)

    Marland, B.; Bugby, D.; Stouffer, C.

    2000-01-01

    This paper describes the development and testing of two advanced cryogenic thermal switch (CTSW) options for use in long-life cryogenic space systems. The principal application for these two CTSW options in such systems is in implementing cryocooler redundancy with a minimum parasitic heating penalty. The two CTSW configurations covered in the paper are a hydrogen gas-gap (H2-GG) design, flown on STS-95 in October 1998 as part of the CRYOTSU Hitchhiker flight experiment, and a differential thermal expansion (DTE) design. Both options are constructed primarily of beryllium for CTE compatibility with beryllium cryogenic components. The H2-GG design utilizes a flat 2-mil gap between two cylindrical beryllium halves that are supported by a thin-walled titanium tube. A highly convoluted stainless steel bellows seals the unit. The H2-GG CTSW is nominally ``off'' (evacuated) until actuated ``on'' by heating a metal hydride getter, which evolves hydrogen and provides thermal conductance across the gap. The H2-GG design has demonstrated an ``on'' conductance of 1.0 W/K, an ``off'' resistance of 1000-1500 K/W and a range of operation from 15K-300K. The DTE design, which has just three parts, is very similar to the H2-GG design except that a stainless steel tube replaces the titanium tube and the bellows and getter are no longer needed. The DTE CSTW is actuated ``on'' (both sides cold) by the higher CTE of stainless steel compared to beryllium and actuated ``off'' by temporarily applying power to a small heater on the stainless steel tube to expand the tube enough to open the gap. After the smaller of the two beryllium parts warms sufficiently, the heater is no longer needed and the DTE CTSW remains ``off'' (one side cold, one side warm). The DTE design has demonstrated the potential for an ``on'' conductance greater than 1.0 W/K, an ``off'' resistance of 1400 K/W and a range of operation from less than 4K to 300K. This paper describes the design of each CTSW option and the

  3. Doublet Versus Single Agent as Second-Line Treatment for Advanced Gastric Cancer

    PubMed Central

    Zhang, Yong; Ma, Bing; Huang, Xiao-Tian; Li, Yan-Song; Wang, Yu; Liu, Zhou-Lu

    2016-01-01

    Abstract The purpose of this study was to perform a meta-analysis of randomized controlled trials (RCTs) to compare the efficacy and safety of doublet versus single agent as second-line treatment for advanced gastric cancer (AGC). A comprehensive literature search was performed to identify relevant RCTs. All clinical studies were independently identified by 2 authors for inclusion. Demographic data, treatment regimens, objective response rate (ORR), and progression-free survival (PFS) and overall survival (OS) were extracted and analyzed using Comprehensive Meta-Analysis software (Version 2.0). Ten RCTs involving 1698 pretreated AGC patients were ultimately identified. The pooled results demonstrated that doublet combination therapy as second-line treatment for AGC significantly improved OS (hazard ratio [HR] 0.87, 95% confidence interval [CI]: 0.78–0.97, P = 0.011), PFS (HR 0.79, 95% CI: 0.72–0.87, P < 0.001), and ORR (relative risk [RR] 1.57, 95% CI: 1.27–1.95, P < 0.001). Sub-group analysis according to treatment regimens also showed that targeted agent plus chemotherapy significantly improve OS, PFS, and ORR. However, no significant survival benefits had been observed in doublet cytotoxic chemotherapy when compared with single cytotoxic agent. Additionally, more incidences of grade 3 or 4 myelosuppression toxicities, diarrhea, and fatigue were observed in doublet combination groups, while equivalent frequencies of grade 3 or 4 thrombocytopenia and nausea were found between the 2 groups. In comparison with single cytotoxic agent alone, the addition of targeted agent to mono-chemotherapy as salvage treatment for pretreated AGC patients provide substantial survival benefits, while no significant survival benefits were observed in doublet cytotoxic chemotherapy regimens. PMID:26937908

  4. Neutropenia as a prognostic factor and safety of second-line therapy with S-1 for advanced or recurrent pancreatic cancer

    PubMed Central

    Ikagawa, Makiko; Kimura, Michio; Iwai, Mina; Usami, Eiseki; Yoshimura, Tomoaki; Yasuda, Kimio

    2016-01-01

    The aim of this retrospective study was to investigate the safety of S-1 as second-line therapy and to evaluate the association between neutropenia occurring during first-line gemcitabine (GEM) therapy and survival for advanced or recurrent pancreatic cancer (APC). Between January, 2010 and December, 2014, 123 APC patients received chemotherapy at the Ogaki Municipal Hospital (Ogaki, Japan). Of those, 37 received GEM as first-line and S-1 as a second-line therapy (GEM→S-1 group). A further 60 patients received GEM as first-line therapy, but did not receive second-line therapy (GEM group). The median overall survival in the GEM→S-1 (n=37) and GEM (n=60) groups was 323 days [95% confidence interval (CI): 138–218.9 days] and 172 days (95% CI: 105–184.4 days), respectively (P=0.0004). The median overall survival in the mild (grade ≤2; n=63) and severe (grade ≥3; n=34) neutropenia groups was 178 days (95% CI: 182–275 days) and 330 days (95% CI: 297–514 days), respectively (log-rank test, P=0.0023). The severe non-haematological toxicities associated with S-1 as second-line therapy were nausea (2.7%) and hand-foot syndrome (2.7%). Second-line S-1 treatment was discontinued due to adverse events in 5.4% (2/37) of the cases. In conclusion, neutropenia occurring during GEM therapy administered as first-line treatment to APC patients was strongly associated with a better prognosis. S-1 therapy as second-line treatment was associated with a low incidence of severe adverse events and the patients were able to successfully continue treatment.

  5. Biocompatibility test of polyhydroxybutyrate on human cell line.

    PubMed

    Raouf, A A; Samsudin, A R; Al-Joudi, F S; Shamsuria, O

    2004-05-01

    The human fibroblast MRC-5 cells incubated with PHB granules (TM) added at a final concentration of 4 mg/ml showed a time-course pattern of survival. The percentages of dead cells obtained were at the rate of 3.8% after 7 days, respectively. When the MRC-5 cells grown in different material, using the test concentration of 4 mg/ml PCM, they were found to show a similar time-course increasing pattern of death as that obtained with PHB. However, the death was noted in the cells incubated for 7 days, the death rates obtained was 40.54% respectively. PMID:15468838

  6. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  7. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  8. A Secure Test Technique for Pipelined Advanced Encryption Standard

    NASA Astrophysics Data System (ADS)

    Shi, Youhua; Togawa, Nozomu; Yanagisawa, Masao; Ohtsuki, Tatsuo

    In this paper, we presented a Design-for-Secure-Test (DFST) technique for pipelined AES to guarantee both the security and the test quality during testing. Unlike previous works, the proposed method can keep all the secrets inside and provide high test quality and fault diagnosis ability as well. Furthermore, the proposed DFST technique can significantly reduce test application time, test data volume, and test generation effort as additional benefits.

  9. The Character-line Bisection Task: a new test for hemispatial neglect.

    PubMed

    Lee, B H; Kang, S J; Park, J M; Son, Y; Lee, K H; Adair, J C; Heilman, K M; Na, D L

    2004-01-01

    A failure to report or respond to stimuli presented in a portion of space is termed hemispatial neglect. Line bisection and line cancellation are two of the tests used most commonly to assess for neglect. Perhaps, because neglect can be induced by a variety of deficits, neither of these tests used alone is as sensitive as both used together. Hence, the primary purpose of this study was to assess the sensitivity, reliability and validity of a new test called the Character-line Bisection Task (CLBT) that combines features of both the bisection and cancellation tests. Since local attention and language are primarily mediated by and activate the left hemisphere, our second goal was to learn if the CLBT and especially the letter version induce a greater rightward bias than the solid-line bisection task. Eighty patients with acute right hemisphere stroke and 81 controls performed the CLBT that consists of two subtests, the Letter-line and Star-line Bisection tasks. All subjects also completed four conventional tests for neglect (Standard solid-line bisection, line cancellation, Star Cancellation, and figure copying). In the bisection tasks both patients and controls bisected to the right with the CLBT than with the solid-line bisection task, suggesting the CLBT induces asymmetrical hemispheric activation. This enhanced rightward deviation with the CLBT was the same for the Letter-line and Star-line Bisection tasks. In regard to sensitivity, we defined the presence of neglect syndrome based on a total score derived from performance of controls on all six tests. This total score detected 55 (68.8%) patients with neglect. Within this group, the Letter-line and Star-line tasks diagnosed neglect in 50 and 48 patients, respectively, resulting in the highest sensitivities (90.9, 87.3%) of the six tests. Thus, the CLBTs demonstrated higher sensitivities than the other commonly used neglect tests and these new tests can be useful for the detection and quantification of unilateral

  10. Novel conformal organic antireflective coatings for advanced I-line lithography

    NASA Astrophysics Data System (ADS)

    Deshpande, Shreeram V.; Nowak, Kelly A.; Fowler, Shelly; Williams, Paul; Arjona, Mikko

    2001-08-01

    Flash memory chips are playing a critical role in semiconductor devices due to increased popularity of hand held electronic communication devices such as cell phones and PDAs (personal Digital Assistants). Flash memory offers two primary advantages in semiconductor devices. First, it offers flexibility of in-circuit programming capability to reduce the loss from programming errors and to significantly reduce commercialization time to market for new devices. Second, flash memory has a double density memory capability through stacked gate structures which increases the memory capability and thus saves significantly on chip real estate. However, due to stacked gate structures the requirements for manufacturing of flash memory devices are significantly different from traditional memory devices. Stacked gate structures also offer unique challenges to lithographic patterning materials such as Bottom Anti-Reflective Coating (BARC) compositions used to achieve CD control and to minimize standing wave effect in photolithography. To be applicable in flash memory manufacturing a BARC should form a conformal coating on high topography of stacked gate features as well as provide the normal anti-reflection properties for CD control. In this paper we report on a new highly conformal advanced i-line BARC for use in design and manufacture of flash memory devices. Conformal BARCs being significantly thinner in trenches than the planarizing BARCs offer the advantage of reducing BARC overetch and thus minimizing resist thickness loss.

  11. Genetic Control of Spontaneous Arthritis in a Four-Way Advanced Intercross Line

    PubMed Central

    Ranea, Laura Mellado; de Castro Marques, Andreia; Möller, Steffen; Gupta, Yask; Ibrahim, Saleh M.

    2013-01-01

    Identifying the genetic basis of complex diseases, such as rheumatoid arthritis, remains a challenge that requires experimental models to reduce the genetic and environmental variability. Numerous loci for arthritis have been identified in induced animal models; however, few spontaneous models have been genetically studied. Therefore, we generated a four-way advanced intercross line (AIL) from four inbred strains, including BXD2/TyJ which spontaneously develops autoimmune arthritis. A genome-wide scan for spontaneous arthritis was performed in a cohort of 366 mice of the fourth generation (G4) of this cross. Five loci contributing to clinical phenotypes were identified in chromosomes 3, 7, 13, 18, and X. Three of the loci found in this study, confirm previously identified loci; whereas two of them are novel loci. Interesting candidate genes for the loci are highlighted. This study provides a genetic overview of spontaneous arthritis in mice and aids to solve the genetic etiology of rheumatoid arthritis and to gain a better understanding of the disease. PMID:24146764

  12. ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

    2001-09-30

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the

  13. 40 CFR 1048.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nonconformity, we may require you to test production-line engines under this subpart, or under 40 CFR part 1068... meet the field-testing requirements of 40 CFR part 1065, subpart J, but not the otherwise applicable requirements in 40 CFR part 1065 for laboratory testing, to demonstrate compliance with duty-cycle...

  14. 40 CFR 1048.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nonconformity, we may require you to test production-line engines under this subpart, or under 40 CFR part 1068... meet the field-testing requirements of 40 CFR part 1065, subpart J, but not the otherwise applicable requirements in 40 CFR part 1065 for laboratory testing, to demonstrate compliance with duty-cycle...

  15. 40 CFR 1051.301 - When must I test my production-line vehicles or engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nonconformity, we may require you to test production-line engines under this subpart, or under 40 CFR part 1068... may use analyzers and sampling systems that meet the field-testing requirements of 40 CFR part 1065, subpart J, but not the otherwise applicable requirements in 40 CFR part 1065 for laboratory testing,...

  16. 40 CFR 1051.301 - When must I test my production-line vehicles or engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nonconformity, we may require you to test production-line engines under this subpart, or under 40 CFR part 1068... may use analyzers and sampling systems that meet the field-testing requirements of 40 CFR part 1065, subpart J, but not the otherwise applicable requirements in 40 CFR part 1065 for laboratory testing,...

  17. 40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test...

  18. 40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test...

  19. 40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test...

  20. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Clean Air Act. Our production-line testing conformed completely with the requirements of 40 CFR part... type of engine. (8) Provide the CumSum analysis required in § 1054.315 and the sample-size...

  1. 40 CFR 1051.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Act. Our production-line testing conformed completely with the requirements of 40 CFR part 1051...) Provide the CumSum analysis required in § 1051.315 and the sample-size calculation required in §...

  2. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Clean Air Act. Our production-line testing conformed completely with the requirements of 40 CFR part... type of engine. (8) Provide the CumSum analysis required in § 1054.315 and the sample-size...

  3. 40 CFR 1051.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Air Act. Our production-line testing conformed completely with the requirements of 40 CFR part 1051...) Provide the CumSum analysis required in § 1051.315 and the sample-size calculation required in §...

  4. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Clean Air Act. Our production-line testing conformed completely with the requirements of 40 CFR part... type of engine. (8) Provide the CumSum analysis required in § 1054.315 and the sample-size...

  5. 40 CFR 1051.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Act. Our production-line testing conformed completely with the requirements of 40 CFR part 1051...) Provide the CumSum analysis required in § 1051.315 and the sample-size calculation required in §...

  6. 40 CFR 1051.310 - How must I select vehicles or engines for production-line testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for production-line testing? 1051.310 Section 1051.310 Protection of Environment ENVIRONMENTAL... VEHICLES Testing Production-Line Vehicles and Engines § 1051.310 How must I select vehicles or engines for production-line testing? (a) Test engines from each engine family as described in this section based on...

  7. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  8. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  9. Design, analysis, and test verification of advanced encapsulation system

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1981-01-01

    Procurement of 4 in x 4 in polycrystalline solar cells were proceeded with some delays. A total of 1200 cells were procured for use in both the verification testing and qualification testing. Additional thermal structural analyses were run and the data are presented. An outline of the verification testing is included with information on test specimen construction.

  10. An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Baba, Shuichi; Nakata, Toshihiko; Kurenuma, Toru; Kuroda, Hiroshi; Hiroki, Takenori

    2006-03-01

    Design rule shrinkage and the wider adoption of new device structures such as STI, copper damascene interconnects, and deep trench structures have increased the necessity of in-line process monitoring of step heights and profiles of device structures. For monitoring active device patterns, not test patterns as in OCD, AFM is the only non-destructive 3D monitoring tool. The barriers to using AFM in-line monitoring are its slow throughput and the accuracy degradation associated with probe tip wear and spike noise caused by unwanted oscillation on the steep slopes of high-aspect-ratio patterns. Our proprietary AFM scanning method, Step in mode®, is the method best suited to measuring high-aspect-ratio pattern profiles. Because the probe is not dragged on the sample surface as in conventional AFM, the profile trace fidelity across steep slopes is excellent. Because the probe does not oscillate and hit the sample at a high frequency as in AC scanning mode, this mode is free from unwanted spurious noises on steep sample slopes and incurs extremely little probe tip wear. To fully take advantage of the above properties, we have developed an AFM sensor optimized for in-line use, which produces accurate profile data at high speeds. The control scheme we have developed for the AFM sensor, which we call "Smart Step-in", elaborately analyses the contact force signal, enabling efficient probe tip scanning and a low and stable contact force. The mechanism of the AFM sensor has been optimized for the higher scanning rate and has improved the accuracy, such as the scanning planarity, position and height accuracy, and slope angle accuracy. Our prototype AFM sensor can scan high-aspect-ratio patterns while stabilizing the contact force at 3 nN. The step height measurement repeatability was 0.8 nm (3σ). A STI-like test pattern was scanned, and the steep sidewalls with angles of 84° were measured with high fidelity and without spurious noises.

  11. Exemplary Advanced Placement Programs: Comparing AP Test Scores by Subject and School.

    ERIC Educational Resources Information Center

    Hoven, John

    This study compared performance of seniors at 21 Montgomery County (Maryland) high schools on the Advanced Placement (AP) Tests. The schools were ranked by the percentage of college-educated adults within the school boundaries, and the ranking was compared to Advanced Placement test results (the average number of students, per 100 seniors, who…

  12. An On-line Technology Information System (OTIS) for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriquez, Luis

    2003-01-01

    OTIS is an on-line communication platform designed for smooth flow of technology information between advanced life support (ALS) technology developers, researchers, system analysts, and managers. With pathways for efficient transfer of information, several improvements in the ALS Program will result. With OTIS, it will be possible to provide programmatic information for technology developers and researchers, technical information for analysts, and managerial decision support. OTIS is a platform that enables the effective research, development, and delivery of complex systems for life support. An electronic data collection form has been developed for the solid waste element, drafted by the Solid Waste Working Group. Forms for other elements (air revitalization, water recovery, food processing, biomass production and thermal control) will also be developed, based on lessons learned from the development of the solid waste form. All forms will be developed by consultation with other working groups, comprised of experts in the area of interest. Forms will be converted to an on-line data collection interface that technology developers will use to transfer information into OTIS. Funded technology developers will log in to OTIS annually to complete the element- specific forms for their technology. The type and amount of information requested expands as the technology readiness level (TRL) increases. The completed forms will feed into a regularly updated and maintained database that will store technology information and allow for database searching. To ensure confidentiality of proprietary information, security permissions will be customized for each user. Principal investigators of a project will be able to designate certain data as proprietary and only technical monitors of a task, ALS Management, and the principal investigator will have the ability to view this information. The typical OTIS user will be able to read all non-proprietary information about all projects

  13. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    SciTech Connect

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  14. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    SciTech Connect

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  15. 77 FR 24480 - Application for New Awards; Advanced Placement (AP) Test Fee Program-Reopening the AP Test Fee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    .... ACTION: Notice reopening the AP Test Fee fiscal year 2012 competition. Catalog of Federal Domestic Assistance (CFDA) Number: 84.330B. SUMMARY: On February 15, 2012, we published in the Federal Register (77 FR... Application for New Awards; Advanced Placement (AP) Test Fee Program--Reopening the AP Test Fee Fiscal...

  16. Inferring Genome-Wide Recombination Landscapes from Advanced Intercross Lines: Application to Yeast Crosses

    PubMed Central

    Illingworth, Christopher J. R.; Parts, Leopold; Bergström, Anders; Liti, Gianni; Mustonen, Ville

    2013-01-01

    Accurate estimates of recombination rates are of great importance for understanding evolution. In an experimental genetic cross, recombination breaks apart and rejoins genetic material, such that the genomes of the resulting isolates are comprised of distinct blocks of differing parental origin. We here describe a method exploiting this fact to infer genome-wide recombination profiles from sequenced isolates from an advanced intercross line (AIL). We verified the accuracy of the method against simulated data. Next, we sequenced 192 isolates from a twelve-generation cross between West African and North American yeast Saccharomyces cerevisiae strains and inferred the underlying recombination landscape at a fine genomic resolution (mean segregating site distance 0.22 kb). Comparison was made with landscapes inferred for a similar cross between four yeast strains, and with a previous single-generation, intra-strain cross (Mancera et al., Nature 2008). Moderate congruence was identified between landscapes (correlation 0.58–0.77 at 5 kb resolution), albeit with variance between mean genome-wide recombination rates. The multiple generations of mating undergone in the AILs gave more precise inference of recombination rates than could be achieved from a single-generation cross, in particular in identifying recombination cold-spots. The recombination landscapes we describe have particular utility; both AILs are part of a resource to study complex yeast traits (see e.g. Parts et al., Genome Res 2011). Our results will enable future applications of this resource to take better account of local linkage structure heterogeneities. Our method has general applicability to other crossing experiments, including a variety of experimental designs. PMID:23658715

  17. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  18. Rapid diagnostics for avian influenza -- Advances in testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of tools are available for the diagnosis of avian influenza virus. They can be generally divided into the serologic diagnostic tests and direct virus detection tests. The serologic tests are important primarily for active surveillance to assure our poultry flocks are free of avian influe...

  19. Advanced tests for skin and respiratory sensitization assessment.

    PubMed

    Rovida, Costanza; Martin, Stefan F; Vivier, Manon; Weltzien, Hans Ulrich; Roggen, Erwin

    2013-01-01

    Sens-it-iv is an FP6 Integrated Project that finished in March 2011 after 66 months of activity, thanks to 12 million € of funding. The ultimate goal of the Sens-it-iv project was the development of a set of in vitro methods for the assessment of the skin and respiratory sensitization potential of chemicals and proteins. The level of development was intended to be at the point to enter the pre-validation phase. At the end of the project it can be concluded that the goal has been largely accomplished. Several advanced methods were evaluated extensively, and for some of them a detailed Standard Operating Procedure (SOP) was established. Other, less advanced methods also contributed to our understanding of the mechanisms driving sensitization. The present contribution, which has been prepared with the support of CAAT-Europe, represents a short summary of what was discussed during the 3-day end congress of the Sens-it-iv project in Brussels. It presents a list of methods that are ready for skin sensitization hazard assessment. Potency evaluation and the possibility of distinguishing skin from respiratory sensitizers are also well advanced. PMID:23665811

  20. 40 CFR 1051.325 - What happens if an engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the production-line testing requirements? 1051.325 Section 1051.325 Protection of Environment... ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.325 What happens if an engine family fails the production-line testing requirements? (a) We may suspend your certificate of...

  1. 40 CFR 1054.325 - What happens if an engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the production-line testing requirements? 1054.325 Section 1054.325 Protection of Environment... SPARK-IGNITION ENGINES AND EQUIPMENT Production-line Testing § 1054.325 What happens if an engine family fails the production-line testing requirements? (a) We may suspend your certificate of conformity for...

  2. 40 CFR 1042.325 - What happens if an engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the production-line testing requirements? 1042.325 Section 1042.325 Protection of Environment... MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.325 What happens if an engine family fails the production-line testing requirements? (a) We may suspend...

  3. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information to your written report so we can determine whether your new engines conform with the requirements... Clean Air Act. Our production-line testing conformed completely with the requirements of 40 CFR part 1054. We have not changed production processes or quality-control procedures for test engines in a...

  4. 40 CFR 1051.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... your written report, so we can determine whether your new vehicles conform with the requirements of... Air Act. Our production-line testing conformed completely with the requirements of 40 CFR part 1051. We have not changed production processes or quality-control procedures for test engines (or...

  5. The On-Line Yes/No Test as a Placement Tool

    ERIC Educational Resources Information Center

    Harrington, Michael; Carey, Michael

    2009-01-01

    This study evaluates the concurrent validity of an on-line Yes/No test of recognition vocabulary as a placement tool at an Australian English language school. Newly entering students (n = 88) completed a Yes/No test, which measured accuracy and speed of response, and a school placement battery consisting of grammar, writing, speaking and listening…

  6. Advanced liquid Oxygen (LO2) propellant conditioning concept testing. 2

    NASA Technical Reports Server (NTRS)

    Hasting, J. H.; Perry, G. L. E.; Mehta, G. K.

    1996-01-01

    Extensive testing was performed on the promising L02 propellant conditioning concept of passive recirculation (no-bleed). Data from the project is being used to further anchor models in L02 conditioning behavior and broaden the data base of no-bleed and low-bleed conditioning. Data base expansion includes results from testing the limits of no-bleed and low-bleed conditioning with various configuration changes to the test facility and designed test article. Configuration changes include low velocity effects in the recirculation loop above the test article, test article internal constriction impacts, test article out-of-plane effects, impact from an actual Titan L02 pump attachment, feed duct slope effects, and up-leg booster effects. LN2 was used as the test fluid. The testing was conducted between July 1994 and January 1995 at the west test area of Marshall Space Flight Center. Data have shown that in most cases passive recirculation was demonstrated when the aforementioned limits were applied.

  7. Testing and Analytical Modeling for Purging Process of a Cryogenic Line

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.

    2013-01-01

    The purging operations for cryogenic main propulsion systems of upper stage are usually carried out for the following cases: 1) Purging of the Fill/Drain line after completion of propellant loading. This operation allows the removal of residual propellant mass; and 2) Purging of the Feed/Drain line if the mission is scrubbed. The lines would be purged by connections to a ground high-pressure gas storage source. The flowrate of purge gas should be regulated such that the pressure in the line will not exceed the required maximum allowable value. Exceeding the maximum allowable pressure may lead to structural damage in the line. To gain confidence in analytical models of the purge process, a test series was conducted. The test article, a 20-cm incline line, was filled with liquid hydrogen and then purged with gaseous helium (GHe). The influences of GHe flowrates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program, an in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the testing. The test procedures, modeling descriptions, and the results will be presented in the final paper.

  8. Testing and Analytical Modeling for Purging Process of a Cryogenic Line

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.

    2015-01-01

    The purging operations for cryogenic main propulsion systems of upper stage are usually carried out for the following cases: 1) Purging of the Fill/Drain line after completion of propellant loading. This operation allows the removal of residual propellant mass; and 2) Purging of the Feed/Drain line if the mission is scrubbed. The lines would be purged by connections to a ground high-pressure gas storage source. The flow-rate of purge gas should be regulated such that the pressure in the line will not exceed the required maximum allowable value. Exceeding the maximum allowable pressure may lead to structural damage in the line. To gain confidence in analytical models of the purge process, a test series was conducted. The test article, a 20-cm incline line, was filled with liquid hydrogen and then purged with gaseous helium (GHe). The influences of GHe flow-rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program, an in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the testing. The test procedures, modeling descriptions, and the results will be presented in the final paper.

  9. Efficacy and safety of trastuzumab combined with chemotherapy for first-line treatment and beyond progression of HER2-overexpressing advanced breast cancer

    PubMed Central

    Shao, Bin; Yan,, Yin; Song, Guohong; Liu, Xiaoran; Wang, Jing; Liang, Xu

    2016-01-01

    Objective To observe the efficacy and safety of trastuzumab combined with chemotherapy in patients with human epidermal growth factor receptor 2 (HER2)-overexpressing advanced breast cancer. Methods A total of 90 patients with HER2-overexpressing advanced breast cancer were enrolled in this study. All patients were diagnosed with ductal invasive breast cancer by pathological analysis, and were aged between 31–73 years with a median of 51 years. HER2-positivity was defined as 3(+) staining in immunochemistry or amplification of fluorescence in situ hybridization (FISH, ratio ≥2.0). Trastuzumab was administered in combination with chemotherapy as first-line treatment and beyond progression as a secondline, third-line, and above treatment in 90, 34, 14, and 6 patients, respectively. The chemotherapy regimen was given according to normal clinical practice. The response rate was evaluated every two cycles, and the primary endpoints were progression-free survival (PFS) and overall survival (OS). Survival curves were estimated by using Kaplan-Meier graphs and were compared by using log-rank test statistics. Multivariate analysis was done using Cox’s proportional hazards regression model, and the level of significance was P<0.05. Results All 90 patients received at least one dose of trastuzumab, and efficacy could be evaluated in 85 patients. The median follow-up was 50 months. In total, 72 (80.00%) patients had visceral metastasis, and 43 (47.78%) patients had progressed after one or more extensive chemotherapy regimens for metastatic diseases. The median PFS for first-line trastuzumab was 10 months (range, 2–59 months), and the median OS after metastasis or initially local advanced disease was 22 months (range, 2–116 months). Conclusions Trastuzumab combined with chemotherapy was active and well-tolerated as a first-line treatment and even beyond progression in HER2-overexpressing advanced breast cancer as a second-line or third-line treatment. However, its

  10. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III; Kallis, J. M.; Trucker, D. C.

    1983-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.

  11. Full-scale transmission testing to evaluate advanced lubricants

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Decker, Harry J.; Shimski, John T.

    1992-01-01

    Experimental tests were performed on the OH-58A helicopter main rotor transmission in the NASA Lewis 500 hp helicopter transmission test stand. The testing was part of a lubrication program. The objectives are to develop and show a separate lubricant for gearboxes with improved performance in life and load carrying capacity. The goal was to develop a testing procedure to fail certain transmission components using a MIL-L-23699 based reference oil and then to run identical tests with improved lubricants and show improved performance. The tests were directed at parts that failed due to marginal lubrication from Navy field experience. These failures included mast shaft bearing micropitting, sun gear and planet bearing fatigue, and spiral bevel gear scoring. A variety of tests were performed and over 900 hrs of total run time accumulated for these tests. Some success was achieved in developing a testing procedure to produce sun gear and planet bearing fatigue failures. Only marginal success was achieved in producing mast shaft bearing micropitting and spiral bevel gear scoring.

  12. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  13. Advanced development receiver thermal vacuum tests with cold wall

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    The first ever testing of a full size solar dynamic heat receiver using high temperature thermal energy storage was completed. The heat receiver was designed to meet the requirements for operation on the Space Station Freedom. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partially simulate a low Earth orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to produce flux distributions typical of candidate concentrators. A closed Brayton cycle engine simulator conditioned a helium xenon gas mixture to specific interface conditions to simulate various operational modes of the solar dynamic power module. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles were completed during the test conduct period. The test hardware, execution of testing, test data, and post test inspections are described.

  14. Ground Instructor Written Test Guide--Basic-Advanced. Revised 1972.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The test guide was prepared to assist applicants who are preparing for the Ground Instructor Written Test. It supersedes the 1967 examination guide. The guide outlines the scope of the basic aeronautical knowledge requirements for a ground instructor; acquaints the applicant with source material that may be used to acquire this basic knowledge;…

  15. Structural thermal tests on Advanced Neutron Source reactor fuel plates

    SciTech Connect

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin aluminum-clad fuel plates proposed for the Advanced Neutron Source reactor are stressed by the high-velocity coolant flowing on each side of the plates and by the thermal gradients in the plates. The total stress, composed of the sum of the flow stress and the thermal stress at a point, could be reduced if the thermal loads tend to relax when the stress magnitude approaches the yield stress of the material. The potential of this occurring would be very significant in assessing the structural reliability of the fuel plates and has been investigated through experiment. The results of this investigation are given in this report.

  16. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Minning, C.

    1982-01-01

    Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.

  17. Average correlation functions in on-line testing of linear systems

    NASA Technical Reports Server (NTRS)

    Mix, D. F.; Sheppard, J. G.

    1973-01-01

    This paper is a report on new methods for on-line testing of single-input/single-output linear and time-invariant systems. No interruption of system operation is necessary, since the signals used in this test procedure are the normal operating signals. Test results indicate that detectable system errors using finite amounts of data are well within tolerance for normal operation in all but the most stringent applications.

  18. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1984-01-01

    Investigations into transparent conductive polymers were begun. Polypyrrole was electrochemically deposited, but the film characteristics were poor. A proprietary polymer material supplied by Polaroid was evaluated and showed promise as a readily processable material. A method was developed for calculating the magnitude and location of the maximum electric field for the family of solar-cell-like shapes. A method for calculating the lines of force for three dimensional electric fields was developed and applied to a geometry of interest to the photovoltaic program.

  19. ASRM subscale plume deflector testing. [advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie, III; Dawson, Michael C.; Orlin, Peter A.

    1992-01-01

    This paper reports the results of the scale model (1/22) testing of candidate refractory materials to be used as surface coatings for a solid rocket motor plume deflector structure. Five ROM tests were conducted to acquire data to support the selection, thickness determination, and placement of the materials. All data acquisition was achieved through nonintrusive methods. The tests demonstrated that little or no reductions in performance of the full-scale deflector would be experienced if the most economical materials were selected for construction.

  20. Six-Month Progression-Free Survival as the Primary Endpoint to Evaluate the Activity of New Agents as Second-line Therapy for Advanced Urothelial Carcinoma

    PubMed Central

    Agarwal, Neeraj; Bellmunt, Joaquim; Maughan, Benjamin L.; Boucher, Kenneth M.; Choueiri, Toni K.; Qu, Angela Q.; Vogelzang, Nicholas J.; Fougeray, Ronan; Niegisch, Guenter; Albers, Peter; Wong, Yu-Ning; Ko, Yoo-Joung; Sridhar, Srikala S.; Tantravahi, Srinivas K.; Galsky, Matthew D.; Petrylak, Daniel P.; Vaishampayan, Ulka N.; Mehta, Amitkumar N.; Beer, Tomasz M.; Sternberg, Cora. N.; Rosenberg, Jonathan E.; Sonpavde, Guru

    2014-01-01

    This study examined the association of progression-free survival at 6 months with overall survival in the context of second-line therapy of advanced urothelial carcinoma in pooled patient-level data from 10 phase II trials and then externally validated in a large phase III trial. Progression-free survival at 6 months was significantly correlated with overall survival and is an innovative primary endpoint to evaluate new agents in this setting. Objective Second-line systemic therapy for advanced urothelial carcinoma (UC) has substantial unmet needs, and current agents show dismal activity. Second-line trials of metastatic UC have used response rate (RR) and median progression-free survival (PFS) as primary endpoints, which may not reflect durable benefits. A more robust endpoint to identify signals of durable benefits when investigating new agents in second-line trials may expedite drug development. PFS at 6 months (PFS6) is a candidate endpoint, which may correlate with overall survival (OS) at 12 months (OS12) and may be applicable across cytostatic and cytotoxic agents. Methods Ten second-line phase II trials with individual patient outcomes data evaluating chemotherapy or biologics were combined for discovery, followed by external validation in a phase III trial. The relationship between PFS6/RR and OS12 was assessed at the trial level using Pearson correlation and weighted linear regression, and at the individual level using Pearson chi-square test with Yates continuity correction. Results In the discovery dataset, a significant correlation was observed between PFS6 and OS12 at the trial (R2 = 0.55, Pearson correlation = 0.66) and individual levels (82%, Қ = 0.45). Response correlated with OS12 at the individual level less robustly (78%, Қ = 0.36), and the trial level association was not statistically significant (R2 = 0.16, Pearson correlation = 0.37). The correlation of PFS6 (81%, Қ = 0.44) appeared PMID:24220220

  1. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  2. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1982-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. Qualification testing, specimens of various types, and a finalized optimum design are projected.

  3. Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect

    S. B. Grover

    2007-05-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment

  4. Docetaxel/S-1 Versus Docetaxel/Capecitabine as First-Line Treatment for Advanced Breast Cancer: A Retrospective Study.

    PubMed

    Li, Jinyu; You, Junhao; Si, Wen; Zhu, Yanyun; Chen, Yi; Yang, Bo; Han, Chun; Linghu, Ruixia; Zhang, Xingyang; Jiao, Shunchang; Yang, Junlan

    2015-10-01

    The treatment efficacy of advanced breast cancer is still not promising. This study aimed to compare the efficacy and safety of docetaxel/S-1 (DS1) versus docetaxel/capecitabine (DX) as the first-line treatment for advanced breast cancer.From June 2008 to June 2013, 22 patients with advanced breast cancer were treated with the DS1 regimen. Another 26 age- and disease status-matched patients treated with the DX regimen served as controls. The 2 groups were compared in terms of time to progression (TTP), objective response rate, disease control rate, clinical benefit rate, and safety profiles.Median TTP did not differ significantly between the DS1 group and the DX group (9.04 vs 10.94 months, P = 0.473). There were no significant differences in objective response rate, disease control rate, and clinical benefit rate between the 2 groups. Both the DS1 and the DX regimens showed good tolerability. The 2 regimens showed no significant difference in adverse events except degree III hand-foot syndrome (DS1 0 vs DX 23.1%, P = 0.025).For the first-line treatment of advanced breast cancer, the DS1 and the DX regimens showed similar efficacy and safety. The DS1 regimen had less severe hand-foot syndrome than the DX regimen. PMID:26469889

  5. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  6. Commercialisation of Biomarker Tests for Mental Illnesses: Advances and Obstacles.

    PubMed

    Chan, Man K; Cooper, Jason D; Bahn, Sabine

    2015-12-01

    Substantial strides have been made in the field of biomarker research for mental illnesses over the past few decades. However, no US FDA-cleared blood-based biomarker tests have been translated into routine clinical practice. Here, we review the challenges associated with commercialisation of research findings and discuss how these challenges can impede scientific impact and progress. Overall evidence indicates that a lack of research funding and poor reproducibility of findings were the most important obstacles to commercialization of biomarker tests. Fraud, pre-analytical and analytical limitations, and inappropriate statistical analysis are major contributors to poor reproducibility. Increasingly, these issues are acknowledged and actions are being taken to improve data validity, raising the hope that robust biomarker tests will become available in the foreseeable future. PMID:26549771

  7. Some advanced testing techniques for concentrator photovoltaic cells and lenses

    SciTech Connect

    Wiczer, J.J.; Chaffin, R.J.; Hibray, R.E.

    1982-09-01

    The authors describe two separate test techniques for evaluating concentrator photovoltaic components. For convenient characterization of concentrator solar cells, they have developed a method for measuring the entire illuminated I-V curve of a photovoltaic cell with a single flash of intense simulated sunlight. This method reduces the heat input to the cell and the time required to test a cell, thus making possible quick indoor measurements of photovoltaic conversion efficiency at concentrated illumination levels without the use of elaborate cell mounting fixtures or heat sink attachments. The other test method provides a technique to analyze the spatially dependent, spectral distribution of intense sunlight collected and focused by lenses designed for use in photovoltaic concentrator systems. This information is important in the design of multijunction photovoltaic receivers, secondary concentrators, and in optimizing the performance of conventional silicon cell concentrator systems.

  8. Could Acoustic Emission Testing Show a Pipe Failure in Advance?

    NASA Astrophysics Data System (ADS)

    Soares, S. D.; Teixeira, J. C. G.

    2004-02-01

    During the last 20 years PETROBRAS has been attempting to use Acoustic Emission (AE) as an inspection tool. In this period the AE concept has changed from a revolutionary method to a way of finding areas to make a complete inspection. PETROBRAS has a lot of pressure vessels inspected by AE and with other NDTs techniques to establish their relationship. In other hand, PETROBRAS R&D Center has conducted destructive hydrostatic tests in pipelines samples with artificial defects made by milling. Those tests were monitored by acoustic emission and manual ultrasonic until the complete failure of pipe sample. This article shows the results obtained and a brief proposal of analysis criteria for this environment of test.

  9. Hybrid bearing technology for advanced turbomachinery: Rolling contact fatigue testing

    SciTech Connect

    Dill, J.F.

    1996-01-01

    The purpose of this paper is to describe the basic structure and results to date of a major ARPA funded effort to provide a tribological performance database on ceramic bearing materials and their interaction with standard bearing steels. Program efforts include studies of material physical properties, machining characteristics, and tribological performance. The majority of the testing completed to date focuses on rolling contact fatigue testing of the ceramic materials, including efforts to arrive at optimum approaches to evaluating ceramic/steel hybrid combinations in rolling contact fatigue.

  10. The 20-Minute Version as a Predictor of the Raven Advanced Progressive Matrices Test

    ERIC Educational Resources Information Center

    Hamel, Ronald; Schmittmann, Verena D.

    2006-01-01

    The Raven Advanced Progressive Matrices Test (APM) is a well-known measure of higher order general mental ability. The time to administer the test, 40 to 60 minutes, is sometimes regarded as a drawback. To meet efficiency needs, the APM can be administered as a 30-or 40-minute timed test, or one of two developed short versions could be used. In…

  11. KRAS Testing for Anti-EGFR Therapy in Advanced Colorectal Cancer

    PubMed Central

    2010-01-01

    published from January 2005 to May 2010, inclusive. Randomized controlled trials (RCTs) or observational studies, including single arm treatment studies that include KRAS testing. Studies with data on main outcomes of interest, overall and progression-free survival. Studies of third line treatment with cetuximab or panitumumab in patients with advanced colorectal cancer refractory to chemotherapy. For the cetuximab-irinotecan evaluation, studies in which at least 70% of patients in the study received this combination therapy. Exclusion Criteria Studies whose entire sample was included in subsequent publications which have been included in this EBA. Studies in pediatric populations. Case reports, comments, editorials, or letters. Outcomes of Interest Overall survival (OS), median Progression-free-survival (PFS), median. Response rates. Adverse event rates. Quality of life (QOL). Summary of Findings of Systematic Review Cetuximab or Panitumumab Monotherapy Based on moderate GRADE observational evidence, there is improvement in PFS and OS favouring patients without the KRAS mutation (KRAS wildtype, or KRAS WT) compared to those with the mutation. Cetuximab-Irinotecan Combination Therapy There is low GRADE evidence that testing for KRAS may optimize survival benefits in patients without the KRAS mutation (KRAS wildtype, or KRAS WT) compared to those with the mutation. However, cetuximab-irinotecan combination treatments based on KRAS status discount any effect of cetuximab in possibly reversing resistance to irinotecan in patients with the mutation, as observed effects were lower than for patients without the mutation. Clinical experts have raised concerns about the biological plausibility of this observation and this conclusion would, therefore, be regarded as hypothesis generating. Economic Analysis Cost-effectiveness and budget impact analyses were conducted incorporating estimates of effectiveness from this systematic review. Evaluation of relative cost-effectiveness, based

  12. X-Ray Calibration Facility/Advanced Video Guidance Sensor Test

    NASA Technical Reports Server (NTRS)

    Johnston, N. A. S.; Howard, R. T.; Watson, D. W.

    2004-01-01

    The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

  13. Insertion device and beam line plans for the Advanced Photon Source: A report and recommendations by the Insertion Device and Beam Line Planning Committee

    SciTech Connect

    Not Available

    1988-02-01

    In the 7-GeV Advanced Photon Source (APS) Conceptual Design Report (CDR), fifteen complete experimental beam lines were specified in order to establish a representative technical and cost base for the components involved. In order to optimize the composition of the insertion devices and the beam line, these funds are considered a ''Trust Fund.'' The present report evaluates the optimization for the distribution of these funds so that the short- and long-term research programs will be most productive, making the facility more attractive from the user's point of view. It is recommended that part of the ''Trust Fund'' be used for the construction of the insertion devices, the front-end components, and the first-optics, minimizing the cost to potential users of completing a beam line. In addition, the possibility of cost savings resulting from replication and standardization of high multiplicity components (such as IDs, front ends, and first-optics instrumentation) is addressed. 2 refs., 5 tabs.

  14. Ultrasonic Testing, Aviation Quality Control (Advanced): 9227.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This unit of instruction covers the theory of ultrasonic sound, methods of applying soundwaves to test specimens and interpreting results, calibrating the ultrasonic equipment, and the use of standards. Study periods, group discussions, and extensive use of textbooks and training manuals are to be used. These are listed along with references and…

  15. Problems in Testing the Intonation of Advanced Foreign Learners.

    ERIC Educational Resources Information Center

    Mendelsohn, David

    1978-01-01

    It is argued that knowledge about the testing of intonation in English as a foreign language is inadequate; the major problems are outlined and tentative suggestions are given. The basic problem is that the traditional foreign language teacher's conception of intonation is limited. A three-part definition of intonation is favored, with suggestions…

  16. Advances in Testing the Statistical Significance of Mediation Effects

    ERIC Educational Resources Information Center

    Mallinckrodt, Brent; Abraham, W. Todd; Wei, Meifen; Russell, Daniel W.

    2006-01-01

    P. A. Frazier, A. P. Tix, and K. E. Barron (2004) highlighted a normal theory method popularized by R. M. Baron and D. A. Kenny (1986) for testing the statistical significance of indirect effects (i.e., mediator variables) in multiple regression contexts. However, simulation studies suggest that this method lacks statistical power relative to some…

  17. Advances in the Detection of Differentially Functioning Test Items.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; And Others

    The development and evaluation of methods for detecting potentially biased items or differentially functioning items (DIF) represent a critical area of research for psychometricians because of the negative impact of biased items on test validity. A summary is provided of the authors' 12 years of research at the University of Massachusetts…

  18. Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A.D.; Stol, K.A.

    2008-01-01

    The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

  19. On-line noise monitoring at the Fast Flux Test Facility

    SciTech Connect

    Mullens, J.A.; Thie, J.A.; Campbell, L.R.

    1984-01-01

    An automated noise surveillance and diagnostics system (ANSDS) is being demonstrated at the Fast Flux Test Facility (FFTF). Three low-level, in-vessel fission chambers (LLFMs), three ex-vessel compensated ion chambers (CICs), and two accelerometers on the mechanism of one advanced absorber (ADVAB) control rod were monitored with an automated noise surveillance and diagnostic system (ANSDS) in late 1983.

  20. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  1. Testing the Kerr Nature of Black Hole Candidates Using Iron Line Spectra in the CPR Framework

    NASA Astrophysics Data System (ADS)

    Jiang, Jiachen; Bambi, Cosimo; Steiner, James F.

    2015-10-01

    The iron Kα line commonly observed in the X-ray spectrum of both stellar-mass and supermassive black hole (BH) candidates originates from X-ray fluorescence of the inner accretion disk. Accordingly, it can be used to map the spacetime geometry around these objects. In this paper, we extend previous work using the iron Kα line to test the Kerr BH hypothesis. We adopt the Cardoso-Pani-Rico parametrization and we test the possibility of constraining possible deviations from the Kerr solution that can be obtained from observations across the range of BH spins and inclination angles. We confirm previous claims that the iron Kα line is potentially a quite powerful probe for testing the Kerr metric given sufficiently high quality data and with systematics under control, especially in the case of fast-rotating BHs and high inclination angles since both conditions serve to maximize relativistic effects. We find that some geometric perturbations from Kerr geometry manifest more strongly in the iron line profile than others. While the perturbation parameter {ɛ }3t can be well constrained by the iron line profile, an orthogonal data set is necessary to constrain departures from Kerr geometry in {ɛ }3r.

  2. Testing the Kerr Nature of Black Hole Candidates Using Iron Line Spectra in the CPR Framework

    NASA Astrophysics Data System (ADS)

    Jiang, Jiachen; Bambi, Cosimo; Steiner, James F.

    2015-10-01

    The iron Kα line commonly observed in the X-ray spectrum of both stellar-mass and supermassive black hole (BH) candidates originates from X-ray fluorescence of the inner accretion disk. Accordingly, it can be used to map the spacetime geometry around these objects. In this paper, we extend previous work using the iron Kα line to test the Kerr BH hypothesis. We adopt the Cardoso–Pani–Rico parametrization and we test the possibility of constraining possible deviations from the Kerr solution that can be obtained from observations across the range of BH spins and inclination angles. We confirm previous claims that the iron Kα line is potentially a quite powerful probe for testing the Kerr metric given sufficiently high quality data and with systematics under control, especially in the case of fast-rotating BHs and high inclination angles since both conditions serve to maximize relativistic effects. We find that some geometric perturbations from Kerr geometry manifest more strongly in the iron line profile than others. While the perturbation parameter {ε }3t can be well constrained by the iron line profile, an orthogonal data set is necessary to constrain departures from Kerr geometry in {ε }3r.

  3. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  4. Efficacy and safety of icotinib as first-line therapy in patients with advanced non-small-cell lung cancer

    PubMed Central

    Shen, Yan-Wei; Zhang, Xiao-Man; Li, Shu-Ting; Lv, Meng; Yang, Jiao; Wang, Fan; Chen, Zhe-Ling; Wang, Bi-Yuan; Li, Pan; Chen, Ling; Yang, Jin

    2016-01-01

    Background and objective Several clinical trials have proven that icotinib hydrochloride, a novel epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitor, exhibits encouraging efficacy and tolerability in patients with advanced non-small-cell lung cancer (NSCLC) who failed previous chemotherapy. This study was performed to assess the efficacy and toxicity of icotinib as first-line therapy for patients with advanced pulmonary adenocarcinoma with EGFR-sensitive mutation. Patients and methods Thirty-five patients with advanced NSCLC with EGFR-sensitive mutation who were sequentially admitted to the First Affiliated Hospital of Xi’an Jiaotong University from March 2012 to March 2014 were enrolled into our retrospective research. All patients were administered icotinib as first-line treatment. The tumor responses were evaluated using Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1). Results Among the 35 patients, the tumor objective response rate (ORR) and disease control rate were 62.9% (22/35) and 88.6% (31/35), respectively. The median progression-free survival was 11.0 months (95% confidence interval [CI]: 10.2–11.8 months), and median overall survival was 21.0 months (95% CI: 20.1–21.9 months). The most common drug-related toxicities were rashes (eleven patients) and diarrhea (nine patients), but these were generally manageable and reversible. Conclusion Icotinib monotherapy is effective and tolerable as first-line treatment for patients with advanced lung adenocarcinoma with EGFR-sensitive mutation. PMID:26966381

  5. Immortalized human hepatic cell lines for in vitro testing and research purposes

    PubMed Central

    Ramboer, Eva; Vanhaecke, Tamara; Rogiers, Vera; Vinken, Mathieu

    2015-01-01

    Summary The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications. PMID:26272134

  6. Test of copper-braid-stabilized bus lines for superconducting dipole magnets

    SciTech Connect

    Doi, M.; Kabe, A.; Kojima, Y.

    1996-12-31

    A high cryogenic stability suprconducting bus-line has been developed to connect a superconducting dipole magnet with a full length of 13 m to a current lead approximately 2 meters from the magnet. The superconducting bus-line is made of NbTi strand cables for magnet use soldered to copper braid. The copper braid has a large surface area to improve cooling efficiency and increase cryogenic stability. Three kinds of bus-line are prepared on experimental basis: a bare superconducting cable, a superconducting cable joined copper braid with a thin layer of solder, and one made by filling the inside of copper braid with solder. Cryogenic stability tests confirmed that a bus-line equipped with a copper braid provides twice the cryogenic stability as a bare superconducting cable.

  7. Advanced Capabilities for Wind Tunnel Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.

    2010-01-01

    Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.

  8. Percutaneous CT-guided microwave ablation as maintenance after first-line treatment for patients with advanced NSCLC

    PubMed Central

    Ni, Xiang; Han, Jun-Qing; Ye, Xin; Wei, Zhi-Gang

    2015-01-01

    Background Systemic therapy is recommended for advanced non-small-cell lung cancer (NSCLC). However, conventional first-line treatment has generated a plateau in response rate of 25% to 35%. Few studies have shown patients benefit from microwave ablation (MWA) in combination with radiotherapy and chemotherapy. This study aims to evaluate safety and efficacy of percutaneous computed tomography-guided MWA as maintenance after first-line treatment for patients with advanced NSCLC. Methods Patients with histologically verified NSCLC stage IIIB or IV between January 2010 and March 2014 were involved. After completion of first-line treatment with partial response or stable disease, 35 patients with 39 tumors underwent 39 MWA procedures. Complications, progression-free survival (PFS), overall survival (OS), and correlated predictors were analyzed. Results During a median follow-up of 17.7 months and 10.8 months after initial MWA, local efficacy was 87.2%, median MWA-related local control time was 10.6 months, and tumor size was the only predictor (P=0.002). Median MWA-related PFS, MWA-related OS, PFS, and OS were 5.4, 10.6, 11.8 and 17.7 months, respectively. Local efficacy was significantly correlated with MWA-related PFS (P=0.003), MWA-related OS (P=0.000), and OS (P=0.001). There were no procedure-specific deaths. Total incidence of major complications was 12.8%, including pneumothorax resolved by closed pleural drainage and pneumonia controlled by antibiotics in a short time. Conclusion This study concluded two points, including: 1) patients benefited from MWA as maintenance both in local control and survival; 2) as maintenance MWA was superior to conventional maintenance therapy with improved survival and well-tolerated complications. Therefore, MWA was a safe and effective maintenance after first-line treatment in patients with advanced NSCLC. PMID:26604789

  9. Using advanced microelectronic test chips to qualify ASIC's for space

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Lin, Y-S.

    1990-01-01

    Qualification procedures for complex integrated circuits are being developed under a U.S. government program known as Qualified Manufacturing Lines (QML). This effort is focused on circuits designed by IC manufacturers and has not addressed application specific IC's (ASIC's) designed at system houses. The qualification procedures described here are intended to be responsive to the needs of system houses who design their own ASIC's and have them fabricated at Silicon foundries. A particular focus of this presentation will be the use of the TID (total Ionizing Dose) Chip to evaluate CMOS foundry processes and to provide parameters for circuit simulators. This chip is under development as a standard chip for qualifying the total dose aspects of ASIC's. The benefits of standardization are that the results will be well understood and easy to interpret. Data is presented and compared for 1.6 micron and 3.0 micron CMOS. The data shows that 1.6 micron CMOS is significantly harder than 3.0 micron CMOS. Two failure modes are explored: (1) the radiation-induced degradation of timing delays; and (2) radiation-induced leakage currents.

  10. Testing and Analytical Modeling for Purging Process of a Cryogenic Line

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.

    2015-01-01

    To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. Test article, a 3.35m long with the diameter of 20 cm incline line, was filled with liquid (LH2)or gaseous hydrogen (GH2) and then purged with gaseous helium (GHe). Total of 10 tests were conducted. Influences of GHe flow rates and initial temperatures were evaluated. Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer, was utilized to model and simulate selective tests.

  11. [Advanced Testing and Laboratory for HBV, HCV, and HIV Infection].

    PubMed

    Deguchi, Matsuo

    2015-06-01

    Most target substances for immunoassay of infectious disease are antigens or antibodies which do not exist in the human body. Therefore, the method to set reference values is different from chemistry or hematology testing. High sensitivity is required for infectious disease testing, particularly for screening. Also, its reference values (cut-off values) are set as low as possible. Therefore, a false-positive reaction can be caused due to slightly non-specific reactions in infectious disease reagents. The specificities for infectious disease reagents were evaluated with 9 kinds of HCV antibody test kit and 9 kinds of HIV screening kit. The frequencies of false-positive results were 0.2-1.8 and 0.2-1.3%, respectively, and even a kit with a high specificity showed a false-positive result for 1 in 500 samples. The sensitivities for infectious disease reagents were evaluated with a newly developed super-high- sensitive HBs antigen assay kit and 8 kinds of chemiluminescence HBs antigen assay kit which are highly sensitive conventional kits. As a result, the super-high-sensitive kit was 10 to 40 times more sensitive than conventional kits. After introducing the super-high-sensitive kit to routine assays, 16 HBV-infected patients, who were not identified with the conventional kits, were detected for six months. On the other hand, we confirmed false-positive results due to contamination between specimens after introducing the super-high-sensitive kit. It is recommended to use the super-high-sensitive kit in a well-controlled environment to prevent contamination between specimens in order to generate highly reliable test results. PMID:26548240

  12. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect

    Not Available

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  13. Testing of an advanced thermochemical conversion reactor system

    NASA Astrophysics Data System (ADS)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.

  14. Advanced technologies for fabrication and testing of large flat mirrors

    NASA Astrophysics Data System (ADS)

    Yellowhair, Julius Eldon

    Classical fabrication methods alone do not enable manufacturing of large flat mirrors that are much larger than 1 meter. This dissertation presents the development of enabling technologies for manufacturing large high performance flat mirrors and lays the foundation for manufacturing very large flat mirrors. The enabling fabrication and testing methods were developed during the manufacture of a 1.6 meter flat. The key advantage over classical methods is that our method is scalable to larger flat mirrors up to 8 m in diameter. Large tools were used during surface grinding and coarse polishing of the 1.6 m flat. During this stage, electronic levels provided efficient measurements on global surface changes in the mirror. The electronic levels measure surface inclination or slope very accurately. They measured slope changes across the mirror surface. From the slope information, we can obtain surface information. Over 2 m, the electronic levels can measure to 50 nm rms of low order aberrations that include power and astigmatism. The use of electronic levels for flatness measurements is analyzed in detail. Surface figuring was performed with smaller tools (size ranging from 15 cm to 40 cm in diameter). A radial stroker was developed and used to drive the smaller tools; the radial stroker provided variable tool stroke and rotation (up to 8 revolutions per minute). Polishing software, initially developed for stressed laps, enabled computer controlled polishing and was used to generate simulated removal profiles by optimizing tool stroke and dwell to reduce the high zones on the mirror surface. The resulting simulations from the polishing software were then applied to the real mirror. The scanning pentaprism and the 1 meter vibration insensitive Fizeau interferometer provided accurate and efficient surface testing to guide the remaining fabrication. The scanning pentaprism, another slope test, measured power to 9 nm rms over 2 meters. The Fizeau interferometer measured 1

  15. A test of a 2 Tesla superconducting transmission line magnet system

    SciTech Connect

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring, Roger; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized.

  16. ZD9331 as second- or third-line therapy in patients with advanced colorectal cancer: a phase II multicenter trial.

    PubMed

    Schulz, J; Keller, A; Canfield, V; Parker, G; Douglass, E

    2004-08-01

    This study investigated the efficacy and tolerability of ZD9331 as second- or third-line treatment for patients with advanced colorectal cancer (aCRC). One hundred patients were recruited to the study: 45 in group 1 (failed first-line 5-FU-based regimen) and 55 in group 2 (failed first-line 5-FU-based regimen and second-line irinotecan). Patients received ZD9331 as a 30-minute intravenous infusion on days 1 and 8 of a 3-week cycle, and treatment continued until disease progression (PD) or withdrawal. After a median of 4 cycles of treatment, there were no objective responses in group 1 (N = 37), 25 (67.6%) patients had a best overall response of stable disease (SD), and 12 (32.4%) had PD. After a median of 3 cycles of treatment, there were 2 (4.5%) partial responses in group 2 (N = 44), 21 (47.7%) patients had a best overall response of SD, 20 (45.4%) had PD, and 1 (2.3%) had clinical progression. At data cut-off, 59.5% and 77.3% of patients in groups 1 and 2, respectively, had PD. The main adverse events were neutropenia (69%), fatigue (53%), nausea (46%), and diarrhea (40%), and most (72.3%) were grade I/II. ZD9331 demonstrated minimal antitumor activity, and manageable toxicity, in the second- or third-line treatment of aCRC. PMID:15289725

  17. Off-Line Testing for Bridge Faults in CMOS Domino Logic Circuits

    NASA Technical Reports Server (NTRS)

    Bennett, K.; Lala, P. K.; Busaba, F.

    1997-01-01

    Bridge faults, especially in CMOS circuits, have unique characteristics which make them difficult to detect during testing. This paper presents a technique for detecting bridge faults which have an effect on the output of CMOS Domino logic circuits. The faults are modeled at the transistor level and this technique is based on analyzing the off-set of the function during off-line testing.

  18. Electromagnetic Compatibility Testing for Conducted Susceptibility Along Interconnecting Signal Lines. Final report

    SciTech Connect

    Ewing, P. D.; Wood, R. T.; Korsah, K.; Shourbaji, A. A.; Wilson, T. L.; Beets, B. M.

    2002-07-31

    This document presents recommendations and the associated technical basis for addressing the effects of conducted electromagnetic interference (EMI) and radio-frequency interference (RFI) along interconnecting signal lines in safety-related instrumentation and control (I&C) systems. Oak Ridge National Laboratory has been engaged in assisting the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research in developing the technical basis for regulatory guidance on EMIIRFI immunity and power surge withstand capability (SWC). Previous research efforts have provided recommendations on (1) electromagnetic compatibility design and installation practices, (2) the endorsement of EMI/RFI and SWC test criteria and test methods, (3) the determination of ambient electromagnetic conditions at nuclear power plants, and (4) the development of recommended electromagnetic operating envelopes applicable to locations where safety-related I&C systems will be installed. The current research focuses on the susceptibility of l&C systems to conducted EMIIRFI along interconnecting signal lines. Coverage of signal line susceptibility was identified as an open issue in previous research on establishing the technical basis for EMIIRFI and SWC in safety-related I&C systems. Research results provided in this report will be used to establish the technical basis for endorsing U.S. Department of Defense and European Committee for Electrotechnical Standardization test criteria and test methods that address signal-line susceptibility. In addition, recommendations on operating envelopes are presented based on available technical information.

  19. 40 CFR 1042.305 - Preparing and testing production-line engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hours you operated your emission-data engine for certifying the engine family (see 40 CFR part... Category 1 and Category 2 engines, but you need not do additional testing to show that production-line...) You document the need for doing so in your procedures for assembling and inspecting all...

  20. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  1. 40 CFR 1048.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select engines for production-line testing? 1048.310 Section 1048.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION...

  2. 40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Requirements for Performance Tests for Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  3. 40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Requirements for Performance Tests for Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  4. 40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Requirements for Performance Tests for Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  5. 40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Requirements for Performance Tests for Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  6. 40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Requirements for Performance Tests for Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  7. High-power RF testing of a 352-MHZ fast-ferrite RF cavity tuner at the Advanced Photon Source.

    SciTech Connect

    Horan, D.; Cherbak, E.; Accelerator Systems Division

    2006-01-01

    A 352-MHz fast-ferrite rf cavity tuner, manufactured by Advanced Ferrite Technology, was high-power tested on a single-cell copper rf cavity at the Advanced Photon Source. These tests measured the fast-ferrite tuner performance in terms of power handling capability, tuning bandwidth, tuning speed, stability, and rf losses. The test system comprises a single-cell copper rf cavity fitted with two identical coupling loops, one for input rf power and the other for coupling the fast-ferrite tuner to the cavity fields. The fast-ferrite tuner rf circuit consists of a cavity coupling loop, a 6-1/8-inch EIA coaxial line system with directional couplers, and an adjustable 360{sup o} mechanical phase shifter in series with the fast-ferrite tuner. A bipolar DC bias supply, controlled by a low-level rf cavity tuning loop consisting of an rf phase detector and a PID amplifier, is used to provide a variable bias current to the tuner ferrite material to maintain the test cavity at resonance. Losses in the fast-ferrite tuner are calculated from cooling water calorimetry. Test data will be presented.

  8. Advanced solar thermal storage medium test data and analysis

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1981-01-01

    A comparative study has been made of experimentally obtained heat transfer and heat storage characteristics of a solar thermal energy storage bed utilizing containerized water or phase change material (PCM) and rock or brick. It is shown that (1) containers with an L/D ratio of 0.80 and a mass/surface area ratio of 2.74 in a random stacking arrangement have the optimum heat transfer characteristics; and (2) vertical stacking has the least pressure drop across the test bed. It is also found that standard bricks with appropriate holes make an excellent storage medium.

  9. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    SciTech Connect

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  10. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    PubMed

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base. PMID:26306271

  11. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction

    PubMed Central

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base. PMID:26306271

  12. Impact of Smoking and Brain Metastasis on Outcomes of Advanced EGFR Mutation Lung Adenocarcinoma Patients Treated with First Line Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors

    PubMed Central

    Jain, Amit; Lim, Cindy; Gan, Eugene MingJin; Ng, David Zhihao; Ng, Quan Sing; Ang, Mei Kim; Takano, Angela; Chan, Kian Sing; Tan, Wu Meng; Kanesvaran, Ravindran; Toh, Chee Keong; Loo, Chian Min; Hsu, Anne Ann Ling; Devanand, Anantham; Lim, Chong Hee; Koong, Heng Nung; Koh, Tina; Fong, Kam Weng; Yap, Swee Peng; Kim, Su Woon; Chowbay, Balram; Oon, Lynette; Lim, Kiat Hon; Lim, Wan Teck; Tan, Eng Huat; Tan, Daniel Shao Weng

    2015-01-01

    Objectives This purpose of this study was to examine clinical-pathologic factors – particularly smoking and brain metastases – in EGFR mutation positive (M+) lung adenocarcinoma (ADC) to determine their impact on survival in patients treated with first line EGFR TKI. Methods A retrospective review of EGFR mutation reflex testing experience for all ADC diagnosed at a tertiary Asian cancer centre from January 2009 to April 2013. Amongst this cohort, patients with advanced EGFR M+ ADC treated with first line EGFR TKI were identified to determine factors that influence progression free and overall survival. Results 444/742 (59.8%) ADC reflex tested for EGFR mutations were EGFR M+. Amongst never-smokers (n=468), EGFR M+ were found in 74.5% of females and 76.3% of males, and amongst ever smokers (n=283), in 53.3% of females and 35.6% of males. Exon 20 mutations were found more commonly amongst heavy smokers (> 50 pack years and > 20 pack years, Pearson’s chi square p=0.044, and p=0.038 respectively). 211 patients treated with palliative first line TKI had a median PFS and OS of 9.2 and 19.6 months respectively. 26% of patients had brain metastasis at diagnosis. This was significantly detrimental to overall survival (HR 1.85, CI 1.09-3.16, p=0.024) on multivariate analysis. There was no evidence that smoking status had a significant impact on survival. Conclusions The high prevalence of EGFR M+ in our patient population warrants reflex testing regardless of gender and smoking status. Smoking status and dosage did not impact progression free or overall survival in patients treated with first line EGFR TKI. The presence of brain metastasis at diagnosis negatively impacts overall survival. PMID:25955322

  13. Advanced CD-SEM metrology for qualification of DSA patterns using coordinated line epitaxy (COOL) process

    NASA Astrophysics Data System (ADS)

    Kato, Takeshi; Konishi, Junko; Ikota, Masami; Yamaguchi, Satoru; Seino, Yuriko; Sato, Hironobu; Kasahara, Yusuke; Azuma, Tsukasa

    2016-03-01

    Directed self-assembly (DSA) applying chemical epitaxy is one of the promising lithographic solutions for next generation semiconductor device manufacturing. Especially, DSA lithography using coordinated line epitaxy (COOL) process is obviously one of candidates which could be the first generation of DSA applying PS-b-PMMA block copolymer (BCP) for sub-15nm dense line patterning . DSA can enhance the pitch resolutions, and can mitigate CD errors to the values much smaller than those of the originally exposed guiding patterns. On the other hand, local line placement error often results in a worse value, with distinctive trends depending on the process conditions. To address this issue, we introduce an enhanced measurement technology of DSA line patterns with distinguishing their locations in order to evaluate nature of edge placement and roughness corresponding to individual pattern locations by using images of CD-SEM. Additionally correlations among edge roughness of each line and each space are evaluated and discussed. This method can visualize features of complicated roughness easily to control COOL process. As a result, we found the followings. (1) Line placement error and line placement roughness of DSA were slightly different each other depending on their relative position to the chemical guide patterns. (2) In middle frequency area of PSD (Power Spectral Density) analysis graphs, it was observed that shapes were sensitively changed by process conditions of chemical stripe guide size and anneals temperature. (3) Correlation coefficient analysis using PSD was able to clarify characteristics of latent defect corresponding to physical and chemical property of BCP materials.

  14. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics.

    PubMed

    Julve, Josep; Martín-Campos, Jesús M; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-04-01

    The adequate absorption of lipids is essential for all mammalian species due to their inability to synthesize some essential fatty acids and fat-soluble vitamins. Chylomicrons (CMs) are large, triglyceride-rich lipoproteins that are produced in intestinal enterocytes in response to fat ingestion, which function to transport the ingested lipids to different tissues. In addition to the contribution of CMs to postprandial lipemia, their remnants, the degradation products following lipolysis by lipoprotein lipase, are linked to cardiovascular disease. In this review, we will focus on the structure-function and metabolism of CMs. Second, we will analyze the impact of gene defects reported to affect CM metabolism and, also, the role of CMs in other pathologies, such as atherothrombotic cardiovascular disease and diabetes mellitus. Third, we will provide an overview of the laboratory tests currently used to study CM disorders, and, finally, we will highlight current treatments in diseases affecting CMs. PMID:26868089

  15. Advanced ThioClear process testing. Final report

    SciTech Connect

    Lani, B.

    1998-03-01

    Wet scrubbing is the leading proven commercial post-combustion FGD technology available to meet the sulfur dioxide reductions required by the Clean Air Act Amendments. To reduce costs associated with wet FGD, Dravo Lime Company has developed the ThioClear process. ThioClear is an ex-situ forced oxidation magnesium-enhanced lime FGD process. ThioClear process differs from the conventional magnesium-enhanced lime process in that the recycle liquor has minimal suspended solids and the by-products are wallboard quality gypsum and magnesium hydroxide, an excellent reagent for water treatment. The process has demonstrated sulfur dioxide removal efficiencies of +95% in both a vertical spray scrubber tower and a horizontal absorber operating at gas velocities of 16 fps, respectively. This report details the optimization studies and associated economics from testing conducted at Dravo Lime Company`s pilot plant located at the Miami Fort Station of the Cincinnati Gas and Electric Company.

  16. Advances in measuring techniques for turbine cooling test rigs

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.

    1972-01-01

    Surface temperature distribution measurements for turbine vanes and blades were obtained by measuring the infrared energy emitted by the airfoil. The IR distribution can be related to temperature distribution by suitable calibration methods and the data presented in the form of isotherm maps. Both IR photographic and real time electro-optical methods are being investigated. The methods can be adapted to rotating as well as stationary targets, and both methods can utilize computer processing. Pressure measurements on rotating components are made with a rotating system incorporating 10 miniature transducers. A mercury wetted slip ring assembly was used to supply excitation power and as a signal transfer device. The system was successfully tested up to speeds of 9000 rpm and is now being adapted to measure rotating blade airflow quantities in a spin rig and a research engine.

  17. Host Suitability of Soybean Cultivars and Breeding Lines to Reniform Nematode in Tests Conducted in 2001

    PubMed Central

    Robbins, R. T.; Shipe, E. R.; Rakes, L.; JACKSON, L. E.; Gbur, E. E.; Dombek, D. G.

    2002-01-01

    Reproduction of reniform nematode Rotylenchulus reniformis on 139 soybean lines was evaluated in a greenhouse in the summer of 2001. Cultivars and lines (119 total) were new in the Arkansas and Mississippi Soybean Testing Programs, and an additional 20 were submitted by C. Overstreet, Louisiana State Extension Nematologist. A second test of 32 breeding lines and 2 cultivars from the Clemson University soybean breeding program was performed at the same time under the same conditions. Controls were the resistant cultivars Forrest and Hartwig, susceptible Braxton, and fallow infested soil. Five treatment replications were planted in sandy loam soil infested with 1,744 eggs and vermiform reniform nematodes, grown for 10 weeks in 10 cm-diam.- pots. Total reniform nematodes extracted from soil and roots was determined, and a reproductive factor (final population (Pf)/ initial inoculum level (Pi)) was calculated for each genotype. Reproduction on each genotype was compared to the reproduction on the resistant cultivar Forrest (RF), and the log ratio [log₁₀(RF + 1) is reported. Cultivars with reproduction not significantly different from Forrest (log ratio) were not suitable hosts, whereas those with greater reproductive indices were considered suitable hosts. These data will be useful in the selection of soybean cultivars to use in rotation with cotton or other susceptible crops to help control the reniform nematode and to select useful breeding lines as parent material for future development of reniform nematode resistant cultivars and lines. PMID:19265960

  18. On the development of models in mice of advanced visceral metastatic disease for anti-cancer drug testing.

    PubMed

    Man, Shan; Munoz, Raquel; Kerbel, Robert S

    2007-12-01

    It is well known clinically that advanced, bulky visceral metastatic disease is generally much less responsive to most anti-cancer therapies, compared to microscopic metastatic disease. This problem is exacerbated when treating cancers that have been previously exposed to multiple lines of therapy, and which have acquired a 'refractory' phenotype. However, mimicking such clinical treatment situations in preclinical mouse models involving the testing of new or existing cancer therapies is extremely rare. Treatment of 'metastasis', in retrospect, usually involves minimal residual disease and therapy naïve tumors. This could account in many instances for the failure to reproduce highly encouraging preclinical results in subsequent phase I or phase II clinical trials. To that end, we have embarked on an experimental program designed to develop models of advanced, visceral metastatic disease, in some cases involving tumors previously exposed to various therapies. The strategy first involves the orthotopic transplantation of a human cancer cell line, such as breast cancer cell line, into the mammary fat pads of immune deficient mice, followed by surgical resection of the resultant primary tumors that develops. Recovery of distant macroscopic metastases, usually in the lungs, is then undertaken, which can take up to 4 months to visibly form. Cell lines are established from such metastases and the process of orthotopic transplantation, surgical resection, and recovery of distant metastases is undertaken, at least one more time. Using such an approach highly metastatically aggressive variant sublines can be obtained, provided they are once again injected into an orthotopic site and the primary tumors removed by surgery. By waiting sufficient time after removal of the primary tumors, about only 1 month, mice with extensive metastatic disease in sites such as the lungs, liver, and lymph nodes can be obtained. An example of therapy being initiated in an advanced stage of such

  19. Solubilization of poorly soluble lichen metabolites for biological testing on cell lines.

    PubMed

    Kristmundsdóttir, Thórdís; Jónsdóttir, Elsa; Ogmundsdóttir, Helga M; Ingólfsdóttir, Kristín

    2005-04-01

    The depside atranorin and depsidone fumarprotocetraric acid, isolated from the lichens Stereocaulon alpinum and Cetraria islandica, respectively, were chosen as prototypes for poorly soluble natural compounds in an effort to facilitate testing in pharmacological models. Solubilizing agents previously identified as being non-toxic towards a malignant leukemic (K-562) cell line and suitable for testing of anti-proliferative activity of the dibenzofuran lichen metabolite (+)-usnic acid were used in solubilization studies of the depside and depsidone. Cyclodextrin derivatives were found to be most suitable for solubilizing the lichen compounds, the greatest rise in solubility being witnessed for fumarprotocetraric acid, increasing almost 300-fold from 0.03 mg/ml in water to 8.98 mg/ml in 10% 2-hydroxypropyl-beta-cyclodextrin (HPbetaCD). Subsequently, the lichen compounds, including (+)-usnic acid, were solubilized in 10% HPbetaCD and tested for effects on three malignant human cell lines; T-47D (breast), Panc-1 (pancreas) and PC-3 (prostate) in a standard proliferation assay. Atranorin and fumarprotocetraric acid did not exhibit anti-proliferative effects but usnic acid was active against all test cell lines with EC50 values of 4.3-8.2 microg/ml. The non-toxic solubilizing agents used in this study could prove useful for pharmacological testing of other poorly soluble natural products. PMID:15784343

  20. Advanced ion beam calorimetry for the test facility ELISE

    SciTech Connect

    Nocentini, R. Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-04-08

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m{sup 2} in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m{sup 2}, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  1. Advanced ion beam calorimetry for the test facility ELISE

    NASA Astrophysics Data System (ADS)

    Nocentini, R.; Bonomo, F.; Pimazzoni, A.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Pasqualotto, R.; Riedl, R.; Ruf, B.; Wünderlich, D.

    2015-04-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m2, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and correlates

  2. On-line analysis capabilities developed to support the AFW wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Hoadley, Sherwood T.; Mcgraw, Sandra M.

    1992-01-01

    A variety of on-line analysis tools were developed to support two active flexible wing (AFW) wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Descriptions and purposes of the developed capabilities are presented along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind tunnel test and proved to be a vital and important part of the entire test effort.

  3. On-line analysis capabilities developed to support the AFW wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Hoadley, Sherwood T.; Mcgraw, Sandra M.

    1992-01-01

    A variety of on-line analysis tools were developed to support two Active Flexible Wing wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Description and purposes of capabilities which were developed are presented in this paper along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind-tunnel tests and proved to be a vital and important part of the entire test effort.

  4. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  5. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of

  6. New advances in on-line sample preconcentration by capillary electrophoresis using dynamic pH junction.

    PubMed

    Ptolemy, Adam S; Britz-McKibbin, Philip

    2008-12-01

    The small injection volumes and narrow dimensions characteristic of microseparation techniques place constraints on concentration sensitivity that is required for trace chemical analyses. On-line sample preconcentration techniques using dynamic pH junction and its variants have emerged as simple yet effective strategies for enhancing concentration sensitivity of weakly ionic species by capillary electrophoresis (CE). Dynamic pH junction offers a convenient format for electrokinetic focusing of dilute sample plugs directly in-capillary for improved detection without off-line sample pretreatment. In this report, we highlight new advances in dynamic pH junction which have been reported to enhance method performance while discussing challenges for future research. PMID:19082065

  7. Cytotoxic Chemotherapy as First-Line Therapy for Advanced Non-Small-Cell Lung Cancer in Taiwan: Daily Practice

    PubMed Central

    Liang, Yi-Hsin; Shao, Yu-Yun; Liao, Bin-Chi; Lee, Ho-Sheng; Yang, James Chih-Hsin; Chen, Ho-Min; Chiang, Chun-Ju; Cheng, Ann-Lii; Lai, Mei-Shu

    2016-01-01

    Aim: Cytotoxic chemotherapy is the standard first-line therapy for patients with advanced non-small cell lung cancer (NSCLC) without specific gene alterations. This study examined the prescription pattern and the survival outcome of cytotoxic chemotherapy regimens in daily practice in Taiwan. Methods:We established a population-based cohort of patients diagnosed with advanced NSCLC between 2005 and 2009 using the databases of Taiwan Cancer Registry and National Health Insurance in Taiwan. We then analyzed chemotherapy prescriptions and the survival outcomes of patients. Results:A total of 25,008 patients with advanced NSCLC were identified, 17,443 (70.0%) of which received first-line chemotherapy and were therefore included in this study. Among them, 11,551 (66.2%) patients had adenocarcinoma and 3,292 (18.9%) patients had squamous cell carcinoma (SCC). Approximately 70% of the patients were diagnosed with NSCLC in medical centers. Platinum-based doublet chemotherapy was administered to 66.9% of the patients. Among all chemotherapy regimens, platinum with gemcitabine (33.8%) was the most common, irrespective of geographic region. The second and third most common regimens were vinorelbine alone (13.0%) and platinum with docetaxel (11.6%). The prevalence of platinum-based doublet chemotherapy regimens decreased from 71.4% in 2005 to 64.1% in 2009. Among patients with adenocarcinoma histology, those who received platinum with pemetrexed had longer OS than did patients who received other platinum-based regimens (p < 0.001). Conclusion: Our findings reaffirm that in real-world practice, treatment plans of advanced NSCLC should be drawn up according to histology type. PMID:27471567

  8. Characterization of a Real-time Neutron Imaging Test Station at China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    He, Linfeng; Han, Songbai; Wang, Hongli; Wei, Guohai; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    A real-time neutron imaging test station was recently installed at the China Advanced Research Reactor. The objective of this work was to determine its operational characteristics, including neutron beam profile, the spatial resolution and time resolution. The performance of the equipment was demonstrated by a real time neutron imaging test of the water dynamics in a fuel cell.

  9. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  10. Earth Observing System(EOS). Advanced Microwave Sounding Unit-A: Firmware Test Report

    NASA Technical Reports Server (NTRS)

    Schwantje, R.

    1998-01-01

    This document is the Firmware Test Report for the firmware to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) instrument. It describes the firmware results of the Formal Qualification Test (FQT)/Demonstrations conducted on Mar. 21, 1997, Apr. 8, 1998, and July 14, 1998, for the EOS/AMSU-A instrument.

  11. Interior noise control ground test studies for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  12. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  13. Rapid Response of Advanced Squamous Non-Small Cell Lung Cancer with Thrombocytopenia after First-Line Treatment with Pembrolizumab Plus Autologous Cytokine-Induced Killer Cells

    PubMed Central

    Hui, Zhenzhen; Zhang, Xinwei; Ren, Baozhu; Li, Runmei; Ren, Xiubao

    2015-01-01

    We present the first clinical evidence of advanced squamous non-small cell lung cancer with severe thrombocytopenia showing dramatic improvement after first-line treatment with pembrolizumab plus autologous cytokine-induced killer cells. PMID:26734004

  14. First-line cetuximab-based chemotherapies for patients with advanced or metastatic KRAS wild-type colorectal cancer

    PubMed Central

    Uemura, Mamoru; Kim, Ho Min; Hata, Tsuyoshi; Sakata, Kazuya; Okuyama, Masaki; Takemoto, Hiroyoshi; Fujii, Hitoshi; Fukuzaki, Takayuki; Morita, Tetsushi; Hata, Taishi; Takemasa, Ichiro; Satoh, Taroh; Mizushima, Tsunekazu; Doki, Yuichiro; Mori, Maski

    2016-01-01

    Colorectal cancer (CRC) is one of the most commonly occurring cancers worldwide. A burgeoning number of studies have demonstrated that the addition of cetuximab to another standard first-line regimen markedly improves the outcome of CRC treatment. However, at present, the efficacy and safety of cetuximab-based combination chemotherapy has not been well described in Japan. The aim of the present study was to evaluate the efficacy and safety of first-line chemotherapies that included cetuximab for patients with advanced or metastatic Kirsten rat sarcoma viral oncogene homolog (KRAS) wild-type CRC in Japan. This prospective multicenter observational study was conducted at 13 affiliated medical institutions. A total of 64 patients were enrolled between 2010 and 2013. The patients met the following criteria for eligibility: i) histologically confirmed, advanced or metastatic KRAS wild-type CRC; and ii) cetuximab-based chemotherapies administered as a first-line treatment. First-line cetuximab-based treatments were administered as follows: 29 patients (45.3%) received a combination of infusional fluorouracil, leucovorin and oxaliplatin; 14 patients (21.9%) received a combination of capecitabine and oxaliplatin; and 10 patients (15.6%) received a combination of infusional fluorouracil, leucovorin and irinotecan. The overall response rate (including complete plus partial responses) was 50% (32/64 patients). Initially, 48 lesions were diagnosed as unresectable. Among those, 13 lesions (27.1%) were converted to a resectable status following cetuximab-based combination chemotherapy treatments. The median overall survival time and the progression-free survival time were 1,189 and 359 days, respectively. The most frequent grade 3/4 adverse event was neutropenia, which occurred in 20.3% of the patients. The incidence of grade 3/4 skin toxicity was 17.2% (11/64 patients). Cetuximab-based therapies may represent a promising first-line regimen for patients with advanced or

  15. A test stand for off-line laser ion source development at TRIUMF

    SciTech Connect

    Lavoie, J. P.; Li, R.; Bricault, P.; Lassen, J.; Chachkova, O.; Teigelhoefer, A.

    2013-01-15

    A test stand for ion source development and laser resonance ionization spectroscopy was built and commissioned at TRIUMF. The test stand is needed to develop efficient ion sources that can function reliably in the hostile, high temperature, high radiation environment of TRIUMF's isotope separator on-line (ISOL) production target ion source. In addition, it enables laser resonance ionization spectroscopy to develop laser excitation schemes suitable for the solid-state laser systems used with TRIUMF's resonant ionization laser ion source . Also, it allows for possible improvement of current ion sources and validation of new designs. The test stand employs a copy of the ion optics used on-line, so that results can be transferred directly to radioactive ion beam production. Due to space restrictions and the need for rapid mass scans, a quadrupole mass spectrometer is used as a mass separator. One of the first experiments conducted on the laser ion source test stand (LIS STAND) was resonant ionization spectroscopy of gallium to improve on the ionization scheme previously used on-line, so that low yield isotopes (e.g., {sup 62}Ga) become available for experiments. Different Rydberg series in gallium were observed and autoionizing states were searched for. The overall LIS STAND system performance, characteristics, and the first resonant ionization spectroscopy are described.

  16. In-flight load testing of advanced shuttle thermal protection systems

    NASA Technical Reports Server (NTRS)

    Trujillo, B. M.; Meyer, R., Jr.; Sawko, P. M.

    1983-01-01

    NASA Ames Research Center has conducted in-flight airload testing of some advanced thermal protection systems (TPS) at the Dryden Flight Research Center. The two flexible TPS materials tested, felt reusable surface insulation (FRSI) and advanced flexible reusable surface insulation (AFRSI), are currently certified for use on the Shuttle orbiter. The objectives of the flight tests were to evaluate the performance of FRSI and AFRSI at simulated launch airloads and to provide a data base for future advanced TPS flight tests. Five TPS configurations were evaluated in a flow field which was representative of relatively flat areas without secondary flows. The TPS materials were placed on a fin, the Flight Test fixture (FTF), that is attached to the underside of the fuselage of an F-104 aircraft. This paper describes the test approach and techniques used and presents the results of the advanced TPS flight test. There were no failures noted during post-flight inspections of the TPS materials which were exposed to airloads 40 percent higher than the design launch airloads.

  17. Testing and analytical modelling for the purging process of a cryogenic line

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.

    2015-12-01

    To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of the upper stage, two test series were conducted. The test article, 3.35 m long with a 20-cm-diameter incline line, was filled with liquid or gaseous hydrogen and then purged with gaseous helium (GHe). A total of 10 tests were conducted. The influences of GHe flow rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program (GFSSP), an in-house general purpose fluid system analyzer computer program, was utilized to model and simulate selective tests. The test procedures, modelling descriptions, and the results are presented in the accompanying text.

  18. Testing and Analytical Modeling for Purging Process of a Cryogenic Line

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.

    2015-01-01

    To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. The test article, a 3.35 m long with the diameter of 20 cm incline line, was filled with liquid or gaseous hydrogen and then purged with gaseous helium (GHe). Total of 10 tests were conducted. The influences of GHe flow rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer computer program, was utilized to model and simulate selective tests. The test procedures, modeling descriptions, and the results are presented in the following sections.

  19. Testing and Analytical Modeling for Purging Process of a Cryogenic Line

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.

    2013-01-01

    To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. The test article, a 3.35 m long with the diameter of 20 cm incline line, was filled with liquid or gaseous hydrogen and then purged with gaseous helium (GHe). Total of 10 tests were conducted. The influences of GHe flow rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer computer program, was utilized to model and simulate selective tests. The test procedures, modeling descriptions, and the results are presented in the following sections.

  20. Status of advanced airfoil tests in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, C. L.; Ray, E. J.

    1984-01-01

    A joint NASA/U.S. industry program to test advanced technology airfoils in the Langley 0.3-meter Transonic Tunnel (TCT) was formulated under the Langley ACEE Project Office. The objectives include providing U.S. industry an opportunity to compare their most advanced airfoils to the latest NASA designs by means of high Reynolds number tests in the same facility. At the same time, industry would again experience in the design and construction of cryogenic test techniques. The status and details of the test program are presented. Typical aerodynamic results obtained, to date, are presented at chord Reynolds number up to 45 x 10(6) and are compared to results from other facilities and theory. Details of a joint agreement between NASA and the Deutsche Forschungs- und Versuchsantalt fur Luft- and Raumfahrt e.V. (DFVLR) for tests of two airfoils are also included. Results of these tests will be made available as soon as practical.

  1. Spinolaminar Line Test as a Screening Tool for C1 Stenosis.

    PubMed

    Oshima, Yasushi; Kelly, Michael P; Song, Kwang-Sup; Park, Moon Soo; Chuntarapas, Tapanut; Vo, Katie D; Yeom, Jin S; Takeshita, Katsushi; Riew, K Daniel

    2016-06-01

    Study Design Retrospective cohort. Objective To clarify the sensitivity of C3-C2 spinolaminar line test as a screening tool for the stenosis of C1 space available for the cord (SAC). Methods Spine clinic records from April 2005 to August 2011 were reviewed. The C1 SAC was measured on lateral radiographs, and the relative positions between a C1 posterior arch and the C3-C2 spinolaminar line were examined and considered "positive" when the C1 ring lay ventral to the line. Computed tomography (CT) scans and magnetic resonance imaging (MRI) were utilized to measure precise diameters of C1 and C2 SAC and to check the existence of spinal cord compression. Results Four hundred eighty-seven patients were included in this study. There were 246 men and 241 women, with an average age of 53 years (range: 18 to 86). The mean SAC at C1 on radiographs was 21.2 mm (range: 13.5 to 28.2). Twenty-one patients (4.3%) were positive for the spinolaminar line test; all of these patients had C1 SAC of 19.4 mm or less. Eight patients (1.6%) had C1 SAC smaller than C2 on CT examination; all of these patients had a positive spinolaminar test, with high sensitivity (100%) and specificity (97%). MRI analysis revealed that two of the eight patients with a smaller C1 SAC had spinal cord compression at the C1 level. Conclusion Although spinal cord compression at the level of atlas without instability is a rare condition, the spinolaminar line can be used as a screening of C1 stenosis. PMID:27190740

  2. Spinolaminar Line Test as a Screening Tool for C1 Stenosis

    PubMed Central

    Oshima, Yasushi; Kelly, Michael P.; Song, Kwang-Sup; Park, Moon Soo; Chuntarapas, Tapanut; Vo, Katie D.; Yeom, Jin S.; Takeshita, Katsushi; Riew, K. Daniel

    2015-01-01

    Study Design Retrospective cohort. Objective To clarify the sensitivity of C3–C2 spinolaminar line test as a screening tool for the stenosis of C1 space available for the cord (SAC). Methods Spine clinic records from April 2005 to August 2011 were reviewed. The C1 SAC was measured on lateral radiographs, and the relative positions between a C1 posterior arch and the C3–C2 spinolaminar line were examined and considered “positive” when the C1 ring lay ventral to the line. Computed tomography (CT) scans and magnetic resonance imaging (MRI) were utilized to measure precise diameters of C1 and C2 SAC and to check the existence of spinal cord compression. Results Four hundred eighty-seven patients were included in this study. There were 246 men and 241 women, with an average age of 53 years (range: 18 to 86). The mean SAC at C1 on radiographs was 21.2 mm (range: 13.5 to 28.2). Twenty-one patients (4.3%) were positive for the spinolaminar line test; all of these patients had C1 SAC of 19.4 mm or less. Eight patients (1.6%) had C1 SAC smaller than C2 on CT examination; all of these patients had a positive spinolaminar test, with high sensitivity (100%) and specificity (97%). MRI analysis revealed that two of the eight patients with a smaller C1 SAC had spinal cord compression at the C1 level. Conclusion Although spinal cord compression at the level of atlas without instability is a rare condition, the spinolaminar line can be used as a screening of C1 stenosis. PMID:27190740

  3. Childhood cancer and exposure to corona ions from power lines: an epidemiological test.

    PubMed

    Swanson, J; Bunch, K J; Vincent, T J; Murphy, M F G

    2014-12-01

    We previously reported an association between childhood leukaemia in Britain and proximity of the child's address at birth to high-voltage power lines that declines from the 1960s to the 2000s. We test here whether a 'corona-ion hypothesis' could explain these results. This hypothesis proposes that corona ions, atmospheric ions produced by power lines and blown away from them by the wind, increase the retention of airborne pollutants in the airways when breathed in and hence cause disease. We develop an improved model for calculating exposure to corona ions, using data on winds from meteorological stations and considering the whole length of power line within 600 m of each subject's address. Corona-ion exposure is highly correlated with proximity to power lines, and hence the results parallel the elevations in leukaemia risk seen with distance analyses. But our model explains the observed pattern of leukaemia rates around power lines less well than straightforward distance measurements, and ecological considerations also argue against the hypothesis. This does not disprove the corona-ion hypothesis as the explanation for our previous results, but nor does it provide support for it, or, by extension, any other hypothesis dependent on wind direction. PMID:25356811

  4. R and D advances in corrosion and crack monitoring for oil and gas lines

    SciTech Connect

    Atherton, D.L.; Czura, W.; Krause, T.W.; Laursen, P.; Mergelas, B.; Hauge, C.

    1996-12-31

    Magnetic Flux Leakage (MFL) inspection techniques for in-line corrosion monitoring of pipelines continue to evolve rapidly. Current R and D is aimed at improving the accuracy and reliability of defect sizing. Major issues are the variability and consequent need to characterize the magnetic properties of the pipes and the effects of line pressure, residual and bending stresses on MFL signals. Magnetic Barkhausen Noise (MBN) measurements are being used to study the stress-induced changes in magnetic anisotropy. Remote Field Eddy Current (RFEC) techniques are being investigated for detection and measurement of stress corrosion cracking in gas pipelines. Anomalous defect source models have improved the detailed explanation of crack defect interactions greatly.

  5. The Advanced Microwave Sounding Unit-A: Antenna Number 2 Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1997-01-01

    Four bearing assemblies, lubricated with Apiezon C oil with 5% lead naphthenate (PbNp), were life tested in support of the Advanced Microwave Sounding Unit-A (AMSU-A). These assemblies were tested continuously for five to six years using the scanning pattern of the flight instrument. A post-life-test analysis was performed on two of the assemblies to evaluate the lubricant behavior and wear in the bearings.

  6. ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Randomized Phase III Placebo-Controlled Trial of Letrozole Plus Oral Temsirolimus As First-Line Endocrine Therapy in Postmenopausal Women With Locally Advanced or Metastatic Breast Cancer

    PubMed Central

    Wolff, Antonio C.; Lazar, Ann A.; Bondarenko, Igor; Garin, August M.; Brincat, Stephen; Chow, Louis; Sun, Yan; Neskovic-Konstantinovic, Zora; Guimaraes, Rodrigo C.; Fumoleau, Pierre; Chan, Arlene; Hachemi, Soulef; Strahs, Andrew; Cincotta, Maria; Berkenblit, Anna; Krygowski, Mizue; Kang, Lih Lisa; Moore, Laurence; Hayes, Daniel F.

    2013-01-01

    Purpose Recent data showed improvement in progression-free survival (PFS) when adding everolimus to exemestane in patients with advanced breast cancer experiencing recurrence/progression after nonsteroidal aromatase inhibitor (AI) therapy. Here, we report clinical outcomes of combining the mammalian target of rapamycin (mTOR) inhibitor temsirolimus with letrozole in AI-naive patients. Patients and Methods This phase III randomized placebo-controlled study tested efficacy/safety of first-line oral letrozole 2.5 mg daily/temsirolimus 30 mg daily (5 days every 2 weeks) versus letrozole/placebo in 1,112 patients with AI-naive, hormone receptor–positive advanced disease. An independent data monitoring committee recommended study termination for futility at the second preplanned interim analysis (382 PFS events). Results Patients were balanced (median age, 63 years; 10% stage III, 40% had received adjuvant endocrine therapy). Those on letrozole/temsirolimus experienced more grade 3 to 4 events (37% v 24%). There was no overall improvement in primary end point PFS (median, 9 months; hazard ratio [HR], 0.90; 95% CI, 0.76 to 1.07; P = .25) nor in the 40% patient subset with prior adjuvant endocrine therapy. An exploratory analysis showed improved PFS favoring letrozole/temsirolimus in patients ≤ age 65 years (9.0 v 5.6 months; HR, 0.75; 95% CI, 0.60 to 0.93; P = .009), which was separately examined by an exploratory analysis of 5-month PFS using subpopulation treatment effect pattern plot methodology (P = .003). Conclusion Adding temsirolimus to letrozole did not improve PFS as first-line therapy in patients with AI-naive advanced breast cancer. Exploratory analyses of benefit in younger postmenopausal patients require external confirmation. PMID:23233719

  8. To test dual supermassive black hole model for broad line active galactic nucleus with double-peaked narrow [O III] lines

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang; Feng, Long-Long

    2016-04-01

    In this paper, we proposed an interesting method to test the dual supermassive black hole model for active galactic nucleus (AGN) with double-peaked narrow [O III] lines (double-peaked narrow emitters) through their broad optical Balmer line properties. Under the dual supermassive black hole model for double-peaked narrow emitters, we could expect statistically smaller virial black hole masses estimated by observed broad Balmer line properties than true black hole masses (total masses of central two black holes). Then, we compare the virial black hole masses between a sample of 37 double-peaked narrow emitters with broad Balmer lines and samples of Sloan Digital Sky Survey selected normal broad line AGN with single-peaked [O III] lines. However, we can find clearly statistically larger calculated virial black hole masses for the 37 broad line AGN with double-peaked [O III] lines than for samples of normal broad line AGN. Therefore, we give our conclusion that the dual supermassive black hole model is probably not statistically preferred to the double-peaked narrow emitters, and more efforts should be necessary to carefully find candidates for dual supermassive black holes by observed double-peaked narrow emission lines.

  9. Testing the Kerr black hole hypothesis: Comparison between the gravitational wave and the iron line approaches

    NASA Astrophysics Data System (ADS)

    Cárdenas-Avendaño, Alejandro; Jiang, Jiachen; Bambi, Cosimo

    2016-09-01

    The recent announcement of the detection of gravitational waves by the LIGO/Virgo Collaboration has opened a new window to test the nature of astrophysical black holes. Konoplya & Zhidenko have shown how the LIGO data of GW 150914 can constrain possible deviations from the Kerr metric. In this letter, we compare their constraints with those that can be obtained from accreting black holes by fitting their X-ray reflection spectrum, the so-called iron line method. We simulate observations with eXTP, a next generation X-ray mission, finding constraints much stronger than those obtained by Konoplya & Zhidenko. Our results can at least show that, contrary to what is quite commonly believed, it is not obvious that gravitational waves are the most powerful approach to test strong gravity. In the presence of high quality data and with the systematics under control, the iron line method may provide competitive constraints.

  10. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  11. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  12. Use of an Advanced Intercross Line Population for Precise Mapping of Quantitative Trait Loci for Gray Leaf Spot Resistance in Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grey leaf spot (GLS) (caused by Cercospora zeae-maydis) of maize (Zea mays L.)is an important fungal disease of maize in the U.S. and worldwide. The IBM population, an advanced intercross recombinant inbred line population derived from a cross between the maize lines Mo17 (resistant) and B73 (sus...

  13. Analysis of results from wind tunnel tests of inlets for an advanced turboprop nacelle installation

    NASA Technical Reports Server (NTRS)

    Hancock, J. P.; Lyman, V.; Pennock, A. P.

    1986-01-01

    Inlets for tractor installations of advanced turboprop propulsion systems were tested in three phases, covering a period from November, 1982 to January, 1984. Nacelle inlet configuration types included single scoop, twin scoop, and annular arrangements. Tests were performed with and without boundary layer diverters and several different diverter heights were tested for the single scoop inlet. This same inlet was also tested at two different axial positions. Test Mach numbers ranged from Mach 0.20 to 0.80. Types of data taken were: (1) internal and external pressures, including inlet throat recoveries; (2) balance forces, including thrust-minus-drag; and (3) propellar blade stresses.

  14. Analysis and correlation of the test data from an advanced technology rotor system

    NASA Technical Reports Server (NTRS)

    Jepson, D.; Moffitt, R.; Hilzinger, K.; Bissell, J.

    1983-01-01

    Comparisons were made of the performance and blade vibratory loads characteristics for an advanced rotor system as predicted by analysis and as measured in a 1/5 scale model wind tunnel test, a full scale model wind tunnel test and flight test. The accuracy with which the various tools available at the various stages in the design/development process (analysis, model test etc.) could predict final characteristics as measured on the aircraft was determined. The accuracy of the analyses in predicting the effects of systematic tip planform variations investigated in the full scale wind tunnel test was evaluated.

  15. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  16. Accelerated aging and flashover tests on 138 kV nonceramic line post insulators

    SciTech Connect

    Schneider, H.M.; Guidi, W.W. ); Burnham, J.T. ); Gorur, R.S. ); Hall, J.F. )

    1993-01-01

    The behavior of 138 kV nonceramic line post insulators is investigated by means of clean fog tests conducted before and after aging in a specially designed accelerated aging chamber. The laboratory aging cycles are justified on the basis of actual weather in the coastal regions of Florida. Analytical measurements quantifying the degree of artificial aging are discussed and comparisons of artificial aging with service experience are presented. Observations of audible noise and radio influence voltage during the clean fog tests are reported.

  17. General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.

    2014-01-01

    A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.

  18. Approaches to Language Testing. Advances in Language Testing Series: 2. Papers in Applied Linguistics.

    ERIC Educational Resources Information Center

    Spolsky, Bernard, Ed.

    This volume, one in a series on modern language testing, collects four essays dealing with current approaches to lanquage testing. The introduction traces the development of language testing theory and examines the role of linguistics in this area. "The Psycholinguistic Basis," by E. Ingram, discusses some interpretations of the term…

  19. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  20. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    SciTech Connect

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  1. QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines

    PubMed Central

    Singh, Anandita; Warthmann, Norman; Kim, Min Chul; Maloof, Julin N.; Loudet, Olivier; Trainer, Gabriel T.; Dabi, Tsegaye; Borevitz, Justin O.; Chory, Joanne; Weigel, Detlef

    2009-01-01

    Background Even when phenotypic differences are large between natural or domesticated strains, the underlying genetic basis is often complex, and causal genomic regions need to be identified by quantitative trait locus (QTL) mapping. Unfortunately, QTL positions typically have large confidence intervals, which can, for example, lead to one QTL being masked by another, when two closely linked loci are detected as a single QTL. One strategy to increase the power of precisely localizing small effect QTL, is the use of an intercross approach before inbreeding to produce Advanced Intercross RILs (AI-RILs). Methodology/Principal Findings We present two new AI-RIL populations of Arabidopsis thaliana genotyped with an average intermarker distance of 600 kb. The advanced intercrossing design led to expansion of the genetic map in the two populations, which contain recombination events corresponding to 50 kb/cM in an F2 population. We used the AI-RILs to map QTL for light response and flowering time, and to identify segregation distortion in one of the AI-RIL populations due to a negative epistatic interaction between two genomic regions. Conclusions/Significance The two new AI-RIL populations, EstC and KendC, derived from crosses of Columbia (Col) to Estland (Est-1) and Kendallville (Kend-L) provide an excellent resource for high precision QTL mapping. Moreover, because they have been genotyped with over 100 common markers, they are also excellent material for comparative QTL mapping. PMID:19183806

  2. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  3. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  4. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lines for permeation emissions? 1060.510 Section 1060.510 Protection of Environment ENVIRONMENTAL... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for... incorporated by reference in § 1060.810....

  5. AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor

    SciTech Connect

    T. Lambert; B. Grover; P. Guillermier; D. Moulinier; F. Imbault Huart

    2012-10-01

    AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the reference in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design studies

  6. Test Standard Developed for Determining the Slow Crack Growth of Advanced Ceramics at Ambient Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1998-01-01

    The service life of structural ceramic components is often limited by the process of slow crack growth. Therefore, it is important to develop an appropriate testing methodology for accurately determining the slow crack growth design parameters necessary for component life prediction. In addition, an appropriate test methodology can be used to determine the influences of component processing variables and composition on the slow crack growth and strength behavior of newly developed materials, thus allowing the component process to be tailored and optimized to specific needs. At the NASA Lewis Research Center, work to develop a standard test method to determine the slow crack growth parameters of advanced ceramics was initiated by the authors in early 1994 in the C 28 (Advanced Ceramics) committee of the American Society for Testing and Materials (ASTM). After about 2 years of required balloting, the draft written by the authors was approved and established as a new ASTM test standard: ASTM C 1368-97, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature. Briefly, the test method uses constant stress-rate testing to determine strengths as a function of stress rate at ambient temperature. Strengths are measured in a routine manner at four or more stress rates by applying constant displacement or loading rates. The slow crack growth parameters required for design are then estimated from a relationship between strength and stress rate. This new standard will be published in the Annual Book of ASTM Standards, Vol. 15.01, in 1998. Currently, a companion draft ASTM standard for determination of the slow crack growth parameters of advanced ceramics at elevated temperatures is being prepared by the authors and will be presented to the committee by the middle of 1998. Consequently, Lewis will maintain an active leadership role in advanced ceramics standardization within ASTM

  7. An evaluation of the utility of four in situ test methods for transmission line foundation design

    SciTech Connect

    Mullen, W.G. Jr.

    1991-01-01

    This research examines four existing in-situ soil strength testing methods; standard penetration test (SPT), the cone penetrometer (CPT), the flat plate dilatometer (DMT), and the pressuremeter (PMT). Soils data were collected at eight separate sites using each of the devices. The test sites were chosen to mirror soil conditions encountered within the service territory of Virginia Power, the project sponsor. A total of 19 standard soil borings, 30 cone penetrometer soundings, 26 dilatometer soundings, and 33 pressuremeter tests were undertaken in residual, alluvial and marine clay soil conditions. The testing program was conducted with five areas of concern: (1) comparison of the penetration/stiffness data from the four tests, (2) comparison of values of undrained shear strength and angle of internal friction developed from each of the test methods, (3) determination if pressuremeter data can be correlated to and thereby developed from one of the more rapid tests, (4) comparison of indirect soil type identifications from the standard borings, (5) development of information on the relative effort required for each test. Comparison of the penetration resistance stiffness data produced useful correlations among the CPT and DMT, with the SPT data yielding more erratic results. Shear strength data was most consistent for the marine clay sites, while the CPT and DMT returned useful friction angle data in the alluvial sands. PMT data correlated well to both the CPT and DMT test results. Correlation of PMT results to the SPT was more erratic. Indirect soil identification from the CPT and DMT was fully adequate for transmission line foundation design purposes, and finally, useful comparative data on the relative testing time required for the four in-situ tests was developed.

  8. Improved method for calculating the respiratory line length in the Concealed Information Test.

    PubMed

    Matsuda, Izumi; Ogawa, Tokihiro

    2011-08-01

    The Concealed Information Test (CIT) assesses an examinee's knowledge about a crime based on response differences between crime-relevant and crime-irrelevant items. One effective measure in the CIT is the respiration line length, which is the average of the moving distances of the respiration curve in a specified time interval after the item onset. However, the moving distance differs between parts of a respiratory cycle. As a result, the calculated respiration line length is biased by how the parts of the respiratory cycles are included in the time interval. To resolve this problem, we propose a weighted average method, which calculates the respiration line length per cycle and weights it with the proportion that the cycle occupies in the time interval. Simulation results indicated that the weighted average method removes the bias of respiration line lengths compared to the original method. The results of experimental CIT data demonstrated that the weighted average method significantly increased the discrimination performance as compared with the original method. The weighted average method is a promising method for assessing respiration changes in response to question items more accurately, which improves the respiration-based discrimination performance of the CIT. PMID:21689693

  9. Dose escalation for unresectable locally advanced non-small cell lung cancer: end of the line?

    PubMed

    Hong, Julian C; Salama, Joseph K

    2016-02-01

    Radiation Therapy Oncology Group (RTOG) 0617 was a randomized trial that investigated both the impact of radiation dose-escalation and the addition of cetuximab on the treatment of non-small cell lung cancer (NSCLC). The results of RTOG 0617 were surprising, with the dose escalation randomization being closed prematurely due to futility stopping rules, and cetuximab ultimately showing no overall survival benefit. Locally advanced unresectable NSCLC has conventionally been treated with concurrent chemoradiation. Though advances in treatment technology have improved the ability to deliver adequate treatment dose, the foundation for radiotherapy (RT) has remained the same since the 1980s. Since then, progressive studies have sought to establish the safety and efficacy of escalating radiation dose to loco-regional disease. Though RTOG 0617 did not produce the anticipated result, much interest remains in dose escalation and establishing an explanation for the findings of this study. Cetuximab was also not found to provide a survival benefit when applied to an unselected population. However, planned retrospective analysis suggests that those patients with high epidermal growth factor receptor (EGFR) expression may benefit, suggesting that cetuximab should be applied in a targeted fashion. We discuss the results of RTOG 0617 and additional findings from post-hoc analysis that suggest that dose escalation may be limited by normal tissue toxicity. We also present ongoing studies that aim to address potential causes for mortality in the dose escalation arm through adaptive or proton therapy, and are also leveraging additional concurrent systemic agents such as tyrosine kinase inhibitors (TKIs) for EGFR-activating mutations or EML4-ALK rearrangements, and poly (ADP-ribose) polymerase (PARP) inhibitors. PMID:26958507

  10. Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)

    NASA Astrophysics Data System (ADS)

    Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.

    2015-05-01

    The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.

  11. A Positional X-ray Instrumentation Test Stand For Beam-Line Experiments

    NASA Astrophysics Data System (ADS)

    Nikoleyczik, Jonathan; Prieskorn, Z.; Burrows, D. N.; Falcone, A.

    2014-01-01

    A multi-axis, motion controlled test stand has been built in the PSU 47 m X-ray beam-line for the purpose of testing X-ray instrumentation and mirrors using parallel rays. The test stand is capable of translation along two axes and rotation about two axes with motorized fine position control. The translation stages have a range of motion of 200 mm with a movement accuracy of ± 2.5 microns. Rotation is accomplished with a two-axis gimbal which can rotate 360° about one axis and 240° about another; movement with ± 35 arcsecond accuracy are achieved in both axes. The position and status are monitored using a LabView program. An XCalibr source with multiple target materials is used as an X-ray source and can produce multiple lines between 0.8 and 8 keV. Some sample spectra are shown from a Si-PIN diode detector. This system is well suited for testing X-ray mirror segments which are currently being developed.

  12. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    SciTech Connect

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw . E-mail: jdastych@cbm.pan.pl

    2005-09-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals.

  13. CRAFT: On-line expert system for customer restoration and fault testing

    SciTech Connect

    Liu, C.-C.; Damborg, M.J. . Dept. of Electrical Engineering)

    1990-03-01

    The purpose of the rule-based expert system, CRAFT (Customer Restoration And Fault Testing) is to assist power dispatchers with fault isolation and customer restoration in multi-tapped transmission lines equipped with automatic switches. CRAFT is able to perform reasoning to derive the status of unsupervised automatic switches. The CRAFT system is operating on-line at the control center of Puget Sound Power and Light Company (Puget Power). The expert system was developed by the University of Washington (UW) under the sponsorship of EPRI with cofunding from the National Science Foundation and Puget Power. The on-line CRAFT system is implemented on an expert system computer data-linked to the SCADA computer in the control center. In Puget Power's control center, a Micro VAX II computer is linked to the MODCOMP CLASSIC II SCADA computer to perform the functions of fault testing and substation restoration. The CRAFT system contains approximately 450 rules written in the rule-based language, OPS83. The typical response time of CRAFT is approximately 13 seconds. 15 refs., 17 figs., 2 tabs.

  14. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  15. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  16. Advanced Test Reactor In-Canal Ultrasonic Scanner: Experiment Design and Initial Results on Irradiated Plates

    SciTech Connect

    D. M. Wachs; J. M. Wight; D. T. Clark; J. M. Williams; S. C. Taylor; D. J. Utterbeck; G. L. Hawkes; G. S. Chang; R. G. Ambrosek; N. C. Craft

    2008-09-01

    An irradiation test device has been developed to support testing of prototypic scale plate type fuels in the Advanced Test Reactor. The experiment hardware and operating conditions were optimized to provide the irradiation conditions necessary to conduct performance and qualification tests on research reactor type fuels for the RERTR program. The device was designed to allow disassembly and reassembly in the ATR spent fuel canal so that interim inspections could be performed on the fuel plates. An ultrasonic scanner was developed to perform dimensional and transmission inspections during these interim investigations. Example results from the AFIP-2 experiment are presented.

  17. Component tests for the ITER Ion Cyclotron Transmission Line and Matching System - Status and Plans

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; McCarthy, M. P.; Deibele, C. E.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Campbell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.; Kung, C.

    2015-11-01

    New Z0 = 50 Ω gas-cooled component designs for the ITER Ion Cyclotron Heating and Current Drive System have been successfully tested at high RF power levels. They include two types featuring spoke-ring assembly (SRA) inner conductor supports: 20° elbows, and variable length assembly bellows, both achieving RF voltages > 35 kV peak, and currents ~ 760 A peak during quasi-steady state operation. The SRA utilizes mechanically preloaded fused quartz spokes, increasing lateral load handling capability. Components with SRA supports have been seismically tested, with no variation in low power electrical performance detected after testing. A 3 MW four-port switch has also been successfully tested at high RF power, and tests of a 6 MW hybrid power splitter are planned in the near future. Latest results will be presented. Plans for arc localization tests in a 60 m SRA transmission line run, and RF tests of Z0 = 50 Ω and Z0 = 20 Ω matching components with water-cooled inner conductors will also be discussed. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  18. A study for testing the Kerr metric with AGN iron line eclipses

    NASA Astrophysics Data System (ADS)

    Cárdenas-Avendaño, Alejandro; Jiang, Jiachen; Bambi, Cosimo

    2016-04-01

    Recently, two of us have studied iron line reverberation mapping to test black hole candidates, showing that the time information in reverberation mapping can better constrain the Kerr metric than the time-integrated approach. Motivated by this finding, here we explore the constraining power of another time-dependent measurement: an AGN iron line eclipse. An obscuring cloud passes between the AGN and the distant observer, covering different parts of the accretion disk at different times. Similar to the reverberation measurement, an eclipse might help to better identify the relativistic effects affecting the X-ray photons. However, this is not what we find. In our study, we employ the Johannsen-Psaltis parametrisation, but we argue that our conclusions hold in a large class of non-Kerr metrics. We explain our results pointing out an important difference between reverberation and eclipse measurements.

  19. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  20. 2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  1. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  2. 2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond

    SciTech Connect

    mike lewis

    2011-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  3. 2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  4. 2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  5. EPA ALKALI SCRUBBING TEST FACILITY: ADVANCED PROGRAM, FOURTH PROGRESS REPORT; VOLUME 1. BASIC REPORT

    EPA Science Inventory

    The report gives results of advanced testing (late November 1976 - June 1978) of 30,000-35,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for SO2 and particulate removal at TVA's Shawnee power station. Forced oxidation with two scrubber loops was developed on the ventur...

  6. EPA ALKALI SCRUBBING TEST FACILITY: ADVANCED PROGRAM - FINAL REPORT (OCTOBER 1974-JUNE 1978)

    EPA Science Inventory

    The report summarizes results of advanced testing (from October 1974 through June 1978) of 30,000-35,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for SO2 and particulate removal at TVA's Shawnee power station. Reliable scrubber and mist eliminator operations were demo...

  7. Development, Field Test, and Refinement of Performance Training Programs in Armor Advanced Individual Training. Final Report.

    ERIC Educational Resources Information Center

    Young, Douglas L.; Taylor, John E.

    Performance-oriented instruction was developed, field tested, and refined in two Advanced Individual Training (AIT) programs--Armor Reconnaissance Specialist (MOS 11D) and Armor Crewman (MOS 11E). Tasks for both MOS (Military Occupational Specialty) were inventoried and the inventories were reduced by eliminating those tasks which are not required…

  8. Estimated Effect of the Teacher Advancement Program on Student Test Score Gains

    ERIC Educational Resources Information Center

    Springer, Matthew G.; Ballou, Dale; Peng, Art

    2014-01-01

    This article presents findings from the first independent, third-party appraisal of the impact of the Teacher Advancement Program (TAP) on student test score gains in mathematics. TAP is a comprehensive school reform model designed to attract highly effective teachers, improve instructional effectiveness, and elevate student achievement. We use a…

  9. 75 FR 53681 - Office of Elementary and Secondary Education Overview Information; Advanced Placement (AP) Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Office of Elementary and Secondary Education Overview Information; Advanced Placement (AP) Test Fee... academic credit is awarded. Program Authority: 20 U.S.C. 6531-6537. Applicable Regulations: The...

  10. Cognitive Levels of Questions Used by Iranian EFL Teachers in Advanced Reading Comprehension Tests

    ERIC Educational Resources Information Center

    Khorsand, Narjess

    2009-01-01

    This study examined the cognitive levels of questions used by Iranian EFL teachers in advanced reading comprehension tests. Twenty teachers participated in this study and generated 215 questions which were then categorized according to Bloom's taxonomy. This taxonomy consists of six major categories which starts from the simplest behavior to the…

  11. A Review of the Kaufman Adolescent and Adult Intelligence Test: An Advancement in Cognitive Assessment?

    ERIC Educational Resources Information Center

    Flanagan, Dawn P.; Alfonso, Vincent C.; Flanagan, Rosemary

    1994-01-01

    Reviews Kaufman Adolescent and Adult Intelligence Test (KAIT), a new assessment of cognitive function for technical qualities such as reliability, validity, and standardization characters. Concludes that KAIT represents advancements in cognitive assessment but cannot be regarded as superior to existing intelligence measures until data is available…

  12. 75 FR 15443 - Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop; request...

  13. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  14. Dual therapy for third-line Helicobacter pylori eradication and urea breath test prediction

    PubMed Central

    Nishizawa, Toshihiro; Suzuki, Hidekazu; Maekawa, Takama; Harada, Naohiko; Toyokawa, Tatsuya; Kuwai, Toshio; Ohara, Masanori; Suzuki, Takahiro; Kawanishi, Masahiro; Noguchi, Kenji; Yoshio, Toshiyuki; Katsushima, Shinji; Tsuruta, Hideo; Masuda, Eiji; Tanaka, Munehiro; Katayama, Shunsuke; Kawamura, Norio; Nishizawa, Yuko; Hibi, Toshifumi; Takahashi, Masahiko

    2012-01-01

    We evaluated the efficacy and tolerability of a dual therapy with rabeprazole and amoxicillin (AMX) as an empiric third-line rescue therapy. In patients with failure of first-line treatment with a proton pump inhibitor (PPI)-AMX-clarithromycin regimen and second-line treatment with the PPI-AMX-metronidazole regimen, a third-line eradication regimen with rabeprazole (10 mg q.i.d.) and AMX (500 mg q.i.d.) was prescribed for 2 wk. Eradication was confirmed by the results of the 13C-urea breath test (UBT) at 12 wk after the therapy. A total of 46 patients were included; however, two were lost to follow-up. The eradication rates as determined by per-protocol and intention-to-treat analyses were 65.9% and 63.0%, respectively. The pretreatment UBT results in the subjects showing eradication failure; those patients showing successful eradication comprised 32.9 ± 28.8 permil and 14.8 ± 12.8 permil, respectively. The pretreatment UBT results in the subjects with eradication failure were significantly higher than those in the patients with successful eradication (P = 0.019). A low pretreatment UBT result (≤ 28.5 permil) predicted the success of the eradication therapy with a positive predictive value of 81.3% and a sensitivity of 89.7%. Adverse effects were reported in 18.2% of the patients, mainly diarrhea and stomatitis. Dual therapy with rabeprazole and AMX appears to serve as a potential empirical third-line strategy for patients with low values on pretreatment UBT. PMID:22690086

  15. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station

    NASA Technical Reports Server (NTRS)

    De La Cruz, Melinda; Henderson, Steve

    2016-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.

  16. On-line PWR RHR pump performance testing following motor and impeller replacement

    SciTech Connect

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  17. 40 CFR 1054.315 - How do I know when my engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... results for each engine. If you do several tests on an engine, calculate the initial results for each test... this section (see § 1054.315(a)). (d) After each new test, recalculate the CumSum statistic. (e) If you... § 1054.320 for the requirements that apply to individual engines that fail a production-line test....

  18. 40 CFR 1045.315 - How do I know when my engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... results for each engine. If you do several tests on an engine, calculate the initial results for each test... this section (see § 1045.315(a)). (d) After each new test, recalculate the CumSum statistic. (e) If you... § 1045.320 for the requirements that apply to individual engines that fail a production-line test....

  19. A new bend magnet beam line for scanning transmission x-ray microscopy at the Advanced Light Source

    SciTech Connect

    Warwick, Tony; Ade, Harald; Kilcoyne, A.L. David; Kritscher, Michael; Tylisczcak, Tolek; Fakra, Sirine; Hitchcock, Adam P.; Hitchcock, Peter; Padmore, Howard A.

    2001-12-12

    The high brightness of the bend magnets at the Advanced Light Source has been exploited to illuminate a Scanning Transmission X-ray Microscope (STXM). This is the first diffraction-limited scanning x-ray microscope to operate with useful count rate on a synchrotron bend magnet source. A simple, dedicated beam line has been built covering the range of photon energy from 250 eV to 600 eV. Ease of use and operational availability are radically improved compared to previous installations using undulator beams. This facility provides radiation for C 1s, N 1s and O 1s near edge x-ray absorption spectro-microscopy with a spectral resolution up to about 1:5000 and with STXM count rates in excess of 1 MHz.

  20. Plutonium process control using an advanced on-line gamma monitor for uranium, plutonium, and americium

    SciTech Connect

    Marsh, S.F.; Miller, M.C.

    1987-05-01

    An on-line gamma monitor has been developed to profile uranium, plutonium, and americium in waste and product streams of the anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The gamma monitor employs passive gamma spectrometry to measure /sup 241/Am and /sup 239/Pu, based on their 59.5-keV and 129-keV gamma rays, respectively. Because natural and depleted uranium present in typical process streams have no gamma rays suitable for measurement by such passive methods, uranium measurement requires a novel and less direct technique. Plutonium-241, which is always present in plutonium processed at Los Alamos, decays primarily by beta emission to form /sup 241/Am. However, a small fraction of /sup 241/Pu decays by alpha emission to 6.8-day /sup 237/U. The short half-life and 208-keV gamma energy of /sup 237/U make it an ideal radiotracer to mark the position of macro amounts of uranium impurity in the separation process. The real-time data obtained from an operating process allow operators to optimize many process parameters. The gamma monitor also provides a permanent record of the daily performance of each ion exchange system. 2 refs., 12 figs.