Advancing Women Scientists: Exploring a Theoretically Grounded Climate Change Workshop Model
NASA Astrophysics Data System (ADS)
Silver, Barbara; Prochaska, Janice; Mederer, Helen; Harlow, Lisa; Sherman, Karen
Universities in the United States have an increasing need to recruit the best and the brightest faculty to remain globally competitive, but the majority of schools share a profile that includes a low percentage of women in most of the science, technology, engineering, and math (STEM) disciplines. Changes in university culture are needed to enable departmental diversity growth, to expand offerings and perspectives, and to strengthen the view that STEM is an attractive choice for female students and prospective faculty. This paper describes the theoretical models used to develop a prototype workshop series implemented in departments to help faculty progress in their readiness to advance women scientists, defined as collaborating, mentoring, sharing resources, and generating support through community. The three theoretical underpinnings are the gender-as-structure theory of organizational change, Appreciative Inquiry, and the Transtheoretical Model. These workshops are one aspect of the climate change efforts implemented by the ADVANCE program of the University of Rhode Island.
Theoretical Advanced Study Institute: 2014
DeGrand, Thomas
2016-08-17
The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context and on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.
Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard; Sabharwall, Piyush
2016-12-29
The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.
Recent Advances in the Theoretical Modeling of Pulsating Low-mass He-core White Dwarfs
NASA Astrophysics Data System (ADS)
Córsico, A. H.; Althaus, L. G.; Calcaferro, L. M.; Serenelli, A. M.; Kepler, S. O.; Jeffery, C. S.
2017-03-01
Many extremely low-mass (ELM) white-dwarf (WD) stars are currently being found in the field of the Milky Way. Some of these stars exhibit long-period nonradial g-mode pulsations, and constitute the class of ELMV pulsating WDs. In addition, several low-mass pre-WDs, which could be precursors of ELM WDs, have been observed to show short-period photometric variations likely due to nonradial p modes and radial modes. They could constitute a new class of pulsating low-mass pre-WD stars, the pre-ELMV stars. Here, we present the recent results of a thorough theoretical study of the nonadiabatic pulsation properties of low-mass He-core WDs and pre-WDs on the basis of fully evolutionary models representative of these stars.
The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances
Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary
2013-01-01
Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273
A Review of Theoretical and Empirical Advancements
ERIC Educational Resources Information Center
Wang, Mo; Henkens, Kene; van Solinge, Hanna
2011-01-01
In this article, we review both theoretical and empirical advancements in retirement adjustment research. After reviewing and integrating current theories about retirement adjustment, we propose a resource-based dynamic perspective to apply to the understanding of retirement adjustment. We then review empirical findings that are associated with…
Bauer, Georg; Davies, John Kenneth; Pelikan, Jurgen; Noack, Horst; Broesskamp, Ursel; Hill, Chloe
2003-09-01
This paper discusses the work of the EUHPID Project to develop a European Health Promotion Monitoring System based on a common set of health promotion indicators. The Project has established three working groups to progress this task--health promotion policy and practice-driven, data-driven and theory-driven. The work of the latter group is reviewed in particular. EUHPID has taken a systems theory approach in order to develop a model as a common frame of reference and a rational basis for the selection, organization and interpretation of health promotion indicators. After reviewing the strengths and weaknesses of those health promotion models currently proposed for indicator development, the paper proposes a general systems model of health development, and specific analytical, socio-ecological models related to public health and health promotion. These are described and discussed in detail. Taking the Ottawa Charter as the preferred framework for health promotion, the socio-ecological model for health promotion adopts its five action areas to form five types of systems. The structure and processes for each of these five systems are proposed to form the basis of a classification system for health promotion indicators. The paper goes on to illustrate such a system with reference to indicators in the workplace setting. The EUHPID Consortium suggest that their socio-ecological model could become a common reference point for the public health field generally, and offer an invitation to interested readers to contribute to this development.
Theoretical models for supernovae
Woosley, S.E.; Weaver, T.A.
1981-09-21
The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.
Recent theoretical, neural, and clinical advances in sustained attention research.
Fortenbaugh, Francesca C; DeGutis, Joseph; Esterman, Michael
2017-03-05
Models of attention often distinguish among attention subtypes, with classic models separating orienting, switching, and sustaining functions. Compared with other forms of attention, the neurophysiological basis of sustaining attention has received far less notice, yet it is known that momentary failures of sustained attention can have far-ranging negative effects in healthy individuals, and lasting sustained attention deficits are pervasive in clinical populations. In recent years, however, there has been increased interest in characterizing moment-to-moment fluctuations in sustained attention, in addition to the overall vigilance decrement, and understanding how these neurocognitive systems change over the life span and across various clinical populations. The use of novel neuroimaging paradigms and statistical approaches has allowed for better characterization of the neural networks supporting sustained attention and has highlighted dynamic interactions within and across multiple distributed networks that predict behavioral performance. These advances have also provided potential biomarkers to identify individuals with sustained attention deficits. These findings have led to new theoretical models explaining why sustaining focused attention is a challenge for individuals and form the basis for the next generation of sustained attention research, which seeks to accurately diagnose and develop theoretically driven treatments for sustained attention deficits that affect a variety of clinical populations.
Recent theoretical advances on superradiant phase transitions
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-03-01
The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.
Theoretical Models of Generalized Quasispecies.
Wagner, Nathaniel; Atsmon-Raz, Yoav; Ashkenasy, Gonen
2016-01-01
Theoretical modeling of quasispecies has progressed in several directions. In this chapter, we review the works of Emmanuel Tannenbaum, who, together with Eugene Shakhnovich at Harvard University and later with colleagues and students at Ben-Gurion University in Beersheva, implemented one of the more useful approaches, by progressively setting up various formulations for the quasispecies model and solving them analytically. Our review will focus on these papers that have explored new models, assumed the relevant mathematical approximations, and proceeded to analytically solve for the steady-state solutions and run stochastic simulations . When applicable, these models were related to real-life problems and situations, including changing environments, presence of chemical mutagens, evolution of cancer and tumor cells , mutations in Escherichia coli, stem cells , chromosomal instability (CIN), propagation of antibiotic drug resistance , dynamics of bacteria with plasmids , DNA proofreading mechanisms, and more.
Propagation studies using a theoretical ionosphere model
NASA Technical Reports Server (NTRS)
Lee, M.
1973-01-01
The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.
Theoretical Transport Model for Tokamaks
NASA Astrophysics Data System (ADS)
Ghanem, Elsayed Mohammad
In the present thesis work a theoretical transport model is suggested to study the anomalous transport of plasma particles and energy across the axisymmetric equilibrium toroidal magnetic flux surfaces in tokamaks. The model suggests a linear combination of two transport mechanisms; drift waves, which dominate the transport in the core region, and resistive ballooning modes, which dominate the transport in the edge region. The resulting unified model has been used in a predictive transport code to simulate the plasma transport in different tokamak experiments operating in both the ohmic heating phase and the low confinement mode (L-mode). For ohmic plasma, the model was used to study the saturation of energy confinement time at high plasma density. The effect of the resistive ballooning mode as a possible cause of the saturation phenomena has been investigated together with the effect of the ion temperature gradient mode. For the low confinement mode plasmas, the study has emphasized on using the model to obtain a scaling law for the energy confinement time with the various plasma parameters compared to the scaling laws that are derived based on fitting the experimental data.
[Advance Directives: theoretical concept and practical significance in the USA].
Vollmann, J; Pfaff, M
2003-07-04
The article examines on the basic of empirical data the discrepancy between the theoretical demand and the practical role of advance directives. Often advance directives have no influence on medical decision-making in clinical care of critically ill patients. The vague language of the widely used standard living wills and the lack of physician-patient communication in the process of delivering an advance directives are contributing factors. However, many physicians even disregard patients' preferences in concrete and meaningful living wills at the end of life. Besides the lack of information many even seriously ill patients do not deliver an advance because they misjudge their medical prognosis and life expectancy. Often the communication between patients and doctors are blocked because they expect from the each other the first step to talk about end of life decisions and advance directives. In this context physicians claim lack of time, training in communication skills and their discomfort in talking about death and dying with their patients.
NASA Technical Reports Server (NTRS)
Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek
2015-01-01
Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.
Theoretical models for trace gas preconcentrators
NASA Astrophysics Data System (ADS)
Kim, Jihyun
2013-11-01
Muntz et al., in 2004 and 2011, had attempted to describe theoretical models about the shape of a main flow channel and the concentration ratio of trace gas for a Continuous Flow-Through Trace Gas Preconcentrator by concepts of net flux and mass flow rate respectively. The possibilities were suggested to obtain theoretical models for the preconcentrator even through they were not satisfied with experimental results, because the theoretical models were only considered for free molecular flow. In this study, new theoretical models based on net flux and mass flow rate have been applied for each regime; free molecular flow, transition flow, and hydrodynamic flow. There are comprehensive numerical models to describe entire regimes with the new theoretical models induced by mass flow rate, but the new theoretical models induced by net flux can be only obtained for the hydrodynamic flow. The numerical predictions were compared with existing experimental results of the prototype of the preconcentrator. The numerical predictions of hydrodynamic and transition flows by mass flow rate were close to the experimental results, but other cases were different to the experimental data. Nevertheless, the theoretical models can provide the possibility to develop the theory of preconcentrator.
Theoretical Model of Granular Compaction
NASA Astrophysics Data System (ADS)
Ben-Naim, Eli
1998-03-01
Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a higher density final steady state. The relaxation towards the final state follows an anomalously slow inverse logarithmic law. As the density increases, a growing number of grains have to be rearranged to create voids large enough to accommodate a particle. The time for such rearrangements diverges exponentially thereby leading to the logarithmic relaxation. We propose an analytically tractable stochastic process in one dimension that models the excluded volume interaction between grains. In addition to the relaxation towards the steady state, this model predicts the experimentally observed Gaussian distributions and spectrums of the steady state density fluctuations. Work done in collaboration with J. B. Knight, E. R. Nowak, P. L. Krapivsky, H. M. Jaeger, and S. R. Nagel. 1. P. L. Krapivsky and E. Ben-Naim, J. Chem. Phys. 100, 6778 (1994). 2. J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 51, 3957 (1995). 3. E. Ben-Naim, J. B. Knight, E. R. Nowak, H. M. Jaeger, and S. R. Nagel, Physica D, in press.
Theoretical Modeling of Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Charnley, Steven
2009-01-01
The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.
Theoretical models of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Hawkings, D. L.
1978-01-01
For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.
Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier
2013-02-19
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of
An improved theoretical model of acoustic agglomeration
Song, L. ); Koopmann, G.H. . Center for Acoustics and Vibration); Hoffmann, T.L. )
1994-04-01
An improved theoretical model is developed to describe the acoustic agglomeration of particles entrained in a gas medium. The improvements to the present theories are twofold: first, wave scattering is included in the orthokinetic interaction of particles and second, hydrodynamic interaction, shown to be an important agglomeration mechanism for certain operation conditions, is incorporated into the model. The influence of orthokinetic and hydrodynamic interactions introduce associated convergent velocities that cause particles to approach each other and collide. The convergent velocities are related with an acoustic agglomeration frequency function (AAFF) through a semi-statistical method. This function is the key parameter for the theoretical simulation of acoustic agglomeration.
Advanced Chemistry Basins Model
William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang
2002-11-10
The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.
Hybrid quantum teleportation: A theoretical model
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
Theoretical Modeling for Hepatic Microwave Ablation
Prakash, Punit
2010-01-01
Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation. PMID:20309393
Structural Tailoring of Advanced Turboprops (STAT). Theoretical manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1992-01-01
This manual describes the theories in the Structural Tailoring of Advanced Turboprops (STAT) computer program, which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (1-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements, and a 1-P forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.
Simple theoretical models for composite rotor blades
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Rehfield, L. W.
1984-01-01
The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.
Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling
Danon, Yaron; Nazarewicz, Witold; Talou, Patrick
2013-02-18
This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.
A Lifecourse Model of Multimorbidity Resilience: Theoretical and Research Developments.
Wister, Andrew V; Coatta, Katherine L; Schuurman, Nadine; Lear, Scott A; Rosin, Miriam; MacKey, Dawn
2016-04-01
The purpose of this article is to advance a Lifecourse Model of Multimorbidity Resilience. It focuses on the ways in which individuals face adversities associated with multimorbidity and regain a sense of wellness through a complex, dynamic phenomenon termed resilience. A comprehensive review of 112 publications (between 1995 and 2015) was conducted using several comprehensive electronic data bases. Two independent researchers extracted and synthesized resilience literature with specific applications to chronic illness. The article outlines five stages of theoretical development of resilience, synthesizes these with the aging and chronic illness literature, builds a rationale for a lifecourse approach to resilience, and applies the model to multimorbidity. Cultivating and maintaining resilience is fundamental to functioning and quality of life for those with multimorbidity. We found that there are a number of gaps in both basic and applied research that need to be filled to advance knowledge and practice based on resilience approaches.
A Theoretical Model of Water and Trade
NASA Astrophysics Data System (ADS)
Dang, Q.; Konar, M.; Reimer, J.; Di Baldassarre, G.; Lin, X.; Zeng, R.
2015-12-01
Water is an essential factor of agricultural production. Agriculture, in turn, is globalized through the trade of food commodities. In this paper, we develop a theoretical model of a small open economy that explicitly incorporates water resources. The model emphasizes three tradeoffs involving water decision-making that are important yet not always considered within the existing literature. One tradeoff focuses on competition for water among different sectors when there is a shock to one of the sectors only, such as trade liberalization and consequent higher demand for the product. A second tradeoff concerns the possibility that there may or may not be substitutes for water, such as increased use of sophisticated irrigation technology as a means to increase crop output in the absence of higher water availability. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using products. A number of propositions are proven. For example, while trade liberalization tends to increase water use, increased pressure on water supplies can be moderated by way of a tax that is derivable with observable economic phenomena. Another example is that increased riskiness of water availability tends to cause water users to use less water than would be the case under profit maximization. These theoretical model results generate hypotheses that can be tested empirically in future work.
Approaching nanoscale oxides: models and theoretical methods.
Bromley, Stefan T; Moreira, Ibério de P R; Neyman, Konstantin M; Illas, Francesc
2009-09-01
This tutorial review deals with the rapidly developing area of modelling oxide materials at the nanoscale. Top-down and bottom-up modelling approaches and currently used theoretical methods are discussed with the help of a selection of case studies. We show that the critical oxide nanoparticle size required to be beyond the scale where every atom counts to where structural and chemical properties are essentially bulk-like (the scalable regime) strongly depends on the structural and chemical parameters of the material under consideration. This oxide-dependent behaviour with respect to size has fundamental implications with respect to their modelling. Strongly ionic materials such as MgO and CeO(2), for example, start to exhibit scalable-to-bulk crystallite-like characteristics for nanoparticles consisting of about 100 ions. For such systems there exists an overlap in nanoparticle size where both top-down and bottom-up theoretical techniques can be applied and the main problem is the choice of the most suitable computational method. However, for more covalent systems such TiO(2) or SiO(2) the onset of the scalable regime is still unclear and for intermediate sized nanoparticles there exists a gap where neither bottom-up nor top-down modelling are fully adequate. In such difficult cases new efforts to design adequate models are required. Further exacerbating these fundamental methodological concerns are oxide nanosystems exhibiting complex electronic and magnetic behaviour. Due to the need for a simultaneous accurate treatment of the atomistic, electronic and spin degrees of freedom for such systems, the top-down vs. bottom-up separation is still large, and only few studies currently exist.
Theoretical model for FCGR near the threshold
NASA Astrophysics Data System (ADS)
Lanteigne, Jacques; Baïlon, Jean-Paul
1981-03-01
A theoretical model for fatigue crack growth rate at low and near threshold stress intensity factor is developed. The crack tip is assumed to be a semicircular notch of radius ρ and incremental crack growth occurs along a distance 4ρ ahead of the crack tip. After analysis of the stress and strain distribution ahead of the crack tip, a relationship between the strain range and the stress intensity range is proposed. It is then assumed that Manson-Coffin cumulative rule can be applied to a region of length 4ρ from the crack tip, where strain reversal occurs. Finally, a theoretical equation giving the fatigue crack growth rate is obtained and applied to several materials (316L stainless steel, 300M alloy steel, 70-30 α brass, 2618A and 7025 aluminum alloys). It is found that the model can be used to correlate fatigue crack growth rates with the mechanical properties of the materials, and to determine the threshold stress intensity factor, once the crack tip radius α is obtained from the previous data.
A theoretical model of water and trade
NASA Astrophysics Data System (ADS)
Dang, Qian; Konar, Megan; Reimer, Jeffrey J.; Di Baldassarre, Giuliano; Lin, Xiaowen; Zeng, Ruijie
2016-03-01
Water is an essential input for agricultural production. Agriculture, in turn, is globalized through the trade of agricultural commodities. In this paper, we develop a theoretical model that emphasizes four tradeoffs involving water-use decision-making that are important yet not always considered in a consistent framework. One tradeoff focuses on competition for water among different economic sectors. A second tradeoff examines the possibility that certain types of agricultural investments can offset water use. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using commodities. The fourth tradeoff concerns how variability in water supplies influences farmer decision-making. We show conditions under which trade liberalization affect water use. Two policy scenarios to reduce water use are evaluated. First, we derive a target tax that reduces water use without offsetting the gains from trade liberalization, although important tradeoffs exist between economic performance and resource use. Second, we show how subsidization of water-saving technologies can allow producers to use less water without reducing agricultural production, making such subsidization an indirect means of influencing water use decision-making. Finally, we outline conditions under which riskiness of water availability affects water use. These theoretical model results generate hypotheses that can be tested empirically in future work.
A control theoretic model of the forearm.
Rehbinder, H; Martin, C
2001-06-01
In this paper, a control theoretic model of the forearm is developed and analyzed, and a computational method for predicting muscle activations necessary to generate specified motions is described. A detailed geometric model of the forearm kinematics, including the carrying angle and models of how the biceps and the supinator tendons wrap around the bones, is used. Also, including a dynamics model, the final model is a system of differential equations where the muscle activations play the role of control signals. Due to the large number of muscles, the problem of finding muscle activations is redundant, and this problem is solved by an optimization procedure. The computed muscle activations for ballistic movements clearly recaptures the triphasic ABC (Activation-Braking-Clamping) pattern. It is also transparent, from the muscle activation patterns, how the muscles cooperate and counteract in order to accomplish desired motions. A comparison with previously reported experimental data is included and the model predictions can be seen to be partially in agreement with the experimental data.
Theoretical model of crystal growth shaping process
NASA Astrophysics Data System (ADS)
Tatarchenko, V. A.; Uspenski, V. S.; Tatarchenko, E. V.; Nabot, J. Ph.; Duffar, T.; Roux, B.
1997-10-01
A theoretical investigation of the crystal growth shaping process is carried out on the basis of the dynamic stability concept. The capillary dynamic stability of shaped crystal growth processes for various forms of the liquid menisci is analyzed using the mathematical model of the phenomena in the axisymmetric case. The catching boundary condition of the capillary boundary problem is considered and the limits of its application for shaped crystal growth modeling are discussed. The static stability of a liquid free surface is taken into account by means of the Jacobi equation analysis. The result is that a large number of menisci having drop-like shapes are statically unstable. A few new non-traditional liquid meniscus shapes (e.g., bubbles and related shapes) are proposed for the case of a catching boundary condition.
Advanced Turbulence Modeling Concepts
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing
2005-01-01
The ZCET program developed at NASA Glenn Research Center is to study hydrogen/air injection concepts for aircraft gas turbine engines that meet conventional gas turbine performance levels and provide low levels of harmful NOx emissions. A CFD study for ZCET program has been successfully carried out. It uses the most recently enhanced National combustion code (NCC) to perform CFD simulations for two configurations of hydrogen fuel injectors (GRC- and Sandia-injector). The results can be used to assist experimental studies to provide quick mixing, low emission and high performance fuel injector designs. The work started with the configuration of the single-hole injector. The computational models were taken from the experimental designs. For example, the GRC single-hole injector consists of one air tube (0.78 inches long and 0.265 inches in diameter) and two hydrogen tubes (0.3 inches long and 0.0226 inches in diameter opposed at 180 degree). The hydrogen tubes are located 0.3 inches upstream from the exit of the air element (the inlet location for the combustor). To do the simulation, the single-hole injector is connected to a combustor model (8.16 inches long and 0.5 inches in diameter). The inlet conditions for air and hydrogen elements are defined according to actual experimental designs. Two crossing jets of hydrogen/air are simulated in detail in the injector. The cold flow, reacting flow, flame temperature, combustor pressure and possible flashback phenomena are studied. Two grid resolutions of the numerical model have been adopted. The first computational grid contains 0.52 million elements, the second one contains over 1.3 million elements. The CFD results have shown only about 5% difference between the two grid resolutions. Therefore, the CFD result obtained from the model of 1.3-million grid resolution can be considered as a grid independent numerical solution. Turbulence models built in NCC are consolidated and well tested. They can handle both coarse and
Electron microscopy and theoretical modeling of cochleates.
Nagarsekar, Kalpa; Ashtikar, Mukul; Thamm, Jana; Steiniger, Frank; Schacher, Felix; Fahr, Alfred; May, Sylvio
2014-11-11
Cochleates are self-assembled cylindrical condensates that consist of large rolled-up lipid bilayer sheets and represent a novel platform for oral and systemic delivery of therapeutically active medicinal agents. With few preceding investigations, the physical basis of cochleate formation has remained largely unexplored. We address the structure and stability of cochleates in a combined experimental/theoretical approach. Employing different electron microscopy methods, we provide evidence for cochleates consisting of phosphatidylserine and calcium to be hollow tubelike structures with a well-defined constant lamellar repeat distance and statistically varying inner and outer radii. To rationalize the relation between inner and outer radii, we propose a theoretical model. Based on the minimization of a phenomenological free energy expression containing a bending, adhesion, and frustration contribution, we predict the optimal tube dimensions of a cochleate and estimate ratios of material constants for cochleates consisting of phosphatidylserines with varied hydrocarbon chain structures. Knowing and understanding these ratios will ultimately benefit the successful formulation of cochleates for drug delivery applications.
Experimental and theoretical advances in prosody: A review
Wagner, Michael; Watson, Duane G.
2011-01-01
Research on prosody has recently become an important focus in various disciplines, including Linguistics, Psychology, and Computer Science. This article reviews recent research advances on two key issues: prosodic phrasing and prosodic prominence. Both aspects of prosody are influenced by linguistic factors such as syntactic constituent structure, semantic relations, phonological rhythm, pragmatic considerations, and also by processing factors such as the length, complexity or predictability of linguistic material. Our review summarizes recent insights into the production and perception of these two components of prosody and their grammatical underpinnings. While this review only covers a subset of a broader set of research topics on prosody in cognitive science, they are representative of a tendency in the field toward a more interdisciplinary approach. PMID:22096264
Advances in multiscale theoretical analysis and imaging aspects of turbulence
NASA Astrophysics Data System (ADS)
Shockro, Jennifer
The work presented in this dissertation is focused on two aspects related to turbulent flow. The first of these is the one-dimensional theoretical analysis of the logarithmic spiral in terms of fractal dimension and spectrum. The second is on imaging methodologies and analysis of turbulent jet scalar interfaces in atmospheric conditions, with broad applicability to various studies where turbulence has a key role, such as urban contaminant dispersion or free space laser communications. The logarithmic spiral is of particular interest to studies of turbulence and natural phenomena as it appears frequently in nature with the "Golden Ratio" and is thought to play an important role in turbulent mixing. It is also an inherently anisotropic geometric structure and therefore provides information towards examining phenomena in which anisotropic properties might be expected to appear and is thought to be present as a structure within the fine scales of the turbulent hierarchy. In this work it is subjected to one-dimensional theoretical analysis, focusing on the development of a probability density function (pdf) for the spiral and the relation of the pdf to its fractal dimension. Results indicate that the logarithmic spiral does not have a constant fractal dimension and thus that it does not exhibit any form of self-similar statistical behavior, supporting previous theoretical suppositions about behavior at the fine scales within the turbulent hierarchy. A signal is developed from the pdf in order to evaluate its power spectrum. Results of this analysis provide information about the manner in which energy is carried at different scales of the spiral. To our knowledge, the logarithmic spiral in particular has not yet been examined in this fashion in literature. In order to further investigate this object, the multiscale minima meshless (M(3) ) method isextended and employed computationally to the two-dimensional logarithmic spiral as well as to experimental images of a
Workload Modeling and Workload Management: Recent Theoretical Developments
2005-04-01
Workload Modeling and Workload Management : Recent Theoretical Developments by Raja Parasuraman and Ericka Rovira ARL-CR-0562 April...Proving Ground, MD 21005-5425 ARL-CR-0562 April 2005 Workload Modeling and Workload Management : Recent Theoretical Developments Raja...Workload Modeling and Workload Management : Recent Theoretical Developments 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 62716-AH70
A theoretical model of flotation deinking efficiency
Bloom, F.; Heindel, T.J.
1997-06-01
The associated probabilities of each microprocess occurring in flotation deinking are employed in the development of a kinetic or population balance-type model of the overall flotation process. The overall model contains two kinetic constants: The first, k{sub 1}, governs the overall probability of a free ink particle successfully being intercepted by and adhering to an air bubble; the second, k{sub 2}, is a measure of the probability that a particle/bubble aggregate pair will become unstable and split to yield a new free ink particle. The solution to the kinetic model is presented in terms of k{sub 1} and k{sub 2}, which are themselves functions of system parameters such as bubble and particle physical properties (e.g., diameter, density) and fluid properties (e.g., viscosity, surface tension). From this solution, a definition of theoretical flotation efficiency is presented, as well as definitions of other system performance parameters, and selected predictions are displayed.
Information theoretic model selection applied to supernovae data
NASA Astrophysics Data System (ADS)
Biesiada, Marek
2007-02-01
Current advances in observational cosmology suggest that our Universe is flat and dominated by dark energy. There are several different theoretical ideas invoked to explain the dark energy with relatively little guidance of which one of them might be right. Therefore the emphasis of ongoing and forthcoming research in this field shifts from estimating specific parameters of the cosmological model to the model selection. In this paper we apply an information theoretic model selection approach based on the Akaike criterion as an estimator of Kullback Leibler entropy. Although this approach has already been used by some authors in a similar context, this paper provides a more systematic introduction to the Akaike criterion. In particular, we present the proper way of ranking the competing models on the basis of Akaike weights (in Bayesian language: posterior probabilities of the models). This important ingredient is lacking from alternative studies dealing with cosmological applications of the Akaike criterion. Of the many particular models of dark energy we focus on four: quintessence, quintessence with a time varying equation of state, the braneworld scenario and the generalized Chaplygin gas model, and test them on Riess's gold sample. As a result we obtain that the best model—in terms of the Akaike criterion—is the quintessence model. The odds suggest that although there exist differences in the support given to specific scenarios by supernova data, most of the models considered receive similar support. The only exception is the Chaplygin gas which is considerably less supported. One can also note that models similar in structure, e.g. ΛCDM, quintessence and quintessence with a variable equation of state, are closer to each other in terms of Kullback Leibler entropy. Models having different structure, e.g. Chaplygin gas and the braneworld scenario, are more distant (in the Kullback Leibler sense) from the best one.
Lee, S; Richard Dimenna, R; David Tamburello, D
2008-11-13
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and
Lee, S; Dimenna, R; Tamburello, D
2011-02-14
height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?
Theoretical Models of Sunspot Structure and Dynamics
NASA Astrophysics Data System (ADS)
Thomas, J. H.
Recent progress in theoretical modeling of a sunspot is reviewed. The observed properties of umbral dots are well reproduced by realistic simulations of magnetoconvection in a vertical, monolithic magnetic field. To understand the penumbra, it is useful to distinguish between the inner penumbra, dominated by bright filaments containing slender dark cores, and the outer penumbra, made up of dark and bright filaments of comparable width with corresponding magnetic fields differing in inclination by some 30° and strong Evershed flows in the dark filaments along nearly horizontal or downward-plunging magnetic fields. The role of magnetic flux pumping in submerging magnetic flux in the outer penumbra is examined through numerical experiments, and different geometric models of the penumbral magnetic field are discussed in the light of high-resolution observations. Recent, realistic numerical MHD simulations of an entire sunspot have succeeded in reproducing the salient features of the convective pattern in the umbra and the inner penumbra. The siphon-flow mechanism still provides the best explanation of the Evershed flow, particularly in the outer penumbra where it often consists of cool, supersonic downflows.
Information-Theoretic Perspectives on Geophysical Models
NASA Astrophysics Data System (ADS)
Nearing, Grey
2016-04-01
practice of science (except by Gong et al., 2013, whose fundamental insight is the basis for this talk), and here I offer two examples of practical methods that scientists might use to approximately measure ontological information. I place this practical discussion in the context of several recent and high-profile experiments that have found that simple out-of-sample statistical models typically (vastly) outperform our most sophisticated terrestrial hydrology models. I offer some perspective on several open questions about how to use these findings to improve our models and understanding of these systems. Cartwright, N. (1983) How the Laws of Physics Lie. New York, NY: Cambridge Univ Press. Clark, M. P., Kavetski, D. and Fenicia, F. (2011) 'Pursuing the method of multiple working hypotheses for hydrological modeling', Water Resources Research, 47(9). Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory. New York, NY: Wiley-Interscience. Cox, R. T. (1946) 'Probability, frequency and reasonable expectation', American Journal of Physics, 14, pp. 1-13. Csiszár, I. (1972) 'A Class of Measures of Informativity of Observation Channels', Periodica Mathematica Hungarica, 2(1), pp. 191-213. Davies, P. C. W. (1990) 'Why is the physical world so comprehensible', Complexity, entropy and the physics of information, pp. 61-70. Gong, W., Gupta, H. V., Yang, D., Sricharan, K. and Hero, A. O. (2013) 'Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach', Water Resources Research, 49(4), pp. 2253-2273. Jaynes, E. T. (2003) Probability Theory: The Logic of Science. New York, NY: Cambridge University Press. Nearing, G. S. and Gupta, H. V. (2015) 'The quantity and quality of information in hydrologic models', Water Resources Research, 51(1), pp. 524-538. Popper, K. R. (2002) The Logic of Scientific Discovery. New York: Routledge. Van Horn, K. S. (2003) 'Constructing a logic of plausible inference: a guide to cox's theorem
ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.
BELEGGIA,M.; POZZI, G.; TONOMURA, A.
2007-01-01
It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1986-01-01
A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.
How prayer heals: a theoretical model.
Levin, J S
1996-01-01
This article presents a theoretical model that outlines various possible explanations for the healing effects of prayer. Four classes of mechanisms are defined on the basis of whether healing has naturalistic or supernatural origins and whether it operates locally or nonlocally. Through this framework, most of the currently proposed hypotheses for understanding absent healing and other related phenomena-hypotheses that invoke such concepts as subtle energy, psi, consciousness, morphic fields, and extended mind-are shown to be no less naturalistic than the Newtonian, mechanistic forces of allopathic biomedicine so often derided for their materialism. In proposing that prayer may heal through nonlocal means according to mechanisms and theories proposed by the new physics, Dossey is almost alone among medical scholars in suggesting the possible limitations and inadequacies of hypotheses based on energies, forces, and fields. Yet even such nonlocal effects can be conceived of as naturalistic; that is, they are explained by physical laws that may be unbelievable or unfamiliar to most physicians but that are nonetheless becoming recognized as operant laws of the natural universe. The concept of the supernatural, however, is something altogether different, and is, by definition, outside of or beyond nature. Herein may reside an either wholly or partly transcendent Creator-God who is believed by many to heal through means that transcend the laws of the created universe, both its local and nonlocal elements, and that are thus inherently inaccessible to and unknowable by science. Such an explanation for the effects of prayer merits consideration and, despite its unprovability by medical science, should not be dismissed out of hand.
Theoretical Models of Parental HIV Disclosure: A Critical Review
Qiao, Shan; Li, Xiaoming; Stanton, Bonita
2012-01-01
This review critically examined three major theoretical models related to parental HIV disclosure (i.e., the Four-Phase Model, the Disclosure Decision Making Model, and the Disclosure Process Model), and the existing studies that could provide empirical support to these models or their components. For each model, we briefly reviewed its theoretical background, described its components and or mechanisms, and discussed its strengths and limitations. The existing empirical studies supported most theoretical components in these models. However, hypotheses related to the mechanisms proposed in the models have not yet tested due to a lack of empirical evidence. This review also synthesized alternative theoretical perspectives and new issues in disclosure research and clinical practice that may challenge the existing models. The current review underscores the importance of including components related to social and cultural contexts in theoretical frameworks, and calls for more adequately designed empirical studies in order to test and refine existing theories and to develop new ones. PMID:22866903
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1987-01-01
A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.
Advanced modeling of prompt fission neutrons
Talou, Patrick
2009-01-01
Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.
Recent advances in atomic modeling
Goldstein, W.H.
1988-10-12
Precision spectroscopy of solar plasmas has historically been the goad for advances in calculating the atomic physics and dynamics of highly ionized atoms. Recent efforts to understand the laboratory plasmas associated with magnetic and inertial confinement fusion, and with X-ray laser research, have played a similar role. Developments spurred by laboratory plasma research are applicable to the modeling of high-resolution spectra from both solar and cosmic X-ray sources, such as the photoionized plasmas associated with accretion disks. Three of these developments in large scale atomic modeling are reviewed: a new method for calculating large arrays of collisional excitation rates, a sum rule based method for extending collisional-radiative models and modeling the effects of autoionizing resonances, and a detailed level accounting calculation of resonant excitation rates in FeXVII. 21 refs., 5 figs., 2 tabs.
Advanced Modeling of Micromirror Devices
NASA Technical Reports Server (NTRS)
Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.
1995-01-01
The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.
Advanced Mirror & Modelling Technology Development
NASA Technical Reports Server (NTRS)
Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl
2014-01-01
The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.
Modeling Tool Advances Rotorcraft Design
NASA Technical Reports Server (NTRS)
2007-01-01
Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.
Models of the Bilingual Lexicon and Their Theoretical Implications for CLIL
ERIC Educational Resources Information Center
Heine, Lena
2014-01-01
Although many advances have been made in recent years concerning the theoretical dimensions of content and language integrated learning (CLIL), research still has to meet the necessity to come up with integrative models that adequately map the interrelation between content and language learning in CLIL contexts. This article will suggest that…
Empathy and Child Neglect: A Theoretical Model
ERIC Educational Resources Information Center
De Paul, Joaquin; Guibert, Maria
2008-01-01
Objective: To present an explanatory theory-based model of child neglect. This model does not address neglectful behaviors of parents with mental retardation, alcohol or drug abuse, or severe mental health problems. In this model parental behavior aimed to satisfy a child's need is considered a helping behavior and, as a consequence, child neglect…
A Theoretical Framework for Physics Education Research: Modeling Student Thinking
ERIC Educational Resources Information Center
Redish, Edward F.
2004-01-01
Education is a goal-oriented field. But if we want to treat education scientifically so we can accumulate, evaluate, and refine what we learn, then we must develop a theoretical framework that is strongly rooted in objective observations and through which different theoretical models of student thinking can be compared. Much that is known in the…
Theoretical analysis and modeling for nanoelectronics
NASA Astrophysics Data System (ADS)
Baccarani, Giorgio; Gnani, Elena; Gnudi, Antonio; Reggiani, Susanna
2016-11-01
In this paper we review the evolution of Microelectronics and its transformation into Nanoelectronics, following the predictions of Moore's law, and some of the issues related with this evolution. Next, we discuss the requirements of device modeling and the solutions proposed throughout the years to address the physical effects related with an extreme device miniaturization, such as hot-electron effects, band splitting into multiple sub-bands, quasi-ballistic transport and electron tunneling. The most important physical models are shortly highlighted, and a few simulation results of heterojunction TFETs are reported and discussed.
Theoretical models of synaptic short term plasticity
Hennig, Matthias H.
2013-01-01
Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors. PMID:23626536
A Theoretical Model for Selective Exposure Research.
ERIC Educational Resources Information Center
Roloff, Michael E.; Noland, Mark
This study tests the basic assumptions underlying Fishbein's Model of Attitudes by correlating an individual's selective exposure to types of television programs (situation comedies, family drama, and action/adventure) with the attitudinal similarity between individual attitudes and attitudes characterized on the programs. Twenty-three college…
Theoretical Tinnitus Framework: A Neurofunctional Model
Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C. B.; Sani, Siamak S.; Ekhtiari, Hamed; Sanchez, Tanit G.
2016-01-01
Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the “sourceless” sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be
Theoretical Tinnitus Framework: A Neurofunctional Model.
Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G
2016-01-01
Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be
Theoretical aspects of hybrid chiral bag models
NASA Astrophysics Data System (ADS)
Mulders, P. J.
1984-09-01
In hybrid chiral bag models (HCBM's) the quarks are the source for the pion field outside the bag. If we want to solve this model with a classical external soliton solution and quantized fermions, it is necessary to evaluate the vacuum expectation values (VEV's) of those operators that contain fermion fields and appear in the boundary conditions. When the external solution is the so-called hedgehog solution, π-->(r-->,t)=fπθ(r)r^, the relevant VEV is i16π<0 | d2s[ψ―,(τ-->.r^)γ5exp(iτ-->.r^γ5θ)ψ] | 0>=2θ16πη+C0(θ)R, where η is a cutoff parameter (η-->0). To obtain this result we have used a multiple-reflection expansion of the Green's function, while C0(θ) is evaluated numerically. We discuss the infinite contribution in the above VEV, and show that 4πC0(θ)R is precisely the derivative of the Casimir energy with respect to θ. We also discuss some solutions of the HCBM for bag radii varying from 0 to ∞.
Theoretical Modelling of Sound Radiation from Plate
NASA Astrophysics Data System (ADS)
Zaman, I.; Rozlan, S. A. M.; Yusoff, A.; Madlan, M. A.; Chan, S. W.
2017-01-01
Recently the development of aerospace, automotive and building industries demands the use of lightweight materials such as thin plates. However, the plates can possibly add to significant vibration and sound radiation, which eventually lead to increased noise in the community. So, in this study, the fundamental concept of sound pressure radiated from a simply-supported thin plate (SSP) was analyzed using the derivation of mathematical equations and numerical simulation of ANSYS®. The solution to mathematical equations of sound radiated from a SSP was visualized using MATLAB®. The responses of sound pressure level were measured at far field as well as near field in the frequency range of 0-200 Hz. Result shows that there are four resonance frequencies; 12 Hz, 60 Hz, 106 Hz and 158 Hz were identified which represented by the total number of the peaks in the frequency response function graph. The outcome also indicates that the mathematical derivation correlated well with the simulation model of ANSYS® in which the error found is less than 10%. It can be concluded that the obtained model is reliable and can be applied for further analysis such as to reduce noise emitted from a vibrating thin plate.
LHD Plasma Modeling and Theoretical Analysis
NASA Astrophysics Data System (ADS)
Yamazaki, Kozo; Nakajima, Noriyoshi; Murakami, Sadayoshi; Yokoyama, Masayuki
The transport/heating modeling and equilibrium/stability analysis have been carried out for LHD (Large Helical Device) plasmas. A new simulation code TOTAL (TOroidal Transport Analysis Linkage) is developed, which consists of the 3-dimensional equilibrium code VMEC including bootstrap current and 1-dimensional transport code HTRANS including helical-ripple transport determined as well as anomalous transport. This code clarified the favorable effect of bootstrap current on the neoclassical confinement in LHD. The 3-dimensional stability analysis using CAS3D code has been done and clarified the ballooning mode structure peculiar to the LHD high-beta plasmas. The 5-dimensional simulation code has been developed to analyze the NBI or ECH heating power depositions in LHD plasmas, and the particle orbit effects of high-energy particles are clarified. The plasma rotation analysis is also carried out related to the possibility of the electric-field transition and the plasma confinement improvement in LHD.
Theoretical modelling of epigenetically modified DNA sequences
Carvalho, Alexandra Teresa Pires; Gouveia, Maria Leonor; Raju Kanna, Charan; Wärmländer, Sebastian K. T. S.; Platts, Jamie; Kamerlin, Shina Caroline Lynn
2015-01-01
We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts. PMID:26448859
The Psychopathological Model of Mental Retardation: Theoretical and Therapeutic Considerations.
ERIC Educational Resources Information Center
La Malfa, Giampaolo; Campigli, Marco; Bertelli, Marco; Mangiapane, Antonio; Cabras, Pier Luigi
1997-01-01
Describes a new integrated bio-psycho-social model of etiology for mental retardation. Discusses the problems with current models and the ability of the "universe line" model to integrate data from different research areas, especially cognitive and psychopathologic indicators. Addresses implications of this theoretical approach. (Author/CR)
Dynamics in Higher Education Politics: A Theoretical Model
ERIC Educational Resources Information Center
Kauko, Jaakko
2013-01-01
This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…
Theoretical model of the helium pinhole microscope
NASA Astrophysics Data System (ADS)
Palau, Adrià Salvador; Bracco, Gianangelo; Holst, Bodil
2016-12-01
In recent years, the development of neutral helium microscopes has gained increasing interest. The low energy, charge neutrality, and inertness of the helium atoms makes helium microscopy an attractive candidate for the imaging of a range of samples. The simplest neutral helium microscope is the so-called pinhole microscope. It consists of a supersonic expansion helium beam collimated by two consecutive apertures (skimmer and pinhole), which together determine the beam spot size and hence the resolution at a given working distance to the sample. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and working distance. Here we present an optimization model for the helium pinhole microscope system. We show that for a given resolution and working distance, there is a single intensity maximum. Further we show that with present-day state-of-the-art detector technology (ionization efficiency 1 ×10-3 ), a resolution of the order of 600 nm at a working distance of 3 mm is possible. In order to make this quantification, we have assumed a Lambertian reflecting surface and calculated the beam spot size that gives a signal 100 cts/s within a solid angle of 0.02 π sr, following an existing design. Reducing the working distance to the micron range leads to an improved resolution of around 40 nm.
A theoretical model of asymmetric wave ripples.
Blondeaux, P; Foti, E; Vittori, G
2015-01-28
The time development of ripples under sea waves is investigated by means of the weakly nonlinear stability analysis of a flat sandy bottom subjected to the viscous oscillatory flow that is present in the boundary layer at the bottom of propagating sea waves. Second-order effects in the wave steepness are considered, to take into account the presence of the steady drift generated by the surface waves. Hence, the work of Vittori & Blondeaux (1990 J. Fluid Mech. 218, 19-39 (doi:10.1017/S002211209000091X)) is extended by considering steeper waves and/or less deep waters. As shown by the linear analysis of Blondeaux et al. (2000 Eur. J. Mech. B 19, 285-301 (doi:10.1016/S0997-7546(90)00106-I)), because of the presence of a steady velocity component in the direction of wave propagation, ripples migrate at a constant rate that depends on sediment and wave characteristics. The weakly nonlinear analysis shows that the ripple profile is no longer symmetric with respect to ripple crests and troughs and the symmetry index is computed as a function of the parameters of the problem. In particular, a relationship is determined between the symmetry index and the strength of the steady drift. A fair agreement between model results and laboratory data is obtained, albeit further data and analyses are necessary to determine the behaviour of vortex ripples and to be conclusive.
Testing a Theoretical Model of Immigration Transition and Physical Activity.
Chang, Sun Ju; Im, Eun-Ok
2015-01-01
The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.
Advances in Watershed Models and Modeling
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Zhang, F.
2015-12-01
The development of watershed models and their applications to real-world problems has evolved significantly since 1960's. Watershed models can be classified based on what media are included, what processes are dealt with, and what approaches are taken. In term of media, a watershed may include segregated overland regime, river-canal-open channel networks, ponds-reservoirs-small lakes, and subsurface media. It may also include integrated media of all these or a partial set of these as well as man-made control structures. In term of processes, a watershed model may deal with coupled or decoupled hydrological and biogeochemical cycles. These processes include fluid flow, thermal transport, salinity transport, sediment transport, reactive transport, and biota and microbe kinetics. In terms of approaches, either parametric or physics-based approach can be taken. This talk discusses the evolution of watershed models in the past sixty years. The advances of watershed models center around their increasing design capability to foster these segregated or integrated media and coupled or decoupled processes. Widely used models developed by academia, research institutes, government agencies, and private industries will be reviewed in terms of the media and processes included as well as approaches taken. Many types of potential benchmark problems in general can be proposed and will be discussed. This presentation will focus on three benchmark problems of biogeochemical cycles. These three problems, dealing with water quality transport, will be formulated in terms of reactive transport. Simulation results will be illustrated using WASH123D, a watershed model developed and continuously updated by the author and his PhD graduates. Keywords: Hydrological Cycles, Biogeochemical Cycles, Biota Kinetics, Parametric Approach, Physics-based Approach, Reactive Transport.
A graph-theoretic approach to modeling metabolic pathways
NASA Astrophysics Data System (ADS)
Gifford, Eric; Johnson, Mark; Tsai, Chun-che
1991-08-01
The metabolic pathways of medazepam, oxazepam, and diazepam were modeled using graph-theoretic transforms which are incorporable into computer-assisted metabolic analysis programs. The information, represented in the form of a graph-theoretic transform kit, which was obtained from these pathways was then used to predict the metabolites of other benzodiazepine compounds. The transform kits gave statistically significant predictions with respect to a statistical method for evaluating the performance of the transform kits.
Culture and Developmental Trajectories: A Discussion on Contemporary Theoretical Models
ERIC Educational Resources Information Center
de Carvalho, Rafael Vera Cruz; Seidl-de-Moura, Maria Lucia; Martins, Gabriela Dal Forno; Vieira, Mauro Luís
2014-01-01
This paper aims to describe, compare and discuss the theoretical models proposed by Patricia Greenfield, Çigdem Kagitçibasi and Heidi Keller. Their models have the common goal of understanding the developmental trajectories of self based on dimensions of autonomy and relatedness that are structured according to specific cultural and environmental…
Advances in Modeling Wave Propagation,
1995-08-14
The statistics of regional seismograms as a function of source type, depth, distance, and frequency are not generally available for regions of the world where...tested in regions of the world where various source types are historically available. In order to perform such a theoretical transport of a
Healing from Childhood Sexual Abuse: A Theoretical Model
ERIC Educational Resources Information Center
Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner
2011-01-01
Childhood sexual abuse is a prevalent social and health care problem. The processes by which individuals heal from childhood sexual abuse are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from childhood sexual abuse. Community recruitment for an ongoing broader project on sexual…
The Theoretical Foundation for Intercultural Business Communication: A Conceptual Model.
ERIC Educational Resources Information Center
Varner, Iris I.
2000-01-01
Develops a theoretical framework for intercultural business communication which sets it apart from intercultural communication and international business. Presents a model that discusses the intercultural, business, and communication strategies that are part of intercultural business communication. Examines how past articles in the field fit into…
Organizational Learning and Product Design Management: Towards a Theoretical Model.
ERIC Educational Resources Information Center
Chiva-Gomez, Ricardo; Camison-Zornoza, Cesar; Lapiedra-Alcami, Rafael
2003-01-01
Case studies of four Spanish ceramics companies were used to construct a theoretical model of 14 factors essential to organizational learning. One set of factors is related to the conceptual-analytical phase of the product design process and the other to the creative-technical phase. All factors contributed to efficient product design management…
The Theoretical Basis of the Effective School Improvement Model (ESI)
ERIC Educational Resources Information Center
Scheerens, Jaap; Demeuse, Marc
2005-01-01
This article describes the process of theoretical reflection that preceded the development and empirical verification of a model of "effective school improvement". The focus is on basic mechanisms that could be seen as underlying "getting things in motion" and change in education systems. Four mechanisms are distinguished:…
Path Analysis Tests of Theoretical Models of Children's Memory Performance
ERIC Educational Resources Information Center
DeMarie, Darlene; Miller, Patricia H.; Ferron, John; Cunningham, Walter R.
2004-01-01
Path analysis was used to test theoretical models of relations among variables known to predict differences in children's memory--strategies, capacity, and metamemory. Children in kindergarten to fourth grade (chronological ages 5 to 11) performed different memory tasks. Several strategies (i.e., sorting, clustering, rehearsal, and self-testing)…
A Generalized Information Theoretical Model for Quantum Secret Sharing
NASA Astrophysics Data System (ADS)
Bai, Chen-Ming; Li, Zhi-Hui; Xu, Ting-Ting; Li, Yong-Ming
2016-11-01
An information theoretical model for quantum secret sharing was introduced by H. Imai et al. (Quantum Inf. Comput. 5(1), 69-80 2005), which was analyzed by quantum information theory. In this paper, we analyze this information theoretical model using the properties of the quantum access structure. By the analysis we propose a generalized model definition for the quantum secret sharing schemes. In our model, there are more quantum access structures which can be realized by our generalized quantum secret sharing schemes than those of the previous one. In addition, we also analyse two kinds of important quantum access structures to illustrate the existence and rationality for the generalized quantum secret sharing schemes and consider the security of the scheme by simple examples.
A theoretical model for smoking prevention studies in preteen children.
McGahee, T W; Kemp, V; Tingen, M
2000-01-01
The age of the onset of smoking is on a continual decline, with the prime age of tobacco use initiation being 12-14 years. A weakness of the limited research conducted on smoking prevention programs designed for preteen children (ages 10-12) is a well-defined theoretical basis. A theoretical perspective is needed in order to make a meaningful transition from empirical analysis to application of knowledge. Bandura's Social Cognitive Theory (1977, 1986), the Theory of Reasoned Action (Ajzen & Fishbein, 1980), and other literature linking various concepts to smoking behaviors in preteens were used to develop a model that may be useful for smoking prevention studies in preteen children.
Chemical Kinetic Modeling of Advanced Transportation Fuels
PItz, W J; Westbrook, C K; Herbinet, O
2009-01-20
Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.
Electromechanical properties of smart aggregate: theoretical modeling and experimental validation
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Kong, Qingzhao; Shi, Zhifei; Song, Gangbing
2016-09-01
Smart aggregate (SA), as a piezoceramic-based multi-functional device, is formed by sandwiching two lead zirconate titanate (PZT) patches with copper shielding between a pair of solid-machined cylindrical marble blocks with epoxy. Previous researches have successfully demonstrated the capability and reliability of versatile SAs to monitor the structural health of concrete structures. However, the previous works concentrated mainly on the applications of SAs in structural health monitoring; no reasonable theoretical model of SAs was proposed. In this paper, electromechanical properties of SAs were investigated using a proposed theoretical model. Based on one dimensional linear theory of piezo-elasticity, the dynamic solutions of a SA subjected to an external harmonic voltage were solved. Further, the electric impedance of the SA was computed, and the resonance and anti-resonance frequencies were calculated based on derived equations. Numerical analysis was conducted to discuss the effects of the thickness of epoxy layer and the dimension of PZT patch on the fundamental resonance and anti-resonance frequencies as well as the corresponding electromechanical coupling factor. The dynamic solutions based on the proposed theoretical model were further experimentally verified with two SA samples. The fundamental resonance and anti-resonance frequencies of SAs show good agreements in both theoretical and experimental results. The presented analysis and results contribute to the overall understanding of SA properties and help to optimize the working frequencies of SAs in structural health monitoring of civil structures.
Coastal Modeling System Advanced Topics
2012-06-18
is the CMS? Integrated wave, current, and morphology change model in the Surface-water Modeling System (SMS). Why CMS? Operational at 10...Coupled with spectral wave model (CMS-Wave) Wave-current interactions Inline sediment transport and morphology change Non-equilibrium...Easy to setup Telescoping grid: Efficient and flexible Solver options Implicit: Tidal flow, long-term morphology change. ~10 min
Liu, Guokui
2015-03-21
Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results.
Towards a theoretical model on medicines as a health need.
Vargas-Peláez, Claudia Marcela; Soares, Luciano; Rover, Marina Raijche Mattozo; Blatt, Carine Raquel; Mantel-Teeuwisse, Aukje; Rossi Buenaventura, Francisco Augusto; Restrepo, Luis Guillermo; Latorre, María Cristina; López, José Julián; Bürgin, María Teresa; Silva, Consuelo; Leite, Silvana Nair; Mareni Rocha, Farias
2017-04-01
Medicines are considered one of the main tools of western medicine to resolve health problems. Currently, medicines represent an important share of the countries' healthcare budget. In the Latin America region, access to essential medicines is still a challenge, although countries have established some measures in the last years in order to guarantee equitable access to medicines. A theoretical model is proposed for analysing the social, political, and economic factors that modulate the role of medicines as a health need and their influence on the accessibility and access to medicines. The model was built based on a narrative review about health needs, and followed the conceptual modelling methodology for theory-building. The theoretical model considers elements (stakeholders, policies) that modulate the perception towards medicines as a health need from two perspectives - health and market - at three levels: international, national and local levels. The perception towards medicines as a health need is described according to Bradshaw's categories: felt need, normative need, comparative need and expressed need. When those different categories applied to medicines coincide, the patients get access to the medicines they perceive as a need, but when the categories do not coincide, barriers to access to medicines are created. Our theoretical model, which holds a broader view about the access to medicines, emphasises how power structures, interests, interdependencies, values and principles of the stakeholders could influence the perception towards medicines as a health need and the access to medicines in Latin American countries.
Modeling of Spacecraft Advanced Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Benfield, Michael P. J.; Belcher, Jeremy A.
2004-01-01
This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.
A sequential decision-theoretic model for medical diagnostic system.
Li, Aiping; Jin, Songchang; Zhang, Lumin; Jia, Yan
2015-01-01
Although diagnostic expert systems using a knowledge base which models decision-making of traditional experts can provide important information to non-experts, they tend to duplicate the errors made by experts. Decision-Theoretic Model (DTM) is therefore very useful in expert system since they prevent experts from incorrect reasoning under uncertainty. For the diagnostic expert system, corresponding DTM and arithmetic are studied and a sequential diagnostic decision-theoretic model based on Bayesian Network is given. In the model, the alternative features are categorized into two classes (including diseases features and test features), then an arithmetic for prior of test is provided. The different features affect other features weights are also discussed. Bayesian Network is adopted to solve uncertainty presentation and propagation. The model can help knowledge engineers model the knowledge involved in sequential diagnosis and decide evidence alternative priority. A practical example of the models is also presented: at any time of the diagnostic process the expert is provided with a dynamically updated list of suggested tests in order to support him in the decision-making problem about which test to execute next. The results show it is better than the traditional diagnostic model which is based on experience.
Henry, Eric R; Best, Robert B; Eaton, William A
2013-10-29
Advances in computing have enabled microsecond all-atom molecular dynamics trajectories of protein folding that can be used to compare with and test critical assumptions of theoretical models. We show that recent simulations by the Shaw group (10, 11, 14, 15) are consistent with a key assumption of an Ising-like theoretical model that native structure grows in only a few regions of the amino acid sequence as folding progresses. The distribution of mechanisms predicted by simulating the master equation of this native-centric model for the benchmark villin subdomain, with only two adjustable thermodynamic parameters and one temperature-dependent kinetic parameter, is remarkably similar to the distribution in the molecular dynamics trajectories.
Advancements in Theoretical Models of Confined Vortex Flowfields
2007-03-29
Durbin and Ballal [15]). Interestingly, it is a coswirling, fully reversing, bidirectional flow configuration that lies beneath the operation of... algebra systems leads to insightful solutions previously unreachable. Since the challenges in acquiring a closed form compressible solution are many, it...1063- 1078. [14] Gupta, A. K., Lilley, D. G., and Syred, N., Swirl Flows, Abacus, London, UK, 1984. [15] Durbin , M. D., Vangsness, M. D., Ballal
Gopnik, Alison
2012-09-28
New theoretical ideas and empirical research show that very young children's learning and thinking are strikingly similar to much learning and thinking in science. Preschoolers test hypotheses against data and make causal inferences; they learn from statistics and informal experimentation, and from watching and listening to others. The mathematical framework of probabilistic models and Bayesian inference can describe this learning in precise ways. These discoveries have implications for early childhood education and policy. In particular, they suggest both that early childhood experience is extremely important and that the trend toward more structured and academic early childhood programs is misguided.
Epidemiologic Considerations in Network Modeling of Theoretical Disease Events
2006-12-01
of this type of intervention include the oral polio vaccine, which like wild-type polio virus is spread by fecal-oral route, and, potentially...RTO-MP-IST-063 11 - 1 Epidemiologic Considerations in Network Modeling of Theoretical Disease Events Marcus Lem, MD, MHSc, FRCP(C...the armament of public health and epidemiology . Epidemiologists and communicable disease control researchers have been turning to network analysis to
Model Standards Advance the Profession
ERIC Educational Resources Information Center
Journal of Staff Development, 2011
2011-01-01
Leadership by teachers is essential to serving the needs of students, schools, and the teaching profession. To that end, the Teacher Leadership Exploratory Consortium has developed Teacher Leader Model Standards to codify, promote, and support teacher leadership as a vehicle to transform schools for the needs of the 21st century. The Teacher…
Advanced Space Shuttle simulation model
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1982-01-01
A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.
Modeling Advance Life Support Systems
NASA Technical Reports Server (NTRS)
Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan
1996-01-01
Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.
Micromechanical modeling of advanced materials
Silling, S.A.; Taylor, P.A.; Wise, J.L.; Furnish, M.D.
1994-04-01
Funded as a laboratory-directed research and development (LDRD) project, the work reported here focuses on the development of a computational methodology to determine the dynamic response of heterogeneous solids on the basis of their composition and microstructural morphology. Using the solid dynamics wavecode CTH, material response is simulated on a scale sufficiently fine to explicitly represent the material`s microstructure. Conducting {open_quotes}numerical experiments{close_quotes} on this scale, the authors explore the influence that the microstructure exerts on the material`s overall response. These results are used in the development of constitutive models that take into account the effects of microstructure without explicit representation of its features. Applying this methodology to a glass-reinforced plastic (GRP) composite, the authors examined the influence of various aspects of the composite`s microstructure on its response in a loading regime typical of impact and penetration. As a prerequisite to the microscale modeling effort, they conducted extensive materials testing on the constituents, S-2 glass and epoxy resin (UF-3283), obtaining the first Hugoniot and spall data for these materials. The results of this work are used in the development of constitutive models for GRP materials in transient-dynamics computer wavecodes.
EISCAT velocity patterns for theoretical plasma convection models
NASA Technical Reports Server (NTRS)
Rishbeth, H.; Sojka, J. J.
1986-01-01
Theoretical line-of-sight velocities, as would be observed by the EISCAT radar, are computed for idealized models of plasma convection in the polar ionosphere. The calculations give the velocity as a function of range and Universal Time. For several variants of the Volland and Heelis convection models, how the maxima, minima and reversals of velocity depend on beam azimuth is examined. The analysis is designed to be applied to data from the UK-POLAR experiment, an example of which is shown.
Arsalan Razani; Kwang J. Kim
2001-12-01
The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has
Polarisers in the focal domain: Theoretical model and experimental validation.
Martínez-Herrero, Rosario; Maluenda, David; Juvells, Ignasi; Carnicer, Artur
2017-02-13
Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus' law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found.
Polarisers in the focal domain: Theoretical model and experimental validation
NASA Astrophysics Data System (ADS)
Martínez-Herrero, Rosario; Maluenda, David; Juvells, Ignasi; Carnicer, Artur
2017-02-01
Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus’ law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found.
Polarisers in the focal domain: Theoretical model and experimental validation
Martínez-Herrero, Rosario; Maluenda, David; Juvells, Ignasi; Carnicer, Artur
2017-01-01
Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus’ law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found. PMID:28191817
Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances
NASA Technical Reports Server (NTRS)
Leung, Chun Ming
1995-01-01
Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids.
Dai, Fu-Zhi; Zhou, Yanchun
2016-09-08
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials.
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids
Dai, Fu-Zhi; Zhou, Yanchun
2016-01-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165
Slater, Michael D
2006-01-01
While increasingly widespread use of behavior change theory is an advance for communication campaigns and their evaluation, such theories provide a necessary but not sufficient condition for theory-based communication interventions. Such interventions and their evaluations need to incorporate theoretical thinking about plausible mechanisms of message effect on health-related attitudes and behavior. Otherwise, strategic errors in message design and dissemination, and misspecified campaign logic models, insensitive to campaign effects, are likely to result. Implications of the elaboration likelihood model, attitude accessibility, attitude to the ad theory, exemplification, and framing are explored, and implications for campaign strategy and evaluation designs are briefly discussed. Initial propositions are advanced regarding a theory of campaign affect generalization derived from attitude to ad theory, and regarding a theory of reframing targeted health behaviors in those difficult contexts in which intended audiences are resistant to the advocated behavior or message.
Healing from childhood sexual abuse: a theoretical model.
Draucker, Claire Burke; Martsolf, Donna S; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner
2011-01-01
Childhood sexual abuse is a prevalent social and health care problem. The processes by which individuals heal from childhood sexual abuse are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from childhood sexual abuse. Community recruitment for an ongoing broader project on sexual violence throughout the lifespan, referred to as the Sexual Violence Study, yielded a subsample of 48 women and 47 men who had experienced childhood sexual abuse. During semistructured, open-ended interviews, they were asked to describe their experiences with healing from childhood sexual abuse and other victimization throughout their lives. Constructivist grounded theory methods were used with these data to develop constructs and hypotheses about healing. For the Sexual Violence Study, frameworks were developed to describe the participants' life patterns, parenting experiences, disclosures about sexual violence, spirituality, and altruism. Several analytic techniques were used to synthesize the findings of these frameworks to develop an overarching theoretical model that describes healing from childhood sexual abuse. The model includes four stages of healing, five domains of functioning, and six enabling factors that facilitate movement from one stage to the next. The findings indicate that healing is a complex and dynamic trajectory. The model can be used to alert clinicians to a variety of processes and enabling factors that facilitate healing in several domains and to guide discussions on important issues related to healing from childhood sexual abuse.
Theoretical approaches to modeling interfacial structure and EXAFS data
Schenter, G.K.; McCarthy, M.I.; Chacon-Taylor, M.R.
1997-12-31
Understanding the molecular scale processes that control the fate and transport of contaminant metals through the subsurface is a key goal of molecular environmental research. Extended Xray Absorption Fine Structure (EXAFS) spectra is a powerful experimental technique for determining the structure of solvated metal ions at mineral interfaces. The interpretation of these data is aided by theoretical models of the interfacial chemistry and physics. Using ab initio based potential models and classical mechanics simulations, we are able to predict the structure of (M+)aq/mineral interfaces. We will discuss both the development of the ab initio based classical electrostatic potentials for modeling the interaction between molecules and surfaces and the simulation techniques used to model dynamical processes of ions at water/mineral interfaces. This information is then used as input for calculations of the corresponding EXAFS spectra as a function of temperature and surface topology. Theoretical predicted spectra for Na+(H2O)n clusters on MgO (001) will be presented, emphasizing trends in the observed EXAFS spectra with cluster size, temperature, and surface topology (flat surface, edge and corner MgO sites).
Recent advances in modeling stellar interiors (u)
Guzik, Joyce Ann
2010-01-01
Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.
Recent advances in modeling stellar interiors
NASA Astrophysics Data System (ADS)
Guzik, Joyce Ann
2011-11-01
Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid γ Dor/ δ Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as η Car and P Cyg, and the solar abundance problem.
Game-Theoretic Models of Information Overload in Social Networks
NASA Astrophysics Data System (ADS)
Borgs, Christian; Chayes, Jennifer; Karrer, Brian; Meeder, Brendan; Ravi, R.; Reagans, Ray; Sayedi, Amin
We study the effect of information overload on user engagement in an asymmetric social network like Twitter. We introduce simple game-theoretic models that capture rate competition between celebrities producing updates in such networks where users non-strategically choose a subset of celebrities to follow based on the utility derived from high quality updates as well as disutility derived from having to wade through too many updates. Our two variants model the two behaviors of users dropping some potential connections (followership model) or leaving the network altogether (engagement model). We show that under a simple formulation of celebrity rate competition, there is no pure strategy Nash equilibrium under the first model. We then identify special cases in both models when pure rate equilibria exist for the celebrities: For the followership model, we show existence of a pure rate equilibrium when there is a global ranking of the celebrities in terms of the quality of their updates to users. This result also generalizes to the case when there is a partial order consistent with all the linear orders of the celebrities based on their qualities to the users. Furthermore, these equilibria can be computed in polynomial time. For the engagement model, pure rate equilibria exist when all users are interested in the same number of celebrities, or when they are interested in at most two. Finally, we also give a finite though inefficient procedure to determine if pure equilibria exist in the general case of the followership model.
Illness and symptom perception: a theoretical approach towards an integrative measurement model.
Petersen, Sibylle; van den Berg, Robert A; Janssens, Thomas; Van den Bergh, Omer
2011-04-01
Several models have been proposed to conceptualize psychological representations of health, illness, and bodily sensations. These models differ as to the cognitive and affective components they include, whether they study the interaction of these components, and whether associations between psychological representations of bodily states and affective and behavioral reactions to these representations are considered conditional. These different conceptualizations and corresponding measurement approaches exist in parallel without resulting in synergistic effects or theoretical advancements within the field. In this paper, we review theoretical models on perception and attitudes and construct an integrative theoretical framework on psychological representation of bodily symptoms as well as more abstract representations of health and disease. The aim of this combination of approaches is to unify the strengths of different research domains in the conceptualization and measurement of mental representations of bodily states. Furthermore, the aim is to specify new, testable predictions and implications about the (conditional) relationship of these mental representations and affective and behavioral consequences. A core element in this integrative model is comparison. We review how comparison processes can change the cognitive and affective reference frame for illness and symptom perception and in turn affective and behavioral reactions. We discuss implications for measurement of illness and symptom representations as well as implications for clinical practice. Finally, we make suggestions for a research agenda to validate the proposed model as well as to address new questions derived from it.
Advances in Scientific Balloon Thermal Modeling
NASA Technical Reports Server (NTRS)
Bohaboj, T.; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
Information-Theoretic Benchmarking of Land Surface Models
NASA Astrophysics Data System (ADS)
Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong
2016-04-01
Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed
Center for Advanced Modeling and Simulation Intern
Gertman, Vanessa
2010-01-01
Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Center for Advanced Modeling and Simulation Intern
Gertman, Vanessa
2016-07-12
Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Theoretical models for coronary vascular biomechanics: Progress & challenges
Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.
2013-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Theoretical modeling techniques and their impact on tumor immunology.
Woelke, Anna Lena; Murgueitio, Manuela S; Preissner, Robert
2010-01-01
Currently, cancer is one of the leading causes of death in industrial nations. While conventional cancer treatment usually results in the patient suffering from severe side effects, immunotherapy is a promising alternative. Nevertheless, some questions remain unanswered with regard to using immunotherapy to treat cancer hindering it from being widely established. To help rectify this deficit in knowledge, experimental data, accumulated from a huge number of different studies, can be integrated into theoretical models of the tumor-immune system interaction. Many complex mechanisms in immunology and oncology cannot be measured in experiments, but can be analyzed by mathematical simulations. Using theoretical modeling techniques, general principles of tumor-immune system interactions can be explored and clinical treatment schedules optimized to lower both tumor burden and side effects. In this paper, we aim to explain the main mathematical and computational modeling techniques used in tumor immunology to experimental researchers and clinicians. In addition, we review relevant published work and provide an overview of its impact to the field.
Theoretical Models and Operational Frameworks in Public Health Ethics
Petrini, Carlo
2010-01-01
The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided. PMID:20195441
A theoretical model for uni-directional ant trails
NASA Astrophysics Data System (ADS)
Kayacan, Ozhan
2011-03-01
A theoretical model of uni-directional ant traffic, motivated by the motion of ants in trail is proposed. Two different type of ants, one of which smells very well and the other does not, are considered. The flux of ants in this model is investigated as functions of the probability of evaporation rate of pheromone. The obtained results indicate that the mean velocity of the ants varies non-monotonically with their density. In addition, it is observed that phase transition in the flux and the mean velocity vs. density occurs at certain density for a fixed evaporation rate. The effective hopping probability is investigated as well depending on the evaporation rate of pheromone. It is worth to note that the proposed model can be generalized for vehicular traffic on freeways.
Arsalan Razani; Kwang J. Kim
2000-10-28
The annual progress report for the period of October 1, 1999 to September 30, 2000 on DOE/UNM grant number DE-FG26-98FT40148 discusses the progress on both the theoretical analysis of advanced power cycles and the experimental investigation of advanced falling film heat exchangers. The previously developed computer program for the triple cycle, based on the air standard cycle assumption, was modified to include actual air composition (%77.48 N{sub 2}, %20.59 O{sub 2}, %1.9 H{sub 2}O, and %0.03 CO{sub 2}). The actual combustion products were used in exergy analysis of the triple cycle. The effect of steam injection into the combustion chamber on its irreversibility, and the irreversibility of the entire cycle, was evaluated. A more practical fuel inlet condition and a better position of the feedwater heater in the steam cycle were used in the modified cycle. The effect of pinch point and the temperature difference between the combustion products, as well as the steam in the heat recovery steam generator on irreversibility of the cycle were evaluated. Design, construction, and testing of the multitube horizontal falling film condenser facility were completed. Two effective heat transfer additives (2-ethyl-1-hexanol and alkyl amine) were identified and tested for steam condensation. The test results are included. The condenser was designed with twelve tubes in an array of three horizontals and four verticals, with a 2-inch horizontal and 1.5-inch vertical in-line pitch. By using effective additives, the condensation heat transfer rate can be augmented as much as 30%, as compared to a heat transfer that operated without additives under the same operating condition. When heat transfer additives function effectively, the condensate-droplets become more dispersed and have a smaller shape than those produced without additives. These droplets, unlike traditional turbulence, start at the top portion of the condenser tubes and cover most of the tubes. Such a flow behavior can
Accuracy Analysis of a Box-wing Theoretical SRP Model
NASA Astrophysics Data System (ADS)
Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui
2016-07-01
For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.
Graph Theoretical Model of a Sensorimotor Connectome in Zebrafish
Stobb, Michael; Peterson, Joshua M.; Mazzag, Borbala; Gahtan, Ethan
2012-01-01
Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome. PMID:22624008
Graph theoretical model of a sensorimotor connectome in zebrafish.
Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan
2012-01-01
Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.
Maturity Model for Advancing Smart Grid Interoperability
Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin
2013-10-28
Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.
Impulses and Physiological States in Theoretical Models of Nerve Membrane
FitzHugh, Richard
1961-01-01
Van der Pol's equation for a relaxation oscillator is generalized by the addition of terms to produce a pair of non-linear differential equations with either a stable singular point or a limit cycle. The resulting “BVP model” has two variables of state, representing excitability and refractoriness, and qualitatively resembles Bonhoeffer's theoretical model for the iron wire model of nerve. This BVP model serves as a simple representative of a class of excitable-oscillatory systems including the Hodgkin-Huxley (HH) model of the squid giant axon. The BVP phase plane can be divided into regions corresponding to the physiological states of nerve fiber (resting, active, refractory, enhanced, depressed, etc.) to form a “physiological state diagram,” with the help of which many physiological phenomena can be summarized. A properly chosen projection from the 4-dimensional HH phase space onto a plane produces a similar diagram which shows the underlying relationship between the two models. Impulse trains occur in the BVP and HH models for a range of constant applied currents which make the singular point representing the resting state unstable. PMID:19431309
Category-theoretic models of algebraic computer systems
NASA Astrophysics Data System (ADS)
Kovalyov, S. P.
2016-01-01
A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.
Development of theoretical models of integrated millimeter wave antennas
NASA Astrophysics Data System (ADS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-12-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
Aeroheating model advancements featuring electroless metallic plating
NASA Technical Reports Server (NTRS)
Stalmach, C. J., Jr.; Goodrich, W. D.
1976-01-01
Discussed are advancements in wind tunnel model construction methods and hypersonic test data demonstrating the methods. The general objective was to develop model fabrication methods for improved heat transfer measuring capability at less model cost. A plated slab model approach was evaluated with cast models containing constantan wires that formed single-wire-to-plate surface thermocouple junctions with a seamless skin of electroless nickel alloy. The surface of a space shuttle orbiter model was selectively plated with scaled tiles to simulate, with high fidelity, the probable misalignments of the heatshield tiles on a flight vehicle. Initial, Mach 8 heating results indicated a minor effect of tile misalignment roughness on boundary layer transition, implying a possible relaxation of heatshield manufacturing tolerances. Some loss of the plated tiles was experienced when the model was tested at high heating rates.
A thematic analysis of theoretical models for translational science in nursing: mapping the field.
Mitchell, Sandra A; Fisher, Cheryl A; Hastings, Clare E; Silverman, Leanne B; Wallen, Gwenyth R
2010-01-01
The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes, (2) strategic change to promote adoption of new knowledge, (3) knowledge exchange and synthesis for application and inquiry, and (4) designing and interpreting dissemination research. This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes.
A Thematic Analysis of Theoretical Models for Translational Science in Nursing: Mapping the Field
Mitchell, Sandra A.; Fisher, Cheryl A.; Hastings, Clare E.; Silverman, Leanne B.; Wallen, Gwenyth R.
2010-01-01
Background The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. Purpose This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Method Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes; (2) strategic change to promote adoption of new knowledge; (3) knowledge exchange and synthesis for application and inquiry; (4) designing and interpreting dissemination research. Discussion This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. Conclusions A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes. PMID:21074646
Recent modelling advances for ultrasonic TOFD inspections
Darmon, Michel; Ferrand, Adrien; Dorval, Vincent; Chatillon, Sylvain; Lonné, Sébastien
2015-03-31
The ultrasonic TOFD (Time of Flight Diffraction) Technique is commonly used to detect and characterize disoriented cracks using their edge diffraction echoes. An overview of the models integrated in the CIVA software platform and devoted to TOFD simulation is presented. CIVA allows to predict diffraction echoes from complex 3D flaws using a PTD (Physical Theory of Diffraction) based model. Other dedicated developments have been added to simulate lateral waves in 3D on planar entry surfaces and in 2D on irregular surfaces by a ray approach. Calibration echoes from Side Drilled Holes (SDHs), specimen echoes and shadowing effects from flaws can also been modelled. Some examples of theoretical validation of the models are presented. In addition, experimental validations have been performed both on planar blocks containing calibration holes and various notches and also on a specimen with an irregular entry surface and allow to draw conclusions on the validity of all the developed models.
Recent modelling advances for ultrasonic TOFD inspections
NASA Astrophysics Data System (ADS)
Darmon, Michel; Ferrand, Adrien; Dorval, Vincent; Chatillon, Sylvain; Lonné, Sébastien
2015-03-01
The ultrasonic TOFD (Time of Flight Diffraction) Technique is commonly used to detect and characterize disoriented cracks using their edge diffraction echoes. An overview of the models integrated in the CIVA software platform and devoted to TOFD simulation is presented. CIVA allows to predict diffraction echoes from complex 3D flaws using a PTD (Physical Theory of Diffraction) based model. Other dedicated developments have been added to simulate lateral waves in 3D on planar entry surfaces and in 2D on irregular surfaces by a ray approach. Calibration echoes from Side Drilled Holes (SDHs), specimen echoes and shadowing effects from flaws can also been modelled. Some examples of theoretical validation of the models are presented. In addition, experimental validations have been performed both on planar blocks containing calibration holes and various notches and also on a specimen with an irregular entry surface and allow to draw conclusions on the validity of all the developed models.
Acoustic test and analyses of three advanced turboprop models
NASA Technical Reports Server (NTRS)
Brooks, B. M.; Metzger, F. B.
1980-01-01
Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.
Theoretical model of blood flow measurement by diffuse correlation spectroscopy
NASA Astrophysics Data System (ADS)
Sakadžić, Sava; Boas, David A.; Carp, Stefan
2017-02-01
Diffuse correlation spectroscopy (DCS) is a noninvasive method to quantify tissue perfusion from measurements of the intensity temporal autocorrelation function of diffusely scattered light. However, DCS autocorrelation function measurements in tissue better match theoretical predictions based on the diffusive motion of the scatterers than those based on a model where the advective nature of blood flow dominates the stochastic properties of the scattered light. We have recently shown using Monte Carlo (MC) simulations and assuming a simplistic vascular geometry and laminar flow profile that the diffusive nature of the DCS autocorrelation function decay is likely a result of the shear-induced diffusion of the red blood cells. Here, we provide theoretical derivations supporting and generalizing the previous MC results. Based on the theory of diffusing-wave spectroscopy, we derive an expression for the autocorrelation function along the photon path through a vessel that takes into account both diffusive and advective scatterer motion, and we provide the solution for the DCS autocorrelation function in a semi-infinite geometry. We also derive the correlation diffusion and correlation transfer equation, which can be applied for an arbitrary sample geometry. Further, we propose a method to take into account realistic vascular morphology and flow profile.
Advanced Technology System Scheduling Governance Model
Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel
2015-06-11
In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).
Combustion modeling in advanced gas turbine systems
Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.
1995-10-01
The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.
Theoretical models and computer simulations of neural learning systems.
Salu, Y
1984-11-07
It has been generally assumed for a long time that learning is accomplished in the central nervous system (CNS) by modifying strengths of ties between neurons. Various mechanisms may contribute to this process, but it is not known which are the specific mechanisms, and what are the rules by which they operate. Theoretical models, which are based on that general assumption are introduced. The purpose of the models is to suggest plausible ways by which learned information may be stored in the neural network, and be retrieved when it is needed. The networks in the models consist of four basic subunits, in accordance with identified units in the CNS: sensing, response, feeling, and control, plus association areas. The suggested operation rules are based on established operation rules of individual neurons, and assumed rules when neurons in groups are considered. Computer simulations are done, to check the consistency of the models, and to illustrate how they work. They simulate how an hypothetical kitten learns part of its environment, and show how relevant information may be stored and retrieved in its neuronal network. The suggested mechanisms could be examined in experiments, albeit not easy ones to conduct.
Group theoretical modeling of thermal explosion with reactant consumption
NASA Astrophysics Data System (ADS)
Ibragimov, Ranis N.; Dameron, Michael
2012-09-01
Today engineering and science researchers routinely confront problems in mathematical modeling involving nonlinear differential equations. Many mathematical models formulated in terms of nonlinear differential equations can be successfully treated and solved by Lie group methods. Lie group analysis is especially valuable in investigating nonlinear differential equations, for its algorithms act as reliably as for linear cases. The aim of this article is to provide the group theoretical modeling of the symmetrical heating of an exothermally reacting medium with approximations to the body's temperature distribution similar to those made by Thomas [17] and Squire [15]. The quantitative results were found to be in a good agreement with Adler and Enig in [1], where the authors were comparing the integral curves corresponding to the critical conditions for the first-order reaction. Further development of the modeling by including the critical temperature is proposed. Overall, it is shown, in particular, that the application of Lie group analysis allows one to extend the previous analytic results for the first order reactions to nth order ones.
Experimental verification of theoretical model for speckle intensity excursion areas
Alexander, T.L.; Harvey, J.E.; Hefele, D.
1994-12-31
Speckle is inherently an interference phenomenon produced when a rough object or turbulent medium introduces some degree of randomness to a reflected or transmitted electromagnetic field. Speckle characteristics are therefore a major concern in many laser imaging or wave propagation applications. For many applications, a detailed description of speckle size as a function of intensity threshold level is desirable. Extensive experimental measurements of average speckle size as a function of intensity threshold level were therefore made for several different targets and illumination conditions. The authors then compare these measurements with a theoretical model for excursion areas of speckle intensity. Excellent agreement is obtained for intensity threshold levels greater than approximately twice the mean intensity level.
Modeling an Application's Theoretical Minimum and Average Transactional Response Times
Paiz, Mary Rose
2015-04-01
The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.
Modeling of rolling element bearing mechanics. Theoretical manual
NASA Technical Reports Server (NTRS)
Merchant, David H.; Greenhill, Lyn M.
1994-01-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.
2003-01-01
The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated
Model structure and control of bone remodeling: a theoretical study.
Pivonka, Peter; Zimak, Jan; Smith, David W; Gardiner, Bruce S; Dunstan, Colin R; Sims, Natalie A; Martin, T John; Mundy, Gregory R
2008-08-01
It is generally accepted that RANKL is highly expressed in osteoblast precursor cells while OPG is highly expressed in mature osteoblasts, but to date no functional utility to the BMU has been proposed for this particular ligand-decoy-receptor expression profile. As discovered in the mid 90s, the RANK-RANKL-OPG signaling cascade is a major signaling pathway regulating bone remodeling. In this paper we study theoretically the functional implications of particular RANKL/OPG expression profiles on bone volume. For this purpose we formulate an extended bone-cell dynamics model describing functional behaviour of basic multicellular units (BMUs) responsible for bone resorption and formation. This model incorporates the RANK-RANKL-OPG signaling together with the regulating action of TGF-beta on bone cells. The bone-cell population model employed here builds on the work of Lemaire et al. (2004) [1], but incorporates the following significant modifications: (i) addition of a rate equation describing changes in bone volume with time as the key 'output function' tracking functional behaviour of BMUs, (ii) a rate equation describing release of TGF-beta from the bone matrix, (iii) expression of OPG and RANKL on both osteoblastic cell lines, and (iv) modified activator/repressor functions. Using bone volume as a functional selection criterion, we find that there is a preferred arrangement for ligand expression on particular cell types, and further, that this arrangement coincides with biological observations. We then investigate the model parameter space combinatorially, searching for preferred 'groupings' of changes in differentiation rates of various cell types. Again, a criterion of bone volume change is employed to identify possible ways of optimally controlling BMU responses. While some combinations of changes in differentiation rates are clearly unrealistic, other combinations of changes in differentiation rates are potentially functionally significant. Most importantly
A theoretical compartment model for antigen kinetics in the skin.
Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Oomens, Cees W J
2016-03-10
The skin is a promising location for vaccination with its abundant population of antigen capturing and presenting cells. The development of new techniques, such as the use of microneedles, can facilitate the delivery of vaccines into the skin. In recent years, many different types of microneedle arrays have been designed. However, their geometry and arrangement within an array may be optimized to trigger sufficient antigen presenting cells. A computational model can support the rational design of microneedle arrays. Therefore, the aim of the current study was to describe the distribution and kinetics of a delivered antigen within the skin using a theoretical compartment model, which included binding of antigens to receptors and their uptake by cells, and to determine which parameters should be measured to validate the model for a specific application. Multiple simulations were performed using a high and low antigen delivery dose and a range of values for the rate constants. The results indicated that the cells were highly saturated when a high dose was applied, while for a low dose saturation was only reached in 5% of the simulations. This was caused by the difference in the ratio between the administered dose and the available binding sites and suggests the dose should be adapted to the number of cells and receptors for a specific compound. The sensitivity analysis of the model parameters confirmed that the initial dose and receptor concentrations were indeed the two parameters that had the largest influence on the variance in antigen concentrations within the cells and circulation at equilibrium. Hence, these parameters are important to be measured in vivo. The presented pharmacokinetics model can be used in future computational models to predict the influence of microneedle array geometry to optimize their design.
Theoretical models for the dynamics of liquid crystalline polymers
NASA Astrophysics Data System (ADS)
Chaubal, Charu Vaman
The research encompassed by this work aims to improve the understanding of the physical behavior embodied by the Doi theory of Liquid Crystalline Polymers (LCPs), to develop more accurate, efficient, and robust numerical and computational schemes to obtain theoretical predictions, and to extend the model to describe industrially relevant LCP systems more closely. The mechanisms behind the unusual phenomena exhibited by the Doi theory in simple shear flow is examined by performing nonlinear systems analysis of an approximated version of the theory. A more accurate approximation to the theory is developed and is shown to faithfully reproduce results from the unapproximated theory over a wide range of parameters. A novel solution algorithm for general polymer kinetic theory problems, based on particle methods, is presented and analyzed in the context of application to the Doi theory. This technique is used to study the behavior of LCPs in shear flow and to determine how slight perturbations of simple shear can lead to dramatic changes in dynamical and rheological properties. Finally, the nematic broken rod model for flexible LCPs is developed and the behavior of the model in simple shear flow is explored for both highly flexible and nearly rigid rods.
Computational Graph Theoretical Model of the Zebrafish Sensorimotor Pathway
NASA Astrophysics Data System (ADS)
Peterson, Joshua M.; Stobb, Michael; Mazzag, Bori; Gahtan, Ethan
2011-11-01
Mapping the detailed connectivity patterns of neural circuits is a central goal of neuroscience and has been the focus of extensive current research [4, 3]. The best quantitative approach to analyze the acquired data is still unclear but graph theory has been used with success [3, 1]. We present a graph theoretical model with vertices and edges representing neurons and synaptic connections, respectively. Our system is the zebrafish posterior lateral line sensorimotor pathway. The goal of our analysis is to elucidate mechanisms of information processing in this neural pathway by comparing the mathematical properties of its graph to those of other, previously described graphs. We create a zebrafish model based on currently known anatomical data. The degree distributions and small-world measures of this model is compared to small-world, random and 3-compartment random graphs of the same size (with over 2500 nodes and 160,000 connections). We find that the zebrafish graph shows small-worldness similar to other neural networks and does not have a scale-free distribution of connections.
Accelerating advances in continental domain hydrologic modeling
NASA Astrophysics Data System (ADS)
Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew; Wagener, Thorsten; Farmer, William H.; Andréassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas
2015-12-01
In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.
Accelerating advances in continental domain hydrologic modeling
Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew R.; Wagener, Thorsten; Farmer, William H.; Andreassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas M.
2015-01-01
In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.
Advancements in predictive plasma formation modeling
NASA Astrophysics Data System (ADS)
Purvis, Michael A.; Schafgans, Alexander; Brown, Daniel J. W.; Fomenkov, Igor; Rafac, Rob; Brown, Josh; Tao, Yezheng; Rokitski, Slava; Abraham, Mathew; Vargas, Mike; Rich, Spencer; Taylor, Ted; Brandt, David; Pirati, Alberto; Fisher, Aaron; Scott, Howard; Koniges, Alice; Eder, David; Wilks, Scott; Link, Anthony; Langer, Steven
2016-03-01
We present highlights from plasma simulations performed in collaboration with Lawrence Livermore National Labs. This modeling is performed to advance the rate of learning about optimal EUV generation for laser produced plasmas and to provide insights where experimental results are not currently available. The goal is to identify key physical processes necessary for an accurate and predictive model capable of simulating a wide range of conditions. This modeling will help to drive source performance scaling in support of the EUV Lithography roadmap. The model simulates pre-pulse laser interaction with the tin droplet and follows the droplet expansion into the main pulse target zone. Next, the interaction of the expanded droplet with the main laser pulse is simulated. We demonstrate the predictive nature of the code and provide comparison with experimental results.
Phenomenological Modeling of Infrared Sources: Recent Advances
NASA Technical Reports Server (NTRS)
Leung, Chun Ming; Kwok, Sun (Editor)
1993-01-01
Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.
Advanced Small Modular Reactor Economics Model Development
Harrison, Thomas J.
2014-10-01
The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the
A theoretical model for the Lorentz force particle analyzer
NASA Astrophysics Data System (ADS)
Moreau, René; Tao, Zhen; Wang, Xiaodong
2016-07-01
In a previous paper [X. Wang et al., J. Appl. Phys. 120, 014903 (2016)], several experimental devices have been presented, which demonstrate the efficiency of electromagnetic techniques for detecting and sizing electrically insulating particles entrained in the flow of a molten metal. In each case, a non-uniform magnetic field is applied across the flow of the electrically conducting liquid, thereby generating a braking Lorentz force on this moving medium and a reaction force on the magnet, which tends to be entrained in the flow direction. The purpose of this letter is to derive scaling laws for this Lorentz force from an elementary theoretical model. For simplicity, as in the experiments, the flowing liquid is modeled as a solid body moving with a uniform velocity U. The eddy currents in the moving domain are derived from the classic induction equation and Ohm's law, and expressions for the Lorentz force density j ×B and for its integral over the entire moving domain follow. The insulating particles that are eventually present and entrained with this body are then treated as small disturbances in a classic perturbation analysis, thereby leading to scaling laws for the pulses they generate in the Lorentz force. The purpose of this letter is both to illustrate the eddy currents without and with insulating particles in the electrically conducting liquid and to derive a key relation between the pulses in the Lorentz force and the main parameters (particle volume and dimensions of the region subjected to the magnetic field).
Studies of Chinese speakers with dysarthria: informing theoretical models.
Whitehill, Tara L
2010-01-01
Most theoretical models of dysarthria have been developed based on research using individuals speaking English or other Indo-European languages. Studies of individuals with dysarthria speaking other languages can allow investigation into the universality of such models, and the interplay between language-specific and language-universal aspects of dysarthria. In this article, studies of Cantonese- and Mandarin-Chinese speakers with dysarthria are reviewed. The studies focused on 2 groups of speakers: those with cerebral palsy and those with Parkinson's disease. Key findings are compared with similar studies of English speakers. Since Chinese is tonal in nature, the impact of dysarthria on lexical tone has received considerable attention in the literature. The relationship between tone [which involves fundamental frequency (F(0)) control at the syllable level] and intonation (involving F(0) control at the sentential level) has received more recent attention. Many findings for Chinese speakers with dysarthria support earlier findings for English speakers, thus affirming the language-universal aspect of dysarthria. However, certain differences, which can be attributed to the distinct phonologies of Cantonese and Mandarin, highlight the language-specific aspects of the condition.
A game theoretic model of drug launch in India.
Bhaduri, Saradindu; Ray, Amit Shovon
2006-01-01
There is a popular belief that drug launch is delayed in developing countries like India because of delayed transfer of technology due to a 'post-launch' imitation threat through weak intellectual property rights (IPR). In fact, this belief has been a major reason for the imposition of the Trade Related Intellectual Property Rights regime under the WTO. This construct undermines the fact that in countries like India, with high reverse engineering capabilities, imitation can occur even before the formal technology transfer, and fails to recognize the first mover advantage in pharmaceutical markets. This paper argues that the first mover advantage is important and will vary across therapeutic areas, especially in developing countries with diverse levels of patient enlightenment and quality awareness. We construct a game theoretic model of incomplete information to examine the delay in drug launch in terms of costs and benefits of first move, assumed to be primarily a function of the therapeutic area of the new drug. Our model shows that drug launch will be delayed only for external (infective/communicable) diseases, while drugs for internal, non-communicable diseases (accounting for the overwhelming majority of new drug discovery) will be launched without delay.
Posttraumatic Stress Disorder: A Theoretical Model of the Hyperarousal Subtype
Weston, Charles Stewart E.
2014-01-01
Posttraumatic stress disorder (PTSD) is a frequent and distressing mental disorder, about which much remains to be learned. It is a heterogeneous disorder; the hyperarousal subtype (about 70% of occurrences and simply termed PTSD in this paper) is the topic of this article, but the dissociative subtype (about 30% of occurrences and likely involving quite different brain mechanisms) is outside its scope. A theoretical model is presented that integrates neuroscience data on diverse brain regions known to be involved in PTSD, and extensive psychiatric findings on the disorder. Specifically, the amygdala is a multifunctional brain region that is crucial to PTSD, and processes peritraumatic hyperarousal on grounded cognition principles to produce hyperarousal symptoms. Amygdala activity also modulates hippocampal function, which is supported by a large body of evidence, and likewise amygdala activity modulates several brainstem regions, visual cortex, rostral anterior cingulate cortex (rACC), and medial orbitofrontal cortex (mOFC), to produce diverse startle, visual, memory, numbing, anger, and recklessness symptoms. Additional brain regions process other aspects of peritraumatic responses to produce further symptoms. These contentions are supported by neuroimaging, neuropsychological, neuroanatomical, physiological, cognitive, and behavioral evidence. Collectively, the model offers an account of how responses at the time of trauma are transformed into an extensive array of the 20 PTSD symptoms that are specified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth edition. It elucidates the neural mechanisms of a specific form of psychopathology, and accords with the Research Domain Criteria framework. PMID:24772094
Modeling, Theoretical and Observational Studies of the Lunar Photoelectron Sheath
NASA Astrophysics Data System (ADS)
Poppe, Andrew Reinhold
2011-08-01
The Moon, lacking an atmosphere and a global magnetic field, is directly exposed to both solar ultraviolet radiation and a variety of ambient plasmas. On the lunar dayside, a photoelectron sheath develops and the surface typically charges positively since the photoemission current is at least an order-of-magnitude greater than any ambient current. This sheath dominates the nearsurface plasma environment and controls the charging, levitation and transport of micron-sized dust grains. In this thesis, we first model the lunar near-surface plasma environment via a one-dimensional particle-in-cell code. The sheath potential, electric field and plasma densities are presented over a wide range of plasma parameters. Additionally, the charging and transport of micron- and submicron sized dust grains is modeled via a test-particle approach in an attempt to explain Apolloera observations of lunar dust dynamics. Secondly, we present a comparison of the particle-in-cell results with theoretical, kinetic derivations of the lunar photoelectron sheath. We extend previous theories to include the presence of a kappa-distribution for the solar wind electrons. Finally, we present a comparison of in-situ measurements of the lunar photoelectron sheet in the terrestrial plasma sheet by the Lunar Prospector Electron Reflectometer with particle-in-cell simulations to confirm the presence of non-monotonic sheath potentials above the Moon. Future work in all three sections, (simulation, theory and observation) is presented as a guide for continuing research.
NASA Astrophysics Data System (ADS)
Mahiddine, A.; Seinturier, J.; Peloso, D.; Boulaassal, H.; Boï, J.-M.; Merad, D.; Drap, P.
2013-07-01
The new advance in photogrammetry using the automatic procedures such as the famous algorithm which was proposed by David Lowe (Lowe, 2004) features descriptors and matching (SIFT) and then the recent development of external orientation (Nister (Stewenius et alii, 2006) or Snavely (Snavely et alii, 2010)) have changed drastically the way of measuring space with photogrammetry. The complexity of the process and the huge quantity of processed data (thousands of photographs) makes difficult validating the different process steps. We propose in this paper several theoretical model generation methods in order to validate the complete photogrammetric orientation process. A theoretical photogrammetric model generation has been developed in order to produce photographs, photo orientation, 3D points and 2D observations according to some defined camera and a parametric photograph distribution in the scene. In addition the use of synthesis image software generation as POV-Ray allow us to generate set of photographs with pre-computed internal and external orientation in order to check the whole pipeline from feature extraction to Photographs External Orientation. We apply this model generation approach to several typical geometry of photogrammetric scene, stereo, parallel triplet, parallel strip and convergent models.
Advanced relativistic VLBI model for geodesy
NASA Astrophysics Data System (ADS)
Soffel, Michael; Kopeikin, Sergei; Han, Wen-Biao
2016-10-01
Our present relativistic part of the geodetic VLBI model for Earthbound antennas is a consensus model which is considered as a standard for processing high-precision VLBI observations. It was created as a compromise between a variety of relativistic VLBI models proposed by different authors as documented in the IERS Conventions 2010. The accuracy of the consensus model is in the picosecond range for the group delay but this is not sufficient for current geodetic purposes. This paper provides a fully documented derivation of a new relativistic model having an accuracy substantially higher than one picosecond and based upon a well accepted formalism of relativistic celestial mechanics, astrometry and geodesy. Our new model fully confirms the consensus model at the picosecond level and in several respects goes to a great extent beyond it. More specifically, terms related to the acceleration of the geocenter are considered and kept in the model, the gravitational time-delay due to a massive body (planet, Sun, etc.) with arbitrary mass and spin-multipole moments is derived taking into account the motion of the body, and a new formalism for the time-delay problem of radio sources located at finite distance from VLBI stations is presented. Thus, the paper presents a substantially elaborated theoretical justification of the consensus model and its significant extension that allows researchers to make concrete estimates of the magnitude of residual terms of this model for any conceivable configuration of the source of light, massive bodies, and VLBI stations. The largest terms in the relativistic time delay which can affect the current VLBI observations are from the quadrupole and the angular momentum of the gravitating bodies that are known from the literature. These terms should be included in the new geodetic VLBI model for improving its consistency.
76 FR 68011 - Medicare Program; Advanced Payment Model
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
.../seamless-and-coordinated-care-models/advance-payment/ . FOR FURTHER INFORMATION CONTACT: Questions... provide high quality, coordinated care and generate cost savings. The Advance Payment Model will test....innovations.cms.gov/areas-of-focus/seamless-and-coordinated-care-models/advance-payment . II. Provisions...
a Theoretical Model of a Superheated Liquid Droplet Neutron Detector.
NASA Astrophysics Data System (ADS)
Harper, Mark Joseph
Neutrons can interact with the atoms in superheated liquid droplets which are suspended in a viscous matrix material, resulting in the formation of charged recoil ions. These ions transfer energy to the liquid, sometimes resulting in the droplets vaporizing and producing observable bubbles. Devices employing this mechanism are known as superheated liquid droplet detectors, or bubble detectors. The basis of bubble detector operation is identical to that of bubble chambers, which have been well characterized by researchers such as Wilson, Glaser, Seitz, and others since the 1950's. Each of the microscopic superheated liquid droplets behaves like an independent bubble chamber. This dissertation presents a theoretical model which considers the three principal aspects of detector operation: nuclear reactions, charged particle energy deposition, and thermodynamic bubble formation. All possible nuclear reactions were examined and those which could reasonably result in recoil ions sufficiently energetic to vaporize a droplet were analyzed in detail. Feasible interactions having adequate cross sections include elastic and inelastic scattering, n-proton, and n-alpha reactions. Ziegler's TRansport of Ions in Matter (TRIM) code was used to calculate the ions' stopping powers in various compounds based on the ionic energies predicted by standard scattering distributions. If the ions deposit enough energy in a small enough volume then the entire droplet will vaporize without further energy input. Various theories as to the vaporization of droplets by ionizing radiation were studied and a novel method of predicting the critical (minimum) energy was developed. This method can be used to calculate the minimum required stopping power for the ion, from which the threshold neutron energy is obtainable. Experimental verification of the model was accomplished by measuring the response of two different types of bubble detectors to monoenergetic thermal neutrons, as well as to neutrons
Empirical STORM-E Model. [I. Theoretical and Observational Basis
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III
2013-01-01
Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua
2014-12-15
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
NASA Astrophysics Data System (ADS)
Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua
2014-12-01
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Rapid implementation of advanced constitutive models
NASA Astrophysics Data System (ADS)
Starman, Bojan; Halilovič, Miroslav; Vrh, Marko; Štok, Boris
2013-12-01
This paper presents a methodology based on the NICE integration scheme [1, 2] for simple and rapid numerical implementation of a class of plasticity constitutive models. In this regard, an algorithm is purposely developed for the implementation of newly developed advanced constitutive models into explicit finite element framework. The methodology follows the organization of the problem state variables into an extended form, which allows the constitutive models' equations to be organized in such a way, that the algorithm can be optionally extended with minimal effort to integrate also evolution equations related to a description of other specific phenomena, such as damage, distortional hardening, phase transitions, degradation etc. To confirm simplicity of the program implementation, computational robustness, effectiveness and improved accuracy of the implemented integration algorithm, a deep drawing simulation of the cylindrical cup is considered as the case study, performed in ABAQUS/Explicit. As a fairly complex considered model, the YLD2004-18p model [3, 4] is first implemented via external subroutine VUMAT. Further, to give additional proof of the simplicity of the proposed methodology, a combination of the YLD2004-18p model and Gurson-Tvergaard-Needleman model (GTN) is considered. As demonstrated, the implementation is really obtained in a very simple way.
Sequence design in lattice models by graph theoretical methods
NASA Astrophysics Data System (ADS)
Sanjeev, B. S.; Patra, S. M.; Vishveshwara, S.
2001-01-01
A general strategy has been developed based on graph theoretical methods, for finding amino acid sequences that take up a desired conformation as the native state. This problem of inverse design has been addressed by assigning topological indices for the monomer sites (vertices) of the polymer on a 3×3×3 cubic lattice. This is a simple design strategy, which takes into account only the topology of the target protein and identifies the best sequence for a given composition. The procedure allows the design of a good sequence for a target native state by assigning weights for the vertices on a lattice site in a given conformation. It is seen across a variety of conformations that the predicted sequences perform well both in sequence and in conformation space, in identifying the target conformation as native state for a fixed composition of amino acids. Although the method is tested in the framework of the HP model [K. F. Lau and K. A. Dill, Macromolecules 22, 3986 (1989)] it can be used in any context if proper potential functions are available, since the procedure derives unique weights for all the sites (vertices, nodes) of the polymer chain of a chosen conformation (graph).
Comparisons Between Experimental Transport Analysis and Theoretical Modeling on LHD
NASA Astrophysics Data System (ADS)
Yamazaki, Kozo; LHD Group
2000-10-01
Helical plasma confinement system has a great advantage in producing steady-state high performance plasmas with built-in divertor. For the experimental analysis and predictive simulation of helical and tokamak plasmas, a simulation code TOTAL (TOroidal Transport Analysis Linkage) has been developed and is applied to the Large Helical Device (LHD, R=3.6 ~3.9m, B<3.0T ) experiments. In the LHD experiment, the global plasma confinement is ~1.5-2 times better than the well-known confinement scaling laws, and effective transport diffusivity is same order of magnitude of neoclassical ion transport with the assumption of Ti=Te. The radial electric field has been measured and roughly agrees with theoretical neoclassical values. The simple drift wave transport models are also compared with experimental values. The impurity dynamics are calculated using predictive part of the TOTAL code, and compared with the "breathing plasma" dynamics, and the role of high-Z impurity are clarified. For the analysis of high beta plasmas, local ballooning mode analysis will be added in this TOTAL code, and optimized configurations for the future MHR reactor will be searched.
A Game-Theoretic Model of Marketing Skin Whiteners.
Mendoza, Roger Lee
2015-01-01
Empirical studies consistently find that people in less developed countries tend to regard light or "white" skin, particularly among women, as more desirable or superior. This is a study about the marketing of skin whiteners in these countries, where over 80 percent of users are typically women. It proceeds from the following premises: a) Purely market or policy-oriented approaches toward the risks and harms of skin whitening are cost-inefficient; b) Psychosocial and informational factors breed uninformed and risky consumer choices that favor toxic skin whiteners; and c) Proliferation of toxic whiteners in a competitive buyer's market raises critical supplier accountability issues. Is intentional tort a rational outcome of uncooperative game equilibria? Can voluntary cooperation nonetheless evolve between buyers and sellers of skin whiteners? These twin questions are key to addressing the central paradox in this study: A robust and expanding buyer's market, where cheap whitening products abound at a high risk to personal and societal health and safety. Game-theoretic modeling of two-player and n-player strategic interactions is proposed in this study for both its explanatory and predictive value. Therein also lie its practical contributions to the economic literature on skin whitening.
AFDM: An Advanced Fluid-Dynamics Model
Wilhelm, D.
1990-09-01
This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs.
Theoretical model for electrophilic oxygen atom insertion into hydrocarbons
Bach, R.D.; Su, M.D. ); Andres, J.L. Wayne State Univ., Detroit, MI ); McDouall, J.J.W. )
1993-06-30
A theoretical model suggesting the mechanistic pathway for the oxidation of saturated-alkanes to their corresponding alcohols and ketones is described. Water oxide (H[sub 2]O-O) is employed as a model singlet oxygen atom donor. Molecular orbital calculations with the 6-31G basis set at the MP2, QCISD, QCISD(T), CASSCF, and MRCI levels of theory suggest that oxygen insertion by water oxide occurs by the interaction of an electrophilic oxygen atom with a doubly occupied hydrocarbon fragment orbital. The electrophilic oxygen approaches the hydrocarbon along the axis of the atomic carbon p orbital comprising a [pi]-[sub CH(2)] or [pi]-[sub CHCH(3)] fragment orbital to form a carbon-oxygen [sigma] bond. A concerted hydrogen migration to an adjacent oxygen lone pair of electrons affords the alcohol insertion product in a stereoselective fashion with predictable stereochemistry. Subsequent oxidation of the alcohol to a ketone (or aldehyde) occurs in a similar fashion and has a lower activation barrier. The calculated (MP4/6-31G*//MP2/6-31G*) activation barriers for oxygen atom insertion into the C-H bonds of methane, ethane, propane, butane, isobutane, and methanol are 10.7, 8.2, 3.9, 4.8, 4.5, and 3.3 kcal/mol, respectively. We use ab initio molecular orbital calculations in support of a frontier MO theory that provides a unique rationale for both the stereospecificity and the stereoselectivity of insertion of electrophilic oxygen and related electrophiles into the carbon-hydrogen bond. 13 refs., 7 figs., 2 tabs.
The interacting gaps model: reconciling theoretical and numerical approaches to limit-order models
NASA Astrophysics Data System (ADS)
Muchnik, Lev; Slanina, Frantisek; Solomon, Sorin
2003-12-01
We consider the emergence of power-law tails in the returns distribution of limit-order driven markets. We explain a previously observed clash between the theoretical and numerical studies of such models. We introduce a solvable model that interpolates between the previous studies and agrees with each of them in the relevant limit.
Prospects for Advanced RF Theory and Modeling
Batchelor, D.B.
1999-04-12
This paper represents an attempt to express in print the contents of a rather philosophical review talk. The charge for the talk was not to summarize the present status of the field and what we can do, but to assess what we will need to do in the future and where the gaps are in fulfilling these needs. The objective was to be complete, covering all aspects of theory and modeling in all frequency regimes, although in the end the talk mainly focussed on the ion cyclotron range of frequencies (ICRF). In choosing which areas to develop, it is important to keep in mind who the customers for RF modeling are likely to be and what sorts of tasks they will need for RF to do. This occupies the first part of the paper. Then we examine each of the elements of a complete RF theory and try to identify the kinds of advances needed.
Prospects for advanced RF theory and modeling
NASA Astrophysics Data System (ADS)
Batchelor, D. B.
1999-09-01
This paper represents an attempt to express in print the contents of a rather philosophical review talk. The charge for the talk was not to summarize the present status of the field and what we can do, but to assess what we will need to do in the future and where the gaps are in fulfilling these needs. The objective was to be complete, covering all aspects of theory and modeling in all frequency regimes, although in the end the talk mainly focussed on the ion cyclotron range of frequencies (ICRF). In choosing which areas to develop, it is important to keep in mind who the customers for RF modeling are likely to be and what sorts of tasks they will need for RF to do. This occupies the first part of the paper. Then we examine each of the elements of a complete RF theory and try to identify the kinds of advances needed.
Advancing an Information Model for Environmental Observations
NASA Astrophysics Data System (ADS)
Horsburgh, J. S.; Aufdenkampe, A. K.; Hooper, R. P.; Lehnert, K. A.; Schreuders, K.; Tarboton, D. G.; Valentine, D. W.; Zaslavsky, I.
2011-12-01
have been modified to support data management for the Critical Zone Observatories (CZOs). This paper will present limitations of the existing information model used by the CUAHSI HIS that have been uncovered through its deployment and use, as well as new advances to the information model, including: better representation of both in situ observations from field sensors and observations derived from environmental samples, extensibility in attributes used to describe observations, and observation provenance. These advances have been developed by the HIS team and the broader scientific community and will enable the information model to accommodate and better describe wider classes of environmental observations and to better meet the needs of the hydrologic science and CZO communities.
ERIC Educational Resources Information Center
Gouran, Dennis S.
This paper discusses ways in which the field of speech communication can be advanced. The first half of the paper characterizes the objectivist and subjectivist views of how knowledge is acquired and the forms of inquiry to which these views have led. The remainder of the paper demonstrates the role that the "interesting question" (one for which…
Theoretical modeling of fluid flow in cellular biological media: an overview.
Kapellos, George E; Alexiou, Terpsichori S; Payatakes, Alkiviades C
2010-06-01
Fluid-structure interactions strongly affect, in multiple ways, the structure and function of cellular biological media, such as tissues, biofilms, and cell-entrapping gels. Mathematical models and computer simulation are important tools in advancing our understanding of these interactions, interpreting experimental observations, and designing novel processes and biomaterials. In this paper, we present a comprehensive survey and highlight promising directions of future research on theoretical modeling of momentum transport in cellular biological media with focus on the formulation of governing equations and the calculation of material properties both theoretically and experimentally. With regard to the governing equations, significant work has been done with single-scale approaches (e.g. mixture theory), whereas traditional upscaling methods (e.g. homogenization, volume averaging) or multiscale equation-free approaches have received limited attention. The underlying concepts, strengths, and limitations of each approach, as well as examples of use in the field of biomaterials are presented. The current status of knowledge regarding the dependence of macroscopic material properties on the volume fractions, geometry, and intrinsic material properties of the constituent phases (cells, extracellular matrix and fluid) is also presented. The observation of conformational changes that occur at finer levels of the structural hierarchy during momentum transport, the correlation of macro-properties with geometrical and topological features of materials with heterogeneous and anisotropic microstructure, as well as the determination of dynamic material properties are among important challenges for future research.
A comparison of theoretical and experimental pressure distributions for two advanced fighter wings
NASA Technical Reports Server (NTRS)
Haney, H. P.; Hicks, R. M.
1981-01-01
A comparison was made between experimental pressure distributions measured during testing of the Vought A-7 fighter and the theoretical predictions of four transonic potential flow codes. Isolated wind and three wing-body codes were used for comparison. All comparisons are for transonic Mach numbers and include both attached and separate flows. In general, the wing-body codes gave better agreement with the experiment than did the isolated wing code but, because of the greater complexity of the geometry, were found to be considerably more expensive and less reliable.
AFDM: An Advanced Fluid-Dynamics Model
Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. ); Goutagny, L. . Inst. de Protection et de Surete Nucleaire); Ninokata,
1990-09-01
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.
Nonlinear Dynamic Models in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Advances in Swine Biomedical Model Genomics
Lunney, Joan K.
2007-01-01
This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies. PMID:17384736
Modeling of advanced fossil fuel power plants
NASA Astrophysics Data System (ADS)
Zabihian, Farshid
The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique
New advances for modelling the debris avalanches
NASA Astrophysics Data System (ADS)
Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio
2013-04-01
Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the
Presenting a Theoretical Model of Four Conceptions of Civic Education
ERIC Educational Resources Information Center
Cohen, Aviv
2010-01-01
This conceptual study will question the ways different epistemological conceptions of citizenship and education influence the characteristics of civic education. While offering a new theoretical framework, the different undercurrent conceptions that lay at the base of the civic education process shall be brought forth. With the use of the method…
Advances in Nucleon-Nucleon Scattering Experiments and Their Theoretical Consequences
Bekteshi, Sadik; Kabashi, Skender; Kamishi, Burim
2007-04-23
An overview of critical analysis of the experimental data obtained from nucleon-nucleon scattering is given and investigated in this work. Comparison of the experimental data with results of recent partial wave analysis of Nijmegen group, VPI/GWU and Saclay is given. Potentials of Nijmegen, Bonn and Argonne group are discussed. Experimental data which lead to the break of charge symmetry, to the break of the charge independence and to the determination of the off-shell tensor force, are particularly emphasized. Disagreements which exist between theoretical calculations related to the contribution of particular mechanism in different reactions are pointed out. In this relation, still open problems to be solved and measurement that should be undertaken in the future are identified, as well.
Advanced Combustion Modeling for Complex Turbulent Flows
NASA Technical Reports Server (NTRS)
Ham, Frank Stanford
2005-01-01
The next generation of aircraft engines will need to pass stricter efficiency and emission tests. NASA's Ultra-Efficient Engine Technology (UEET) program has set an ambitious goal of 70% reduction of NO(x) emissions and a 15% increase in fuel efficiency of aircraft engines. We will demonstrate the state-of-the-art combustion tools developed a t Stanford's Center for Turbulence Research (CTR) as part of this program. In the last decade, CTR has spear-headed a multi-physics-based combustion modeling program. Key technologies have been transferred to the aerospace industry and are currently being used for engine simulations. In this demo, we will showcase the next-generation combustion modeling tools that integrate a very high level of detailed physics into advanced flow simulation codes. Combustor flows involve multi-phase physics with liquid fuel jet breakup, evaporation, and eventual combustion. Individual components of the simulation are verified against complex test cases and show excellent agreement with experimental data.
Rodríguez, J; Clemente, G; Sanjuán, N; Bon, J
2014-01-01
The drying kinetics of thyme was analyzed by considering different conditions: air temperature of between 40°C and 70°C , and air velocity of 1 m/s. A theoretical diffusion model and eight different empirical models were fitted to the experimental data. From the theoretical model application, the effective diffusivity per unit area of the thyme was estimated (between 3.68 × 10(-5) and 2.12 × 10 (-4) s(-1)). The temperature dependence of the effective diffusivity was described by the Arrhenius relationship with activation energy of 49.42 kJ/mol. Eight different empirical models were fitted to the experimental data. Additionally, the dependence of the parameters of each model on the drying temperature was determined, obtaining equations that allow estimating the evolution of the moisture content at any temperature in the established range. Furthermore, artificial neural networks were developed and compared with the theoretical and empirical models using the percentage of the relative errors and the explained variance. The artificial neural networks were found to be more accurate predictors of moisture evolution with VAR ≥ 99.3% and ER ≤ 8.7%.
Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Antonsson, Erik; Gombosi, Tamas
2005-01-01
Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.
Deterministic and Advanced Statistical Modeling of Wind-Driven Sea
2015-07-06
COVERED (From - To) 01/09/2010-06/07/2015 4. TITLE AND SUBTITLE Deterministic and advanced statistical modeling of wind-driven sea 5a. CONTRACT...Technical Report Deterministic and advanced statistical modeling of wind-driven sea Vladimir Zakharov, Andrei Pushkarev Waves and Solitons LLC, 1719 W...Development of accurate and fast advanced statistical and dynamical nonlinear models of ocean surface waves, based on first physical principles, which will
Advances in Modelling of Valley Glaciers
NASA Astrophysics Data System (ADS)
Adhikari, Surendra
For glaciological conditions typical of valley glaciers, the central idea of this research lies in understanding the effects of high-order mechanics and parameterizing these for simpler dynamical and statistical methods in glaciology. As an effective tool for this, I formulate a new brand of dynamical models that describes distinct physical processes of deformational flow. Through numerical simulations of idealized glacier domains, I calculate empirical correction factors to capture the effects of longitudinal stress gradients and lateral drag for simplified dynamical models in the plane-strain regime. To get some insights into real glacier dynamics, I simulate Haig Glacier in the Canadian Rocky Mountains. As geometric effects overshadow dynamical effects in glacier retreat scenarios, it appears that high-order physics are not very important for Haig Glacier, particularly for evaluating its fate. Indeed, high-order and reduced models all predict that Haig Glacier ceases to exist by about AD2080 under ongoing climate warming. This finding regarding the minimal role of high-order physics may not be broadly valid, as it is not true in advance scenarios at Haig Glacier and it may not be representative of other glaciological settings. Through a 'bulk' parameterization of high-order physics, geometric and climatic settings, sliding conditions, and transient effects, I also provide new insights into the volume-area relation, a widely used statistical method for estimating glacier volume. I find a steady-state power-law exponent of 1:46, which declines systematically to 1:38 after 100 years of sustained retreat, in good accord with the observations. I recommend more accurate scaling relations through characterization of individual glacier morphology and degree of climatic disequilibrium. This motivates a revision of global glacier volume estimates, of some urgency in sea level rise assessments.
The Synthesis of a Theoretical Model of Student Attrition.
ERIC Educational Resources Information Center
Bean, John P.
Models that have appeared in the student attrition literature in the past decade and behavioral models from the social sciences that may help explain the dropout process are examined, and an attempt is made to synthesize a causal model of student attrition. The models of Tinto, Spady, and Rootman in the area of student attrition, and models of…
ERIC Educational Resources Information Center
Dziedziewicz, Dorota; Karwowski, Maciej
2015-01-01
This paper presents a new theoretical model of creative imagination and its applications in early education. The model sees creative imagination as composed of three inter-related components: vividness of images, their originality, and the level of transformation of imageries. We explore the theoretical and practical consequences of this new…
ERIC Educational Resources Information Center
Zhumasheva, Anara; Zhumabaeva, Zaida; Sakenov, Janat; Vedilina, Yelena; Zhaxylykova, Nuriya; Sekenova, Balkumis
2016-01-01
The current study focuses on the research topic of creating a theoretical model of development of information competence among students enrolled in elective courses. In order to examine specific features of the theoretical model of development of information competence among students enrolled in elective courses, we performed an analysis of…
A Model of Resource Allocation in Public School Districts: A Theoretical and Empirical Analysis.
ERIC Educational Resources Information Center
Chambers, Jay G.
This paper formulates a comprehensive model of resource allocation in a local public school district. The theoretical framework specified could be applied equally well to any number of local public social service agencies. Section 1 develops the theoretical model describing the process of resource allocation. This involves the determination of the…
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Arrigo, Bruce A
2002-01-01
The critical perspectives of psychological jurisprudence identified above, along with their corresponding epistemological assumptions, reflect a radical agenda for change at the law-psychology divide. Although not exhaustively reviewed, the individual theories represent different approaches by which structural reform can be enacted and citizen well-being can therefore be realized. Collectively, the critical perspectives and their attending presuppositions challenge conventional wisdom about prospects for transforming (i.e., humanizing) the legal apparatus. I submit that the future viability of the law-psychology movement, and its overall utility for society, considerably depends on its capacity to facilitate and secure such widespread change. By focusing on critical theoretical inquiry, this article makes painfully clear that much of what is wrong with the legal system, especially in its interactions with and interpretations of people, cannot be amended or solved through it. Indeed, as Roesch (1995) observed, "changes in the justice system will never be sufficient to create a just society, nor will within system changes by themselves ever have much of an impact on individuals who come into conflict with the law" (p. 3). I agree. Accordingly, it is time to move on and, where necessary, to look elsewhere for guidance. The radical agenda in psychological jurisprudence represents a provocative strategy, providing a meaningful basis for critique and a sustainable basis for reform. Both are integral to the call for justice embodied in the founding of the AP-LS decades ago. Realizing this challenge, however, remains an unfulfilled dream. Thus, the task that awaits is to apply the insights of critical psychological jurisprudence to relevant areas of research and policy. I submit that the academy can ill afford to dismiss this task. Indeed, in the final analysis, to do so would not only defer prospects for justice but would destroy its very possibility, especially for
Theoretical modeling and properties of class DIII topological superconductors
NASA Astrophysics Data System (ADS)
Nakosai, Sho; Tanaka, Yukio; Nagaosa, Naoto
2014-01-01
We theoretically study topological superconductors (TSCs) with time-reversal (TR) symmetry in one- and two-dimensions (1D and 2D). In 2D, we introduce bilayer system with Rashba spin-orbit interaction (SOI), and find that the interplay between SOI and degrees of freedom of layers induces unconventional pairing states, which are topologically nontrivial and have the helical Majorana edge channels. We also find that a usual quantum nanowire on unconventional superconductor becomes a 1D TSC by means of the proximity effect. Majorana fermions at the ends of the wire offer a unique opportunity to relate fermion parity and non-local spin correlations.
Theoretical Modelling of Self-Assembly of Molecular Networks
NASA Astrophysics Data System (ADS)
Mura, Manuela; Martsinovich, Natalia; Kantorovich, Lev
2008-03-01
The phenomenon of self-assembly of atomic and molecular superstructures on crystal surfaces has attracted an increasing interest in nanotechnology. Self-organised nano-templates where the self-assembled monolayer traps other molecules with selected functional properties, can be used as building blocks for larger nanoscale structures. These superstructures can form chiral domains ranging from 1D chains to 2D monolayers. In particular, there have been many scanning tunneling microscopy (STM)studies of self-assembly of melamine, perylene tetra-carboxylic di-imide(PTCDI) or perylene tetra-carboxylic di-anhydride (PTCDA) molecules on the Au(111). STM images of these networks do not reveal the exact details of the intermolecular bonding and process of network growth. It is therefore the task of theory to determine the exact atomic structure of these networks. We present a theoretical study of self-assembly of molecular networks based on different molecules by using a systematic approach to build molecular superstructures. The energies of these structures are calculated using the density-functional theory SIESTA code. The theoretically predicted monolayer structures are in very good agreement with the results of STM measurements.
[Nursing practice based on theoretical models: a qualitative study of nurses' perception].
Amaducci, Giovanna; Iemmi, Marina; Prandi, Marzia; Saffioti, Angelina; Carpanoni, Marika; Mecugni, Daniela
2013-01-01
Many faculty argue that theory and theorizing are closely related to the clinical practice, that the disciplinary knowledge grows, more relevantly, from the specific care context in which it takes place and, moreover, that knowledge does not proceed only by the application of general principles of the grand theories to specific cases. Every nurse, in fact, have a mental model, of what may or may not be aware, that motivate and substantiate every action and choice of career. The study describes what the nursing theoretical model is; the mental model and the tacit knowledge underlying it. It identifies the explicit theoretical model of the professional group that rapresents nursing partecipants, aspects of continuity with the theoretical model proposed by this degree course in Nursing.. Methods Four focus groups were made which were attended by a total of 22 nurses, rapresentatives of almost every Unit of Reggio Emilia Hospital's. We argue that the theoretical nursing model of each professional group is the result of tacit knowledge, which help to define the personal mental model, and the theoretical model, which explicitly underlying theoretical content learned applied consciously and reverted to / from nursing practice. Reasoning on the use of theory in practice has allowed us to give visibility to a theoretical model explicitly nursing authentically oriented to the needs of the person, in all its complexity in specific contexts.
ERIC Educational Resources Information Center
Kim, Young Rae
2013-01-01
A theoretical model of metacognition in complex modeling activities has been developed based on existing frameworks, by synthesizing the re-conceptualization of metacognition at multiple levels by looking at the three sources that trigger metacognition. Using the theoretical model as a framework, this study was designed to explore how students'…
Information-theoretic model comparison unifies saliency metrics
Kümmerer, Matthias; Wallis, Thomas S. A.; Bethge, Matthias
2015-01-01
Learning the properties of an image associated with human gaze placement is important both for understanding how biological systems explore the environment and for computer vision applications. There is a large literature on quantitative eye movement models that seeks to predict fixations from images (sometimes termed “saliency” prediction). A major problem known to the field is that existing model comparison metrics give inconsistent results, causing confusion. We argue that the primary reason for these inconsistencies is because different metrics and models use different definitions of what a “saliency map” entails. For example, some metrics expect a model to account for image-independent central fixation bias whereas others will penalize a model that does. Here we bring saliency evaluation into the domain of information by framing fixation prediction models probabilistically and calculating information gain. We jointly optimize the scale, the center bias, and spatial blurring of all models within this framework. Evaluating existing metrics on these rephrased models produces almost perfect agreement in model rankings across the metrics. Model performance is separated from center bias and spatial blurring, avoiding the confounding of these factors in model comparison. We additionally provide a method to show where and how models fail to capture information in the fixations on the pixel level. These methods are readily extended to spatiotemporal models of fixation scanpaths, and we provide a software package to facilitate their use. PMID:26655340
Ledermann, Thomas; Kenny, David A
2012-02-01
Studying dyads, very often there is a theoretical construct that has an effect on both members, such as relationship harmony or shared environment. To model such influences, the common fate model (CFM) is often the most appropriate approach. In this article, we address conceptual and statistical issues in the use of the standard CFM and present a series of variations, all of which are estimated by structural equation modeling (SEM). For indistinguishable dyad members (e.g., gay couples), we describe the use of a multilevel SEM method. Throughout the paper, we draw connections to the actor-partner interdependence model (APIM). We also discuss the analysis of hybrid models that combines both the CFM and the APIM. The models are illustrated using data from heterosexual couples.
College Students Solving Chemistry Problems: A Theoretical Model of Expertise
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Glynn, Shawn M.
2009-01-01
A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…
Theoretical model for a Faraday anomalous dispersion optical filter
NASA Technical Reports Server (NTRS)
Yin, B.; Shay, T. M.
1991-01-01
A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.
Theoretical and experimental modeling of a rail gun accelerator
NASA Astrophysics Data System (ADS)
Zheleznyj, V. B.; Zagorskij, A. V.; Katsnel'Son, S. S.; Kudryavtsev, A. V.; Plekhanov, A. V.
1993-04-01
Results of a series of experiments in the acceleration of macrobodies are analyzed using an integral model of a current arc and a quasi-1D magnetic gasdynamic model. The integral model uses gasdynamic equations averaged by the size of a plasma pump and equations based on the second Kirchhoff's law for electrical current. The quasi-1D model is based on 1D magnetic gasdynamic equations for mean values of density, pressure, velocity, and internal power. Electromagnetic parameters are determined from Maxwell integral equations. It is concluded that the proposed models take into account the major mechanisms of momentum loss and are capable of adequately describing electromagnetic rail accelerators.
A graph theoretical perspective of a drug abuse epidemic model
NASA Astrophysics Data System (ADS)
Nyabadza, F.; Mukwembi, S.; Rodrigues, B. G.
2011-05-01
A drug use epidemic can be represented by a finite number of states and transition rules that govern the dynamics of drug use in each discrete time step. This paper investigates the spread of drug use in a community where some users are in treatment and others are not in treatment, citing South Africa as an example. In our analysis, we consider the neighbourhood prevalence of each individual, i.e., the proportion of the individual’s drug user contacts who are not in treatment amongst all of his or her contacts. We introduce parameters α∗, β∗ and γ∗, depending on the neighbourhood prevalence, which govern the spread of drug use. We examine how changes in α∗, β∗ and γ∗ affect the system dynamics. Simulations presented support the theoretical results.
Theoretical model for a thin cylindrical film optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
The analytical treatment of power efficiency (P(eff) is undertaken for the case of a positively guiding optical fiber with a thin-film source distributed in the core-cladding interface. The approach adopts the exact solution of the cylindrical optical fiber with an infinite cladding to account for differences between the indices of refraction of the core and the cladding. The excitation of low-loss leaky modes by the cladding is ignored, and only the injection by the evanescent field is considered. The formulas permit the analysis of the power-injection efficiency of fibers with arbitrary differences in indices of refraction. P(eff) does not always increase with V number, but rather varies slightly with wavelength and fiber-core radius and varies significantly with the difference in the indices of refraction. The theoretical results of the work are of interest for designing an atomic-O chemical sensor based on evanescent-wave coupling.
Behar, Evelyn; DiMarco, Ilyse Dobrow; Hekler, Eric B; Mohlman, Jan; Staples, Alison M
2009-12-01
Theoretical conceptualizations of generalized anxiety disorder (GAD) continue to undergo scrutiny and refinement. The current paper critiques five contemporary models of GAD: the Avoidance Model of Worry and GAD [Borkovec, T. D. (1994). The nature, functions, and origins of worry. In: G. Davey & F. Tallis (Eds.), Worrying: perspectives on theory assessment and treatment (pp. 5-33). Sussex, England: Wiley & Sons; Borkovec, T. D., Alcaine, O. M., & Behar, E. (2004). Avoidance theory of worry and generalized anxiety disorder. In: R. Heimberg, C. Turk, & D. Mennin (Eds.), Generalized anxiety disorder: advances in research and practice (pp. 77-108). New York, NY, US: Guilford Press]; the Intolerance of Uncertainty Model [Dugas, M. J., Letarte, H., Rheaume, J., Freeston, M. H., & Ladouceur, R. (1995). Worry and problem solving: evidence of a specific relationship. Cognitive Therapy and Research, 19, 109-120; Freeston, M. H., Rheaume, J., Letarte, H., Dugas, M. J., & Ladouceur, R. (1994). Why do people worry? Personality and Individual Differences, 17, 791-802]; the Metacognitive Model [Wells, A. (1995). Meta-cognition and worry: a cognitive model of generalized anxiety disorder. Behavioural and Cognitive Psychotherapy, 23, 301-320]; the Emotion Dysregulation Model [Mennin, D. S., Heimberg, R. G., Turk, C. L., & Fresco, D. M. (2002). Applying an emotion regulation framework to integrative approaches to generalized anxiety disorder. Clinical Psychology: Science and Practice, 9, 85-90]; and the Acceptance-based Model of GAD [Roemer, L., & Orsillo, S. M. (2002). Expanding our conceptualization of and treatment for generalized anxiety disorder: integrating mindfulness/acceptance-based approaches with existing cognitive behavioral models. Clinical Psychology: Science and Practice, 9, 54-68]. Evidence in support of each model is critically reviewed, and each model's corresponding evidence-based therapeutic interventions are discussed. Generally speaking, the models share an
NASA Astrophysics Data System (ADS)
Koo, Jeong Seo; Choi, Se Young
2012-06-01
A theoretical method is proposed to predict and evaluate collision-induced derailments of rolling stock by using a simplified wheelset model and is verified with dynamic simulations. Because the impact forces occurring during collision are transmitted from the car body to the bogies and axles through suspensions, rolling stock leads to derailment as a result of the combination of horizontal and vertical impact forces applied to the axle and a simplified wheelset model enforced at the axle can be used to theoretically formulate derailment behaviors. The derailment type depends on the combination of the horizontal and vertical forces, the flange angle and the friction coefficient. According to collision conditions, wheel-climb, wheel-lift or roll-over derailment can occur between the wheel and the rail. In this theoretical derailment model of a simplified wheelset, the derailment types are classified as Slip-up, Slip/roll-over, Climb-up, Climb/roll-over and pure Roll-over according to the derailment mechanisms between the wheel and the rail and the theoretical conditions needed to generate each derailment mechanism are proposed. The theoretical wheelset model is verified by dynamic simulation and its applicability is demonstrated by comparing the simulation results of the theoretical wheelset model with those of an actual wheelset model. The theoretical derailment wheelset model is in good agreement with the virtual testing model simulation for a collision-induced derailment of rolling stock.
Advancing swine models for human health and diseases.
Walters, Eric M; Prather, Randall S
2013-01-01
Swine models are relatively new kids on the block for modeling human health and diseases when compared to rodents and dogs. Because of the similarity to humans in size, physiology, and genetics, the pig has made significant strides in advancing the understanding of the human condition, and is thus an excellent choice for an animal model. Recent technological advances to genetic engineering of the swine genome enhance the utility of swine as models of human genetic diseases.
NASA Astrophysics Data System (ADS)
Berezovska, Ganna; Prada-Gracia, Diego; Mostarda, Stefano; Rao, Francesco
2012-11-01
Molecular simulations as well as single molecule experiments have been widely analyzed in terms of order parameters, the latter representing candidate probes for the relevant degrees of freedom. Notwithstanding this approach is very intuitive, mounting evidence showed that such descriptions are inaccurate, leading to ambiguous definitions of states and wrong kinetics. To overcome these limitations a framework making use of order parameter fluctuations in conjunction with complex network analysis is investigated. Derived from recent advances in the analysis of single molecule time traces, this approach takes into account the fluctuations around each time point to distinguish between states that have similar values of the order parameter but different dynamics. Snapshots with similar fluctuations are used as nodes of a transition network, the clusterization of which into states provides accurate Markov-state-models of the system under study. Application of the methodology to theoretical models with a noisy order parameter as well as the dynamics of a disordered peptide illustrates the possibility to build accurate descriptions of molecular processes on the sole basis of order parameter time series without using any supplementary information.
Wilhelm, Frank H; Grossman, Paul
2010-07-01
Questionnaire and interview assessment can provide reliable data on attitudes and self-perceptions on emotion, and experimental laboratory assessment can examine functional relations between stimuli and reactions under controlled conditions. On the other hand, ambulatory assessment is less constrained and provides naturalistic data on emotion in daily life, with the potential to (1) assure external validity of laboratory findings, (2) provide normative data on prevalence, quality and intensity of real-life emotion and associated processes, (3) characterize previously unidentified emotional phenomena, and (4) model real-life stimuli for representative laboratory research design. Technological innovations now allow for detailed ambulatory study of emotion across domains of subjective experience, overt behavior and physiology. However, methodological challenges abound that may compromise attempts to characterize biobehavioral aspects of emotion in the real world. For example, emotional effects can be masked by social engagement, mental and physical workloads, as well as by food intake and circadian and quasi-random variation in metabolic activity. The complexity of data streams and multitude of factors that influence them require a high degree of context specification for meaningful data interpretation. We consider possible solutions to typical and often overlooked issues related to ambulatory emotion research, including aspects of study design decisions, recording devices and channels, electronic diary implementation, and data analysis.
Response of a panel to a supersonic turbulent boundary layer - Studies on a theoretical model
NASA Technical Reports Server (NTRS)
Yen, D. H. Y.; Maestrello, L.; Padula, S. L.
1980-01-01
A study of the response of a clamped panel to a supersonic turbulent boundary layer, based on a recently developed theoretical model, is presented. It is demonstrated that the model incorporates the effect of coupling between the panel motion and the flow of the surrounding fluid. Further, a Ritz-Galerkin method is used to obtain approximate solutions for the statistics of the panel response to the turbulence. The numerical results are compared with previous experimental data and the theoretical model is assessed.
Construction of Theoretical Model for Antiterrorism: From Reflexive Game Theory Viewpoint
2014-06-01
19th ICCRTS “C2 AGILITY: LESSONS LEARNED FROM RESEARCH AND OPERATIONS.” Construction of Theoretical Model for Antiterrorism: From Reflexive Game...of Theoretical Model for Antiterrorism: From Reflexive Game Theory Viewpoint 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...use of Reflexive Game Theory (RGT) for modeling the processes of decision making by terrorists. In the antiterrorist operations, an expert plays an
Experimental observations and theoretical models for beam-beam phenomena
Kheifets, S.
1981-03-01
The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.
Theoretical Tools in Modeling Communication and Language Dynamics
NASA Astrophysics Data System (ADS)
Loreto, Vittorio
Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. In social phenomena, the basic constituents are not particles but humans and every individual interacts with a limited number of peers, usually negligible compared to the total number of people in the system. In spite of that, human societies are characterized by stunning global regularities that naturally call for a statistical physics approach to social behavior, i.e., the attempt to understand regularities at large scale as collective effects of the interaction among single individuals, considered as relatively simple entities. This is the paradigm of Complex Systems: an assembly of many interacting (and simple) units whose collective behavior is not trivially deducible from the knowledge of the rules governing their mutual interactions. In this chapter we review the main theoretical concepts and tools that physics can borrow to socially-motivated problems. Despite their apparent diversity, most research lines in social dynamics are actually closely connected from the point of view of both the methodologies employed and, more importantly, of the general phenomenological questions, e.g., what are the fundamental interaction mechanisms leading to the emergence of consensus on an issue, a shared culture, a common language or a collective motion?
Ignition temperature of magnesium powder clouds: a theoretical model.
Chunmiao, Yuan; Chang, Li; Gang, Li; Peihong, Zhang
2012-11-15
Minimum ignition temperature of dust clouds (MIT-DC) is an important consideration when adopting explosion prevention measures. This paper presents a model for determining minimum ignition temperature for a magnesium powder cloud under conditions simulating a Godbert-Greenwald (GG) furnace. The model is based on heterogeneous oxidation of metal particles and Newton's law of motion, while correlating particle size, dust concentration, and dust dispersion pressure with MIT-DC. The model predicted values in close agreement with experimental data and is especially useful in predicting temperature and velocity change as particles pass through the furnace tube.
NASA Astrophysics Data System (ADS)
Hoey, Justin; Akhatov, Iskander; Swenson, Orven; Schulz, Doug
2007-11-01
A theoretical model for the focusing of aerosol particles in a linearly-varying micro-capillary with a diameter on the order of 100 microns is presented. This theoretical model is experimentally verified by visualizing an aerosol beam of silver-ink aerosol particles of approximately 1 micron in diameter emitted from a micro-capillary. Additional validation is presented in the deposited lines where linewidth is a function of aerosol beamwidth. From the theoretical model a new design for the focusing of aerosol particles is developed, physically produced, and experimentally validated. The new device will be implemented in the areas of high frequency RFID manufacturing, and the semiconductor industry.
Theoretical model of impact damage in structural ceramics
NASA Technical Reports Server (NTRS)
Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.
1984-01-01
This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.
Design theoretic analysis of three system modeling frameworks.
McDonald, Michael James
2007-05-01
This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.
Theoretical models for duct acoustic propagation and radiation
NASA Technical Reports Server (NTRS)
Eversman, Walter
1991-01-01
The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.
Investigations and advanced concepts on gyrotron interaction modeling and simulations
Avramidis, K. A.
2015-12-15
In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.
Advanced Placement: Model Policy Components. Policy Analysis
ERIC Educational Resources Information Center
Zinth, Jennifer
2016-01-01
Advanced Placement (AP), launched in 1955 by the College Board as a program to offer gifted high school students the opportunity to complete entry-level college coursework, has since expanded to encourage a broader array of students to tackle challenging content. This Education Commission of the State's Policy Analysis identifies key components of…
Predicting Career Advancement with Structural Equation Modelling
ERIC Educational Resources Information Center
Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia
2012-01-01
Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…
Ray-theoretical modeling of secondary microseism P waves
NASA Astrophysics Data System (ADS)
Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.
2016-09-01
Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P waves that propagate in water down to the ocean bottom where they are partly reflected and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P waves in the ocean, (3) the propagation from the ocean bottom to the stations and (4) the receiver site effect. Secondary microseism P waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analysing the seismic signals generated by typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Backprojecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.
A control theoretic model of driver steering behavior
NASA Technical Reports Server (NTRS)
Donges, E.
1977-01-01
A quantitative description of driver steering behavior such as a mathematical model is presented. The steering task is divided into two levels: (1) the guidance level involving the perception of the instantaneous and future course of the forcing function provided by the forward view of the road, and the response to it in an anticipatory open-loop control mode; (2) the stabilization level whereby any occuring deviations from the forcing function are compensated for in a closed-loop control mode. This concept of the duality of the driver's steering activity led to a newly developed two-level model of driver steering behavior. Its parameters are identified on the basis of data measured in driving simulator experiments. The parameter estimates of both levels of the model show significant dependence on the experimental situation which can be characterized by variables such as vehicle speed and desired path curvature.
Theoretical modeling of electron mobility in superfluid 4He
NASA Astrophysics Data System (ADS)
Aitken, Frédéric; Bonifaci, Nelly; von Haeften, Klaus; Eloranta, Jussi
2016-07-01
The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid 4He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed "exotic ion" data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.
Theoretical models of ultrasonic inspection and their validation
Birchall, D.; Daniels, W.; Hawker, B.M.; Ramsey, A.T.; Temple, J.A.G.
1994-12-31
In response to the perception of demands by the public for higher than ever standards of safety, the nuclear industry in Britain embarked on an extensive program of nuclear safety research in support of the safety case for the new Sizewell B pressurized water reactor, which is now approaching completion. A suite of diverse computer models, of various aspects of ultrasonic inspection, is described, ranging from transducer design to ray-tracing in anisotropic stainless steel weldments or complex geometries. These provide aids to inspection design, verification, validation and data analysis, but the models must also be validated.
Theoretical model of HZE particle fragmentation by hydrogen targets
NASA Technical Reports Server (NTRS)
Townsend, L.W.; Cucinotta, F. A; Bagga, R.; Tripathi, R. K.
1996-01-01
The fragmenting of high energy, heavy ions (HZE particles) by hydrogen targets is an important, physical process in several areas of space radiation research. In this work quantum mechanical optical model methods for estimating cross sections for HZE particle fragmentation by hydrogen targets are presented. The cross sections are calculated using a modified abrasion-ablation collision formalism adapted from a nucleus-nucleus collision model. Elemental and isotopic production cross sections are estimated and compared with reported measurements for the breakup of neon, sulphur, and iron, nuclei at incident energies between 400 and 910 Mev/nucleon. Good agreement between theory and experiment is obtained.
Theoretical Investigation of Optical Computing Based on Neural Network Models.
1987-09-29
34 Cognitive and Psychological Computation with Neu- ral Models," IEEE Trans. Sys., Man, and cyber., SMC-13, p. 799, 1983. 20’ K. Nakano, "Association-A...7),482(1986). 211 F. Rosenblatt, Principles of Neurodynamics : Perceptron and the The- ory of Brain Mechanisms, Spartan Books, Washington,(1961). 22
Multiaxial cyclic ratcheting in coiled tubing -- Part 1: Theoretical modeling
Rolovic, R.; Tipton, S.M.
2000-04-01
Coiled tubing is a long, continuous string of steel tubing that is used in the oil well drilling and servicing industry. Bending strains imposed on coiled tubing as it is deployed and retrieved from a well are considerably into the plastic regime and can be as high as 3%. Progressive growth of tubing diameter occurs when tubing is cyclically bent-straightened under constant internal pressure, regardless of the fact that the hoop stress imposed by typical pressure levels is well below the material's yield strength. A new incremental plasticity model is proposed in this study that can predict multiaxial cyclic ratcheting in coiled tubing more accurately than the conventional plasticity models. A new hardening rule is presented based on published experimental observations. The model also implements a new plastic modulus function. The predictions based on the new theory correlate well with experimental results presented in Part 2 of this paper. Some previously unexpected trends in coiled tubing deformation behavior were observed and correctly predicted using the proposed model.
Science and Mathematics Together: Implementing a Theoretical Model.
ERIC Educational Resources Information Center
Berlin, Donna F.; White, Arthur L.
2001-01-01
Describes the Berlin-White Integrated Science and Mathematics Model, which includes six aspects: (1) ways of learning; (2) ways of knowing; (3) content knowledge; (4) process and thinking skills; (5) attitudes and perceptions; and (6) teaching strategies. Presents a classroom example on the topic of natural selection. (Contains 20 references.)…
Theoretical Modeling of Josephson Junctions for Digital Electronics
2005-11-29
the Mott insulator-superfluid transition in the Bose Hubbard model", National Institute of Standards and Technology, Gaithersberg (November, 2002...Phys. Rev. B 69, 165105--1-5 (2004). [20] D. 0. Demchencko, A. V. Joura, and J. K. Freericks, Effect of particle-hole asymmetry on the Mott- Hubbard
Photoabsorption spectrum of helium trimer cation—Theoretical modeling
Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier
2013-11-28
The photoabsorption spectrum of He{sub 3}{sup +} is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He{sub 3}{sup +}, for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He{sub 2}{sup +}. A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He{sub 3}{sup +}.
A Theoretical Model of Sexual Assault: An Empirical Test.
ERIC Educational Resources Information Center
White, Jacquelyn W.; Humphrey, John A.
Koss and Dinero's (1987) comprehensive developmental model of sexual aggression asserts that sexual assault is in part a result of early sexual experiences and family violence; that sexually aggressive behaviors may be predicted by such "releaser" variables as current sexual behavior, alcohol use, and peer group support; and that use of aggression…
Testing Theoretical Models of Magnetic Damping Using an Air Track
ERIC Educational Resources Information Center
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.
2008-01-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…
Strength of Si Wafers with Microcracks: A Theoretical Model; Preprint
Rupnowski, P.; Sopori, B.
2008-05-01
This paper concentrates on the modeling of the strength of photovoltaic (PV) wafers. First a multimodal Weibull distribution is presented for the strength of a silicon specimen with bulk, surface, and edge imperfections. Next, a specific case is analyzed of a PV wafer with surface damage that takes the form of subsurface microcracks.
NASA Astrophysics Data System (ADS)
Gradov, V. M.; Petrikevich, B. B.; Shcherbakov, A. A.
1980-03-01
This paper examines high-intensity xenon-filled radiation sources for heat load simulation. A mathematical model of the discharge is proposed, and results of a theoretical and an experimental investigation are presented.
Motility of a model bristle-bot: A theoretical analysis
NASA Astrophysics Data System (ADS)
Cicconofri, Giancarlo; DeSimone, Antonio
2015-11-01
Bristle-bots are legged robots that can be easily made out of a toothbrush head and a small vibrating engine. Despite their simple appearance, the mechanism enabling them to propel themselves by exploiting friction with the substrate is far from trivial. Numerical experiments on a model bristle-bot have been able to reproduce such a mechanism revealing, in addition, the ability to switch direction of motion by varying the vibration frequency. This paper provides a detailed account of these phenomena through a fully analytical treatment of the model. The equations of motion are solved through an expansion in terms of a properly chosen small parameter. The convergence of the expansion is rigorously proven. In addition, the analysis delivers formulas for the average velocity of the robot and for the frequency at which the direction switch takes place. A quantitative description of the mechanism for the friction modulation underlying the motility of the bristle-bot is also provided.
Game-Theoretic Models of Conflict and Social Interactions
2014-05-17
been to provide qualitative analysis that give insights into the sources of political and social conflict and quantitative or computational methods ...the Econometric Society in 2011, and keynote addresses at the WINE conference, the Public Economic Theory Conference, and the State of the Art lecture...project, we developed a model for the analysis of spread of misinformation in societies. Our analysis is motivated by the widespread differences in
A Theoretical Model for the Associative Nature of Conference Participation.
Smiljanić, Jelena; Chatterjee, Arnab; Kauppinen, Tomi; Mitrović Dankulov, Marija
2016-01-01
Participation in conferences is an important part of every scientific career. Conferences provide an opportunity for a fast dissemination of latest results, discussion and exchange of ideas, and broadening of scientists' collaboration network. The decision to participate in a conference depends on several factors like the location, cost, popularity of keynote speakers, and the scientist's association with the community. Here we discuss and formulate the problem of discovering how a scientist's previous participation affects her/his future participations in the same conference series. We develop a stochastic model to examine scientists' participation patterns in conferences and compare our model with data from six conferences across various scientific fields and communities. Our model shows that the probability for a scientist to participate in a given conference series strongly depends on the balance between the number of participations and non-participations during his/her early connections with the community. An active participation in a conference series strengthens the scientist's association with that particular conference community and thus increases the probability of future participations.
A Theoretical Model for the Associative Nature of Conference Participation
Smiljanić, Jelena; Chatterjee, Arnab; Kauppinen, Tomi; Mitrović Dankulov, Marija
2016-01-01
Participation in conferences is an important part of every scientific career. Conferences provide an opportunity for a fast dissemination of latest results, discussion and exchange of ideas, and broadening of scientists’ collaboration network. The decision to participate in a conference depends on several factors like the location, cost, popularity of keynote speakers, and the scientist’s association with the community. Here we discuss and formulate the problem of discovering how a scientist’s previous participation affects her/his future participations in the same conference series. We develop a stochastic model to examine scientists’ participation patterns in conferences and compare our model with data from six conferences across various scientific fields and communities. Our model shows that the probability for a scientist to participate in a given conference series strongly depends on the balance between the number of participations and non-participations during his/her early connections with the community. An active participation in a conference series strengthens the scientist’s association with that particular conference community and thus increases the probability of future participations. PMID:26859404
A dynamic game-theoretic model of parental care.
Mcnamara, J M; Székely, T; Webb, J N; Houston, A I
2000-08-21
We present a model in which members of a mated pair decide whether to care for their offspring or desert them. There is a breeding season of finite length during which it is possible to produce and raise several batches of offspring. On deserting its offspring, an individual can search for a new mate. The probability of finding a mate depends on the number of individuals of each sex that are searching, which in turn depends upon the previous care and desertion decisions of all population members. We find the evolutionarily stable pattern of care over the breeding season. The feedback between behaviour and mating opportunity can result in a pattern of stable oscillations between different forms of care over the breeding season. Oscillations can also arise because the best thing for an individual to do at a particular time in the season depends on future behaviour of all population members. In the baseline model, a pair splits up after a breeding attempt, even if they both care for the offspring. In a version of the model in which a pair stays together if they both care, the feedback between behaviour and mating opportunity can lead to more than one evolutionarily stable form of care.
Modeling postpartum depression in rats: theoretic and methodological issues
Ming, LI; Shinn-Yi, CHOU
2016-01-01
The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions. PMID:27469254
Advanced Interconnect and Device-Field Modeling
2007-01-15
Essaaidi NATO Advanced Research Workshop : Bianisotropics 2002, 99th Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco...Bianisotropics 2002, 99th Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco. Study of Substrates Bi-anisotropy Effects on...Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco. Dielectric Substrates Anisotropic Effects on The Characteristics of
Cumulative Damage Model for Advanced Composite Materials.
1982-09-01
conditions of static loads; various theories have been advanced to predict the onset and progress of these individual damage events. • The approach taken in...composite laminates, one common approach is the well-known "first ply failure" theory (see e.g. Tsai and Hahn [l]). The basic assumption in the theory ...edge interlaminar stresses provides a physical x tai,-ntion of the edge delamination phenomenon; a suitable theory defining t he conditions for its
Modeling and Theoretical Analysis of On-Chip Phase-Sensitive Amplifiers
2016-04-19
SECURITY CLASSIFICATION OF: We performed a theoretical study of phase-sentisitive amplification in semiconductor optical amplifiers (SOAs), so as to...wavelength mixing in semiconductor optical amplifiers (SOAs) based on coupled-mode equations. The proposed model applies to all kinds of SOA...Unlimited UU UU UU UU 19-04-2016 1-Jun-2014 30-Nov-2015 Final Report: Modeling and Theoretical Analysis of On-Chip Phase-Sensitive Amplifiers The
GSTARS computer models and their applications, part I: theoretical development
Yang, C.T.; Simoes, F.J.M.
2008-01-01
GSTARS is a series of computer models developed by the U.S. Bureau of Reclamation for alluvial river and reservoir sedimentation studies while the authors were employed by that agency. The first version of GSTARS was released in 1986 using Fortran IV for mainframe computers. GSTARS 2.0 was released in 1998 for personal computer application with most of the code in the original GSTARS revised, improved, and expanded using Fortran IV/77. GSTARS 2.1 is an improved and revised GSTARS 2.0 with graphical user interface. The unique features of all GSTARS models are the conjunctive use of the stream tube concept and of the minimum stream power theory. The application of minimum stream power theory allows the determination of optimum channel geometry with variable channel width and cross-sectional shape. The use of the stream tube concept enables the simulation of river hydraulics using one-dimensional numerical solutions to obtain a semi-two- dimensional presentation of the hydraulic conditions along and across an alluvial channel. According to the stream tube concept, no water or sediment particles can cross the walls of stream tubes, which is valid for many natural rivers. At and near sharp bends, however, sediment particles may cross the boundaries of stream tubes. GSTARS3, based on FORTRAN 90/95, addresses this phenomenon and further expands the capabilities of GSTARS 2.1 for cohesive and non-cohesive sediment transport in rivers and reservoirs. This paper presents the concepts, methods, and techniques used to develop the GSTARS series of computer models, especially GSTARS3. ?? 2008 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.
Theoretical models for the emergence of biomolecular homochirality
NASA Astrophysics Data System (ADS)
Walker, Sara Imari
Little is known about the emergence of life from nonliving precursors. A key missing-piece is the origin of homochirality: nearly all life is characterized by exclusively dextrorotary sugars and levorotary amino acids. The research presented in this thesis addresses the challenge of uncovering mechanisms for chiral symmetry breaking in a prebiotic environment and implications for the origin of life on Earth. Expanding on a well-known model for chiral selection through polymerization, and modeling the spatiotemporal dynamics starting from near-racemic initial conditions, it is demonstrated that the net chirality of molecular building blocks grows with the longest polymer in the reaction network (of length N) with critical behavior for the onset of chiral asymmetry determined by the value of N. This surprising result indicates that significant chiral asymmetry occurs only for systems which permit growth of long polymers. Expanding on this work, the effects of environmental disturbances on the evolution of chirality in prebiotic reaction-diffusion networks are studied via the implementation of a stochastic spatiotemporal Langevin equation. The results show that environmental interactions can have significant impact on the evolution of prebiotic chirality: the history of prebiotic chirality is therefore interwoven with the Earths early environmental history in a mechanism we call punctuated chirality. This result establishes that the onset of homochirality is not an isolated phenomenon: chiral selection must occur in tandem with the transition from chemistry to biology, otherwise the prebiotic soup is unstable to environmental events. Addressing the challenge of understanding the role of chirality in the transition from non-life to life, the diffusive slowdown of reaction networks induced, for example, through tidal cycles or evaporating pools, is modeled. The results of this study demonstrate that such diffusive slowdown leads to the stabilization of homochiral
Theoretical modeling of the absorption spectrum of aqueous riboflavin
NASA Astrophysics Data System (ADS)
Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea
2017-02-01
In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.
A theoretical model of sheath fold morphology in simple shear
NASA Astrophysics Data System (ADS)
Reber, Jacqueline E.; Dabrowski, Marcin; Galland, Olivier; Schmid, Daniel W.
2013-04-01
Sheath folds are highly non-cylindrical structures often associated with shear zones. The geometry of sheath folds, especially cross-sections perpendicular to the stretching direction that display eye-patterns, have been used in the field to deduce kinematic information such as shear sense and bulk strain type. However, how sheath folds form and how they evolve with increasing strain is still a matter of debate. We investigate the formation of sheath folds around a weak inclusion acting as a slip surface in simple shear by means of an analytical model. We systematically vary the slip surface orientation and shape and evaluate the impact on the evolving eye-pattern. In addition we compare our results to existing classifications. Based on field observations it has been suggested that the shear sense of a shear zone can be determined by knowing the position of the center of an eye-pattern and the closing direction of the corresponding sheath fold. In our modeled sheath folds we can observe for a given strain that the center of the eye-structure is subject to change in height with respect to the upper edge of the outermost closed contour for different cross-sections perpendicular to the shear direction. This results in a large variability in layer thickness, questioning the usefulness of sheath folds as shear sense indicators. The location of the center of the eye structure, however, is largely invariant to the initial configurations of the slip surface as well as to strain. It has been suggested that the ratio of the aspect ratio of the innermost and outermost closed contour in eye-patterns could be linked to the bulk strain type based on filed observations. We apply this classification to our modeled sheath folds and we observe that the values of the aspect ratios of the closed contours within the eye-pattern are dependent on the strain and the cross-section location. The ratio (R') of the aspect ratios of the outermost closed contour (Ryz) and the innermost closed
Graph theoretical analysis of the energy landscape of model polymers.
Baiesi, Marco; Bongini, Lorenzo; Casetti, Lapo; Tattini, Lorenzo
2009-07-01
In systems characterized by a rough potential-energy landscape, local energetic minima and saddles define a network of metastable states whose topology strongly influences the dynamics. Changes in temperature, causing the merging and splitting of metastable states, have nontrivial effects on such networks and must be taken into account. We do this by means of a recently proposed renormalization procedure. This method is applied to analyze the topology of the network of metastable states for different polypeptidic sequences in a minimalistic polymer model. A smaller spectral dimension emerges as a hallmark of stability of the global energy minimum and highlights a nonobvious link between dynamic and thermodynamic properties.
A theoretical model of a molecular-motor-powered pump.
Bull, Joseph L; Hunt, Alan J; Meyhöfer, Edgar
2005-03-01
The motion of a cylindrical bead in a fluid contained within a two-dimensional channel is investigated using the boundary element method as a model of a biomolecular-motor-powered microfluidics pump. The novelty of the pump lies in the use of motor proteins (kinesin) to power the bead motion and the few moving parts comprising the pump. The performance and feasibility of this pump design is investigated using two model geometries: a straight channel, and a curved channel with two concentric circular walls. In the straight channel geometry, it is shown that increasing the bead radius relative to the channel width, increases the flow rate at the expense of increasing the force the kinesins must generate in order to move the bead. Pump efficiency is generally higher for larger bead radii, and larger beads can support higher imposed loads. In the circular channel geometry, it is shown that bead rotation modifies the force required to move the bead and that shifting the bead inward slightly reduces the required force. Bead rotation has a minimal effect on flow rate. Recirculation regions, which can develop between the bead and the channel walls, influence the stresses and force on the bead. These results suggest this pump design is feasible, and the kinesin molecules provide sufficient force to deliver pico- to atto- l/s flows.
Polarimetric signatures of sea ice. 1: Theoretical model
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.
1995-01-01
Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.
Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.
1995-01-01
Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.
Guidelines for a graph-theoretic implementation of structural equation modeling
Grace, James B.; Schoolmaster, Donald R.; Guntenspergen, Glenn R.; Little, Amanda M.; Mitchell, Brian R.; Miller, Kathryn M.; Schweiger, E. William
2012-01-01
Structural equation modeling (SEM) is increasingly being chosen by researchers as a framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods emerging from the study of causality, influences from the field of graphical modeling, and advances in statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM that we believe constitute a third-generation of the methodology. Most characteristic of this new approach is the generalization of the structural equation model as a causal graph. In this generalization, analyses are based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods. The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory frames the modeling process, requirements for causal interpretation, model specification choices, selection of estimation method, model evaluation options, and use of queries, both to summarize retrospective results and for prospective analyses. The illustrative example presented involves monitoring data from wetlands on Mount Desert Island, home of Acadia National Park. Our presentation walks through the decision process involved in developing and evaluating models, as well as drawing inferences from the resulting prediction equations. In addition to evaluating hypotheses about the connections between human activities and biotic responses, we illustrate how the structural equation (SE) model can be queried to understand how interventions might take advantage of an environmental threshold to limit Typha invasions. The guidelines presented provide for
Theoretical models of Kapton heating in solar array geometries
NASA Technical Reports Server (NTRS)
Morton, Thomas L.
1992-01-01
In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.
Unified Field Theoretical Models from Generalized Affine Geometries II
NASA Astrophysics Data System (ADS)
Cirilo-Lombardo, Diego Julio
2011-06-01
The space-time structure of the new Unified Field Theory presented in previous reference (Int. J. Theor. Phys. 49:1288-1301, 2010) is analyzed from its SL(2C) underlying structure in order to make precise the notion of minimal coupling. To this end, the framework is the language of tensors and particularly differential forms and the condition a priory of the existence of a potential for the torsion is relaxed. We shown trough exact cosmological solutions from this model, where the geometry is Euclidean R⊗ O 3˜ R⊗ SU(2), the relation between the space-time geometry and the structure of the gauge group. Precisely this relation is directly connected with the relation of the spin and torsion fields. The solution of this model is explicitly compared with our previous ones and we find that: (i) the torsion is not identified directly with the Yang Mills type strength field, (ii) there exists a compatibility condition connected with the identification of the gauge group with the geometric structure of the space-time: this fact lead the identification between derivatives of the scale factor a( τ) with the components of the torsion in order to allows the Hosoya-Ogura ansatz (namely, the alignment of the isospin with the frame geometry of the space-time), (iii) this compatibility condition precisely mark the fact that local gauge covariance, coordinate independence and arbitrary space time geometries are harmonious concepts and (iv) of two possible structures of the torsion the "tratorial" form (the only one studied here) forbids wormhole configurations, leading only, cosmological instanton space-time in eternal expansion.
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.
ERIC Educational Resources Information Center
Erduran, Sibel
This paper reports on an interdisciplinary theoretical framework for the characterization of models and modeling that can be useful in application to chemistry education. The underlying argument marks a departure from an emphasis on concepts that are the outcomes of chemical inquiry about how knowledge growth occurs through modeling in chemistry.…
A Measurement-Theoretic Analysis of the Fuzzy Logic Model of Perception.
ERIC Educational Resources Information Center
Crowther, Court S.; And Others
1995-01-01
The fuzzy logic model of perception (FLMP) is analyzed from a measurement-theoretic perspective. The choice rule of FLMP is shown to be equivalent to a version of the Rasch model. In fact, FLMP can be reparameterized as a simple two-category logit model. (SLD)
Theoretical model of the helium zone plate microscope
NASA Astrophysics Data System (ADS)
Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil
2017-01-01
Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy, charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer, the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate. An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and width of the outermost zone. Here we present an optimization model for the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for a given beam temperature and pressure, there is always a single intensity maximum. We compare our model with the highest-resolution zone plate focusing images published and show that the intensity can be increased seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000
Chemical Kinetic Models for Advanced Engine Combustion
Pitz, William J.; Mehl, Marco; Westbrook, Charles K.
2014-10-22
The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.
A beginner's guide to writing the nursing conceptual model-based theoretical rationale.
Gigliotti, Eileen; Manister, Nancy N
2012-10-01
Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.
Advances in modelling of condensation phenomena
Liu, W.S.; Zaltsgendler, E.; Hanna, B.
1997-07-01
The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.
MixSIAR: advanced stable isotope mixing models in R
Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...
Theoretical modelling and experimental results of electromechanical actuation of an elastomer
NASA Astrophysics Data System (ADS)
Díaz-Calleja, Ricardo; Llovera-Segovia, Pedro; Dominguez, José Jorge; Carsí Rosique, Marta; Quijano Lopez, Alfredo
2013-06-01
Electromechanical actuation is a growing field of research today both for applications or theoretical modelling. The interaction between electric and mechanical constraints has been used for electromechanic actuators or generators based on elastomers. From a theoretical point of view, many recent works have been focused on uniaxial or biaxial stretching of elastomer plates with compliant electrodes. Free stretching or pre-strained samples have been theoretically modelled, mainly by neo-Hookean equations. In this work, we present theoretical and experimental results of electromechanic actuation of an elastomer (the widely used 3M VHB4910, an acrylic foam) in a pre-strained case and a free case. Experimental characterization of the material shows that the Ogden model gives the best accurate fitting of mechanical properties. Thus, a theoretical development based on this model is carried out in order to obtain the curves describing the electromechanical behaviour of the material. The mechanical instability related to wrinkling of the material is theoretically calculated and experimentally verified.
Advances on genetic rat models of epilepsy.
Serikawa, Tadao; Mashimo, Tomoji; Kuramoro, Takashi; Voigt, Birger; Ohno, Yukihiro; Sasa, Masashi
2015-01-01
Considering the suitability of laboratory rats in epilepsy research, we and other groups have been developing genetic models of epilepsy in this species. After epileptic rats or seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits were usually genetically-fixed by selective breeding. So far, the absence seizure models GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER have been established. Dissection of the genetic bases including causative genes in these epileptic rat models would be a significant step toward understanding epileptogenesis. N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type 1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea (MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2 (EA2) model rats. Thus, epileptic rat models have been established on the two paths: 'phenotype to gene' and 'gene to phenotype'. In the near future, development of novel epileptic rat models will be extensively promoted by the use of sophisticated genome editing technologies.
Advances on genetic rat models of epilepsy
Serikawa, Tadao; Mashimo, Tomoji; Kuramoto, Takashi; Voigt, Birger; Ohno, Yukihiro; Sasa, Masashi
2014-01-01
Considering the suitability of laboratory rats in epilepsy research, we and other groups have been developing genetic models of epilepsy in this species. After epileptic rats or seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits were usually genetically-fixed by selective breeding. So far, the absence seizure models GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER have been established. Dissection of the genetic bases including causative genes in these epileptic rat models would be a significant step toward understanding epileptogenesis. N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type 1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea (MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2 (EA2) model rats. Thus, epileptic rat models have been established on the two paths: ‘phenotype to gene’ and ‘gene to phenotype’. In the near future, development of novel epileptic rat models will be extensively promoted by the use of sophisticated genome editing technologies. PMID:25312505
[Palliative care decision making among the elderly and family: a theoretical model].
Lamontagne, Julie; Beaulieu, Marie; Arcand, Marcel
2011-03-01
The elderly in palliative care are confronted with difficult decisions relating to treatments. The philosophy of palliative care, namely, including the patient and his/her family right away, leads the doctor to consult with the two parties involved when choosing a treatment. As no theoretical model allows us to understand how the decision-making process hinges on the trio (a capable elderly person, a family caregiver, and the doctor) in a context of palliative care, we propose one which was developed from three strategies of document analysis: theoretical synthesis, theoretical analysis, and theoretical derivation. According to our model, the decision-making process depends on individual factors influencing the decision of the participant, expectations and attitudes as to the role, the level of confidence amongst the parties involved, the manner in which they communicate with each other, their mutual understanding of the clinical and ethical issues, and, finally, their ability to cooperate.
Single Droplet on Micro Square-Post Patterned Surfaces – Theoretical Model and Numerical Simulation
Zu, Y. Q.; Yan, Y. Y.
2016-01-01
In this study, the wetting behaviors of single droplet on a micro square-post patterned surface with different geometrical parameters are investigated theoretically and numerically. A theoretical model is proposed for the prediction of wetting transition from the Cassie to Wenzel regimes. In addition, due to the limitation of theoretical method, a numerical simulation is performed, which helps get a view of dynamic contact lines, detailed velocity fields, etc., even if the droplet size is comparable with the scale of the surface micro-structures. It is found that the numerical results of the liquid drop behaviours on the square-post patterned surface are in good agreement with the predicted values by the theoretical model. PMID:26775561
An advanced terrain modeler for an autonomous planetary rover
NASA Technical Reports Server (NTRS)
Hunter, E. L.
1980-01-01
A roving vehicle capable of autonomously exploring the surface of an alien world is under development and an advanced terrain modeler to characterize the possible paths of the rover as hazardous or safe is presented. This advanced terrain modeler has several improvements over the Troiani modeler that include: a crosspath analysis, better determination of hazards on slopes, and methods for dealing with missing returns at the extremities of the sensor field. The results from a package of programs to simulate the roving vehicle are then examined and compared to results from the Troiani modeler.
Carbon export algorithm advancements in models
NASA Astrophysics Data System (ADS)
Çağlar Yumruktepe, Veli; Salihoğlu, Barış
2015-04-01
The rate at which anthropogenic CO2 is absorbed by the oceans remains a critical question under investigation by climate researchers. Construction of a complete carbon budget, requires better understanding of air-sea exchanges and the processes controlling the vertical and horizontal transport of carbon in the ocean, particularly the biological carbon pump. Improved parameterization of carbon sequestration within ecosystem models is vital to better understand and predict changes in the global carbon cycle. Due to the complexity of processes controlling particle aggregation, sinking and decomposition, existing ecosystem models necessarily parameterize carbon sequestration using simple algorithms. Development of improved algorithms describing carbon export and sequestration, suitable for inclusion in numerical models is an ongoing work. Existing unique algorithms used in the state-of-the art ecosystem models and new experimental results obtained from mesocosm experiments and open ocean observations have been inserted into a common 1D pelagic ecosystem model for testing purposes. The model was implemented to the timeseries stations in the North Atlantic (BATS, PAP and ESTOC) and were evaluated with datasets of carbon export. Targetted topics of algorithms were PFT functional types, grazing and vertical movement of zooplankton, and remineralization, aggregation and ballasting dynamics of organic matter. Ultimately it is intended to feed improved algorithms to the 3D modelling community, for inclusion in coupled numerical models.
An Advanced Sea-Floor Spreading Model.
ERIC Educational Resources Information Center
Dutch, Steven I.
1986-01-01
Describes models which (1) illustrate spreading that varies in rate from place to place; (2) clearly show transform faults as arcs of small circles; and (3) illustrate what happens near a pole of rotation. The models are easy to construct and have been well received by students. (JN)
Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation
Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher
2011-12-29
The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.
Advances and applications of occupancy models
Bailey, Larissa; MacKenzie, Darry I.; Nichols, James D.
2013-01-01
Summary: The past decade has seen an explosion in the development and application of models aimed at estimating species occurrence and occupancy dynamics while accounting for possible non-detection or species misidentification. We discuss some recent occupancy estimation methods and the biological systems that motivated their development. Collectively, these models offer tremendous flexibility, but simultaneously place added demands on the investigator. Unlike many mark–recapture scenarios, investigators utilizing occupancy models have the ability, and responsibility, to define their sample units (i.e. sites), replicate sampling occasions, time period over which species occurrence is assumed to be static and even the criteria that constitute ‘detection’ of a target species. Subsequent biological inference and interpretation of model parameters depend on these definitions and the ability to meet model assumptions. We demonstrate the relevance of these definitions by highlighting applications from a single biological system (an amphibian–pathogen system) and discuss situations where the use of occupancy models has been criticized. Finally, we use these applications to suggest future research and model development.
NASA Technical Reports Server (NTRS)
See, M. J.; Cozzolongo, J. V.
1983-01-01
A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.
Recent advances in topside profile modeling
NASA Astrophysics Data System (ADS)
Pulinets, S. A.; Depuev, V. H.; Karpachev, A. T.; Radicella, S. M.; Danilkin, N. P.
A parameterized model for topside profile was developed based on the Epstein function approximation. Using the Intercosmos-19 database, model parameters were obtained for different geophysical conditions, including strong-magnetic storms. In some specific conditions the F3 layer was observed on topside ionograms. A physical explanation is proposed as well as results based on modeling approach. Topside ionograms from the sounder on MIR Space Station were studied. Some exotic cases are presented including oblique propagation, station position under the peak height etc. Peak height global distribution is described as well as neutral wind parameters derived from the topside peak height values.
Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering
NASA Astrophysics Data System (ADS)
He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang
2017-01-01
Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.
Simple control-theoretic models of human steering activity in visually guided vehicle control
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1991-01-01
A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.
Not Available
1990-12-01
The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.
Enabling Technologies for Advanced Soft Tissue Modeling
2006-09-01
Tools for measuring soft tissue properties. Workshop on Reality- Based Modeling of Tissues for Simulation and Robot -Assisted Surgery , at IEEE/RSJ IROS...protocols, mathematical models and tools, and validation techniques to determine and describe the biomechanical behavior of living tissues. The...surgical simulation systems that allow new doctors to experience their first surgeries without risk to real patients. They can be implemented in
Advanced Concepts for Underwater Acoustic Channel Modeling
NASA Astrophysics Data System (ADS)
Etter, P. C.; Haas, C. H.; Ramani, D. V.
2014-12-01
This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.
Enabling Technologies for Advanced Soft Tissue Modeling
2005-09-01
Matlab (Mathworks, Natick, MA) and ABAQUS environments in order to perform the optimization, minimizing the mean-square error between the experimental...been working on implementing the model in real-time using uniaxial compression breast data and a modified version of the model written to run in Matlab ...perfused whole organ testing 21 were noted and the load was applied in pseudo -random 77 order for 300 s, with repetition of the first load at the Following
A Game-Theoretic Model of Curriculum Integration and School Leadership
ERIC Educational Resources Information Center
Stull, William J.
2006-01-01
This paper analyzes a simple game-theoretic model of curriculum integration decision-making in a high school with academic and vocational tracks. The model is based on a formal theory of how curriculum integration affects learning. Teachers choose to include a curriculum integration unit in their classes only when it increases learning relative to…
Achievement Goals and Discrete Achievement Emotions: A Theoretical Model and Prospective Test
ERIC Educational Resources Information Center
Pekrun, Reinhard; Elliot, Andrew J.; Maier, Markus A.
2006-01-01
A theoretical model linking achievement goals to discrete achievement emotions is proposed. The model posits relations between the goals of the trichotomous achievement goal framework and 8 commonly experienced achievement emotions organized in a 2 (activity/outcome focus) x 2 (positive/negative valence) taxonomy. Two prospective studies tested…
Cross-Cultural Teamwork in End User Computing: A Theoretical Model.
ERIC Educational Resources Information Center
Bento, Regina F.
1995-01-01
Presents a theoretical model explaining how cultural influences may affect the open, dynamic system of a cross-cultural, end-user computing team. Discusses the relationship between cross-cultural factors and various parts of the model such as: input variables, the system itself, outputs, and implications for the management of such teams. (JKP)
Game Object Model Version II: A Theoretical Framework for Educational Game Development
ERIC Educational Resources Information Center
Amory, Alan
2007-01-01
Complex computer and video games may provide a vehicle, based on appropriate theoretical concepts, to transform the educational landscape. Building on the original game object model (GOM) a new more detailed model is developed to support concepts that educational computer games should: be relevant, explorative, emotive, engaging, and include…
A Theoretical Model for Thin Film Ferroelectric Coupled Microstripline Phase Shifters
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Quereshi, A. H.
2000-01-01
Novel microwave phase shifters consisting of coupled microstriplines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.
ERIC Educational Resources Information Center
Hsieh, Pei-Hsuan; Sullivan, Jeremy R.; Sass, Daniel A.; Guerra, Norma S.
2012-01-01
Research has identified factors associated with academic success by evaluating relations among psychological and academic variables, although few studies have examined theoretical models to understand the complex links. This study used structural equation modeling to investigate whether the relation between test anxiety and final course grades was…
White Students' Experiences of Privilege and Socioeconomic Disparities: Toward a Theoretical Model
ERIC Educational Resources Information Center
Dunlap, Michelle; Scoggin, Jennifer; Green, Patrick; Davi, Angelique
2007-01-01
A theoretical model is developed for the process relatively privileged white students go through as they become more aware of their own socioeconomic and other advantages and come to terms with these within their community service learning placements. The model is supported with journal reflections from service-learners placed in inner-city…
Advances in NLTE Modeling for Integrated Simulations
Scott, H A; Hansen, S B
2009-07-08
The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.
Advanced Numerical Model for Irradiated Concrete
Giorla, Alain B.
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
Advanced Space Propulsion System Flowfield Modeling
NASA Technical Reports Server (NTRS)
Smith, Sheldon
1998-01-01
Solar thermal upper stage propulsion systems currently under development utilize small low chamber pressure/high area ratio nozzles. Consequently, the resulting flow in the nozzle is highly viscous, with the boundary layer flow comprising a significant fraction of the total nozzle flow area. Conventional uncoupled flow methods which treat the nozzle boundary layer and inviscid flowfield separately by combining the two calculations via the influence of the boundary layer displacement thickness on the inviscid flowfield are not accurate enough to adequately treat highly viscous nozzles. Navier Stokes models such as VNAP2 can treat these flowfields but cannot perform a vacuum plume expansion for applications where the exhaust plume produces induced environments on adjacent structures. This study is built upon recently developed artificial intelligence methods and user interface methodologies to couple the VNAP2 model for treating viscous nozzle flowfields with a vacuum plume flowfield model (RAMP2) that is currently a part of the Plume Environment Prediction (PEP) Model. This study integrated the VNAP2 code into the PEP model to produce an accurate, practical and user friendly tool for calculating highly viscous nozzle and exhaust plume flowfields.
NASA Astrophysics Data System (ADS)
Grünkorn, Juliane; Belzen, Annette Upmeier zu; Krüger, Dirk
2014-07-01
Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation). Therefore, the purpose of this article is to present the results of an empirical evaluation of a conjoint theoretical framework. The theoretical framework integrates relevant research findings and comprises five aspects which are subdivided into three levels each: nature of models, multiple models, purpose of models, testing, and changing models. The study was conducted with a sample of 1,177 seventh to tenth graders (aged 11-19 years) using open-ended items. The data were analysed by identifying students' understandings of models (nature of models and multiple models) and their use in science (purpose of models, testing, and changing models), and comparing as well as assigning them to the content of the theoretical framework. A comprehensive category system of students' understandings was thus developed. Regarding the empirical evaluation, the students' understandings of the nature and the purpose of models were sufficiently described by the theoretical framework. Concerning the understandings of multiple, testing, and changing models, additional initial understandings (only one model possible, no testing of models, and no change of models) need to be considered. This conjoint and now empirically tested framework for students' understandings can provide a common basis for future science education research. Furthermore, evidence-based indications can be provided for teachers and their instructional practice.
Advances in Modeling Exploding Bridgewire Initiation
Hrousis, C A; Christensen, J S
2010-03-10
There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in exploding bridgewires (EBW). Initiation of the HE is simulated using Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.
Modeling Innovations Advance Wind Energy Industry
NASA Technical Reports Server (NTRS)
2009-01-01
In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.
Advanced laser modeling with BLAZE multiphysics
NASA Astrophysics Data System (ADS)
Palla, Andrew D.; Carroll, David L.; Gray, Michael I.; Suzuki, Lui
2017-01-01
The BLAZE Multiphysics™ software simulation suite was specifically developed to model highly complex multiphysical systems in a computationally efficient and highly scalable manner. These capabilities are of particular use when applied to the complexities associated with high energy laser systems that combine subsonic/transonic/supersonic fluid dynamics, chemically reacting flows, laser electronics, heat transfer, optical physics, and in some cases plasma discharges. In this paper we present detailed cw and pulsed gas laser calculations using the BLAZE model with comparisons to data. Simulations of DPAL, XPAL, ElectricOIL (EOIL), and the optically pumped rare gas laser were found to be in good agreement with experimental data.
A National Strategy for Advancing Climate Modeling
Dunlea, Edward; Elfring, Chris
2012-12-04
Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation's capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee's report is a high level analysis, providing a strategic framework to guide progress in the nation's climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.
Metronomic reloaded: Theoretical models bringing chemotherapy into the era of precision medicine.
Benzekry, Sébastien; Pasquier, Eddy; Barbolosi, Dominique; Lacarelle, Bruno; Barlési, Fabrice; André, Nicolas; Ciccolini, Joseph
2015-12-01
Oncology has benefited from an increasingly growing number of groundbreaking innovations over the last decade. Targeted therapies, biotherapies, and the most recent immunotherapies all contribute to increase the number of therapeutic options for cancer patients. Consequently, substantial improvements in clinical outcomes for some disease with dismal prognosis such as lung carcinoma or melanoma have been achieved. Of note, the latest innovations in targeted therapies or biotherapies do not preclude the use of standard cytotoxic agents, mostly used in combination. Importantly, and despite the rise of bioguided (a.k.a. precision) medicine, the administration of chemotherapeutic agents still relies on the maximum tolerated drug (MTD) paradigm, a concept inherited from theories conceptualized nearly half a century ago. Alternative dosing schedules such as metronomic regimens, based upon the repeated and regular administration of low doses of chemotherapeutic drugs, and adaptive therapy (i.e. modulating the dose and frequency of cytotoxics administration to control disease progression rather than eradicate it at all cost) have emerged as possible strategies to improve response rates while reducing toxicities. The recent changes in paradigm in the way we theorize cancer biology and evolution, metastatic spreading and tumor ecology, alongside the recent advances in the field of immunotherapy, have considerably strengthened the interest for these alternative approaches. This paper aims at reviewing the recent evolutions in the field of theoretical biology of cancer and computational oncology, with a focus on the consequences these changes have on the way we administer chemotherapy. Here, we advocate for the development of model-guided strategies to refine doses and schedules of chemotherapy administration in order to achieve precision medicine in oncology.
Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang
2013-01-01
Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S.; Breen, Lauren J.; Witt, Regina R.; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin
2016-01-01
Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care. PMID:27242567
Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S; Breen, Lauren J; Witt, Regina R; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin
2016-01-01
Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care.
Smart Engines Via Advanced Model Based Controls
Allain, Marc
2000-08-20
A ''new'' process for developing control systems - Less engine testing - More robust control system - Shorter development cycle time - ''Smarter'' approach to engine control - On-board models describe engine behavior - Shorter, systematic calibration process - Customer and legislative requirements designed-in.
Rodent models of TDP-43: Recent advances
Tsao, William; Jeong, Yun Ha; Lin, Sophie; Ling, Jonathan; Price, Donald L.; Chiang, Po-Min; Wong, Philip C.
2013-01-01
Recently, missense mutations in the gene TARDBP encoding TDP-43 have been linked to familial ALS. The discovery of genes encoding these RNA binding proteins, such as TDP-43 and FUS/TLS, raised the notion that altered RNA metabolism is a major factor underlying the pathogenesis of ALS. To begin to unravel how mutations in TDP-43 cause dysfunction and death of motor neurons, investigators have employed both gain- and loss-of-function studies in rodent model systems. Here, we will summarize major findings from the initial sets of TDP-43 transgenic and knockout rodent models, identify their limitations, and point to future directions toward clarification of disease mechanism(s) and testing of therapeutic strategies that ultimately may lead to novel therapy for this devastating disease. PMID:22608070
Advanced Hybrid Modeling of Hall Thruster Plumes
2010-06-16
LVTF. A direct simulation Monte Carlo (DSMC) method3 is used to model collision dynamics, and a Particle-in-Cell ( PIC ) method4 is used to capture...cell ( PIC ) numerical methods on an axisymmetric grid.7 The code has been found to be effective in creating either time-averaged outputs of performance...here. The HPHall code performs an axisymmetric simulation, commonly referred to as “hybrid- PIC ,” treating the electrons via fluid approximation
ERIC Educational Resources Information Center
Johnson, Marcus L.; Taasoobshirazi, Gita; Kestler, Jessica L.; Cordova, Jackie R.
2015-01-01
We tested a theoretical model of college students' ratings of messengers of resilience and models of resilience, students' own perceived resilience, regulatory strategy use and achievement. A total of 116 undergraduates participated in this study. The results of a path analysis indicated that ratings of models of resilience had a direct effect on…
Integrated modeling of advanced optical systems
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.; Needels, Laura; Levine, B. Martin
1993-01-01
This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.
Markon, Kristian E; Krueger, Robert F
2004-11-01
Information theory provides an attractive basis for statistical inference and model selection. However, little is known about the relative performance of different information-theoretic criteria in covariance structure modeling, especially in behavioral genetic contexts. To explore these issues, information-theoretic fit criteria were compared with regard to their ability to discriminate between multivariate behavioral genetic models under various model, distribution, and sample size conditions. Results indicate that performance depends on sample size, model complexity, and distributional specification. The Bayesian Information Criterion (BIC) is more robust to distributional misspecification than Akaike's Information Criterion (AIC) under certain conditions, and outperforms AIC in larger samples and when comparing more complex models. An approximation to the Minimum Description Length (MDL; Rissanen, J. (1996). IEEE Transactions on Information Theory 42:40-47, Rissanen, J. (2001). IEEE Transactions on Information Theory 47:1712-1717) criterion, involving the empirical Fisher information matrix, exhibits variable patterns of performance due to the complexity of estimating Fisher information matrices. Results indicate that a relatively new information-theoretic criterion, Draper's Information Criterion (DIC; Draper, 1995), which shares features of the Bayesian and MDL criteria, performs similarly to or better than BIC. Results emphasize the importance of further research into theory and computation of information-theoretic criteria.
Depression in Black Single Mothers: A Test of a Theoretical Model.
Atkins, Rahshida
2015-06-01
The aim of this study was to test a theoretical model of depression for Black single mothers. Participants were 208 Black single mothers, aged 18 to 45, recruited from community settings. The a priori over-identified recursive theoretical model was tested via the LISREL 9.1 program using a maximum likelihood estimation for structural equation modeling. The chi-square indicated that there was an excellent fit of the model with the data, χ(2)(1, N = 208) = .05, p = .82. The fit indices for the model were excellent. Path coefficients were statistically significant for seven out of eight of the direct paths within the model (p < .05). The two indirect paths were also statistically significant. The theory was supported and can be applied by health care professionals when working with depressed Black single mothers.
Advanced Chemical Modeling for Turbulent Combustion Simulations
2012-05-03
combustor conditions. The resolved DNS dissipation rate is reasonably well described by the resolved component of the LES model (black solid line...our computed results with the non-linearly extrapolated burning velocities for m-xylene. 66 0 100 200 300 400 0 30 60 90 120 M ol e fr ac ...tio n [p pm ] t [ms] A1(CH3)2 x0.2 A1CH3 (a) 0 2 4 6 8 0 30 60 90 120 M ol e fr ac tio n [p pm ] t [ms] A1C2H5 (b) 0 20 40 60 80 100
Advances in Geometric Acoustic Propagation Modeling Methods
NASA Astrophysics Data System (ADS)
Blom, P. S.; Arrowsmith, S.
2013-12-01
Geometric acoustics provides an efficient numerical method to model propagation effects. At leading order, one can identify ensonified regions and calculate celerities of the predicted arrivals. Beyond leading order, the solution of the transport equation provides a means to estimate the amplitude of individual acoustic phases. The auxiliary parameters introduced in solving the transport equation have been found to provide a means of identifying ray paths connecting source and receiver, or eigenrays, for non-planar propagation. A detailed explanation of the eigenray method will be presented as well as an application to predicting azimuth deviations for infrasonic data recorded during the Humming Roadrunner experiment of 2012.
Haeufle, D F B; Günther, M; Blickhan, R; Schmitt, S
2011-01-01
Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, the contraction dynamics of this CE concept were analyzed in a numerical simulation of quick release experiments against different loads. A hyperbolic force-velocity relation was found. The results correspond to measurements of the contraction dynamics of a technical prototype. Deviations from the theoretical prediction could partly be explained by the low stiffness of the SE, which was modeled analog to the metal spring in the hardware prototype. The numerical model and hardware prototype together, are a proof of this CE concept and can be seen as a well-founded starting point for the development of Hill-type artificial muscles. This opens up new vistas for the technical realization of natural movements with rehabilitation devices.
ERIC Educational Resources Information Center
Scruggs, Thomas E., Ed.; Mastropieri, Margo A., Ed.
This two-volume set presents 11 papers on the state of the art in learning and behavioral disabilities, the first volume, Part A, includes 6 papers providing theoretical perspectives and, the second volume, Part B, includes 5 papers on intervention research. The theoretical papers are: "Defining Emotional or Behavioral Disorders: Divergence…
Modeling and analysis of advanced binary cycles
Gawlik, K.
1997-12-31
A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.
RECENT ADVANCES IN MACROMOLECULAR HYDRODYNAMIC MODELING
Aragon, Sergio R.
2010-01-01
The modern implementation of the boundary element method (S.R. Aragon, J. Comput. Chem. 25(2004)1191–12055) has ushered unprecedented accuracy and precision for the solution of the Stokes equations of hydrodynamics with stick boundary conditions. This article begins by reviewing computations with the program BEST of smooth surface objects such as ellipsoids, the dumbbell, and cylinders that demonstrate that the numerical solution of the integral equation formulation of hydrodynamics yields very high precision and accuracy. When BEST is used for macromolecular computations, the limiting factor becomes the definition of the molecular hydrodynamic surface and the implied effective solvation of the molecular surface. Studies on 49 different proteins, ranging in molecular weight from 9 to over 400 kDa, have shown that a model using a 1.1 A thick hydration layer describes all protein transport properties very well for the overwhelming majority of them. In addition, this data implies that the crystal structure is an excellent representation of the average solution structure for most of them. In order to investigate the origin of a handful of significant discrepancies in some multimeric proteins (over −20% observed in the intrinsic viscosity), the technique of Molecular Dynamics simulation (MD) has been incorporated into the research program. A preliminary study of dimeric α-chymotrypsin using approximate implicit water MD is presented. In addition I describe the successful validation of modern protein force fields, ff03 and ff99SB, for the accurate computation of solution structure in explicit water simulation by comparison of trajectory ensemble average computed transport properties with experimental measurements. This work includes small proteins such as lysozyme, ribonuclease and ubiquitin using trajectories around 10 ns duration. We have also studied a 150 kDa flexible monoclonal IgG antibody, trastuzumab, with multiple independent trajectories encompassing over
The scientific modeling assistant: An advanced software tool for scientific model building
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Sims, Michael H.
1991-01-01
Viewgraphs on the scientific modeling assistant: an advanced software tool for scientific model building are presented. The objective is to build a specialized software tool to assist in scientific model-building.
Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr.; Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)
2007-07-01
An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.
Modeling of advanced ECLSS/ARS with ASPEN
NASA Technical Reports Server (NTRS)
Kolodney, M.; Lange, K. E.; Edeen, M. A.
1991-01-01
System-level ASPEN models were developed for the CO2 partial reduction subsystem and a bioregenerative life support subsystem (BRLSS). The individual component and subsystem models were integrated into three different system-level atmospheric revitalization subsystem (ARS) models: baseline physico-chemical, BRLSS, and partial reduction of Martian CO2. The Aspen models were based on FORTRAN interfaces necessary for integration with another program, G189A, to perform quasi-transient modeling. Detailed reactor models were prepared for the two CO2 reduction reactors (Bosch and Advanced Carbon Formation), and the low-temperature trace contaminant oxidation reactor.
Baudisch, Annette
2012-01-01
Organisms of different species age differently. Current theory explains why life should get worse, i.e. why patterns of increasing risk of death should evolve. However, for some species the risk of death remains constant or even falls with advancing age. Evolutionary theory to explain the observed diversity of shapes of ageing is lacking. Theoretical models can provide insights into this diversity. Comparing assumptions of models that find increasing mortality patterns with models that find a variety of patterns, including constant and falling mortality over age, I identify conditions that licence constant or negative shapes of ageing. The results suggest that patterns of improvement and maintenance over age emerge when models potentially allow organisms to (1) escape the 'damage ratchet', (2) achieve maintenance and repair in parallel, (3) face increasing future reproductive potential and (4) incorporate flexible trade-offs. With these insights, theoretical models contribute to hypotheses about which species may follow life history strategies of negligible or negative ageing.
Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model
NASA Technical Reports Server (NTRS)
Goradia, C.; Vaughn, J.; Baraona, C. R.
1980-01-01
A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).
How parents choose to use CAM: a systematic review of theoretical models
Lorenc, Ava; Ilan-Clarke, Yael; Robinson, Nicola; Blair, Mitch
2009-01-01
Background Complementary and Alternative Medicine (CAM) is widely used throughout the UK and the Western world. CAM is commonly used for children and the decision-making process to use CAM is affected by numerous factors. Most research on CAM use lacks a theoretical framework and is largely based on bivariate statistics. The aim of this review was to identify a conceptual model which could be used to explain the decision-making process in parental choice of CAM. Methods A systematic search of the literature was carried out. A two-stage selection process with predetermined inclusion/exclusion criteria identified studies using a theoretical framework depicting the interaction of psychological factors involved in the CAM decision process. Papers were critically appraised and findings summarised. Results Twenty two studies using a theoretical model to predict CAM use were included in the final review; only one examined child use. Seven different models were identified. The most commonly used and successful model was Andersen's Sociobehavioural Model (SBM). Two papers proposed modifications to the SBM for CAM use. Six qualitative studies developed their own model. Conclusion The SBM modified for CAM use, which incorporates both psychological and pragmatic determinants, was identified as the best conceptual model of CAM use. This model provides a valuable framework for future research, and could be used to explain child CAM use. An understanding of the decision making process is crucial in promoting shared decision making between healthcare practitioners and parents and could inform service delivery, guidance and policy. PMID:19386106
O`Hara, J.M.
1994-07-01
Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.
ERIC Educational Resources Information Center
Monroe, Scott M.; Mineka, Susan
2008-01-01
Our commentary was intended to stimulate discussion about what we perceive to be shortcomings of the mnemonic model and its research base, in the hope of shedding some light on key questions for understanding posttraumatic stress disorder (PTSD). In our view, Berntsen, Rubin, and Bohni have responded only to what they perceive to be shortcomings…
On the Grammar and Model-Theoretic Semantics of Children's Noun Phrases.
ERIC Educational Resources Information Center
Suppes, Patrick
The paper shows informally how model-theoretical semantics may be used by a computer to give a straight-forward analysis of the meaning of children's language. This approach to semantics grows out of the main thrust of work in mathematical logic. It is discussed in the framework of generative grammar and is based on the application of the…
ERIC Educational Resources Information Center
Balmer, Dorene F.; Richards, Boyd F.; Varpio, Lara
2015-01-01
Using Bourdieu's theoretical model as a lens for analysis, we sought to understand how students experience the undergraduate medical education (UME) milieu, focusing on how they navigate transitions from the preclinical phase, to the major clinical year (MCY), and to the preparation for residency phase. Twenty-two medical students participated in…
E-Learning Systems Support of Collaborative Agreements: A Theoretical Model
ERIC Educational Resources Information Center
Aguirre, Sandra; Quemada, Juan
2012-01-01
This paper introduces a theoretical model for developing integrated degree programmes through e-learning systems as stipulated by a collaboration agreement signed by two universities. We have analysed several collaboration agreements between universities at the national, European, and transatlantic level as well as various e-learning frameworks. A…
A Game-Theoretic Model of Grounding for Referential Communication Tasks
ERIC Educational Resources Information Center
Thompson, William
2009-01-01
Conversational grounding theory proposes that language use is a form of rational joint action, by which dialog participants systematically and collaboratively add to their common ground of shared knowledge and beliefs. Following recent work applying "game theory" to pragmatics, this thesis develops a game-theoretic model of grounding that…
ERIC Educational Resources Information Center
Mumcu, Hayal Yavuz
2016-01-01
The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…
ERIC Educational Resources Information Center
Newman, Tim A.
2012-01-01
This study described the current state of principal salaries in South Carolina and compared the salaries of similar size schools by specific report card performance and demographic variables. Based on the findings, theoretical models were proposed, and comparisons were made with current salary data. School boards, human resource personnel and…
ERIC Educational Resources Information Center
Briggs, Michele Kielty; Shoffner, Marie F.
2006-01-01
Overall spiritual wellness, as well as 4 individual components of spiritual wellness, has been theoretically and empirically linked with depression. Prior to this investigation, no study has examined the relationship between spiritual wellness and depression by using a 4-component measurement model of spiritual wellness. In this study of older…
How Career Variety Promotes the Adaptability of Managers: A Theoretical Model
ERIC Educational Resources Information Center
Karaevli, Ayse; Tim Hall, Douglas T.
2006-01-01
This paper presents a theoretical model showing how managerial adaptability develops from career variety over the span of the person's career. By building on the literature of career theory, adult learning and development, and career adjustment, we offer a new conceptualization of managerial adaptability by identifying its behavioral, cognitive,…
Theoretical values of various parameters in the Gummel-Poon model of a bipolar junction transistor
NASA Technical Reports Server (NTRS)
Benumof, R.; Zoutendyk, J.
1986-01-01
Various parameters in the Gummel-Poon model of a bipolar junction transistor are expressed in terms of the basic structure of a transistor. A consistent theoretical approach is used which facilitates an understanding of the foundations and limitations of the derived formulas. The results enable one to predict how changes in the geometry and composition of a transistor would affect performance.
Falling Chains as Variable-Mass Systems: Theoretical Model and Experimental Analysis
ERIC Educational Resources Information Center
de Sousa, Celia A.; Gordo, Paulo M.; Costa, Pedro
2012-01-01
In this paper, we revisit, theoretically and experimentally, the fall of a folded U-chain and of a pile-chain. The model calculation implies the division of the whole system into two subsystems of variable mass, allowing us to explore the role of tensional contact forces at the boundary of the subsystems. This justifies, for instance, that the…
Dreber, Anna; Rand, David G
2012-02-01
Guala argues that there is a mismatch between most laboratory experiments on costly punishment and behavior in the field. In the lab, experimental designs typically suppress retaliation. The same is true for most theoretical models of the co-evolution of costly punishment and cooperation, which a priori exclude the possibility of defectors punishing cooperators.
Piper, Llewellyn E
2006-01-01
This article proposes a theoretical model for leaders to use to address organizational human conflict and disruptive behavior in health care organizations. Leadership is needed to improve interpersonal relationships within the workforce. A workforce with a culture of internal conflict will be unable to achieve its full potential to delivery quality patient care.
NASA Astrophysics Data System (ADS)
Bertone, E.; Rodriguez-Merino, L.; Chavez, M.; Buzzoni, A.
2003-06-01
We present a new theoretical library of stellar spectra covering the wavelength interval from 850 to 7000 Å. The library consists of two datasets, one including the far UV-blue spectral region from 850 to 4750 Å at inverse spectral resolution R = 50000, and the latter spanning the range 3500-7000 Å at R = 500000. Both sets are based on the SYNTHE series of codes developed by R.L. Kurucz. For its comprehensive range of physical parameters (i.e. T[eff], logg and [M/H]) and higher spectral resolution, this is the most advanced spectral library currently available in the literature, and could profitably be used for population synthesis models and abundance studies of single stars.
Constructing an advanced software tool for planetary atmospheric modeling
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Sims, Michael; Podolak, Ester; Mckay, Christopher
1990-01-01
Scientific model building can be an intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot be easily distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. In this paper, we describe a prototype for a scientific modeling software tool that serves as an aid to the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities. Our prototype has been developed in the domain of planetary atmospheric modeling, and is being used to construct models of Titan's atmosphere.
A theoretical model of health-related outcomes of resilience in middle adolescents.
Scoloveno, Robert
2015-03-01
There is a dearth of knowledge about the health outcomes of resilience during adolescence, making the study of health-related outcomes of resilience important. The purpose of this study was to develop a theory-based just-identified model and to test the direct and indirect effects of resilience on hope, well-being, and health-promoting lifestyle in middle adolescents. The study used a correlational design. The final sample consisted of 311 middle adolescents, aged 15 to 17, who were recruited from a public high school. Participants responded to instrument packets in classroom settings. The structural equation model was tested with the LISREL 8.80 software program. All seven hypotheses were supported at a statistically significant level (p < .001). The results supported the theoretical propositions and the previous empirical findings that were used to create the theoretical model of health-related outcomes of resilience. Alternate models of outcomes of resilience need to be tested on adolescents.
NASA Astrophysics Data System (ADS)
Agha Mohammad Ali Kermani, Mehrdad; Fatemi Ardestani, Seyed Farshad; Aliahmadi, Alireza; Barzinpour, Farnaz
2017-01-01
Influence maximization deals with identification of the most influential nodes in a social network given an influence model. In this paper, a game theoretic framework is developed that models a competitive influence maximization problem. A novel competitive influence model is additionally proposed that incorporates user heterogeneity, message content, and network structure. The proposed game-theoretic model is solved using Nash Equilibrium in a real-world dataset. It is shown that none of the well-known strategies are stable and at least one player has the incentive to deviate from the proposed strategy. Moreover, violation of Nash equilibrium strategy by each player leads to their reduced payoff. Contrary to previous works, our results demonstrate that graph topology, as well as the nodes' sociability and initial tendency measures have an effect on the determination of the influential node in the network.
NASA Technical Reports Server (NTRS)
Mccluney, W. R.
1974-01-01
The development is considered of procedures for measuring a number of subsurface oceanographic parameters using remotely sensed ocean color data. It is proposed that the first step in this effort should be the development of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed. A portion of a contributory theoretical model is shown to be described by a modified single scattering approach based upon a simple treatment of multiple scattering. The resulting quasi-single scattering model can be used to predict the upwelling distribution of spectral radiance emerging from the sea. The shape of the radiance spectrum predicted by this model for clear ocean water shows encouraging agreement with measurments made at the edge of the Sargasso Sea off Cape Hatteras.
NASA Technical Reports Server (NTRS)
Zender, George W
1956-01-01
The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.
Saunders, James A
2015-03-01
Fundamental Christianity and psychology are frequently viewed as incompatible pursuits. However, proponents of the integrationist movement posit that pastoral counselors can utilize principles from psychology if they adopt the premise that all truth is God's truth. Assuming this perspective, Cognitive-Existential Family Therapy (CEFT) - a theoretical integration model compatible with Christian fundamentalism - is proposed. The philosophical assumptions and models of personality, health, and abnormality are explored. Additionally, the article provides an overview of the therapeutic process.
Error control in the GCF: An information-theoretic model for error analysis and coding
NASA Technical Reports Server (NTRS)
Adeyemi, O.
1974-01-01
The structure of data-transmission errors within the Ground Communications Facility is analyzed in order to provide error control (both forward error correction and feedback retransmission) for improved communication. Emphasis is placed on constructing a theoretical model of errors and obtaining from it all the relevant statistics for error control. No specific coding strategy is analyzed, but references to the significance of certain error pattern distributions, as predicted by the model, to error correction are made.
A theoretical model and analysis of composite membrane of a piezoresistive pressure sensor
NASA Astrophysics Data System (ADS)
Nie, Meng; Bao, Hong-Quan
2016-10-01
In this paper, an analytical model of the composite membrane piezoresistive pressure sensor with the testing structure is established, which built the relationship between the electrostatic force and the material properties, dimension parameters of the sensor. By using the theoretical model of the sensor, it is easily to analyze the sensor's performance, to optimize the dimension of the sensor, and to make the step of calibrating to be getting fast and accurate.
NASA Astrophysics Data System (ADS)
Gradov, V. M.; Petrikevich, B. B.; Shcherbakov, A. A.
1980-09-01
A mathematical model of a wall-stabilized discharge is proposed for calculating the characteristics of high-intensity radiation sources used in high-temperature testing of materials and structures. The proposed model takes into consideration a number of processes and their effect on the total plasma absorption coefficient. These include photoionization of Xe atoms and ions and Xe bremsstrahlung. Theoretical calculations are verified by experiments carried out with a xenon arc lamp.
Outperforming Game Theoretic Play with Opponent Modeling in Two Player Dominoes
2014-03-27
with an evaluation function to predict the ending score in the leaf nodes. The algorithm then cycles this final score up through the nodes to the two...utility (or quantified outcome) in a 16 game situation. The first part of this section discusses the M* search algorithm that aids a game...theoretic approach by providing an opponent model to adversary search (MiniMax). The second part discusses research in applying opponent modeling to
Advances in Games Technology: Software, Models, and Intelligence
ERIC Educational Resources Information Center
Prakash, Edmond; Brindle, Geoff; Jones, Kevin; Zhou, Suiping; Chaudhari, Narendra S.; Wong, Kok-Wai
2009-01-01
Games technology has undergone tremendous development. In this article, the authors report the rapid advancement that has been observed in the way games software is being developed, as well as in the development of games content using game engines. One area that has gained special attention is modeling the game environment such as terrain and…
Decision support models for solid waste management: Review and game-theoretic approaches
Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios
2013-05-15
Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.
Advancing Space Weather Modeling Capabilities at the CCMC
NASA Astrophysics Data System (ADS)
Mays, M. Leila; Kuznetsova, Maria; Boblitt, Justin; Chulaki, Anna; MacNeice, Peter; Mendoza, Michelle; Mullinix, Richard; Pembroke, Asher; Pulkkinen, Antti; Rastaetter, Lutz; Shim, Ja Soon; Taktakishvili, Aleksandre; Wiegand, Chiu; Zheng, Yihua
2016-04-01
The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) serves as a community access point to an expanding collection of state-of-the-art space environment models and as a hub for collaborative development on next generation of space weather forecasting systems. In partnership with model developers and the international research and operational communities, the CCMC integrates new data streams and models from diverse sources into end-to-end space weather predictive systems, identifies weak links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will focus on the latest model installations at the CCMC and advances in CCMC-led community-wide model validation projects.
Refinement and validation of two digital Microwave Landing System (MLS) theoretical models
NASA Technical Reports Server (NTRS)
Duff, W. G.; Guarino, C. R.
1975-01-01
Two digital microwave landing system theoretical models are considered which are generic models for the Doppler and scanning-beam frequency reference versions of the MLS. These models represent errors resulting from both system noise and discrete multipath. The data used for the validation effort were obtained from the Texas Instrument conventional scanning beam and the Hazeltine Doppler feasibility hardware versions of the MLS. Topics discussed include tape read software, time history plots, computation of power spectral density, smoothed power spectra, best-fit models, different equations for digital simulation, and discrete multipath errors.
NASA Astrophysics Data System (ADS)
Sharma, S. K.
2012-12-01
A number of experimental elastic light scattering studies have been performed in the past few years with the aim of developing automated in vivo tools for differentiating a healthy red blood cell from a Plasmodium falciparum infected cell. This paper examines some theoretical aspects of the problem. An attempt has been made to simulate the scattering patterns of healthy as well as infected individual red blood cells. Two models, namely, a homogeneous sphere model and a coated sphere model have been considered. The scattering patterns predicted by these models are examined. A possible method for discriminating infected red blood cells from healthy ones has been suggested.
The AFDM (advanced fluid dynamics model) program: Scope and significance
Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. )
1990-01-01
The origins and goals of the advanced fluid dynamics model (AFDM) program are described, and the models, algorithm, and coding used in the resulting AFDM computer program are summarized. A sample fuel-steel boiling pool calculation is presented and compared with a similar SIMMER-II calculation. A subjective assessment of the AFDM developments is given, and areas where future work is possible are detailed. 10 refs.
Specification of advanced safety modeling requirements (Rev. 0).
Fanning, T. H.; Tautges, T. J.
2008-06-30
The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will
Establishment and validation for the theoretical model of the vehicle airbag
NASA Astrophysics Data System (ADS)
Zhang, Junyuan; Jin, Yang; Xie, Lizhe; Chen, Chao
2015-05-01
The current design and optimization of the occupant restraint system (ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests.
Test model designs for advanced refractory ceramic materials
NASA Technical Reports Server (NTRS)
Tran, Huy Kim
1993-01-01
The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.
Model-free adaptive control of advanced power plants
Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang
2015-08-18
A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.
2000-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.; Frink, Neal T.
1999-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.
Evaluation of reliability modeling tools for advanced fault tolerant systems
NASA Technical Reports Server (NTRS)
Baker, Robert; Scheper, Charlotte
1986-01-01
The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.
Advancements in Distributed Generation Issues: Interconnection, Modeling, and Tariffs
Thomas, H.; Kroposki, B.; Basso, T.; Treanton, B. G.
2007-01-01
The California Energy Commission is cost-sharing research with the Department of Energy through the National Renewable Energy Laboratory to address distributed energy resources (DER) topics. These efforts include developing interconnection and power management technologies, modeling the impacts of interconnecting DER with an area electric power system, and evaluating possible modifications to rate policies and tariffs. As a result, a DER interconnection device has been developed and tested. A workshop reviewed the status and issues of advanced power electronic devices. Software simulations used validated models of distribution circuits that incorporated DER, and tests and measurements of actual circuits with and without DER systems are being conducted to validate these models. Current policies affecting DER were reviewed and rate making policies to support deployment of DER through public utility rates and policies were identified. These advancements are expected to support the continued and expanded use of DER systems.
Gasification CFD Modeling for Advanced Power Plant Simulations
Zitney, S.E.; Guenther, C.P.
2005-09-01
In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.
Holley, W.R.; Chatterjee, A.
1996-02-01
We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber composed of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and {delta} rays due to knock-on collisions involving energy transfers > 100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of {circ}OH, {circ}H, e{sub aq}, etc.; {circ}OH attack on sugar molecules leading to strand breaks; {circ}OH attack on bases; direct ionization of the sugar molecules leading to strand breaks; direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 hp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA. 27 refs., 7 figs.
NASA Technical Reports Server (NTRS)
Holley, W. R.; Chatterjee, A.
1996-01-01
We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the
Cleavage pattern of DNA caused by endonuclease: Theoretical modeling and experimental verification
NASA Astrophysics Data System (ADS)
Inagaki, Shio; Liu, Li; Takinoue, Masahiro; Yoshikawa, Kenichi
2010-02-01
In apoptotic cells, genomic DNA molecules are fragmented into multiple fragments with lengths that are integer multiples of approximately 180-200 base pairs (bp), i.e., the size of a single nucleosome. Here we propose a simple mathematical model for interpreting this cleavage pattern of DNA. Under the condition of a purely stochastic cleavage process, we derive a time evolution of the probability distribution of the fragment length by a Poisson distribution. We examine the applicability of our model by analyzing experimental results with apoptotic cells. Our model enables us to satisfactorily interpret the experimental trends. Interestingly, this theoretical fitting of the experimental data provides kinetic information for the cleavage reaction.
Ribeiro, M C; Bertolozzi, M R
1999-01-01
Considering the side effects of environmental changes over the population's health, a theoretical model is proposed in this study in order to incorporate ecologic matters into the nursing practices. The reference for this work is the eco-socialist-marxist theory. The model is based on the analysis of the capitalist economic process, its production technologies and consumption. It is known that this economic model generates ecoinequalities and anthropogenic impacts that rebound on the health-disease profile of the population. The nursing action, permeated by ecological awareness, can prevent and also combat ecoinequalities and destructive human actions on the environment.
C/1995 O1 Hale-Bopp: Short and Long Distance activity from a Theoretical Model
NASA Astrophysics Data System (ADS)
Capria, Maria Teresa; Coradini, Angioletta; de Sanctis, Maria Cristina
2002-06-01
A theoretical model of the nucleus thermal evolutionand differentiation is used to simulatethe evolution along the orbit of the gasand dust emissions of comet Hale-Bopp. The model was already applied to this comet (Capria et al., 2000b): At that time only the results of the observations obtained shortly after the perihelion were available. Now much more data have been published and we present more refined and complete results about the production rates of gasand dust along the orbit and the internal stratigraphy. The results of our model on long distance activity and its explanation are also presented.
A theoretical model to predict tensile deformation behavior of balloon catheter.
Todo, Mitsugu; Yoshiya, Keiji; Matsumoto, Takuya
2016-09-01
In this technical note, a simple theoretical model was proposed to express the tensile deformation and fracture of balloon catheter tested by the ISO standard using piece-wise linear force-displacement relations. The model was then validated by comparing with the tensile force-displacement behaviors of two types of typical balloon catheters clinically used worldwide. It was shown that the proposed model can effectively be used to express the tensile deformation behavior and easily be handled by physicians who are not familiar with mechanics of materials.
A note on Black-Scholes pricing model for theoretical values of stock options
NASA Astrophysics Data System (ADS)
Edeki, S. O.; Ugbebor, O. O.; Owoloko, E. A.
2016-02-01
In this paper, we consider some conditions that transform the classical Black-Scholes Model for stock options valuation from its partial differential equation (PDE) form to an equivalent ordinary differential equation (ODE) form. In addition, we propose a relatively new semi-analytical method for the solution of the transformed Black-Scholes model. The obtained solutions via this method can be used to find the theoretical values of the stock options in relation to their fair prices. In considering the reliability and efficiency of the models, we test some cases and the results are in good agreement with the exact solution.
Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.
2016-01-01
Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083
A proposed theoretical model to explain relative age effects in sport.
Hancock, David J; Adler, Ashley L; Côté, Jean
2013-01-01
Exemplary scientific methods describe concepts and provide theories for further testing. For the field of relative age effects (RAEs) in sport, the scientific method appears to be limited to description. The purpose of this paper is to provide a theoretical model to explain RAEs in sport, which researchers can use to test the effects, as well as to generate new hypotheses and recommendations. Herein, we argue that social agents have the largest influence on RAEs. Specifically, we propose that parents influence RAEs through Matthew effects, coaches influence RAEs through Pygmalion effects and athletes influence RAEs through Galatea effects. Integrating these three theories, we propose a model that explains RAEs through these various social agents. This paper provides a theoretical foundation from which researchers can further understand, explain and eventually use to create policies aimed at limiting the negative effect of relative age in sport.
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.
2015-01-01
mental health interventions, screening with standardized instruments, restricted access to lethal means, and coping skills/self-referral training...on maladaptive coping regarding suicide inter- vention than the control group, but this effect was only true for females. Thus, sex moderated the...effect of training on maladaptive coping mechanisms. In contrast, a quasi-experimental A Theoretical Model and Review of the Empirical Literature 11
Experimental and theoretical modeling of shrinkage damage formation in fiber composites
NASA Astrophysics Data System (ADS)
Korotkov, V. N.; Rozenberg, B. A.
1998-03-01
The cure of a thermoset matrix in the formation of composites is always accompanied by chemical shrinkage that generates internal stresses. In composites with high fiber content, the matrix is cured under three-dimensionally constrained conditions. The results of the previous experimental and theoretical modeling of formation of shrinkage damage under these conditions in epoxy-amine systems are briefly discussed. The effect of the model geometry (tube and plate models), scale factor, cure schedule, and chemical structure of composites is analyzed. A theoretical model for predicting the possibility of formation of shrinkage damage in fiber composites is proposed. A regular square structure was considered. Analysis showed that the maximum level of shrinkage stress in the matrix at the ultimate fiber fraction ϕ+ was close to the stress level σ+ in an experimental long tube model, where the formation of shrinkage damage took place. The experimental results for the short tube model showed that the shrinkage damage in epoxy-amine systems occurred up to approximately σ+/3. The damage development took place within the whole range of fiber content from ϕ+ to ϕ* (where the shrinkage stress level was about σ+/3). In the long tube model, cohesive defects always nucleated inside the matrix. The damage grew, reached the inner surface of the tube, and then extended as adhesive debondings. A similar situation is expected in composites with a high fiber content. The damage considered is local, and the total monolithic character of a composite product is conserved.
Modeling child-based theoretical reading constructs with struggling adult readers.
Nanda, Alice O; Greenberg, Daphne; Morris, Robin
2010-01-01
This study examined whether measurement constructs behind reading-related tests for struggling adult readers are similar to what is known about measurement constructs for children. The sample included 371 adults reading between the third-and fifth-grade levels, including 127 men and 153 English speakers of other languages. Using measures of skills and subskills, confirmatory factor analyses were conducted to test child-based theoretical measurement models of reading: an achievement model of reading skills, a core deficit model of reading subskills, and an integrated model containing achievement and deficit variables. Although the findings present the best measurement models, the contribution of this article is the description of the difficulties encountered when applying child-based assumptions to developing measurement models for struggling adult readers.
ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES
Poole, B R; Nelson, S D; Langdon, S
2005-05-05
The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.
Processors, Pipelines, and Protocols for Advanced Modeling Networks
NASA Technical Reports Server (NTRS)
Coughlan, Joseph; Komar, George (Technical Monitor)
2001-01-01
Predictive capabilities arise from our understanding of natural processes and our ability to construct models that accurately reproduce these processes. Although our modeling state-of-the-art is primarily limited by existing computational capabilities, other technical areas will soon present obstacles to the development and deployment of future predictive capabilities. Advancement of our modeling capabilities will require not only faster processors, but new processing algorithms, high-speed data pipelines, and a common software engineering framework that allows networking of diverse models that represent the many components of Earth's climate and weather system. Development and integration of these new capabilities will pose serious challenges to the Information Systems (IS) technology community. Designers of future IS infrastructures must deal with issues that include performance, reliability, interoperability, portability of data and software, and ultimately, the full integration of various ES model systems into a unified ES modeling network.
Testing and Implementation of Advanced Reynolds Stress Models
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1997-01-01
A research program was proposed for the testing and implementation of advanced turbulence models for non-equilibrium turbulent flows of aerodynamic importance that are of interest to NASA. Turbulence models that are being developed in connection with the Office of Naval Research ARI in Non-equilibrium are provided for implementation and testing in aerodynamic flows at NASA Langley Research Center. Close interactions were established with researchers at Nasa Langley RC and refinements to the models were made based on the results of these tests. The models that have been considered include two-equation models with an anisotropic eddy viscosity as well as full second-order closures. Three types of non-equilibrium corrections to the models have been considered in connection with the ARI on Nonequilibrium Turbulence: conducted for ONR.
Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science
NASA Astrophysics Data System (ADS)
Ariza, Yefrin; Lorenzano, Pablo; Adúriz-Bravo, Agustín
2016-10-01
There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of `theoretical model', stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a `semantic family', and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.
Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes
NASA Astrophysics Data System (ADS)
Panchal, Hitesh; Awasthi, Anuradha
2016-12-01
In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.
Air modeling: Air dispersion models; regulatory applications and technological advances
Miller, M.; Liles, R.
1995-09-01
Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.
Advanced computer modeling techniques expand belt conveyor technology
Alspaugh, M.
1998-07-01
Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.
Evaluation of ADAM/1 model for advanced coal extraction concepts
NASA Technical Reports Server (NTRS)
Deshpande, G. K.; Gangal, M. D.
1982-01-01
Several existing computer programs for estimating life cycle cost of mining systems were evaluated. A commercially available program, ADAM/1 was found to be satisfactory in relation to the needs of the advanced coal extraction project. Two test cases were run to confirm the ability of the program to handle nonconventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs.
Advanced geothermal hydraulics model -- Phase 1 final report, Part 2
W. Zheng; J. Fu; W. C. Maurer
1999-07-01
An advanced geothermal well hydraulics model (GEODRIL) is being developed to accurately calculate bottom-hole conditions in these hot wells. In Phase 1, real-time monitoring and other improvements were added to GEODRIL. In Phase 2, GEODRIL will be integrated into Marconi's Intelligent Drilling Monitor (IDM) that will use artificial intelligence to detect lost circulation, fluid influxes and other circulation problems in geothermal wells. This software platform has potential for significantly reducing geothermal drilling costs.
ERIC Educational Resources Information Center
Marasulov, Akhmat; Saipov, Amangeldi; ?rymbayeva, Kulimkhan; Zhiyentayeva, Begaim; Demeuov, Akhan; Konakbaeva, Ulzhamal; Bekbolatova, Akbota
2016-01-01
The aim of the study is to examine the methodological-theoretical construction bases for development mechanism of an integrated model for a specialist's training and teacher's conceptual-theoretical activity. Using the methods of generalization of teaching experience, pedagogical modeling and forecasting, the authors determine the urgent problems…
ERIC Educational Resources Information Center
Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas
2015-01-01
This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…
NASA Astrophysics Data System (ADS)
Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri
2015-10-01
The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can
Grace, J.B.; Bollen, K.A.
2008-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.
ADVISOR: a systems analysis tool for advanced vehicle modeling
NASA Astrophysics Data System (ADS)
Markel, T.; Brooker, A.; Hendricks, T.; Johnson, V.; Kelly, K.; Kramer, B.; O'Keefe, M.; Sprik, S.; Wipke, K.
This paper provides an overview of Advanced Vehicle Simulator (ADVISOR)—the US Department of Energy's (DOE's) ADVISOR written in the MATLAB/Simulink environment and developed by the National Renewable Energy Laboratory. ADVISOR provides the vehicle engineering community with an easy-to-use, flexible, yet robust and supported analysis package for advanced vehicle modeling. It is primarily used to quantify the fuel economy, the performance, and the emissions of vehicles that use alternative technologies including fuel cells, batteries, electric motors, and internal combustion engines in hybrid (i.e. multiple power sources) configurations. It excels at quantifying the relative change that can be expected due to the implementation of technology compared to a baseline scenario. ADVISOR's capabilities and limitations are presented and the power source models that are included in ADVISOR are discussed. Finally, several applications of the tool are presented to highlight ADVISOR's functionality. The content of this paper is based on a presentation made at the 'Development of Advanced Battery Engineering Models' workshop held in Crystal City, Virginia in August 2001.
Biomorphodynamic modelling of inner bank advance in migrating meander bends
NASA Astrophysics Data System (ADS)
Zen, Simone; Zolezzi, Guido; Toffolon, Marco; Gurnell, Angela M.
2016-07-01
We propose a bio-morphodynamic model at bend cross-sectional scale for the lateral migration of river meander bends, where the two banks can migrate separately as a result of the mutual interaction between river flow, sediments and riparian vegetation, particularly at the interface between the permanently wet channel and the advancing floodplain. The model combines a non-linear analytical model for the morphodynamic evolution of the channel bed, a quasi-1D model to account for flow unsteadiness, and an ecological model describing riparian vegetation dynamics. Simplified closures are included to estimate the feedbacks among vegetation, hydrodynamics and sediment transport, which affect the morphology of the river-floodplain system. Model tests reveal the fundamental role of riparian plants in generating bio-morphological patterns at the advancing floodplain margin. Importantly, they provide insight into the biophysical controls of the 'bar push' mechanism and into its role in the lateral migration of meander bends and in the temporal variations of the active channel width.
On Utilizing Optimal and Information Theoretic Syntactic Modeling for Peptide Classification
NASA Astrophysics Data System (ADS)
Aygün, Eser; Oommen, B. John; Cataltepe, Zehra
Syntactic methods in pattern recognition have been used extensively in bioinformatics, and in particular, in the analysis of gene and protein expressions, and in the recognition and classification of bio-sequences. These methods are almost universally distance-based. This paper concerns the use of an Optimal and Information Theoretic (OIT) probabilistic model [11] to achieve peptide classification using the information residing in their syntactic representations. The latter has traditionally been achieved using the edit distances required in the respective peptide comparisons. We advocate that one can model the differences between compared strings as a mutation model consisting of random Substitutions, Insertions and Deletions (SID) obeying the OIT model. Thus, in this paper, we show that the probability measure obtained from the OIT model can be perceived as a sequence similarity metric, using which a Support Vector Machine (SVM)-based peptide classifier, referred to as OIT_SVM, can be devised.
Emergence of structured interactions: from a theoretical model to pragmatic robotics.
Revel, A; Andry, P
2009-03-01
In this article, we present two neural architectures for the control of socially interacting robots. Beginning with a theoretical model of interaction inspired by developmental psychology, biology and physics, we present two sub-cases of the model that can be interpreted as "turn-taking" and "synchrony" at the behavioral level. These neural architectures are both detailed and tested in simulation. A robotic experiment is even presented for the "turn-taking" case. We then discuss the interest of such behaviors for the development of further social abilities in robots.
Theoretical modelling of the feedback stabilization of external MHD modes in toroidal geometry
NASA Astrophysics Data System (ADS)
Chance, M. S.; Chu, M. S.; Okabayashi, M.; Turnbull, A. D.
2002-03-01
A theoretical framework for understanding the feedback mechanism for stabilization of external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modelled in θ and phi, albeit with only a single harmonic variation in phi. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model has been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved.
Seeling, Walter; Plischke, Max; de Bruin, Jeroen S; Schuh, Christian
2015-01-01
Immunosuppressive therapy is a risky necessity after a patient received a kidney transplant. To reduce risks, a knowledge-based system was developed that determines the right dosage of the immunosuppresive agent Tacrolimus. A theoretical model, to classify medication blood levels as well as medication adaptions, was created using data from almost 500 patients, and over 13.000 examinations. This model was then translated into an Arden Syntax knowledge base, and integrated directly into the hospital information system of the Vienna General Hospital. In this paper we give an overview of the construction and integration of such a system.
NASA Astrophysics Data System (ADS)
Liu, Wei
2008-07-01
Solar flares, which have significant space weather consequences, are natural particle accelerators and one of the most spectacular phenomena of solar activity. RHESSI is the most advanced solar X-ray and gamma-ray mission ever flown and has opened a new era in solar flare research following its launch in 2002. This book offers a glimpse of this active research area from a high-energy perspective and contains a comprehensive guideline for RHESSI data analysis. Its main theme is the investigation of particle acceleration and transport in solar flares. The strength of this book lies in its well-balanced account of the latest X-ray observations and theoretical models. The observational focus is on the morphology and spectra of imaged X-ray sources produced by nonthermal electrons or hot plasma. The modeling takes the novel approach of combining the Fokker-Planck treatment of the accelerated particles with the hydrodynamic treatment of the heated atmosphere. Applications of this modeling technique reach beyond the Sun to other exotic environments in the universe, such as extrasolar planetary auroras, stellar flares, and flares on accretion disks around neutron stars and black holes.
Advances on modelling of ITER scenarios: physics and computational challenges
NASA Astrophysics Data System (ADS)
Giruzzi, G.; Garcia, J.; Artaud, J. F.; Basiuk, V.; Decker, J.; Imbeaux, F.; Peysson, Y.; Schneider, M.
2011-12-01
Methods and tools for design and modelling of tokamak operation scenarios are discussed with particular application to ITER advanced scenarios. Simulations of hybrid and steady-state scenarios performed with the integrated tokamak modelling suite of codes CRONOS are presented. The advantages of a possible steady-state scenario based on cyclic operations, alternating phases of positive and negative loop voltage, with no magnetic flux consumption on average, are discussed. For regimes in which current alignment is an issue, a general method for scenario design is presented, based on the characteristics of the poloidal current density profile.
Theoretical Model of God: The Key to Correct Exploration of the Universe
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2007-04-01
The problem of the correct approach to exploration of the Universe cannot be solved if there is no solution of the problem of existence of God (Creator, Ruler) in science. In this connection, theoretical proof of existence of God is proposed. The theoretical model of God -- as scientific proof of existence of God -- is the consequence of the system of the formulated axioms. The system of the axioms contains, in particular, the following premises: (1) all objects formed (synthesized) by man are characterized by the essential property: namely, divisibility into aspects; (2) objects which can be mentally divided into aspects are objects formed (synthesized); (3) the system ``Universe'' is mentally divided into aspects. Consequently, the Universe represents the system formed (synthesized); (4) the theorem of existence of God (i.e. Absolute, Creator, Ruler) follows from the principle of logical completeness of system of concepts: if the formed (synthesized) system ``Universe'' exists, then God exists as the Absolute, the Creator, the Ruler of essence (i.e. information) and phenomenon (i.e. material objects). Thus, the principle of existence of God -- the content of the theoretical model of God -- must be a starting-point and basis of correct gnosiology and science of 21 century.
Advances in a distributed approach for ocean model data interoperability
Signell, Richard P.; Snowden, Derrick P.
2014-01-01
An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF) metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF) output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), a metadata standard for unstructured grid model output (UGRID), and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS®) Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.
Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.
2015-01-01
While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726
Impacts of noise on a field theoretical model of the human brain
NASA Astrophysics Data System (ADS)
Frank, T. D.; Daffertshofer, A.; Beek, P. J.; Haken, H.
1999-03-01
Salient properties of the spatio-temporal patterns in MEG recordings of human brain activity, such as macroscopic coherence of a limited number of modes and the occurrence of phase transitions, have been successfully described with the help of field theoretical models for the dendritic currents in the cortex. So far, however, these models have ignored the effects of noise which play an important role in the emergence of such properties. The present article provides a formal treatment of the effects of stochastic fluctuations in the vicinity of the phase transitions that were observed by Kelso in his so-called Julliard experiment [Fuchs et al., Phase transition in the human brain: spatial mode dynamics, Int. J. Bifurcation and Chaos 2 (1992) 917-939; H. Haken, Principles of Brain Functioning, Springer, Berlin, 1996; J.A.S. Kelso, Dynamic Patterns - The Self-organization of Brain and Behavior, MIT Press, Cambridge, 1995]. To describe and examine these effects, the field theoretical model proposed by Jirsa and Haken [A field theory of electromagnetic brain activity, Phys. Rev. Lett. 77 (1996) 960-963; A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics, Physica D 99 (1997) 503-526] was extended by incorporating Gaussian white noise. The extended model describes the stochastic properties of the most dominant spatio-temporal components, including stochastic variations of the amplitudes of the extracted spatial modes. Furthermore, the model captures critical phenomena such as critical slowing down and critical fluctuations, which are derived analytically. These theoretical results are generalized by means of numerical simulations of amplitude and phase dynamics.
Designing m-learning for junior registrars--activation of a theoretical model of clinical knowledge.
Kanstrup, Anne Marie; Boye, Niels; Nøhr, Christian
2007-01-01
The MINI-project aims at supporting junior registrars in the learning process of how to utilize their theoretical knowledge from Medical School in everyday clinical reasoning and practice. Due to the nature of the work--concurrent moving, learning and producing--we designed an m-learning application. This paper introduces the possibilities and challenges for design of the m-learning application based on a) analytical findings on learning and mobility as derived from the design case--an emergency medical ward b) theoretical perspectives on medical knowledge, and c) presentation of the design of an m-learning application. The design process was based on user-driven innovation and the paper discusses considerations on how to combine user-drive and generic models.
Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.
1993-01-01
Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.
Prasai, Binay; Wilson, A R; Wiley, B J; Ren, Y; Petkov, Valeri
2015-11-14
The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au(100-x)Pd(x) (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when "tuned up" against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.
Measurement and modeling of advanced coal conversion processes
Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )
1990-01-01
The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. Success in this program will be a major step in improving in predictive capabilities for coal conversion processes including: demonstrated accuracy and reliability and a generalized first principles'' treatment of coals based on readily obtained composition data. The progress during the fifteenth quarterly of the program is presented. 56 refs., 41 figs., 5 tabs.
Baty, Bonnie J; Trepanier, Angela; Bennett, Robin L; Davis, Claire; Erby, Lori; Hippman, Catriona; Lerner, Barbara; Matthews, Anne; Myers, Melanie F; Robbins, Carol B; Singletary, Claire N
2016-08-01
There are currently multiple paths through which genetic counselors can acquire advanced knowledge and skills. However, outside of continuing education opportunities, there are few formal training programs designed specifically for the advanced training of genetic counselors. In the genetic counseling profession, there is currently considerable debate about the paths that should be available to attain advanced skills, as well as the skills that might be needed for practice in the future. The Association of Genetic Counseling Program Directors (AGCPD) convened a national committee, the Committee on Advanced Training for Certified Genetic Counselors (CATCGC), to investigate varied paths to post-master's training and career development. The committee began its work by developing three related grids that view career advancement from the viewpoints of the skills needed to advance (skills), ways to obtain these skills (paths), and existing genetic counselor positions that offer career change or advancement (positions). Here we describe previous work related to genetic counselor career advancement, the charge of the CATCGC, our preliminary work in developing a model through which to view genetic counselor advanced training and career advancement opportunities, and our next steps in further developing and disseminating the model.
NASA Technical Reports Server (NTRS)
Lee, M. K.; Nisbet, J. S.
1975-01-01
Radio wave propagation predictions are described in which modern comprehensive theoretical ionospheric models are coupled with ray-tracing programs. In the computer code described, a network of electron density and collision frequency parameters along a band about the great circle path is calculated by specifying the transmitter and receiver geographic coordinates, time, the day number, and the 2800-MHz solar flux. The ray paths are calculated on specifying the frequency, mode, range of elevation angles, and range of azimuth angles from the great circle direction. The current program uses a combination of the Penn State MKI E and F region models and the Mitra-Rowe D and E region model. Application of the technique to the prediction of satellite to ground propagation and calculation of oblique incidence propagation paths and absorption are described. The implications of the study to the development of the next generation of ionospheric models are discussed.
A theoretical model for sampled grating DBR laser integrated with SOA and MZ modulator.
Dong, Lei; Zhao, Shengzhi; Jiang, Shan; Liu, Shuihua
2009-09-14
A theoretical model is presented for simulating the sampled grating distributed Bragg reflector (SGDBR) laser integrated with semiconductor optical amplifier (SOA) and Mach-Zehnder (MZ) modulator. In this model, the active and passive sections are processed separately. The active region of laser and the SOA section are modeled by time domain traveling wave (TDTW) method. While the spectral properties of the SG and the MZ modulator are firstly calculated by Transfer-Matrix Method (TMM) and Beam Propagation Method (BPM), respectively, and then transformed into time domain using digital filter approach. Furthermore, the nonuniform carrier-dependence of gain and refractive index are also incorporated via Effective Bloch Equations (EBE). Compared with the full time-domain method, our model would be more flexible and efficient. The static and modulation performances of device are successfully simulated. This indicates that it can be a powerful platform for investigating the complex Photonic Integrated Circuits (PICs).
Schuwirth, Nele; Reichert, Peter
2013-02-01
For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.
Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials
NASA Technical Reports Server (NTRS)
Keith, Theo G.
2005-01-01
The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.
Advanced Performance Modeling with Combined Passive and Active Monitoring
Dovrolis, Constantine; Sim, Alex
2015-04-15
To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.
Current themes and recent advances in modelling species occurrences
2009-01-01
Recent years have seen a huge expansion in the range of methods and approaches that are being used to predict species occurrences. This expansion has been accompanied by many improvements in statistical methods, including more accurate ways of comparing models, better null models, methods to cope with autocorrelation, and greater awareness of the importance of scale and prevalence. However, the field still suffers from problems with incorporating temporal variation, overfitted models and poor out-of-sample prediction, confusion between explanation and prediction, simplistic assumptions, and a focus on pattern over process. The greatest advances in recent years have come from integrative studies that have linked species occurrence models with other themes and topics in ecology, such as island biogeography, climate change, disease geography, and invasive species. PMID:20948597
Modeling drug-melanin interaction with theoretical linear solvation energy relationships.
Lowrey, A H; Famini, G R; Loumbev, V; Wilson, L Y; Tosk, J M
1997-10-01
The affinity of drugs and other xenobiotic agents for melanin is a well-known phenomenon, often occurring with serious physiological consequences. For example, the interaction of anti-psychotic drugs with neuromelanin may play a pivotal role in the induction of extrapyramidal movement disorders associated with the chronic administration of phenothiazine and other neuroleptic agents. Little, however, is known about the complete nature of melanin-drug binding and the impact of these interactions on the physico-chemical properties of melanin. Data, such as binding affinities, can be analyzed using recently developed computational methods that combine mathematical models of chemical structure with statistical analysis. In particular, theoretical linear solvation energy relationships provide a convenient model for understanding and predicting biological, chemical, and physical properties. By using this modeling technique, drug-melanin binding of a set of 16 compounds has been analyzed with correlation analysis and a set of theoretical molecular parameters in order to better understand and characterize drug-melanin interactions. The resulting correlation equation supports a charge transfer model for drug-melanin complex formation and can also be used to estimate binding constants for related compounds.
Theoretical Hill-type muscle and stability: numerical model and application.
Schmitt, S; Günther, M; Rupp, T; Bayer, A; Häufle, D
2013-01-01
The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.
Theoretical Hill-Type Muscle and Stability: Numerical Model and Application
Schmitt, S.; Günther, M.; Rupp, T.; Bayer, A.; Häufle, D.
2013-01-01
The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator. PMID:24319495
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.
A novel mouse model of advanced diabetic kidney disease.
Thibodeau, Jean-Francois; Holterman, Chet E; Burger, Dylan; Read, Naomi C; Reudelhuber, Timothy L; Kennedy, Christopher R J
2014-01-01
Currently available rodent models exhibit characteristics of early diabetic nephropathy (DN) such as hyperfiltration, mesangial expansion, and albuminuria yet features of late DN (hypertension, GFR decline, tubulointerstitial fibrosis) are absent or require a significant time investment for full phenotype development. Accordingly, the aim of the present study was to develop a mouse model of advanced DN with hypertension superimposed (HD mice). Mice transgenic for human renin cDNA under the control of the transthyretin promoter (TTRhRen) were employed as a model of angiotensin-dependent hypertension. Diabetes was induced in TTRhRen mice through low dose streptozotocin (HD-STZ mice) or by intercrossing with OVE26 diabetic mice (HD-OVE mice). Both HD-STZ and HD-OVE mice displayed more pronounced increases in urinary albumin levels as compared with their diabetic littermates. Additionally, HD mice displayed renal hypertrophy, advanced glomerular scarring and evidence of tubulointerstitial fibrosis. Both HD-OVE and HD-STZ mice showed evidence of GFR decline as FITC-inulin clearance was decreased compared to hyperfiltering STZ and OVE mice. Taken together our results suggest that HD mice represent a robust model of type I DN that recapitulates key features of human disease which may be significant in studying the pathogenesis of DN and in the assessment of putative therapeutics.
NASA Astrophysics Data System (ADS)
Qin, Wu; Wei, Li; Wang, Lei; Dong, Changqing; Xiao, Xianbin; Zheng, Zongming; Yang, Yongping
2013-05-01
Following our previous work on the synergy between graphene and catalyst particle [1], we discuss how carbon nanotubes (CNTs) affect the catalytic reactivity of CuO during advanced oxidation processes using density functional theory calculations. CNTs act as electron donor and regulate the electronic structure of CuO during each reaction step because the 2p orbitals of the C atoms hybridise with the 4d orbitals of the Cu atoms rather than the 2p orbitals of the O atoms. An electric field guides charge transfer through the interface between the CNTs and CuO, which modifies the electronic state of CuO/CNTs for catalytic reactions.
Khalilian, Morteza; Navidbakhsh, Mahdi; Valojerdi, Mojtaba Rezazadeh; Chizari, Mahmoud; Yazdi, Poopak Eftekhari
2010-04-06
The zona pellucida (ZP) is the spherical layer that surrounds the mammalian oocyte. The physical hardness of this layer plays a crucial role in fertilization and is largely unknown because of the lack of appropriate measuring and modelling methods. The aim of this study is to measure the biomechanical properties of the ZP of human/mouse ovum and to test the hypothesis that Young's modulus of the ZP varies with fertilization. Young's moduli of ZP are determined before and after fertilization by using the micropipette aspiration technique, coupled with theoretical models of the oocyte as an elastic incompressible half-space (half-space model), an elastic compressible bilayer (layered model) or an elastic compressible shell (shell model). Comparison of the models shows that incorporation of the layered geometry of the ovum and the compressibility of the ZP in the layered and shell models may provide a means of more accurately characterizing ZP elasticity. Evaluation of results shows that although the results of the models are different, all confirm that the hardening of ZP will increase following fertilization. As can be seen, different choices of models and experimental parameters can affect the interpretation of experimental data and lead to differing mechanical properties.
The coupled effects of carbon and nitrogen on soil decomposition: A theoretical model
NASA Astrophysics Data System (ADS)
Darby, B.; Finzi, A.
2013-12-01
Soil organic matter (SOM) plays a crucial role in the carbon (C) cycle, holding 2.5 times more carbon than plant biomass. Ecosystem models predict that climate warming will stimulate decomposition of soil carbon stocks, in turn leading to positive feedbacks on warming. Recent empirical studies and modeling work has revealed the importance of microbial physiology and exoenzyme kinetics in driving SOM decomposition. Existing mathematical models describe the microbial processes and biophysics involved in the decomposition. However, although decomposition by nitrogen-degrading enzymes is included in some models, nitrogen (N) does not drive model behavior and there are no reaction kinetics associated with the depolymerization or uptake of N. Additionally, very few empirically measured kinetic values exist for N-degrading enzymes or the uptake of N by microbes. This study proposes a theoretical model of SOM decomposition based on the principles of exoenzyme kinetics and microbial biophysics that explicitly links C and N through microbial uptake and SOM decomposition kinetics and by placing stoichiometric constraints on microbial growth and exoenzyme production. After constructing the model framework, the model was then used to test soil-carbon responses to warming, and to explore the importance of N uptake and depolymerization kinetics in driving decomposition. The model predictions suggest that the response of kinetics to temperature are more important than microbial responses in determining decomposition rates. Additionally, variations in the kinetics of N depolymerization affected decomposition rates, whereas N uptake kinetics and their effect on enzyme production had almost no effect. The model outputs were also compared to a C-only model framework in order to assess the effects of N on model behavior. The incorporation of N into a SOM decomposition model produced different, and in some cases, contradictory results as compared to a C-only model. Overall, these
Advances and innovations in models of mantle convection
NASA Astrophysics Data System (ADS)
Kellogg, L. H.
2002-12-01
More than three decades ago, Turcotte and Oxburgh published their landmark paper showing how mantle convection drives motion of the continents, with the cold thermal boundary layers representing the surface plates. Since that time, models of mantle convection have made remarkable advancements and have been applied to the interiors of the terrestrial planets and moons, with many fundamental contributions by Don Turcotte and inspired by his work. Here, I will address some of the recent advances and innovations in mantle convection, with special emphasis on ideas emerging from the application of nonlinear dynamics and chemical geodynamics. Numerical models of convection, combined with observations from heat flow, cosmochemistry, and mantle geochemistry, provide constraints on models of the composition and structure of the mantle. Geochemical and heat flow observations appear to require long-lived heterogeneity in the mantle, while numerical models of convection generally exhibit rapid mixing, creating a distinctive ``marble-cake'' texture of recycled lithosphere. A variety of models have been suggested to reconcile these diverse inferences about mantle dynamics and structure from seemingly contradictory geochemical and geophysical observations. One straightforward explanation of combined geochemical and geophysical observations is a compositionally heterogeneous lowermost mantle. A difference between the composition of the MORB source and the composition of the deep mantle is also consistent with estimates of the properties of perovskite at high pressures and temperatures. Heterogeneity in the lower mantle may take the form of a hot abyssal layer of variable thickness starting at the mid-mantle or in the lowermost mantle, or may consist of "blobs" in the lower mantle. The hot abyssal layer model has an advantage over the blob model, because hot, neutrally buoyant blobs are unlikely to persist for the long times required by chemical geodynamics. Chemical geodynamics
Ursino, Mauro; Cuppini, Cristiano; Magosso, Elisa
2017-03-01
Recent theoretical and experimental studies suggest that in multisensory conditions, the brain performs a near-optimal Bayesian estimate of external events, giving more weight to the more reliable stimuli. However, the neural mechanisms responsible for this behavior, and its progressive maturation in a multisensory environment, are still insufficiently understood. The aim of this letter is to analyze this problem with a neural network model of audiovisual integration, based on probabilistic population coding-the idea that a population of neurons can encode probability functions to perform Bayesian inference. The model consists of two chains of unisensory neurons (auditory and visual) topologically organized. They receive the corresponding input through a plastic receptive field and reciprocally exchange plastic cross-modal synapses, which encode the spatial co-occurrence of visual-auditory inputs. A third chain of multisensory neurons performs a simple sum of auditory and visual excitations. The work includes a theoretical part and a computer simulation study. We show how a simple rule for synapse learning (consisting of Hebbian reinforcement and a decay term) can be used during training to shrink the receptive fields and encode the unisensory likelihood functions. Hence, after training, each unisensory area realizes a maximum likelihood estimate of stimulus position (auditory or visual). In cross-modal conditions, the same learning rule can encode information on prior probability into the cross-modal synapses. Computer simulations confirm the theoretical results and show that the proposed network can realize a maximum likelihood estimate of auditory (or visual) positions in unimodal conditions and a Bayesian estimate, with moderate deviations from optimality, in cross-modal conditions. Furthermore, the model explains the ventriloquism illusion and, looking at the activity in the multimodal neurons, explains the automatic reweighting of auditory and visual inputs
The neural mediators of kindness-based meditation: a theoretical model.
Mascaro, Jennifer S; Darcher, Alana; Negi, Lobsang T; Raison, Charles L
2015-01-01
Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here, we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another's affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work.
Theoretical model for the evaporation loss of PM2.5 during filter sampling
NASA Astrophysics Data System (ADS)
Liu, Chun-Nan; Lin, Sih-Fan; Tsai, Chuen-Jinn; Wu, Yueh-Chuen; Chen, Chung-Fang
2015-05-01
The evaporation losses of PM2.5 particles in eight different size ranges corresponding to the 4th-10th stages and after filter of the MOUDI were calculated theoretically and then integrated to obtain the total PM2.5 evaporation loss. Results show that when PM2.5 particles are nearly neutral with pH in the range of 7-8, the evaporated concentrations predicted by the present model agree well with the experimental data with an average absolute difference of 20.2 ± 11.1%. When PM2.5 aerosols are acidic with pH less than 3.5, additional loss of nitrate and chloride can occur due to chemical interactions between collected particles and strong acids which are not considered in the present model. Under pH neutral conditions, the theoretical model was then used to examine the effect of PM2.5 concentration, gas-to-particle ratio, ambient temperature and relative humidity on the extent of evaporation loss. Results show that evaporated PM2.5 concentration increases with increasing temperature and decreasing relative humidity, PM2.5 concentration and gas-to-particle ratio.
The neural mediators of kindness-based meditation: a theoretical model
Mascaro, Jennifer S.; Darcher, Alana; Negi, Lobsang T.; Raison, Charles L.
2015-01-01
Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here, we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another’s affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work. PMID:25729374
NASA Astrophysics Data System (ADS)
Åström, J. A.; Krasheninnikov, A. V.; Nordlund, K.
2004-11-01
We employ a theoretical model to calculate mechanical characteristics of macroscopic mats and fibers of single-walled carbon nanotubes. We further investigate irradiation-induced covalent bonds between nanotubes and their effects on the tensile strength of nanotube mats and fibers. We show that the stiffness and strength of the mats can be increased at least by an order of magnitude, and thus small-dose irradiation with energetic particles is a promising tool for making macroscopic nanotube materials with excellent mechanical characteristics.
The mathematical and theoretical biology institute--a model of mentorship through research.
Camacho, Erika T; Kribs-Zaleta, Christopher M; Wirkus, Stephen
2013-01-01
This article details the history, logistical operations, and design philosophy of the Mathematical and Theoretical Biology Institute (MTBI), a nationally recognized research program with an 18-year history of mentoring researchers at every level from high school through university faculty, increasing the number of researchers from historically underrepresented minorities, and motivating them to pursue research careers by allowing them to work on problems of interest to them and supporting them in this endeavor. This mosaic profile highlights how MTBI provides a replicable multi-level model for research mentorship.
Hospital design and face-to-face interaction among clinicians: a theoretical model.
Rashid, Mahbub
2009-01-01
A growing body of literature suggests that face-to-face interaction among clinicians in hospitals affects patient outcomes. How can face-to-face interaction among clinicians be influenced positively to improve patient outcomes in hospitals? So far, most strategies for improving face-to-face interaction in hospitals have focused on changing organizational culture. In contrast, this paper proposes a theoretical model that shows how spatial program and structure can help face-to-face interaction fulfill its purposes in hospitals by controlling the interfaces among different communities of clinicians.
NASA Astrophysics Data System (ADS)
Gromalova, N. A.; Eremin, N. N.; Dorokhova, G. I.; Urusov, V. S.
2012-07-01
A morphological analysis of chrysoberyl and alexandrite crystals obtained by flux crystallization has been performed. Seven morphological types of crystals are selected. The surface energies of the faces of chrysoberyl and alexandrite crystals and their isostructural analogs, BeCr2O4 and BeFe2O4, have been calculated by atomistic computer modeling using the Metadise program. A "combined" approach is proposed which takes into account both the structural geometry and the surface energy of the faces and thus provides better agreement between the theoretical and experimentally observed faceting of chrysoberyl and alexandrite crystals.
Multimode cavity QED 2: Parameter dependence and limitations through theoretical modeling
NASA Astrophysics Data System (ADS)
Groszkowski, Peter; Leung, Nelson; Naik, Ravi; Chakram, Srivatsan; Schuster, David; Koch, Jens
Superconducting circuits are well-established as promising building blocks for future quantum information processing devices. While in recent years gate and readout fidelities have improved significantly, superconducting qubits can still benefit greatly from added intrinsic robustness and improved error resilience. In this talk, we present results for qubits based on the modes of a 1d resonator array, where qubit manipulation and readout are achieved by interaction with a parametrically driven superconducting transmon. Through theoretical modeling, we provide insight into mode addressability as well as crosstalk, and their dependence on the system's size in various parameter regimes.
Theoretical model for a background noise limited laser-excited optical filter for doubled Nd lasers
NASA Astrophysics Data System (ADS)
Shay, Thomas M.; Garcia, Daniel F.
1990-06-01
A simple theoretical model for the calculation of the dependence of filter quantum efficiency versus laser pump power in an atomic Rb vapor laser-excited optical filter is reported. Calculations for Rb filter transitions that can be used to detect the practical and important frequency-doubled Nd lasers are presented. The results of these calculations show the filter's quantum efficiency versus the laser pump power. The required laser pump powers required range from 2.4 to 60 mW/sq cm of filter aperture.
Theoretical model for a background noise limited laser-excited optical filter for doubled Nd lasers
NASA Technical Reports Server (NTRS)
Shay, Thomas M.; Garcia, Daniel F.
1990-01-01
A simple theoretical model for the calculation of the dependence of filter quantum efficiency versus laser pump power in an atomic Rb vapor laser-excited optical filter is reported. Calculations for Rb filter transitions that can be used to detect the practical and important frequency-doubled Nd lasers are presented. The results of these calculations show the filter's quantum efficiency versus the laser pump power. The required laser pump powers required range from 2.4 to 60 mW/sq cm of filter aperture.
Theoretical models for microwave remote sensing of snow-covered sea ice
NASA Technical Reports Server (NTRS)
Lin, F. C.; Kong, J. A.; Shin, R. T.
1987-01-01
The volume scattering effects of snow-covered sea ice are studied with a three-layer random medium model for microwave remote sensing. Theoretical results are illustrated by matching experimental data for dry snow-covered thick first-year sea ice at Point Barrow. The radar backscattering cross sections are seen to increase with snow cover for snow-covered sea ice, due to the increased scattering effects in the snow layer. The results derived can also be applied to passive remote sensing.
Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A
2010-10-11
We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.
Inference of ICF implosion core mix using experimental data and theoretical mix modeling
Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W
2009-01-01
The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.
B → K∗ ℓ + ℓ - decays at large recoil in the Standard Model: a theoretical reappraisal
NASA Astrophysics Data System (ADS)
Ciuchini, Marco; Fedele, Marco; Franco, Enrico; Mishima, Satoshi; Paul, Ayan; Silvestrini, Luca; Valli, Mauro
2016-06-01
We critically reassess the theoretical uncertainties in the Standard Model calculation of the B → K ∗ ℓ + ℓ - observables, focusing on the low q 2 region. We point out that even optimized observables are affected by sizable uncertainties, since hadronic contributions generated by current-current operators with charm are difficult to estimate, especially for q 2 ˜ 4 m c 2 ≃ 6.8 GeV2. We perform a detailed numerical analysis and present both predictions and results from the fit obtained using most recent data. We find that non-factorizable power corrections of the expected order of magnitude are sufficient to give a good description of current experimental data within the Standard Model. We discuss in detail the q 2 dependence of the corrections and their possible interpretation as shifts of the Standard Model Wilson coefficients.
Theoretical analysis of electronic absorption spectra of vitamin B12 models
NASA Astrophysics Data System (ADS)
Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.
2001-10-01
Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.
New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system
NASA Astrophysics Data System (ADS)
Zhu, Yinhai; Li, Yanzhong
A new theoretical model for the convergent nozzle ejector in the anode recirculation line of the polymer electrolyte membrane (PEM) fuel cell system is established in this paper. A velocity function for analyzing the flow characteristics of the PEM ejector is proposed by employing a two-dimensional (2D) concave exponential curve. This treatment of velocity is an improvement compared to the conventional 1D "constant area mixing" or "constant pressure mixing" ejector theories. The computational fluid dynamics (CFD) technique together with the data regression and parameter identification methods are applied in the determination of the velocity function's exponent. Based on the model, the anode recirculation performances of a hybrid PEM system are studied under various stack currents. Results show that the model is capable of evaluating the performance of ejector in both the critical mode and subcritical mode.
NASA Technical Reports Server (NTRS)
Avrett, E. H.
1984-01-01
Models and spectra of sunspots were studied, because they are important to energy balance and variability discussions. Sunspot observations in the ultraviolet region 140 to 168 nn was obtained by the NRL High Resolution Telescope and Spectrograph. Extensive photometric observations of sunspot umbrae and prenumbrae in 10 chanels covering the wavelength region 387 to 3800 nm were made. Cool star opacities and model atmospheres were computed. The Sun is the first testcase, both to check the opacity calculations against the observed solar spectrum, and to check the purely theoretical model calculation against the observed solar energy distribution. Line lists were finally completed for all the molecules that are important in computing statistical opacities for energy balance and for radiative rate calculations in the Sun (except perhaps for sunspots). Because many of these bands are incompletely analyzed in the laboratory, the energy levels are not well enough known to predict wavelengths accurately for spectrum synthesis and for detailed comparison with the observations.
A new theoretical framework for modeling respiratory protection based on the beta distribution.
Klausner, Ziv; Fattal, Eyal
2014-08-01
The problem of modeling respiratory protection is well known and has been dealt with extensively in the literature. Often the efficiency of respiratory protection is quantified in terms of penetration, defined as the proportion of an ambient contaminant concentration that penetrates the respiratory protection equipment. Typically, the penetration modeling framework in the literature is based on the assumption that penetration measurements follow the lognormal distribution. However, the analysis in this study leads to the conclusion that the lognormal assumption is not always valid, making it less adequate for analyzing respiratory protection measurements. This work presents a formulation of the problem from first principles, leading to a stochastic differential equation whose solution is the probability density function of the beta distribution. The data of respiratory protection experiments were reexamined, and indeed the beta distribution was found to provide the data a better fit than the lognormal. We conclude with a suggestion for a new theoretical framework for modeling respiratory protection.
Development of a system model for advanced small modular reactors.
Lewis, Tom Goslee,; Holschuh, Thomas Vernon,
2014-01-01
This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.
Business Model Evaluation for an Advanced Multimedia Service Portfolio
NASA Astrophysics Data System (ADS)
Pisciella, Paolo; Zoric, Josip; Gaivoronski, Alexei A.
In this paper we analyze quantitatively a business model for the collaborative provision of an advanced mobile data service portfolio composed of three multimedia services: Video on Demand, Internet Protocol Television and User Generated Content. We provide a description of the provision system considering the relation occurring between tecnical aspects and business aspects for each agent providing the basic multimedia service. Such a techno-business analysis is then projected into a mathematical model dealing with the problem of the definition of incentives between the different agents involved in a collaborative service provision. Through the implementation of this model we aim at shaping the behaviour of each of the contributing agents modifying the level of profitability that the Service Portfolio yields to each of them.
Mouse models of advanced spontaneous metastasis for experimental therapeutics
Francia, Giulio; Cruz-Munoz, William; Man, Shan; Xu, Ping; Kerbel, Robert S.
2015-01-01
An enduring problem in cancer research is the failure to reproduce highly encouraging preclinical therapeutic findings using transplanted or spontaneous primary tumours in mice in clinical trials of patients with advanced metastatic disease. There are several reasons for this, including the failure to model established, visceral metastatic disease. We therefore developed various models of aggressive multi-organ spontaneous metastasis after surgical resection of orthotopically transplanted human tumour xenografts. In this Opinion article we provide a personal perspective summarizing the prospect of their increased clinical relevance. This includes the reduced efficacy of certain targeted anticancer drugs, the late emergence of spontaneous brain metastases and the clinical trial results evaluating a highly effective therapeutic strategy previously tested using such models. PMID:21258397
Advanced optical position sensors for magnetically suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Lafleur, S.
1985-01-01
A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.
Advanced Numerical Prediction and Modeling of Tropical Cyclones Using WRF-NMM modeling system
NASA Astrophysics Data System (ADS)
Gopalakrishnan, S. G.; Rogers, R. F.; Marks, F. D.; Atlas, R.
2007-12-01
Dramatic improvement in tropical cyclone track forecasts have occurred through advancements in high quality observations, high speed computers and improvements in dynamical models. Similar advancements now need to be made for tropical cyclone intensity, structure and rainfall prediction. The Weather Research Forecasting Model (WRF) is a general purpose, multi-institutional mesoscale modeling system. A version of the WRF model called the HWRF/WRF-NMM modeling system, developed at the National Center for Environmental Protection (NCEP) was recently adopted for hurricane forecasting (Gopalakrishnan et al, 2006) by the National Hurricane Center (NHC). At the Hurricane Research Division (HRD/AOML/OAR) we are developing and further advancing a research version of this modeling system. This work is done in collaboration with the Developmental Test bed Center (DTC), Boulder, CO, Global Systems division (GSD/ESRL/OAR), Boulder, CO, The Air Resources Laboratory (ARL/OAR), Washington, D.C., the U.S. university community, the Indian Institute of Technology, IIT.Delhi, India, and the India Meteorological Department, New Delhi, India Our modeling effort includes advancing the WRF system for Ensemble Hurricane Forecasting, advancing our understanding of Ensemble-vs- High Resolution Forecasting of Hurricanes, advancing WRF/WRF-NMM with better analysis techniques (e.g. Four Dimensional Data Assimilation) for improving forecasts and above all, advancing our understanding of hurricane processes using a high resolution numerical modeling approach. Examples of some of these applications will be shown here. Reference: NCEP's Two-way-Interactive-Moving-Nest NMM-WRF modeling system for Hurricane Forecasting, S.G. Gopalakrishnan, N. Surgi, R. Tuleya, and Z. Janjic 27th Conference on Hurricanes and Tropical Meteorology, 24- 28 April 2006, Monterey, California.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-30
... Advance Payment Model for certain accountable care organizations participating in the Medicare Shared..., coordinated care and generate cost savings. The Advance Payment Model will test whether and how pre-paying a... Application Deadline for the Advance Payment Model AGENCY: Centers for Medicare & Medicaid Services (CMS),...
Game Theoretic Modeling of Water Resources Allocation Under Hydro-Climatic Uncertainty
NASA Astrophysics Data System (ADS)
Brown, C.; Lall, U.; Siegfried, T.
2005-12-01
Typical hydrologic and economic modeling approaches rely on assumptions of climate stationarity and economic conditions of ideal markets and rational decision-makers. In this study, we incorporate hydroclimatic variability with a game theoretic approach to simulate and evaluate common water allocation paradigms. Game Theory may be particularly appropriate for modeling water allocation decisions. First, a game theoretic approach allows economic analysis in situations where price theory doesn't apply, which is typically the case in water resources where markets are thin, players are few, and rules of exchange are highly constrained by legal or cultural traditions. Previous studies confirm that game theory is applicable to water resources decision problems, yet applications and modeling based on these principles is only rarely observed in the literature. Second, there are numerous existing theoretical and empirical studies of specific games and human behavior that may be applied in the development of predictive water allocation models. With this framework, one can evaluate alternative orderings and rules regarding the fraction of available water that one is allowed to appropriate. Specific attributes of the players involved in water resources management complicate the determination of solutions to game theory models. While an analytical approach will be useful for providing general insights, the variety of preference structures of individual players in a realistic water scenario will likely require a simulation approach. We propose a simulation approach incorporating the rationality, self-interest and equilibrium concepts of game theory with an agent-based modeling framework that allows the distinct properties of each player to be expressed and allows the performance of the system to manifest the integrative effect of these factors. Underlying this framework, we apply a realistic representation of spatio-temporal hydrologic variability and incorporate the impact of
ERIC Educational Resources Information Center
Dodd, Bucky J.
2013-01-01
Online course design is an emerging practice in higher education, yet few theoretical models currently exist to explain or predict how the diffusion of innovations occurs in this space. This study used a descriptive, quantitative survey research design to examine theoretical relationships between decision-making style and resistance to change…
Advances in DOE modeling and optical performance for SMO applications
NASA Astrophysics Data System (ADS)
Carriere, James; Stack, Jared; Childers, John; Welch, Kevin; Himel, Marc D.
2010-04-01
The introduction of source mask optimization (SMO) to the design process addresses an urgent need for the 32nm node and beyond as alternative lithography approaches continue to push out. To take full advantage of SMO routines, an understanding of the characteristic properties of diffractive optical elements (DOEs) is required. Greater flexibility in the DOE output is needed to optimize lithographic process windows. In addition, new and tighter constraints on the DOEs used for off-axis illumination (OAI) are being introduced to precisely predict, control and reduce the effects of pole imbalance and stray light on the CD budget. We present recent advancements in the modeling and optical performance of these DOEs.
Advancing Models and Evaluation of Cumulus, Climate and Aerosol Interactions
Gettelman, Andrew
2015-10-27
This project was successfully able to meet its’ goals, but faced some serious challenges due to personnel issues. Nonetheless, it was largely successful. The Project Objectives were as follows: 1. Develop a unified representation of stratifom and cumulus cloud microphysics for NCAR/DOE global community models. 2. Examine the effects of aerosols on clouds and their impact on precipitation in stratiform and cumulus clouds. We will also explore the effects of clouds and precipitation on aerosols. 3. Test these new formulations using advanced evaluation techniques and observations and release
Advances in Electromagnetic Modelling through High Performance Computing
Ko, K.; Folwell, N.; Ge, L.; Guetz, A.; Lee, L.; Li, Z.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Xiao, L.; /SLAC
2006-03-29
Under the DOE SciDAC project on Accelerator Science and Technology, a suite of electromagnetic codes has been under development at SLAC that are based on unstructured grids for higher accuracy, and use parallel processing to enable large-scale simulation. The new modeling capability is supported by SciDAC collaborations on meshing, solvers, refinement, optimization and visualization. These advances in computational science are described and the application of the parallel eigensolver Omega3P to the cavity design for the International Linear Collider is discussed.
Advancing LGBT Elder Policy and Support Services: The Massachusetts Model.
Krinsky, Lisa; Cahill, Sean
2017-04-04
The Massachusetts-based LGBT Aging Project has trained elder service providers in affirming and culturally competent care for LGBT older adults, supported development of LGBT-friendly meal programs, and advanced LGBT equality under aging policy. Working across sectors, this innovative model launched the country's first statewide Legislative Commission on Lesbian, Gay, Bisexual, and Transgender Aging. Advocates are working with policymakers to implement key recommendations, including cultural competency training and data collection in statewide networks of elder services. The LGBT Aging Project's success provides a template for improving services and policy for LGBT older adults throughout the country.
Drosophila models of Alzheimer's disease: advances, limits, and perspectives.
Bouleau, Sylvina; Tricoire, Hervé
2015-01-01
Amyloid-β protein precursor (AβPP) and the microtubule-associated protein tau (MAPT) are the two key players involved in Alzheimer's disease (AD) and are associated with amyloid plaques and neurofibrillary tangles respectively, two key hallmarks of the disease. Besides vertebrate models, Drosophila models have been widely used to understand the complex events leading to AD in relation to aging. Drosophila benefits from the low redundancy of the genome which greatly simplifies the analysis of single gene disruption, sophisticated molecular genetic tools, and reduced cost compared to mammals. The aim of this review is to describe the recent advances in modeling AD using fly and to emphasize some limits of these models. Genetic studies in Drosophila have revealed some key aspects of the normal function of Appl and Tau, the fly homologues of AβPP and MAPT that may be disrupted during AD. Drosophila models have also been useful to uncover or validate several pathological pathways or susceptibility genes, and have been readily implemented in drug screening pipelines. We discuss some limitations of the current models that may arise from differences in structure of Appl and Tau compared to their human counterparts or from missing AβPP or MAPT protein interactors in flies. The advent of new genome modification technologies should allow the development of more realistic fly models and to better understand the relationship between AD and aging, taking advantage of the fly's short lifespan.
Recent advances and applications of probabilistic topic models
NASA Astrophysics Data System (ADS)
Wood, Ian
2014-12-01
I present here an overview of recent advances in probabilistic topic modelling and related Bayesian graphical models as well as some of their more atypical applications outside of their home: text analysis. These techniques allow the modelling of high dimensional count vectors with strong correlations. With such data, simply calculating a correlation matrix is infeasible. Probabilistic topic models address this using mixtures of multinomials estimated via Bayesian inference with Dirichlet priors. The use of conjugate priors allows for efficient inference, and these techniques scale well to data sets with many millions of vectors. The first of these techniques to attract significant attention was Latent Dirichlet Allocation (LDA) [1, 2]. Numerous extensions and adaptations of LDA have been proposed: non-parametric models; assorted models incorporating authors, sentiment and other features; models regularised through the use of extra metadata or extra priors on topic structure, and many more [3]. They have become widely used in the text analysis and population genetics communities, with a number of compelling applications. These techniques are not restricted to text analysis, however, and can be applied to other types of data which can be sensibly discretised and represented as counts of labels/properties/etc. LDA and it's variants have been used to find patterns in data from diverse areas of inquiry, including genetics, plant physiology, image analysis, social network analysis, remote sensing and astrophysics. Nonetheless, it is relatively recently that probabilistic topic models have found applications outside of text analysis, and to date few such applications have been considered. I suggest that there is substantial untapped potential for topic models and models inspired by or incorporating topic models to be fruitfully applied, and outline the characteristics of systems and data for which this may be the case.
Theoretical model for mesoscopic-level scale-free self-organization of functional brain networks.
Piersa, Jaroslaw; Piekniewski, Filip; Schreiber, Tomasz
2010-11-01
In this paper, we provide theoretical and numerical analysis of a geometric activity flow network model which is aimed at explaining mathematically the scale-free functional graph self-organization phenomena emerging in complex nervous systems at a mesoscale level. In our model, each unit corresponds to a large number of neurons and may be roughly seen as abstracting the functional behavior exhibited by a single voxel under functional magnetic resonance imaging (fMRI). In the course of the dynamics, the units exchange portions of formal charge, which correspond to waves of activity in the underlying microscale neuronal circuit. The geometric model abstracts away the neuronal complexity and is mathematically tractable, which allows us to establish explicit results on its ground states and the resulting charge transfer graph modeling functional graph of the network. We show that, for a wide choice of parameters and geometrical setups, our model yields a scale-free functional connectivity with the exponent approaching 2, which is in agreement with previous empirical studies based on fMRI. The level of universality of the presented theory allows us to claim that the model does shed light on mesoscale functional self-organization phenomena of the nervous system, even without resorting to closer details of brain connectivity geometry which often remain unknown. The material presented here significantly extends our previous work where a simplified mean-field model in a similar spirit was constructed, ignoring the underlying network geometry.
Daegling, D J; Hylander, W L
2000-08-01
Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified
Theoretical model atmosphere spectra used for the calibration of infrared instruments
NASA Astrophysics Data System (ADS)
Decin, L.; Eriksson, K.
2007-09-01
Context: One of the key ingredients in establishing the relation between input signal and output flux from a spectrometer is accurate determination of the spectrophotometric calibration. In the case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the accuracy of the set of reference spectral energy distributions (SEDs) that the spectrophotometric calibration is built on. Aims: In this paper, we deal with the spectrophotometric calibration of infrared (IR) spectrometers onboard satellites in the 2 to 200 μm wavelength range. We aim at comparing the different reference SEDs used for the IR spectrophotometric calibration. The emphasis is on the reference SEDs of stellar standards with spectral type later than A0, with special focus on the theoretical model atmosphere spectra. Methods: Using the MARCS model atmosphere code, spectral reference SEDs were constructed for a set of IR stellar standards (A dwarfs, solar analogs, G9-M0 giants). A detailed error analysis was performed to estimate proper uncertainties on the predicted flux values. Results: It is shown that the uncertainty on the predicted fluxes can be as high as 10%, but in case high-resolution observational optical or near-IR data are available, and IR excess can be excluded, the uncertainty on medium-resolution SEDs can be reduced to 1-2% in the near-IR, to ~3% in the mid-IR, and to ~5% in the far-IR. Moreover, it is argued that theoretical stellar atmosphere spectra are at the moment the best representations for the IR fluxes of cool stellar standards. Conclusions: When aiming at a determination of the spectrophotometric calibration of IR spectrometers better than 3%, effort should be put into constructing an appropriate set of stellar reference SEDs based on theoretical atmosphere spectra for some 15 standard stars with spectral types between A0 V and M0 III.
Shemesh, Tom; Luini, Alberto; Malhotra, Vivek; Burger, Koert N. J.; Kozlov, Michael M.
2003-01-01
Membrane transport within mammalian cells is mediated by small vesicular as well as large pleiomorphic transport carriers (TCs). A major step in the formation of TCs is the creation and subsequent narrowing of a membrane neck connecting the emerging carrier with the initial membrane. In the case of small vesicular TCs, neck formation may be directly induced by the coat proteins that cover the emerging vesicle. However, the mechanism underlying the creation and narrowing of a membrane neck in the generation of large TCs remains unknown. We present a theoretical model for neck formation based on the elastic model of membranes. Our calculations suggest a lipid-driven mechanism with a central role for diacylglycerol (DAG). The model is applied to a well-characterized in vitro system that reconstitutes TC formation from the Golgi complex, namely the pearling and fission of Golgi tubules induced by CtBP/BARS, a protein that catalyzes the conversion of lysophosphatidic acid into phosphatidic acid. In view of the importance of a PA-DAG cycle in the formation of Golgi TCs, we assume that the newly formed phosphatidic acid undergoes rapid dephosphorylation into DAG. DAG possesses a unique molecular shape characterized by an extremely large negative spontaneous curvature, and it redistributes rapidly between the membrane monolayers and along the membrane surface. Coupling between local membrane curvature and local lipid composition results, by mutual enhancement, in constrictions of the tubule into membrane necks, and a related inhomogeneous lateral partitioning of DAG. Our theoretical model predicts the exact dimensions of the constrictions observed in the pearling Golgi tubules. Moreover, the model is able to explain membrane neck formation by physiologically relevant mole fractions of DAG. PMID:14645071
Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials
NASA Technical Reports Server (NTRS)
Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar
2015-01-01
The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition
NASA Astrophysics Data System (ADS)
Queloz, Pierre; Carraro, Luca; Benettin, Paolo; Botter, Gianluca; Rinaldo, Andrea; Bertuzzo, Enrico
2015-04-01
A theoretical analysis of transport in a controlled hydrologic volume, inclusive of two willow trees and forced by erratic water inputs, is carried out contrasting the experimental data described in a companion paper. The data refer to the hydrologic transport in a large lysimeter of different fluorobenzoic acids seen as tracers. Export of solute is modeled through a recently developed framework which accounts for nonstationary travel time distributions where we parameterize how output fluxes (namely, discharge and evapotranspiration) sample the available water ages in storage. The relevance of this work lies in the study of hydrologic drivers of the nonstationary character of residence and travel time distributions, whose definition and computation shape this theoretical transport study. Our results show that a large fraction of the different behaviors exhibited by the tracers may be charged to the variability of the hydrologic forcings experienced after the injection. Moreover, the results highlight the crucial, and often overlooked, role of evapotranspiration and plant uptake in determining the transport of water and solutes. This application also suggests that the ways evapotranspiration selects water with different ages in storage can be inferred through model calibration contrasting only tracer concentrations in the discharge. A view on upscaled transport volumes like hillslopes or catchments is maintained throughout the paper.
Mechanisms of plasma-assisted catalyzed growth of carbon nanofibres: a theoretical modeling
NASA Astrophysics Data System (ADS)
Gupta, R.; Sharma, S. C.; Sharma, R.
2017-02-01
A theoretical model is developed to study the nucleation and catalytic growth of carbon nanofibers (CNFs) in a plasma environment. The model includes the charging of CNFs, the kinetics of the plasma species (neutrals, ions and electrons), plasma pretreatment of the catalyst film, and various processes unique to a plasma-exposed catalyst surface such as adsorption of neutrals, thermal dissociation of neutrals, ion induced dissociation, interaction between neutral species, stress exerted by the growing graphene layers and the growth of CNFs. Numerical calculations are carried out for typical glow discharge plasma parameters. It is found that the growth rate of CNFs decreases with the catalyst nanoparticle size. In addition, the effect of hydrogen on the catalyst nanoparticle size, CNF tip diameter, CNF growth rate, and the tilt angle of the graphene layers to the fiber axis are investigated. Moreover, it is also found that the length of CNFs increases with hydrocarbon number density. Our theoretical findings are in good agreement with experimental observations and can be extended to enhance the field emission characteristics of CNFs.
Theoretical study on the inverse modeling of deep body temperature measurement.
Huang, Ming; Chen, Wenxi
2012-03-01
We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation.
Ultraviolet Properties of Primeval Galaxies: Theoretical Models from Stellar Population Synthesis
NASA Astrophysics Data System (ADS)
Buzzoni, Alberto
2002-03-01
The ultraviolet luminosity evolution of star-forming galaxies is explored from the theoretical point of view, especially focusing on the theory of UV energetics in simple and composite stellar populations and its relationship to the star formation rate and other main evolutionary parameters. Galaxy emission below λ<3000 Å directly correlates with actual star formation, not depending on the total mass of the system. A straightforward calibration is obtained, in this sense, from the theoretical models at 1600, 2000, and 2800 Å, and a full comparison is carried out with IUE data and other balloon-borne observations for local galaxies. The claimed role of late-type systems as prevailing contributors to the cosmic UV background is reinforced by our results; at 2000 Å, Im irregulars are found in fact nearly 4 orders of magnitude brighter than ellipticals, per unit luminous mass. The role of dust absorption in the observation of high-redshift galaxies is assessed, comparing the model output and observed spectral energy distribution of local galaxy samples. Similar to what we observe in our own galaxy, a quick evolution in the dust environment might be envisaged in primeval galaxies, with an increasing fraction of luminous matter that would escape the regions of harder and ``clumpy'' dust absorption on a timescale of some 107 yr, comparable to the lifetime of stars of 5-10 Msolar.
Theoretical Performance Model and Initial Experimentation of a Baffled-Tube Ram Accelerator
NASA Astrophysics Data System (ADS)
Glusman, Jeffrey F.
The baffled-tube ram accelerator is an innovation in hypervelocity launch technology that allows the acceleration of axisymmetric projectiles in the velocity range of 500 to 3000 meters per second. This device has the potential to double the thrust performance of the conventional smooth-bore ram accelerator while reducing its minimum starting velocity. The baffled-tube ram accelerator utilizes a series of internal baffles to suppress the forward surge of a combustion driven shock wave, thus enabling operation in propellants having two to three times the energy release of those used with conventional smooth-bore ram accelerators. An experimental and theoretical investigation of this device is currently on-going at the University of Washington. Operation at velocities between 620 and 1220 meters per second has been demonstrated to date. Theoretical modeling indicates that momentum loss due to baffle interactions is a key factor in the baffled-tube ram accelerator, which reduces its performance. Nevertheless, baffled-tube experiments have demonstrated thrusts 30-100% greater than that of a smooth-bore ram accelerator operating at the same fill pressure. The design, modeling, and experimental results from a 38-mm-bore, two-meter-long baffled-tube ram accelerator apparatus are presented.
A New Theoretical Model of Big-Bang Evidence as a Consequence of Global Symmetry Breakdown
NASA Astrophysics Data System (ADS)
Avetissian, Ara K.
2007-08-01
Problems and hardships in identification and understanding of physical quintessence of several phenomena in Cosmology such are Big-Bang of tremendously dense and hot matter with Baryons' asymmetry, Hubble's expansion Law, Cosmic Microwave Radiation, Dark Energy and Dark Matter, obviously require alternative investigations of additional theoretical aspects and corresponding models of early Universe both for Radiation and Baryonic periods. According to this aspiration and taking into consideration results from Wilkinson Microwave Anisotropy Probe one postulate an assumption of possibility of baryons (may be also antibaryons!) Bose-Einstein condensation in the early Universe due to their Cooper-pairing. The thermodynamical equilibrium between extrahigh energy photons and Bose-condensed baryonic matter is consider and evaluate the macro-parameters of the possible hydrostatic stable baryonic configuration of Universal scale. A new theoretical model of Big-Bang evidence is predicted as a consequence of Global Symmetry breakdown from the Bose-Einstein statistics to Fermi-Dirac one when the matter pressure due to Pauli exclusion principle spasmodically increasing outside more than 2.5×10^5 times.
Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future
Berjano, Enrique J
2006-01-01
Radiofrequency ablation is an interventional technique that in recent years has come to be employed in very different medical fields, such as the elimination of cardiac arrhythmias or the destruction of tumors in different locations. In order to investigate and develop new techniques, and also to improve those currently employed, theoretical models and computer simulations are a powerful tool since they provide vital information on the electrical and thermal behavior of ablation rapidly and at low cost. In the future they could even help to plan individual treatment for each patient. This review analyzes the state-of-the-art in theoretical modeling as applied to the study of radiofrequency ablation techniques. Firstly, it describes the most important issues involved in this methodology, including the experimental validation. Secondly, it points out the present limitations, especially those related to the lack of an accurate characterization of the biological tissues. After analyzing the current and future benefits of this technique it finally suggests future lines and trends in the research of this area. PMID:16620380
Advancing reservoir operation description in physically based hydrological models
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo
2016-04-01
Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir
Computational ocean acoustics: Advances in 3D ocean acoustic modeling
NASA Astrophysics Data System (ADS)
Schmidt, Henrik; Jensen, Finn B.
2012-11-01
The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].
Crashworthiness analysis using advanced material models in DYNA3D
Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.
1993-10-22
As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.
Dilatation-dissipation corrections for advanced turbulence models
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1992-01-01
This paper analyzes dilatation-dissipation based compressibility corrections for advanced turbulence models. Numerical computations verify that the dilatation-dissipation corrections devised by Sarkar and Zeman greatly improve both the k-omega and k-epsilon model predicted effect of Mach number on spreading rate. However, computations with the k-gamma model also show that the Sarkar/Zeman terms cause an undesired reduction in skin friction for the compressible flat-plate boundary layer. A perturbation solution for the compressible wall layer shows that the Sarkar and Zeman terms reduce the effective von Karman constant in the law of the wall. This is the source of the inaccurate k-gamma model skin-friction predictions for the flat-plate boundary layer. The perturbation solution also shows that the k-epsilon model has an inherent flaw for compressible boundary layers that is not compensated for by the dilatation-dissipation corrections. A compressibility modification for k-gamma and k-epsilon models is proposed that is similar to those of Sarkar and Zeman. The new compressibility term permits accurate predictions for the compressible mixing layer, flat-plate boundary layer, and a shock separated flow with the same values for all closure coefficients.
Advanced parallel programming models research and development opportunities.
Wen, Zhaofang.; Brightwell, Ronald Brian
2004-07-01
There is currently a large research and development effort within the high-performance computing community on advanced parallel programming models. This research can potentially have an impact on parallel applications, system software, and computing architectures in the next several years. Given Sandia's expertise and unique perspective in these areas, particularly on very large-scale systems, there are many areas in which Sandia can contribute to this effort. This technical report provides a survey of past and present parallel programming model research projects and provides a detailed description of the Partitioned Global Address Space (PGAS) programming model. The PGAS model may offer several improvements over the traditional distributed memory message passing model, which is the dominant model currently being used at Sandia. This technical report discusses these potential benefits and outlines specific areas where Sandia's expertise could contribute to current research activities. In particular, we describe several projects in the areas of high-performance networking, operating systems and parallel runtime systems, compilers, application development, and performance evaluation.
Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Sorokach, Michael R.
2015-01-01
NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.
Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights
Harrison, Nicholas R.; Laroche, Fabrice J.F.; Gutierrez, Alejandro
2016-01-01
Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients. PMID:27165361
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.
1992-01-01
Current advances in computing technology are devoid of formal methods that describe the theories of how information is shared between humans and machines. Specifically, in the domain of human-machine interaction, a common mathematical foundation is lacking. The aim of this paper is to propose a formal method of human-machine (H-M) interaction paradigm from the information view point. The methods presented are interpretation- and context-free and can be used both in experimental analysis as well as in modeling problems.
NASA Astrophysics Data System (ADS)
Yang, H.-Y. Karen; Sutter, P. M.; Ricker, Paul M.
2012-12-01
Cosmological constraints derived from galaxy clusters rely on accurate predictions of cluster observable properties, in which feedback from active galactic nuclei (AGN) is a critical component. In order to model the physical effects due to supermassive black holes (SMBH) on cosmological scales, subgrid modelling is required, and a variety of implementations have been developed in the literature. However, theoretical uncertainties due to model and parameter variations are not yet well understood, limiting the predictive power of simulations including AGN feedback. By performing a detailed parameter-sensitivity study in a single cluster using several commonly adopted AGN accretion and feedback models with FLASH, we quantify the model uncertainties in predictions of cluster integrated properties. We find that quantities that are more sensitive to gas density have larger uncertainties (˜20 per cent for Mgas and a factor of ˜2 for LX at R500), whereas TX, YSZ and YX are more robust (˜10-20 per cent at R500). To make predictions beyond this level of accuracy would require more constraints on the most relevant parameters: the accretion model, mechanical heating efficiency and size of feedback region. By studying the impact of AGN feedback on the scaling relations, we find that an anti-correlation exists between Mgas and TX, which is another reason why YSZ and YX are excellent mass proxies. This anti-correlation also implies that AGN feedback is likely to be an important source of intrinsic scatter in the Mgas-TX and LX-TX relations.
2011-01-01
Physician-researchers are bound by professional obligations stemming from both the role of the physician and the role of the researcher. Currently, the dominant models for understanding the relationship between physician-researchers' clinical duties and research duties fit into three categories: the similarity position, the difference position and the middle ground. The law may be said to offer a fourth "model" that is independent from these three categories. These models frame the expectations placed upon physician-researchers by colleagues, regulators, patients and research participants. This paper examines the extent to which the data from semi-structured interviews with 30 physician-researchers at three major pediatric hospitals in Canada reflect these traditional models. It seeks to determine the extent to which existing models align with the described lived experience of the pediatric physician-researchers interviewed. Ultimately, we find that although some physician-researchers make references to something like the weak version of the similarity position, the pediatric-researchers interviewed in this study did not describe their dual roles in a way that tightly mirrors any of the existing theoretical frameworks. We thus conclude that either physician-researchers are in need of better training regarding the nature of the accountability relationships that flow from their dual roles or that models setting out these roles and relationships must be altered to better reflect what we can reasonably expect of physician-researchers in a real-world environment. PMID:21974866
Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator
NASA Astrophysics Data System (ADS)
Cai, Jin-Chi; Hu, Lin-Lin; Ma, Guo-Wu; Chen, Hong-Bin; Jin, Xiao; Chen, Huai-Bi
2015-06-01
In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave structure (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other. Project supported by the Innovative Research Foundation of China Academy of Engineering Physics (Grant No. 426050502-2).
Developing and testing a theoretical model linking work-family conflict to employee safety.
Cullen, Jennifer C; Hammer, Leslie B
2007-07-01
Despite work-family conflict being recognized as a source of stress, no published research to our knowledge has considered how it negatively affects workplace safety. A theoretical model linking strain-based work-family conflict and employee safety was tested with 243 health care workers. Within this model, work-family conflict is conceptualized as a workplace hazard. As expected, strong work performance norms and high work overload were associated with higher work-family conflict; increased family-to-work conflict was associated with decreased compliance with safety rules and less willingness to participate in discretionary safety meetings. Work-to-family conflict, however, was not associated with safety. These findings underscore the importance of work redesign strategies that consider work performance norms and work-family conflict for expecting a return on investment in terms of a safer workplace.
NASA Astrophysics Data System (ADS)
Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.
2015-06-01
Plasmas used in the semiconductor manufacturing industry are of a similar nature to the environments often created for submillimeter spectroscopic study of astrophysical species. At the low operating pressures of these plasmas, submillimeter absorption spectroscopy is a method capable of measuring the abundances and temperatures of molecules, radicals, and ions without disturbing any of the properties of the plasma. These measurements provide details and insight into the interactions and reactions occurring within the plasma and their implications for semiconductor manufacturing processes. A continuous wave, 500 to 750 GHz, absorption spectrometer was designed and used to make measurements of species in semiconductor processing plasmas. Comparisons with expectations from theoretical plasma models provide a basis for validating and improving these models, which is a complex and difficult science itself. Furthermore, these comparisons are an evaluation for the use of submillimeter spectroscopy as a diagnostic tool in manufacturing processes.
Toward a unifying model of identification with groups: integrating theoretical perspectives.
Roccas, Sonia; Sagiv, Lilach; Schwartz, Shalom; Halevy, Nir; Eidelson, Roy
2008-08-01
Building on the contributions of diverse theoretical approaches, the authors present a multidimensional model of group identification. Integrating conceptions from the social identity perspective with those from research on individualism-collectivism, nationalism- patriotism, and identification with organizations, we propose four conceptually distinct modes of identification: importance (how much I view the group as part of who I am), commitment (how much I want to benefit the group), superiority (how much I view my group as superior to other groups), and deference (how much I honor, revere, and submit to the group's norms, symbols, and leaders). We present an instrument for assessing the four modes of identification and review initial empirical findings that validate the proposed model and show its utility in understanding antecedents and consequences of identification.
A unified theoretical framework for mapping models for the multi-state Hamiltonian
NASA Astrophysics Data System (ADS)
Liu, Jian
2016-11-01
We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.
From moral theory to penal attitudes and back: a theoretically integrated modeling approach.
de Keijser, Jan W; van der Leeden, Rien; Jackson, Janet L
2002-01-01
From a moral standpoint, we would expect the practice of punishment to reflect a solid and commonly shared legitimizing framework. Several moral legal theories explicitly aim to provide such frameworks. Based on the theories of Retributivism, Utilitarianism, and Restorative Justice, this article first sets out to develop a theoretically integrated model of penal attitudes and then explores the extent to which Dutch judges' attitudes to punishment fit the model. Results indicate that penal attitudes can be measured in a meaningful way that is consistent with an integrated approach to moral theory. The general structure of penal attitudes among Dutch judges suggests a streamlined and pragmatic approach to legal punishment that is identifiably founded on the separate concepts central to moral theories of punishment. While Restorative Justice is frequently presented as an alternative paradigm, results show it to be smoothly incorporated within the streamlined approach.
A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model
NASA Astrophysics Data System (ADS)
Li, Jie; Huang, Houxu; Wang, Mingyang
2017-01-01
In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha (p-α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.
Experimental and theoretical aerodynamic characteristics of a high-lift semispan wing model
NASA Technical Reports Server (NTRS)
Applin, Zachary T.; Gentry, Garl L., Jr.
1990-01-01
Experimental and theoretical aerodynamic characteristics were compared for a high-lift, semispan wing configuration that incorporated a slightly modified version of the NASA Advanced Laminar Flow Control airfoil section. The experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel at chord Reynolds numbers of 2.36 and 3.33 million. A two-dimensional airfoil code and a three-dimensional panel code were used to obtain aerodynamic predictions. Two-dimensional data were corrected for three-dimensional effects. Comparisons between predicted and measured values were made for the cruise configuration and for various high-lift configurations. Both codes predicted lift and pitching moment coefficients that agreed well with experiment for the cruise configuration. These parameters were overpredicted for all high-lift configurations. Drag coefficient was underpredicted for all cases. Corrected two-dimensional pressure distributions typically agreed well with experiment, while the panel code overpredicted the leading-edge suction peak on the wing. One important feature missing from both of these codes was a capability for separated flow analysis. The major cause of disparity between the measured data and predictions presented herein was attributed to separated flow conditions.
Model-based advanced process control of coagulation.
Baxter, C W; Shariff, R; Stanley, S J; Smith, D W; Zhang, Q; Saumer, E D
2002-01-01
The drinking water treatment industry has seen a recent increase in the use of artificial neural networks (ANNs) for process modelling and offline process control tools and applications. While conceptual frameworks for integrating the ANN technology into the real-time control of complex treatment processes have been proposed, actual working systems have yet to be developed. This paper presents development and application of an ANN model-based advanced process control system for the coagulation process at a pilot-scale water treatment facility in Edmonton, Alberta, Canada. The system was successfully used to maintain a user-defined set point for effluent quality, by automatically varying operating conditions in response to changes in influent water quality. This new technology has the potential to realize significant operational cost saving for utilities when applied in full-scale applications.
Computational methods of the Advanced Fluid Dynamics Model
Bohl, W.R.; Wilhelm, D.; Parker, F.R.; Berthier, J.; Maudlin, P.J.; Schmuck, P.; Goutagny, L.; Ichikawa, S.; Ninokata, H.; Luck, L.B.
1987-01-01
To more accurately treat severe accidents in fast reactors, a program has been set up to investigate new computational models and approaches. The product of this effort is a computer code, the Advanced Fluid Dynamics Model (AFDM). This paper describes some of the basic features of the numerical algorithm used in AFDM. Aspects receiving particular emphasis are the fractional-step method of time integration, the semi-implicit pressure iteration, the virtual mass inertial terms, the use of three velocity fields, higher order differencing, convection of interfacial area with source and sink terms, multicomponent diffusion processes in heat and mass transfer, the SESAME equation of state, and vectorized programming. A calculated comparison with an isothermal tetralin/ammonia experiment is performed. We conclude that significant improvements are possible in reliably calculating the progression of severe accidents with further development.
Tachev, K D; Danov, K D; Kralchevsky, P A
2004-03-15
This study represents an attempt to achieve a better understanding of the stomatocyte-echinocyte transition in the shape of red blood cells. We determined experimentally the index of cell shape at various ionic strengths and osmolarities for native and trypsin-treated human erythrocytes. For every given composition of the outer phase, we calculated the ionic strength in the cells and the transmembrane electric potential using a known theoretical model. Next, we described theoretically the electric double layers formed on both sides of the cell membrane, and derived expressions for the tensions of the two membrane leaflets. Taking into account that the cell-shape index depends on the tension difference between the two leaflets, we fitted the experimental data with the constructed physicochemical model. The model, which agrees well with the experiment, indicates that the tension difference between the two leaflets is governed by the different adsorptions of counterions at the two membrane surfaces, rather than by the direct contribution of the electric double layers to the membrane tension. Thus, with the rise of the ionic strength, the counterion adsorption increases stronger at the outer leaflet, whose stretching surface pressure becomes greater, and whose area expands relative to that of the inner leaflet. Hence, there is no contradiction between the bilayer-couple hypothesis and the electric double layer theory, if the latter is upgraded to account for the effect of counterion-adsorption on the membrane tension. The developed quantitative model can be applied to predict the shape index of cells upon a stomatocyte-discocyte-echinocyte transformation at varying composition of the outer medium.
Current advancements and challenges in soil-root interactions modelling
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry
2015-04-01
Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.
Current Advancements and Challenges in Soil-Root Interactions Modelling
NASA Astrophysics Data System (ADS)
Schnepf, A.; Huber, K.; Abesha, B.; Meunier, F.; Leitner, D.; Roose, T.; Javaux, M.; Vanderborght, J.; Vereecken, H.
2014-12-01
Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.
NASA Technical Reports Server (NTRS)
Thompson, O. E.
1982-01-01
The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.
NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Lee-Rausch, E. M.
2012-01-01
Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.
Steady-state Analysis Model for Advanced Fuelcycle Schemes
2006-05-12
The model was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 20032005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down the cost analysis results. All the fuel cycle schemes considered in the model are represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and highlevel waste along time are included in the model and can be displayed. The user can modify easily the values of mass flows and/or cost parameters and see the corresponding changes in the results. The model calculates: frontend fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs. It performs Monte Carlo simulations with changing the values of all unit costs within their respective ranges (from lower to upper bounds).
Operational advances in ring current modeling using RAM-SCB
Welling, Daniel T; Jordanova, Vania K; Zaharia, Sorin G; Morley, Steven K
2010-12-03
The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) combines a kinetic model of the ring current with a force-balanced model of the magnetospheric magnetic field to create an inner magnetospheric model that is magnetically self consistent. RAM-SCB produces a wealth of outputs that are valuable to space weather applications. For example, the anisotropic particle distribution of the KeV-energy population calculated by the code is key for predicting surface charging on spacecraft. Furthermore, radiation belt codes stand to benefit substantially from RAM-SCB calculated magnetic field values and plasma wave growth rates - both important for determining the evolution of relativistic electron populations. RAM-SCB is undergoing development to bring these benefits to the space weather community. Data-model validation efforts are underway to assess the performance of the system. 'Virtual Satellite' capability has been added to yield satellite-specific particle distribution and magnetic field output. The code's outer boundary is being expanded to 10 Earth Radii to encompass previously neglected geosynchronous orbits and allow the code to be driven completely by either empirical or first-principles based inputs. These advances are culminating towards a new, real-time version of the code, rtRAM-SCB, that can monitor the inner magnetosphere conditions on both a global and spacecraft-specific level. This paper summarizes these new features as well as the benefits they provide the space weather community.
MIP models for connected facility location: A theoretical and computational study☆
Gollowitzer, Stefan; Ljubić, Ivana
2011-01-01
This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized. We model ConFL using seven compact and three mixed integer programming formulations of exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models is provided. For two exponential size models we develop a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of randomly generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented models with respect to the quality of obtained bounds and the corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%. PMID:25009366
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.
Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y
2016-04-01
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.
Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows
NASA Astrophysics Data System (ADS)
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-06-01
In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models
Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; ...
2015-04-06
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models
Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; He, Fei; Zhuang, Jun; Yau, David K. Y.
2015-04-06
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.
Jones-Farrand, D. Todd; Fearer, Todd M.; Thogmartin, Wayne E.; Thompson, Frank R.; Nelson, Mark D.; Tirpak, John M.
2011-01-01
Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P , 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose
Jones-Farrand, D Todd; Fearer, Todd M; Thogmartin, Wayne E; Thompson, Frank R; Nelson, Mark D; Tirpak, John M
2011-09-01
Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P < 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose