Sample records for advanced theoretical models

  1. Theoretical Advanced Study Institute: 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrand, Thomas

    The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context andmore » on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.« less

  2. Theoretical Modeling and Electromagnetic Response of Complex Metamaterials

    DTIC Science & Technology

    2017-03-06

    AFRL-AFOSR-VA-TR-2017-0042 Theoretical Modeling and Electromagnetic Response of Complex Metamaterials Andrea Alu UNIVERSITY OF TEXAS AT AUSTIN Final...Nov 2016 4. TITLE AND SUBTITLE Theoretical Modeling and Electromagnetic Response of Complex Metamaterials 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...based on parity-time symmetric metasurfaces, and various advances in electromagnetic and acoustic theory and applications. Our findings have opened

  3. Advancing nursing practice: redefining the theoretical and practical integration of knowledge.

    PubMed

    Christensen, Martin

    2011-03-01

    The aim of this paper is to offer an alternative knowing-how knowing-that framework of nursing knowledge, which in the past has been accepted as the provenance of advanced practice. The concept of advancing practice is central to the development of nursing practice and has been seen to take on many different forms depending on its use in context. To many it has become synonymous with the work of the advanced or expert practitioner; others have viewed it as a process of continuing professional development and skills acquisition. Moreover, it is becoming closely linked with practice development. However, there is much discussion as to what constitutes the knowledge necessary for advancing and advanced practice, and it has been suggested that theoretical and practical knowledge form the cornerstone of advanced knowledge. The design of this article takes a discursive approach as to the meaning and integration of knowledge within the context of advancing nursing practice. A thematic analysis of the current discourse relating to knowledge integration models in an advancing and advanced practice arena was used to identify concurrent themes relating to the knowing-how knowing-that framework which commonly used to classify the knowledge necessary for advanced nursing practice. There is a dichotomy as to what constitutes knowledge for advanced and advancing practice. Several authors have offered a variety of differing models, yet it is the application and integration of theoretical and practical knowledge that defines and develops the advancement of nursing practice. An alternative framework offered here may allow differences in the way that nursing knowledge important for advancing practice is perceived, developed and coordinated. What has inevitably been neglected is that there are various other variables which when transposed into the existing knowing-how knowing-that framework allows for advanced knowledge to be better defined. One of the more notable variables is

  4. Propagation studies using a theoretical ionosphere model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.K.

    1973-03-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray-tracing pron predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra--Rowe D-region model, and the Groves' neutral atmospheric model are used throughout ihis work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long-distance high-frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted. (auth) (STAR)

  5. Recent theoretical, neural, and clinical advances in sustained attention research.

    PubMed

    Fortenbaugh, Francesca C; DeGutis, Joseph; Esterman, Michael

    2017-05-01

    Models of attention often distinguish among attention subtypes, with classic models separating orienting, switching, and sustaining functions. Compared with other forms of attention, the neurophysiological basis of sustaining attention has received far less notice, yet it is known that momentary failures of sustained attention can have far-ranging negative effects in healthy individuals, and lasting sustained attention deficits are pervasive in clinical populations. In recent years, however, there has been increased interest in characterizing moment-to-moment fluctuations in sustained attention, in addition to the overall vigilance decrement, and understanding how these neurocognitive systems change over the life span and across various clinical populations. The use of novel neuroimaging paradigms and statistical approaches has allowed for better characterization of the neural networks supporting sustained attention and has highlighted dynamic interactions within and across multiple distributed networks that predict behavioral performance. These advances have also provided potential biomarkers to identify individuals with sustained attention deficits. These findings have led to new theoretical models explaining why sustaining focused attention is a challenge for individuals and form the basis for the next generation of sustained attention research, which seeks to accurately diagnose and develop theoretically driven treatments for sustained attention deficits that affect a variety of clinical populations. © 2017 New York Academy of Sciences.

  6. Recent theoretical, neural, and clinical advances in sustained attention research

    PubMed Central

    Fortenbaugh, Francesca C.; DeGutis, Joseph; Esterman, Michael

    2017-01-01

    Models of attention often distinguish between attention subtypes, with classic models separating orienting, switching, and sustaining functions. Compared to other forms of attention, the neurophysiological basis of sustaining attention has received far less attention yet it is known that momentary failures of sustained attention can have far ranging negative impacts in healthy individuals and lasting sustained attention deficits are pervasive in clinical populations. In recent years, however, there has been increased interest in characterizing moment-to-moment fluctuations in sustained attention in addition to the overall vigilance decrement and understanding how these neurocognitive systems change over the lifespan and across various clinical populations. The use of novel neuroimaging paradigms and statistical approaches has allowed for better characterization of the neural networks supporting sustained attention, and highlighted dynamic interactions within and across multiple distributed networks that predict behavioral performance. These advances have also provided potential biomarkers to identify individuals with sustained attention deficits. These findings have led to new theoretical models of why sustaining focused attention is a challenge for individuals and form the basis for the next generation of sustained attention research, which seeks to accurately diagnose and develop theoretically-driven treatments for sustained attention deficits that affect a variety of clinical populations. PMID:28260249

  7. Propagation studies using a theoretical ionosphere model

    NASA Technical Reports Server (NTRS)

    Lee, M.

    1973-01-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.

  8. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  9. Introduction to Theoretical Modelling

    NASA Astrophysics Data System (ADS)

    Davis, Matthew J.; Gardiner, Simon A.; Hanna, Thomas M.; Nygaard, Nicolai; Proukakis, Nick P.; Szymańska, Marzena H.

    2013-02-01

    We briefly overview commonly encountered theoretical notions arising in the modelling of quantum gases, intended to provide a unified background to the `language' and diverse theoretical models presented elsewhere in this book, and aimed particularly at researchers from outside the quantum gases community.

  10. Models of the Bilingual Lexicon and Their Theoretical Implications for CLIL

    ERIC Educational Resources Information Center

    Heine, Lena

    2014-01-01

    Although many advances have been made in recent years concerning the theoretical dimensions of content and language integrated learning (CLIL), research still has to meet the necessity to come up with integrative models that adequately map the interrelation between content and language learning in CLIL contexts. This article will suggest that…

  11. Affective Change in Psychodynamic Psychotherapy: Theoretical Models and Clinical Approaches to Changing Emotions.

    PubMed

    Subic-Wrana, Claudia; Greenberg, Leslie S; Lane, Richard D; Michal, Matthias; Wiltink, Jörg; Beutel, Manfred E

    2016-09-01

    Affective change has been considered the hallmark of therapeutic change in psychoanalysis. Psychoanalytic writers have begun to incorporate theoretically the advanced understanding of emotional processing and transformation of the affective neurosciences. We ask if this theoretical advancement is reflected in treatment techniques addressing the processing of emotion. We review psychoanalytic models and treatment recommendations of maladaptive affect processing in the light of a neuroscientifically informed model of achieving psychotherapeutic change by activation and reconsolidation of emotional memory. Emotions tend to be treated as other mental contents, resulting in a lack of specific psychodynamic techniques to work with emotions. Manualized technical modifications addressing affect regulation have been successfully tested in patients with personality pathology, but not for psychodynamic treatments of axis I disorders. Emotional memories need to be activated in order to be modified, therefore, we propose to include techniques into psychodynamic therapy that stimulate emotional experience.

  12. Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

    2013-02-18

    This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less

  13. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Theoretical and experimental research in aeroelastic stability of an advanced bearingless rotor for future helicopters

    NASA Technical Reports Server (NTRS)

    Wang, James M.

    1991-01-01

    The aeroelastic stability of a shaft-fixed bearingless rotor is analyzed in wind-tunnel tests for a wide range of operating conditions in order to determine whether such a system could be made aeroelastically stable without incorporating auxiliary dampers. The model rotor and blade properties are determined and used as an input to a bearingless-rotor analysis. Theoretical predictions are compared with experimental results in hover and forward flights. The analysis predicts the lag mode damping satisfactorily for collective pitch between 5 deg and 10 deg; however, the quasi-steady linear aerodynamic modeling overpredicts the damping values for higher collective pitch settings. It is noted that soft blade pitch links improve aeroelastic stability in hover and at low advance ratio.

  15. Some Aspects of Advanced Tokamak Modeling in DIII-D

    NASA Astrophysics Data System (ADS)

    St John, H. E.; Petty, C. C.; Murakami, M.; Kinsey, J. E.

    2000-10-01

    We extend previous work(M. Murakami, et al., General Atomics Report GA-A23310 (1999).) done on time dependent DIII-D advanced tokamak simulations by introducing theoretical confinement models rather than relying on power balance derived transport coefficients. We explore using NBCD and off axis ECCD together with a self-consistent aligned bootstrap current, driven by the internal transport barrier dynamics generated with the GLF23 confinement model, to shape the hollow current profile and to maintain MHD stable conditions. Our theoretical modeling approach uses measured DIII-D initial conditions to start off the simulations in a smooth consistent manner. This mitigates the troublesome long lived perturbations in the ohmic current profile that is normally caused by inconsistent initial data. To achieve this goal our simulation uses a sequence of time dependent eqdsks generated autonomously by the EFIT MHD equilibrium code in analyzing experimental data to supply the history for the simulation.

  16. The principal components model: a model for advancing spirituality and spiritual care within nursing and health care practice.

    PubMed

    McSherry, Wilfred

    2006-07-01

    The aim of this study was to generate a deeper understanding of the factors and forces that may inhibit or advance the concepts of spirituality and spiritual care within both nursing and health care. This manuscript presents a model that emerged from a qualitative study using grounded theory. Implementation and use of this model may assist all health care practitioners and organizations to advance the concepts of spirituality and spiritual care within their own sphere of practice. The model has been termed the principal components model because participants identified six components as being crucial to the advancement of spiritual health care. Grounded theory was used meaning that there was concurrent data collection and analysis. Theoretical sampling was used to develop the emerging theory. These processes, along with data analysis, open, axial and theoretical coding led to the identification of a core category and the construction of the principal components model. Fifty-three participants (24 men and 29 women) were recruited and all consented to be interviewed. The sample included nurses (n=24), chaplains (n=7), a social worker (n=1), an occupational therapist (n=1), physiotherapists (n=2), patients (n=14) and the public (n=4). The investigation was conducted in three phases to substantiate the emerging theory and the development of the model. The principal components model contained six components: individuality, inclusivity, integrated, inter/intra-disciplinary, innate and institution. A great deal has been written on the concepts of spirituality and spiritual care. However, rhetoric alone will not remove some of the intrinsic and extrinsic barriers that are inhibiting the advancement of the spiritual dimension in terms of theory and practice. An awareness of and adherence to the principal components model may assist nurses and health care professionals to engage with and overcome some of the structural, organizational, political and social variables that are

  17. Theoretical models of parental HIV disclosure: a critical review.

    PubMed

    Qiao, Shan; Li, Xiaoming; Stanton, Bonita

    2013-01-01

    This study critically examined three major theoretical models related to parental HIV disclosure (i.e., the Four-Phase Model [FPM], the Disclosure Decision Making Model [DDMM], and the Disclosure Process Model [DPM]), and the existing studies that could provide empirical support to these models or their components. For each model, we briefly reviewed its theoretical background, described its components and/or mechanisms, and discussed its strengths and limitations. The existing empirical studies supported most theoretical components in these models. However, hypotheses related to the mechanisms proposed in the models have not yet tested due to a lack of empirical evidence. This study also synthesized alternative theoretical perspectives and new issues in disclosure research and clinical practice that may challenge the existing models. The current study underscores the importance of including components related to social and cultural contexts in theoretical frameworks, and calls for more adequately designed empirical studies in order to test and refine existing theories and to develop new ones.

  18. A theoretical flaw in the advance market commitment idea.

    PubMed

    Sonderholm, Jorn

    2010-06-01

    Infectious and parasitic diseases cause massive health problems in the developing world. Research and development of drugs for diseases that mainly affect poor people in developing countries is limited. The advance market commitment (AMC) idea is an incentivising mechanism for research and development of drugs for neglected diseases. Discussion of the AMC idea is of renewed interest given the launch in June 2009 of the first AMC. This pilot AMC is designed to, among other things, test the idea for potential future applications. This paper is a critique of the AMC idea. It seeks to show that the idea has a hitherto unrecognised theoretical flaw that should make policy-makers and donors hesitant to embrace future applications of the idea.

  19. Specification and misspecification of theoretical foundations and logic models for health communication campaigns.

    PubMed

    Slater, Michael D

    2006-01-01

    While increasingly widespread use of behavior change theory is an advance for communication campaigns and their evaluation, such theories provide a necessary but not sufficient condition for theory-based communication interventions. Such interventions and their evaluations need to incorporate theoretical thinking about plausible mechanisms of message effect on health-related attitudes and behavior. Otherwise, strategic errors in message design and dissemination, and misspecified campaign logic models, insensitive to campaign effects, are likely to result. Implications of the elaboration likelihood model, attitude accessibility, attitude to the ad theory, exemplification, and framing are explored, and implications for campaign strategy and evaluation designs are briefly discussed. Initial propositions are advanced regarding a theory of campaign affect generalization derived from attitude to ad theory, and regarding a theory of reframing targeted health behaviors in those difficult contexts in which intended audiences are resistant to the advocated behavior or message.

  20. A preliminary theoretical line-blanketed model solar photosphere

    NASA Technical Reports Server (NTRS)

    Kurucz, R. L.

    1974-01-01

    In the theoretical approach to model-atmosphere construction, all opacities are computed theoretically and the temperature-pressure structure is determined by conservation of energy. Until recently, this has not been a very useful method for later type stars, because the line opacity was both poorly known and difficult to calculate. However, methods have now been developed that are capable of representing the line opacity well enough for construction of realistic models. A preliminary theoretical solar model is presented that produces closer agreement with observation than has been heretofore possible. The qualitative advantages and shortcomings of this model are discussued and projected improvements are outlined.

  1. The Promoting Effective Advance Care for Elders (PEACE) randomized pilot study: theoretical framework and study design.

    PubMed

    Allen, Kyle R; Hazelett, Susan E; Radwany, Steven; Ertle, Denise; Fosnight, Susan M; Moore, Pamela S

    2012-04-01

    Practice guidelines are available for hospice and palliative medicine specialists and geriatricians. However, these guidelines do not adequately address the needs of patients who straddle the 2 specialties: homebound chronically ill patients. The purpose of this article is to describe the theoretical basis for the Promoting Effective Advance Care for Elders (PEACE) randomized pilot study. PEACE is an ongoing 2-group randomized pilot study (n=80) to test an in-home interdisciplinary care management intervention that combines palliative care approaches to symptom management, psychosocial and emotional support, and advance care planning with geriatric medicine approaches to optimizing function and addressing polypharmacy. The population comprises new enrollees into PASSPORT, Ohio's community-based, long-term care Medicaid waiver program. All PASSPORT enrollees have geriatric/palliative care crossover needs because they are nursing home eligible. The intervention is based on Wagner's Chronic Care Model and includes comprehensive interdisciplinary care management for these low-income frail elders with chronic illnesses, uses evidence-based protocols, emphasizes patient activation, and integrates with community-based long-term care and other community agencies. Our model, with its standardized, evidence-based medical and psychosocial intervention protocols, will transport easily to other sites that are interested in optimizing outcomes for community-based, chronically ill older adults. © Mary Ann Liebert, Inc.

  2. Hybrid rocket engine, theoretical model and experiment

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  3. Experimenting with theoretical motor neuroscience.

    PubMed

    Ajemian, Robert; Hogan, Neville

    2010-11-01

    Motor neuroscience is well over 100 years old, with seminal work such as G. T. Fritz and E. Hitzig's discovery of motor cortex occurring in 1870. Theoretical motor neuroscience has been ongoing for at least the last 50 years. How mature a scientific discipline is motor neuroscience? Are experimentalists and theoreticians working together productively to help the field progress? This article addresses these questions by advancing the following theses. Motor neuroscience remains at a descriptive stage due to the incredible complexity of the problem to be solved. The proliferation of models--and distinct modeling camps--stems from the absence of unifying conceptual constructs. To advance the field, theoreticians must rely more heavily on the concept of falsification by producing models that lend themselves to clear experimental testing.

  4. A Detection-Theoretic Model of Echo Inhibition

    ERIC Educational Resources Information Center

    Saberi, Kourosh; Petrosyan, Agavni

    2004-01-01

    A detection-theoretic analysis of the auditory localization of dual-impulse stimuli is described, and a model for the processing of spatial cues in the echo pulse is developed. Although for over 50 years "echo suppression" has been the topic of intense theoretical and empirical study within the hearing sciences, only a rudimentary understanding of…

  5. Theoretical models of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Hawkings, D. L.

    1978-01-01

    For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.

  6. Theoretical Models, Assessment Frameworks and Test Construction.

    ERIC Educational Resources Information Center

    Chalhoub-Deville, Micheline

    1997-01-01

    Reviews the usefulness of proficiency models influencing second language testing. Findings indicate that several factors contribute to the lack of congruence between models and test construction and make a case for distinguishing between theoretical models. Underscores the significance of an empirical, contextualized and structured approach to the…

  7. Developing a theoretical framework for complex community-based interventions.

    PubMed

    Angeles, Ricardo N; Dolovich, Lisa; Kaczorowski, Janusz; Thabane, Lehana

    2014-01-01

    Applying existing theories to research, in the form of a theoretical framework, is necessary to advance knowledge from what is already known toward the next steps to be taken. This article proposes a guide on how to develop a theoretical framework for complex community-based interventions using the Cardiovascular Health Awareness Program as an example. Developing a theoretical framework starts with identifying the intervention's essential elements. Subsequent steps include the following: (a) identifying and defining the different variables (independent, dependent, mediating/intervening, moderating, and control); (b) postulating mechanisms how the independent variables will lead to the dependent variables; (c) identifying existing theoretical models supporting the theoretical framework under development; (d) scripting the theoretical framework into a figure or sets of statements as a series of hypotheses, if/then logic statements, or a visual model; (e) content and face validation of the theoretical framework; and (f) revising the theoretical framework. In our example, we combined the "diffusion of innovation theory" and the "health belief model" to develop our framework. Using the Cardiovascular Health Awareness Program as the model, we demonstrated a stepwise process of developing a theoretical framework. The challenges encountered are described, and an overview of the strategies employed to overcome these challenges is presented.

  8. Allostatic load: A theoretical model for understanding the relationship between maternal posttraumatic stress disorder and adverse birth outcomes.

    PubMed

    Li, Yang; Rosemberg, Marie-Anne Sanon; Seng, Julia S

    2018-07-01

    Adverse birth outcomes such as preterm birth and low birth weight are significant public health concerns and contribute to neonatal morbidity and mortality. Studies have increasingly been exploring the predictive effects of maternal posttraumatic stress disorder (PTSD) on adverse birth outcomes. However, the biological mechanisms by which maternal PTSD affects birth outcomes are not well understood. Allostatic load refers to the cumulative dysregulations of the multiple physiological systems as a response to multiple social-ecological levels of chronic stress. Allostatic load has been well documented in relation to both chronic stress and adverse health outcomes in non-pregnant populations. However, the mediating role of allostatic load is less understood when it comes to maternal PTSD and adverse birth outcomes. To propose a theoretical model that depicts how allostatic load could mediate the impact of maternal PTSD on birth outcomes. We followed the procedures for theory synthesis approach described by Walker and Avant (2011), including specifying focal concepts, identifying related factors and relationships, and constructing an integrated representation. We first present a theoretical overview of the allostatic load theory and the other 4 relevant theoretical models. Then we provide a brief narrative review of literature that empirically supports the propositions of the integrated model. Finally, we describe our theoretical model. The theoretical model synthesized has the potential to advance perinatal research by delineating multiple biomarkers to be used in future. After it is well validated, it could be utilized as the theoretical basis for health care professionals to identify high-risk women by evaluating their experiences of psychosocial and traumatic stress and to develop and evaluate service delivery and clinical interventions that might modify maternal perceptions or experiences of stress and eliminate their impacts on adverse birth outcomes. Copyright

  9. On the Usefulness of Narratives: An Interdisciplinary Review and Theoretical Model.

    PubMed

    Shaffer, Victoria A; Focella, Elizabeth S; Hathaway, Andrew; Scherer, Laura D; Zikmund-Fisher, Brian J

    2018-04-19

    How can we use stories from other people to promote better health experiences, improve judgments about health, and increase the quality of medical decisions without introducing bias, systematically persuading the listeners to change their attitudes, or altering behaviors in nonoptimal ways? More practically, should narratives be used in health education, promotion, or behavior change interventions? In this article, we address these questions by conducting a narrative review of a diverse body of literature on narratives from several disciplines to gain a better understanding about what narratives do, including their role in communication, engagement, recall, persuasion, and health behavior change. We also review broad theories about information processing and persuasion from psychology and more specific models about narrative messaging found in the health communication and marketing literatures to provide insight into the processes by which narratives have their effect on health behavior. To address major gaps in our theoretical understanding about how narratives work and what effects they will have on health behavior, we propose the Narrative Immersion Model, whose goal is to identify the parameters that predict the specific impact of a particular narrative (e.g. persuade, inform, comfort, etc.) based on the type of narrative message (e.g. process, experience, or outcome narrative). Further, the Narrative Immersion Model describes the magnitude of the effect as increasing through successive layers of engagement with the narrative: interest, identification, and immersion. Finally, the Narrative Immersion Model identifies characteristics of the narrative intervention that encourage greater immersion within a given narrative. We believe there are important communication gaps in areas areas of behavioral medicine that could be addressed with narratives; however, more work is needed in order to employ narrative messaging systematically. The Narrative Immersion Model

  10. Theoretical and computer models of detonation in solid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less

  11. Solving Navier-Stokes Equations with Advanced Turbulence Models on Three-Dimensional Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.; Frink, Neal T.

    1999-01-01

    USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.

  12. Empathy and child neglect: a theoretical model.

    PubMed

    De Paul, Joaquín; Guibert, María

    2008-11-01

    To present an explanatory theory-based model of child neglect. This model does not address neglectful behaviors of parents with mental retardation, alcohol or drug abuse, or severe mental health problems. In this model parental behavior aimed to satisfy a child's need is considered a helping behavior and, as a consequence, child neglect is considered as a specific type of non-helping behavior. The central hypothesis of the theoretical model presented here suggests that neglectful parents cannot develop the helping response set to care for their children because the observation of a child's signal of need does not lead to the experience of emotions that motivate helping or because the parents experience these emotions, but specific cognitions modify the motivation to help. The present theoretical model suggests that different typologies of neglectful parents could be developed based on different reasons that parents might not to experience emotions that motivate helping behaviors. The model can be helpful to promote new empirical studies about the etiology of different groups of neglectful families.

  13. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.

  14. Expanding Panjabi's stability model to express movement: a theoretical model.

    PubMed

    Hoffman, J; Gabel, P

    2013-06-01

    Novel theoretical models of movement have historically inspired the creation of new methods for the application of human movement. The landmark theoretical model of spinal stability by Panjabi in 1992 led to the creation of an exercise approach to spinal stability. This approach however was later challenged, most significantly due to a lack of favourable clinical effect. The concepts explored in this paper address and consider the deficiencies of Panjabi's model then propose an evolution and expansion from a special model of stability to a general one of movement. It is proposed that two body-wide symbiotic elements are present within all movement systems, stability and mobility. The justification for this is derived from the observable clinical environment. It is clinically recognised that these two elements are present and identifiable throughout the body in different joints and muscles, and the neural conduction system. In order to generalise the Panjabi model of stability to include and illustrate movement, a matching parallel mobility system with the same subsystems was conceptually created. In this expanded theoretical model, the new mobility system is placed beside the existing stability system and subsystems. The ability of both stability and mobility systems to work in harmony will subsequently determine the quality of movement. Conversely, malfunction of either system, or their subsystems, will deleteriously affect all other subsystems and consequently overall movement quality. For this reason, in the rehabilitation exercise environment, focus should be placed on the simultaneous involvement of both the stability and mobility systems. It is suggested that the individual's relevant functional harmonious movements should be challenged at the highest possible level without pain or discomfort. It is anticipated that this conceptual expansion of the theoretical model of stability to one with the symbiotic inclusion of mobility, will provide new understandings

  15. Acoustic test and analyses of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Brooks, B. M.; Metzger, F. B.

    1980-01-01

    Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.

  16. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  17. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE PAGES

    Hu, Rui

    2016-11-19

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  18. Dynamics in Higher Education Politics: A Theoretical Model

    ERIC Educational Resources Information Center

    Kauko, Jaakko

    2013-01-01

    This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…

  19. A Thematic Analysis of Theoretical Models for Translational Science in Nursing: Mapping the Field

    PubMed Central

    Mitchell, Sandra A.; Fisher, Cheryl A.; Hastings, Clare E.; Silverman, Leanne B.; Wallen, Gwenyth R.

    2010-01-01

    Background The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. Purpose This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Method Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes; (2) strategic change to promote adoption of new knowledge; (3) knowledge exchange and synthesis for application and inquiry; (4) designing and interpreting dissemination research. Discussion This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. Conclusions A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes. PMID:21074646

  20. Theoretical Foundation for Weld Modeling

    NASA Technical Reports Server (NTRS)

    Traugott, S.

    1986-01-01

    Differential equations describe physics of tungsten/inert-gas and plasma-arc welding in aluminum. Report collects and describes necessary theoretical foundation upon which numerical welding model is constructed for tungsten/inert gas or plasma-arc welding in aluminum without keyhole. Governing partial differential equations for flow of heat, metal, and current given, together with boundary conditions relevant to welding process. Numerical estimates for relative importance of various phenomena and required properties of 2219 aluminum included

  1. Hybrid quantum teleportation: A theoretical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  2. A simple theoretical model for ⁶³Ni betavoltaic battery.

    PubMed

    Zuo, Guoping; Zhou, Jianliang; Ke, Guotu

    2013-12-01

    A numerical simulation of the energy deposition distribution in semiconductors is performed for ⁶³Ni beta particles. Results show that the energy deposition distribution exhibits an approximate exponential decay law. A simple theoretical model is developed for ⁶³Ni betavoltaic battery based on the distribution characteristics. The correctness of the model is validated by two literature experiments. Results show that the theoretical short-circuit current agrees well with the experimental results, and the open-circuit voltage deviates from the experimental results in terms of the influence of the PN junction defects and the simplification of the source. The theoretical model can be applied to ⁶³Ni and ¹⁴⁷Pm betavoltaic batteries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Network-Theoretic Modeling of Fluid Flow

    DTIC Science & Technology

    2015-07-29

    Final Report STIR: Network-Theoretic Modeling of Fluid Flow ARO Grant W911NF-14-1-0386 Program manager: Dr. Samuel Stanton ( August 1, 2014–April 30...Morzyński, M., and Comte , P., “A finite-time thermodynamics of unsteady fluid flows,” Journal of Non-Equilibrium Thermody- namics, Vol. 33, No. 2

  4. Model-theoretic framework for sensor data fusion

    NASA Astrophysics Data System (ADS)

    Zavoleas, Kyriakos P.; Kokar, Mieczyslaw M.

    1993-09-01

    The main goal of our research in sensory data fusion (SDF) is the development of a systematic approach (a methodology) to designing systems for interpreting sensory information and for reasoning about the situation based upon this information and upon available data bases and knowledge bases. To achieve such a goal, two kinds of subgoals have been set: (1) develop a theoretical framework in which rational design/implementation decisions can be made, and (2) design a prototype SDF system along the lines of the framework. Our initial design of the framework has been described in our previous papers. In this paper we concentrate on the model-theoretic aspects of this framework. We postulate that data are embedded in data models, and information processing mechanisms are embedded in model operators. The paper is devoted to analyzing the classes of model operators and their significance in SDF. We investigate transformation abstraction and fusion operators. A prototype SDF system, fusing data from range and intensity sensors, is presented, exemplifying the structures introduced. Our framework is justified by the fact that it provides modularity, traceability of information flow, and a basis for a specification language for SDF.

  5. Dependence of tropical cyclone development on coriolis parameter: A theoretical model

    NASA Astrophysics Data System (ADS)

    Deng, Liyuan; Li, Tim; Bi, Mingyu; Liu, Jia; Peng, Melinda

    2018-03-01

    A simple theoretical model was formulated to investigate how tropical cyclone (TC) intensification depends on the Coriolis parameter. The theoretical framework includes a two-layer free atmosphere and an Ekman boundary layer at the bottom. The linkage between the free atmosphere and the boundary layer is through the Ekman pumping vertical velocity in proportion to the vorticity at the top of the boundary layer. The closure of this linear system assumes a simple relationship between the free atmosphere diabatic heating and the boundary layer moisture convergence. Under a set of realistic atmospheric parameter values, the model suggests that the most preferred latitude for TC development is around 5° without considering other factors. The theoretical result is confirmed by high-resolution WRF model simulations in a zero-mean flow and a constant SST environment on an f -plane with different Coriolis parameters. Given an initially balanced weak vortex, the TC-like vortex intensifies most rapidly at the reference latitude of 5°. Thus, the WRF model simulations confirm the f-dependent characteristics of TC intensification rate as suggested by the theoretical model.

  6. A Generalized Information Theoretical Model for Quantum Secret Sharing

    NASA Astrophysics Data System (ADS)

    Bai, Chen-Ming; Li, Zhi-Hui; Xu, Ting-Ting; Li, Yong-Ming

    2016-11-01

    An information theoretical model for quantum secret sharing was introduced by H. Imai et al. (Quantum Inf. Comput. 5(1), 69-80 2005), which was analyzed by quantum information theory. In this paper, we analyze this information theoretical model using the properties of the quantum access structure. By the analysis we propose a generalized model definition for the quantum secret sharing schemes. In our model, there are more quantum access structures which can be realized by our generalized quantum secret sharing schemes than those of the previous one. In addition, we also analyse two kinds of important quantum access structures to illustrate the existence and rationality for the generalized quantum secret sharing schemes and consider the security of the scheme by simple examples.

  7. Theoretical analysis of intracortical microelectrode recordings

    NASA Astrophysics Data System (ADS)

    Lempka, Scott F.; Johnson, Matthew D.; Moffitt, Michael A.; Otto, Kevin J.; Kipke, Daryl R.; McIntyre, Cameron C.

    2011-08-01

    Advanced fabrication techniques have now made it possible to produce microelectrode arrays for recording the electrical activity of a large number of neurons in the intact brain for both clinical and basic science applications. However, the long-term recording performance desired for these applications is hindered by a number of factors that lead to device failure or a poor signal-to-noise ratio (SNR). The goal of this study was to identify factors that can affect recording quality using theoretical analysis of intracortical microelectrode recordings of single-unit activity. Extracellular microelectrode recordings were simulated with a detailed multi-compartment cable model of a pyramidal neuron coupled to a finite-element volume conductor head model containing an implanted recording microelectrode. Recording noise sources were also incorporated into the overall modeling infrastructure. The analyses of this study would be very difficult to perform experimentally; however, our model-based approach enabled a systematic investigation of the effects of a large number of variables on recording quality. Our results demonstrate that recording amplitude and noise are relatively independent of microelectrode size, but instead are primarily affected by the selected recording bandwidth, impedance of the electrode-tissue interface and the density and firing rates of neurons surrounding the recording electrode. This study provides the theoretical groundwork that allows for the design of the microelectrode and recording electronics such that the SNR is maximized. Such advances could help enable the long-term functionality required for chronic neural recording applications.

  8. Theoretical analysis of intracortical microelectrode recordings

    PubMed Central

    Lempka, Scott F; Johnson, Matthew D; Moffitt, Michael A; Otto, Kevin J; Kipke, Daryl R; McIntyre, Cameron C

    2011-01-01

    Advanced fabrication techniques have now made it possible to produce microelectrode arrays for recording the electrical activity of a large number of neurons in the intact brain for both clinical and basic science applications. However, the long-term recording performance desired for these applications is hindered by a number of factors that lead to device failure or a poor signal-to-noise ratio (SNR). The goal of this study was to identify factors that can affect recording quality using theoretical analysis of intracortical microelectrode recordings of single-unit activity. Extracellular microelectrode recordings were simulated with a detailed multi-compartment cable model of a pyramidal neuron coupled to a finite element volume conductor head model containing an implanted recording microelectrode. Recording noise sources were also incorporated into the overall modeling infrastructure. The analyses of this study would be very difficult to perform experimentally; however, our model-based approach enabled a systematic investigation of the effects of a large number of variables on recording quality. Our results demonstrate that recording amplitude and noise are relatively independent of microelectrode size, but instead are primarily affected by the selected recording bandwidth, impedance of the electrode-tissue interface, and the density and firing rates of neurons surrounding the recording electrode. This study provides the theoretical groundwork that allows for the design of the microelectrode and recording electronics such that the SNR is maximized. Such advances could help enable the long-term functionality required for chronic neural recording applications. PMID:21775783

  9. Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2016-08-18

    This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented.

  10. Graph theoretical modeling of baby brain networks.

    PubMed

    Zhao, Tengda; Xu, Yuehua; He, Yong

    2018-06-12

    The human brain undergoes explosive growth during the prenatal period and the first few postnatal years, establishing an early infrastructure for the later development of behaviors and cognitions. Revealing the developmental rules during the early phrase is essential in understanding the emergence of brain function and the origin of developmental disorders. The graph-theoretical network modeling in combination with multiple neuroimaging probes provides an important research framework to explore early development of the topological wiring and organizational paradigms of the brain. Here, we reviewed studies which employed neuroimaging and graph-theoretical modeling to investigate brain network development from approximately 20 gestational weeks to 2 years of age. Specifically, the structural and functional brain networks have evolved to highly efficient topological architectures in the early stage; where the structural network remains ahead and paves the way for the development of functional network. The brain network develops in a heterogeneous order, from primary to higher-order systems and from a tendency of network segregation to network integration in the prenatal and postnatal periods. The early brain network topologies show abilities in predicting certain cognitive and behavior performance in later life, and their impairments are likely to continue into childhood and even adulthood. These macroscopic topological changes are found to be associated with possible microstructural maturations, such as axonal growth and myelinations. Collectively, this review provides a detailed delineation of the early changes of the baby brains in the graph-theoretical modeling framework, which opens up a new avenue to understand the developmental principles of the connectome. Copyright © 2018. Published by Elsevier Inc.

  11. A review of game-theoretic models of road user behaviour.

    PubMed

    Elvik, Rune

    2014-01-01

    This paper reviews game-theoretic models that have been developed to explain road user behaviour in situations where road users interact with each other. The paper includes the following game-theoretic models: 1.A general model of the interaction between road users and their possible reaction to measures improving safety (behavioural adaptation).2.Choice of vehicle size as a Prisoners’ dilemma game.3.Speed choice as a co-ordination game.4.Speed compliance as a game between drivers and the police.5.Merging into traffic from an acceleration lane as a mixed-strategy game.6.Choice of level of attention in following situations as an evolutionary game.7.Choice of departure time to avoid congestion as variant of a Prisoners’ dilemma game.8.Interaction between cyclists crossing the road and car drivers.9.Dipping headlights at night well ahead of the point when glare becomes noticeable.10.Choice of evasive action in a situation when cars are on collision course. The models reviewed are different in many respects, but a common feature of the models is that they can explain how informal norms of behaviour can develop among road users and be sustained even if these informal norms violate the formal regulations of the traffic code. Game-theoretic models are not applicable to every conceivable interaction between road users or to situations in which road users choose behaviour without interacting with other road users. Nevertheless, it is likely that game-theoretic models can be applied more widely than they have been until now. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Information-Theoretic Benchmarking of Land Surface Models

    NASA Astrophysics Data System (ADS)

    Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong

    2016-04-01

    Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed

  13. A new simple local muscle recovery model and its theoretical and experimental validation.

    PubMed

    Ma, Liang; Zhang, Wei; Wu, Su; Zhang, Zhanwu

    2015-01-01

    This study was conducted to provide theoretical and experimental validation of a local muscle recovery model. Muscle recovery has been modeled in different empirical and theoretical approaches to determine work-rest allowance for musculoskeletal disorder (MSD) prevention. However, time-related parameters and individual attributes have not been sufficiently considered in conventional approaches. A new muscle recovery model was proposed by integrating time-related task parameters and individual attributes. Theoretically, this muscle recovery model was compared to other theoretical models mathematically. Experimentally, a total of 20 subjects participated in the experimental validation. Hand grip force recovery and shoulder joint strength recovery were measured after a fatiguing operation. The recovery profile was fitted by using the recovery model, and individual recovery rates were calculated as well after fitting. Good fitting values (r(2) > .8) were found for all the subjects. Significant differences in recovery rates were found among different muscle groups (p < .05). The theoretical muscle recovery model was primarily validated by characterization of the recovery process after fatiguing operation. The determined recovery rate may be useful to represent individual recovery attribute.

  14. Advances in heterogeneous ice nucleation research: Theoretical modeling and measurements

    NASA Astrophysics Data System (ADS)

    Beydoun, Hassan

    In the atmosphere, cloud droplets can remain in a supercooled liquid phase at temperatures as low as -40 °C. Above this temperature, cloud droplets freeze via heterogeneous ice nucleation whereby a rare and poorly understood subset of atmospheric particles catalyze the ice phase transition. As the phase state of clouds is critical in determining their radiative properties and lifetime, deficiencies in our understanding of heterogeneous ice nucleation poses a large uncertainty on our efforts to predict human induced global climate change. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established model and parameterizations that accurately predict heterogeneous ice nucleation. Conversely, the sparsity of reliable measurement techniques available struggle to be interpreted by a single consistent theoretical or empirical framework, which results in layers of uncertainty when attempting to extrapolate useful information regarding ice nucleation for use in atmospheric cloud models. In this dissertation a new framework for describing heterogeneous ice nucleation is developed. Starting from classical nucleation theory, the surface of an ice nucleating particle is treated as a continuum of heterogeneous ice nucleating activity and a particle specific distribution of this activity g is derived. It is hypothesized that an individual particle species exhibits a critical surface area. Above this critical area the ice nucleating activity of a particle species can be described by one g distribution, g, while below it g expresses itself expresses externally resulting in particle to particle variability in ice nucleating activity. The framework is supported by cold plate droplet freezing measurements for dust and biological particles in which the total surface area of particle material available is varied. Freezing spectra above a certain surface area

  15. Theoretical model for optical properties of porphyrin

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Nga, Do T.; Phan, The-Long; Thanh, Le T. M.; Anh, Chu T.; Bernad, Sophie; Viet, N. A.

    2014-12-01

    We propose a simple model to interpret the optical absorption spectra of porphyrin in different solvents. Our model successfully explains the decrease in the intensity of optical absorption at maxima of increased wavelengths. We also prove the dependence of the intensity and peak positions in the absorption spectra on the environment. The nature of the Soret band is supposed to derive from π plasmon. Our theoretical calculations are consistent with previous experimental studies.

  16. Theoretical discrepancy between cage size and efficient tibial tuberosity advancement in dogs treated for cranial cruciate ligament rupture.

    PubMed

    Etchepareborde, S; Mills, J; Busoni, V; Brunel, L; Balligand, M

    2011-01-01

    To calculate the difference between the desired tibial tuberosity advancement (TTA) along the tibial plateau axis and the advancement truly achieved in that direction when cage size has been determined using the method of Montavon and colleagues. To measure the effect of this difference on the final patellar tendon-tibial plateau angle (PTA) in relation to the ideal 90°. Trigonometry was used to calculate the theoretical actual advancement of the tibial tuberosity in a direction parallel to the tibial plateau that would be achieved by the placement of a cage at the level of the tibial tuberosity in the osteotomy plane of the tibial crest. The same principle was used to calculate the size of the cage that would have been required to achieve the desired advancement. The effect of the difference between the desired advancement and the actual advancement achieved on the final PTA was calculated. For a given desired advancement, the greater the tibial plateau angle (TPA), the greater the difference between the desired advancement and the actual advancement achieved. The maximum discrepancy calculated was 5.8 mm for a 12 mm advancement in a case of extreme TPA (59°). When the TPA was less than 31°, the PTA was in the range of 90° to 95°. A discrepancy does exist between the desired tibial tuberosity advancement and the actual advancement in a direction parallel to the TPA, when the tibial tuberosity is not translated proximally. Although this has an influence on the final PTA, further studies are warranted to evaluate whether this is clinically significant.

  17. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  18. Theoretical Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2017-12-01

    'Theoretical Fluid Mechanics' has been written to aid physics students who wish to pursue a course of self-study in fluid mechanics. It is a comprehensive, completely self-contained text with equations of fluid mechanics derived from first principles, and any required advanced mathematics is either fully explained in the text, or in an appendix. It is accompanied by about 180 exercises with completely worked out solutions. It also includes extensive sections on the application of fluid mechanics to topics of importance in astrophysics and geophysics. These topics include the equilibrium of rotating, self-gravitating, fluid masses; tidal bores; terrestrial ocean tides; and the Eddington solar model.

  19. Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.

    2000-01-01

    USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.

  20. UTSG-2; A theoretical model describing the transient behavior of a pressurized water reactor natural circulation U-tube steam generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hold, A.

    An advanced nonlinear transient model for calculating steady-state and dynamic behaviors of characteristic parameters of a Kraftwerk Union-type vertical natural-circulation U-tube steam generator and its main steam system is presented. This model has been expanded due to the increasing need for safety-related accident research studies. It now takes into consideration the possibilities of dryout and superheating along the secondary side of the steam generator. The resulting theoretical model is the basis of the digital code UTSG-2, which can be used both by itself and in combination with other pressurized water reactor transient codes, such as ALMOD-3.4, AMOD-4, and ATHLET.

  1. "It's the Method, Stupid." Interrelations between Methodological and Theoretical Advances: The Example of Comparing Higher Education Systems Internationally

    ERIC Educational Resources Information Center

    Hoelscher, Michael

    2017-01-01

    This article argues that strong interrelations between methodological and theoretical advances exist. Progress in, especially comparative, methods may have important impacts on theory evaluation. By using the example of the "Varieties of Capitalism" approach and an international comparison of higher education systems, it can be shown…

  2. Testing a theoretical model of clinical nurses' intent to stay.

    PubMed

    Cowden, Tracy L; Cummings, Greta G

    2015-01-01

    Published theoretical models of nurses' intent to stay (ITS) report inconsistent outcomes, and not all hypothesized models have been adequately tested. Research has focused on cognitive rather than emotional determinants of nurses' ITS. The aim of this study was to empirically verify a complex theoretical model of nurses' ITS that includes both affective and cognitive determinants and to explore the influence of relational leadership on staff nurses' ITS. The study was a correlational, mixed-method, nonexperimental design. A subsample of the Quality Work Environment Study survey data 2009 (n = 415 nurses) was used to test our theoretical model of clinical nurses' ITS as a structural equation model. The model explained 63% of variance in ITS. Organizational commitment, empowerment, and desire to stay were the model concepts with the strongest effects on nurses' ITS. Leadership practices indirectly influenced ITS. How nurses evaluate and respond to their work environment is both an emotional and rational process. Health care organizations need to be cognizant of the influence that nurses' feelings and views of their work setting have on their intention decisions and integrate that knowledge into the development of retention strategies. Leadership practices play an important role in staff nurses' perceptions of the workplace. Identifying the mechanisms by which leadership influences staff nurses' intentions to stay presents additional focus areas for developing retention strategies.

  3. Structural Tailoring of Advanced Turboprops (STAT). Theoretical manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1992-01-01

    This manual describes the theories in the Structural Tailoring of Advanced Turboprops (STAT) computer program, which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (1-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements, and a 1-P forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.

  4. Structural Tailoring of Advanced Turboprops (STAT). Theoretical manual

    NASA Astrophysics Data System (ADS)

    Brown, K. W.

    1992-10-01

    This manual describes the theories in the Structural Tailoring of Advanced Turboprops (STAT) computer program, which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (1-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements, and a 1-P forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.

  5. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can

  6. Affectionate Touch to Promote Relational, Psychological, and Physical Well-Being in Adulthood: A Theoretical Model and Review of the Research.

    PubMed

    Jakubiak, Brittany K; Feeney, Brooke C

    2017-08-01

    Throughout the life span, individuals engage in affectionate touch with close others. Touch receipt promotes well-being in infancy, but the impacts of touch in adult close relationships have been largely unexplored. In this article, we propose that affectionate touch receipt promotes relational, psychological, and physical well-being in adulthood, and we present a theoretical mechanistic model to explain why affectionate touch may promote these outcomes. The model includes pathways through which touch could affect well-being by reducing stress and by promoting well-being independent of stress. Specifically, two immediate outcomes of affectionate touch receipt-relational-cognitive changes and neurobiological changes-are described as important mechanisms underlying the effects of affectionate touch on well-being. We also review and evaluate the existing research linking affectionate touch to well-being in adulthood and propose an agenda to advance research in this area. This theoretical perspective provides a foundation for future work on touch in adult close relationships.

  7. Theoretical models for coronary vascular biomechanics: Progress & challenges

    PubMed Central

    Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.

    2013-01-01

    A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741

  8. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  9. A theoretical model of continuity in anxiety and links to academic achievement in disaster-exposed school children.

    PubMed

    Weems, Carl F; Scott, Brandon G; Taylor, Leslie K; Cannon, Melinda F; Romano, Dawn M; Perry, Andre M

    2013-08-01

    This study tested a theoretical model of continuity in anxious emotion and its links to academic achievement in disaster-exposed youth. An urban school based sample of youths (n = 191; Grades 4-8) exposed to Hurricane Katrina were assessed at 24 months (Time 1) and then again at 30 months (Time 2) postdisaster. Academic achievement was assessed through end of the school year standardized test scores (~31 months after Katrina). The results suggest that the association of traumatic stress to academic achievement was indirect via linkages from earlier (Time 1) posttraumatic stress disorder symptoms that predicted later (Time 2) test anxiety. Time 2 test anxiety was then negatively associated with academic achievement. Age and gender invariance testing suggested strong consistency across gender and minor developmental variation in the age range examined. The model presented advances the developmental understanding of the expression of anxious emotion and its links to student achievement among disaster-exposed urban school children. The findings highlight the importance of identifying heterotypic continuity in anxiety and suggest potential applied and policy directions for disaster-exposed youth. Avenues for future theoretical refinement are also discussed.

  10. New Theoretical Model of Nerve Conduction in Unmyelinated Nerves

    PubMed Central

    Akaishi, Tetsuya

    2017-01-01

    Nerve conduction in unmyelinated fibers has long been described based on the equivalent circuit model and cable theory. However, without the change in ionic concentration gradient across the membrane, there would be no generation or propagation of the action potential. Based on this concept, we employ a new conductive model focusing on the distribution of voltage-gated sodium ion channels and Coulomb force between electrolytes. Based on this new model, the propagation of the nerve conduction was suggested to take place far before the generation of action potential at each channel. We theoretically showed that propagation of action potential, which is enabled by the increasing Coulomb force produced by inflowing sodium ions, from one sodium ion channel to the next sodium channel would be inversely proportionate to the density of sodium channels on the axon membrane. Because the longitudinal number of sodium ion channel would be proportionate to the square root of channel density, the conduction velocity of unmyelinated nerves is theoretically shown to be proportionate to the square root of channel density. Also, from a viewpoint of equilibrium state of channel importation and degeneration, channel density was suggested to be proportionate to axonal diameter. Based on these simple basis, conduction velocity in unmyelinated nerves was theoretically shown to be proportionate to the square root of axonal diameter. This new model would also enable us to acquire more accurate and understandable vision on the phenomena in unmyelinated nerves in addition to the conventional electric circuit model and cable theory. PMID:29081751

  11. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  12. Theoretical calculations of positron annihilation characteristics in inorganic solids -- Recent advances and problems

    NASA Astrophysics Data System (ADS)

    Sob, M.; Sormann, H.; Kuriplach, J.

    Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is

  13. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2016-05-01

    Recent experiments have demonstrated that the metamaterial approach is capable of a drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al -A l2O3 ENZ core-shell metamaterials. Here, we perform theoretical modeling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modeling and experimental results in both aluminum- and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium-, Mg B2- , and H2S -based metamaterial superconductors is evaluated. The Mg B2 -based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of a H2S -based metamaterial Tc appears to reach ˜250 K.

  14. Defending Against Advanced Persistent Threats Using Game-Theory

    PubMed Central

    König, Sandra; Schauer, Stefan

    2017-01-01

    Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker’s incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system’s protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest. PMID:28045922

  15. Defending Against Advanced Persistent Threats Using Game-Theory.

    PubMed

    Rass, Stefan; König, Sandra; Schauer, Stefan

    2017-01-01

    Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker's incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system's protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest.

  16. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments.

    PubMed

    Prasai, Binay; Wilson, A R; Wiley, B J; Ren, Y; Petkov, Valeri

    2015-11-14

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au(100-x)Pd(x) (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when "tuned up" against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.

  17. A theoretical model of job retention for home health care nurses.

    PubMed

    Ellenbecker, Carol Hall

    2004-08-01

    Predicted severe nursing shortages and an increasing demand for home health care services have made the retention of experienced, qualified nursing staff a priority for health care organizations. The purpose of this paper is to describe a theoretical model of job retention for home health care nurses. The theoretical model is an integration of the findings of empirical research related to intent to stay and retention, components of Neal's theory of home health care nursing practice and findings from earlier work to develop an instrument to measure home health care nurses' job satisfaction. The theoretical model identifies antecedents to job satisfaction of home health care nurses. The antecedents are intrinsic and extrinsic job characteristics. The model also proposes that job satisfaction is directly related to retention and indirectly related to retention though intent to stay. Individual nurse characteristics are indirectly related to retention through intent to stay. The individual characteristic of tenure is indirectly related to retention through autonomy, as an intrinsic characteristic of job satisfaction, and intent to stay. The proposed model can be used to guide research that explores gaps in knowledge about intent to stay and retention among home health care nurses.

  18. Establishment and validation for the theoretical model of the vehicle airbag

    NASA Astrophysics Data System (ADS)

    Zhang, Junyuan; Jin, Yang; Xie, Lizhe; Chen, Chao

    2015-05-01

    The current design and optimization of the occupant restraint system (ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests.

  19. Simple theoretical models for composite rotor blades

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  20. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  1. Theoretical studies of the physics of the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1992-01-01

    Significant advances in our theoretical basis for understanding several physical processes related to dynamical phenomena on the sun were achieved. We have advanced a new model for spicules and fibrils. We have provided a simple physical view of resonance absorption of MHD surface waves; this allowed an approximate mathematical procedure for obtaining a wealth of new analytical results which we applied to coronal heating and p-mode absorption at magnetic regions. We provided the first comprehensive models for the heating and acceleration of the transition region, corona, and solar wind. We provided a new view of viscosity under coronal conditions. We provided new insights into Alfven wave propagation in the solar atmosphere. And recently we have begun work in a new direction: parametric instabilities of Alfven waves.

  2. Theoretical Model of Development of Information Competence among Students Enrolled in Elective Courses

    ERIC Educational Resources Information Center

    Zhumasheva, Anara; Zhumabaeva, Zaida; Sakenov, Janat; Vedilina, Yelena; Zhaxylykova, Nuriya; Sekenova, Balkumis

    2016-01-01

    The current study focuses on the research topic of creating a theoretical model of development of information competence among students enrolled in elective courses. In order to examine specific features of the theoretical model of development of information competence among students enrolled in elective courses, we performed an analysis of…

  3. A beginner's guide to writing the nursing conceptual model-based theoretical rationale.

    PubMed

    Gigliotti, Eileen; Manister, Nancy N

    2012-10-01

    Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.

  4. Self-Assembled Magnetic Surface Swimmers: Theoretical Model

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Belkin, Maxim; Snezhko, Alexey

    2009-03-01

    The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.

  5. Spectrum analysis of radar life signal in the three kinds of theoretical models

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Ma, J. F.; Wang, D.

    2017-02-01

    In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.

  6. Healing from Childhood Sexual Abuse: A Theoretical Model

    ERIC Educational Resources Information Center

    Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner

    2011-01-01

    Childhood sexual abuse is a prevalent social and health care problem. The processes by which individuals heal from childhood sexual abuse are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from childhood sexual abuse. Community recruitment for an ongoing broader project on sexual…

  7. Towards a theoretical model on medicines as a health need.

    PubMed

    Vargas-Peláez, Claudia Marcela; Soares, Luciano; Rover, Marina Raijche Mattozo; Blatt, Carine Raquel; Mantel-Teeuwisse, Aukje; Rossi Buenaventura, Francisco Augusto; Restrepo, Luis Guillermo; Latorre, María Cristina; López, José Julián; Bürgin, María Teresa; Silva, Consuelo; Leite, Silvana Nair; Mareni Rocha, Farias

    2017-04-01

    Medicines are considered one of the main tools of western medicine to resolve health problems. Currently, medicines represent an important share of the countries' healthcare budget. In the Latin America region, access to essential medicines is still a challenge, although countries have established some measures in the last years in order to guarantee equitable access to medicines. A theoretical model is proposed for analysing the social, political, and economic factors that modulate the role of medicines as a health need and their influence on the accessibility and access to medicines. The model was built based on a narrative review about health needs, and followed the conceptual modelling methodology for theory-building. The theoretical model considers elements (stakeholders, policies) that modulate the perception towards medicines as a health need from two perspectives - health and market - at three levels: international, national and local levels. The perception towards medicines as a health need is described according to Bradshaw's categories: felt need, normative need, comparative need and expressed need. When those different categories applied to medicines coincide, the patients get access to the medicines they perceive as a need, but when the categories do not coincide, barriers to access to medicines are created. Our theoretical model, which holds a broader view about the access to medicines, emphasises how power structures, interests, interdependencies, values and principles of the stakeholders could influence the perception towards medicines as a health need and the access to medicines in Latin American countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming

    1995-01-01

    Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.

  9. Advances in Scientific Balloon Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Bohaboj, T.; Cathey, H. M., Jr.

    2004-01-01

    The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.

  10. A Theoretical Model for the Practice of Residential Treatment.

    ERIC Educational Resources Information Center

    Miskimins, R. W.

    1990-01-01

    Presents theoretical model describing practice of psychiatric residential treatment for children and adolescents. Emphasis is on 40 practice principles, guiding concepts which dictate specific treatment techniques and administrative procedures for Southern Oregon Adolescent Study and Treatment Center. Groups principles into six clusters: program…

  11. Culture and Developmental Trajectories: A Discussion on Contemporary Theoretical Models

    ERIC Educational Resources Information Center

    de Carvalho, Rafael Vera Cruz; Seidl-de-Moura, Maria Lucia; Martins, Gabriela Dal Forno; Vieira, Mauro Luís

    2014-01-01

    This paper aims to describe, compare and discuss the theoretical models proposed by Patricia Greenfield, Çigdem Kagitçibasi and Heidi Keller. Their models have the common goal of understanding the developmental trajectories of self based on dimensions of autonomy and relatedness that are structured according to specific cultural and environmental…

  12. A theoretical model of water and trade

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Konar, Megan; Reimer, Jeffrey J.; Di Baldassarre, Giuliano; Lin, Xiaowen; Zeng, Ruijie

    2016-03-01

    Water is an essential input for agricultural production. Agriculture, in turn, is globalized through the trade of agricultural commodities. In this paper, we develop a theoretical model that emphasizes four tradeoffs involving water-use decision-making that are important yet not always considered in a consistent framework. One tradeoff focuses on competition for water among different economic sectors. A second tradeoff examines the possibility that certain types of agricultural investments can offset water use. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using commodities. The fourth tradeoff concerns how variability in water supplies influences farmer decision-making. We show conditions under which trade liberalization affect water use. Two policy scenarios to reduce water use are evaluated. First, we derive a target tax that reduces water use without offsetting the gains from trade liberalization, although important tradeoffs exist between economic performance and resource use. Second, we show how subsidization of water-saving technologies can allow producers to use less water without reducing agricultural production, making such subsidization an indirect means of influencing water use decision-making. Finally, we outline conditions under which riskiness of water availability affects water use. These theoretical model results generate hypotheses that can be tested empirically in future work.

  13. Category-theoretic models of algebraic computer systems

    NASA Astrophysics Data System (ADS)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  14. Research Advances on Radiation Transfer Modeling and Inversion for Multi-scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.

    2011-12-01

    As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  15. Theoretical investigations of X-ray bursts

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.

  16. Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes

    NASA Astrophysics Data System (ADS)

    Panchal, Hitesh; Awasthi, Anuradha

    2017-06-01

    In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.

  17. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    NASA Astrophysics Data System (ADS)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  18. A Model of Resource Allocation in Public School Districts: A Theoretical and Empirical Analysis.

    ERIC Educational Resources Information Center

    Chambers, Jay G.

    This paper formulates a comprehensive model of resource allocation in a local public school district. The theoretical framework specified could be applied equally well to any number of local public social service agencies. Section 1 develops the theoretical model describing the process of resource allocation. This involves the determination of the…

  19. Guidelines for a graph-theoretic implementation of structural equation modeling

    USGS Publications Warehouse

    Grace, James B.; Schoolmaster, Donald R.; Guntenspergen, Glenn R.; Little, Amanda M.; Mitchell, Brian R.; Miller, Kathryn M.; Schweiger, E. William

    2012-01-01

    Structural equation modeling (SEM) is increasingly being chosen by researchers as a framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods emerging from the study of causality, influences from the field of graphical modeling, and advances in statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM that we believe constitute a third-generation of the methodology. Most characteristic of this new approach is the generalization of the structural equation model as a causal graph. In this generalization, analyses are based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods. The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory frames the modeling process, requirements for causal interpretation, model specification choices, selection of estimation method, model evaluation options, and use of queries, both to summarize retrospective results and for prospective analyses. The illustrative example presented involves monitoring data from wetlands on Mount Desert Island, home of Acadia National Park. Our presentation walks through the decision process involved in developing and evaluating models, as well as drawing inferences from the resulting prediction equations. In addition to evaluating hypotheses about the connections between human activities and biotic responses, we illustrate how the structural equation (SE) model can be queried to understand how interventions might take advantage of an environmental threshold to limit Typha invasions. The guidelines presented provide for

  20. Theoretical study of gas hydrate decomposition kinetics--model development.

    PubMed

    Windmeier, Christoph; Oellrich, Lothar R

    2013-10-10

    In order to provide an estimate of the order of magnitude of intrinsic gas hydrate dissolution and dissociation kinetics, the "Consecutive Desorption and Melting Model" (CDM) is developed by applying only theoretical considerations. The process of gas hydrate decomposition is assumed to comprise two consecutive and repetitive quasi chemical reaction steps. These are desorption of the guest molecule followed by local solid body melting. The individual kinetic steps are modeled according to the "Statistical Rate Theory of Interfacial Transport" and the Wilson-Frenkel approach. All missing required model parameters are directly linked to geometric considerations and a thermodynamic gas hydrate equilibrium model.

  1. A Game Theoretic Model of Thermonuclear Cyberwar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soper, Braden C.

    In this paper we propose a formal game theoretic model of thermonuclear cyberwar based on ideas found in [1] and [2]. Our intention is that such a game will act as a first step toward building more complete formal models of Cross-Domain Deterrence (CDD). We believe the proposed thermonuclear cyberwar game is an ideal place to start on such an endeavor because the game can be fashioned in a way that is closely related to the classical models of nuclear deterrence [4–6], but with obvious modifications that will help to elucidate the complexities introduced by a second domain. We startmore » with the classical bimatrix nuclear deterrence game based on the game of chicken, but introduce uncertainty via a left-of-launch cyber capability that one or both players may possess.« less

  2. A theoretical model to describe progressions and regressions for exercise rehabilitation.

    PubMed

    Blanchard, Sam; Glasgow, Phil

    2014-08-01

    This article aims to describe a new theoretical model to simplify and aid visualisation of the clinical reasoning process involved in progressing a single exercise. Exercise prescription is a core skill for physiotherapists but is an area that is lacking in theoretical models to assist clinicians when designing exercise programs to aid rehabilitation from injury. Historical models of periodization and motor learning theories lack any visual aids to assist clinicians. The concept of the proposed model is that new stimuli can be added or exchanged with other stimuli, either intrinsic or extrinsic to the participant, in order to gradually progress an exercise whilst remaining safe and effective. The proposed model maintains the core skills of physiotherapists by assisting clinical reasoning skills, exercise prescription and goal setting. It is not limited to any one pathology or rehabilitation setting and can adapted by any level of skilled clinician. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Modeling of advanced technology vehicles

    DOT National Transportation Integrated Search

    2003-09-01

    The characterization of some types of "advanced technology vehicles" may help to understand policies that are strongly either explicitly or implicitly technology-dependent. Recent models attempt to characterize such technologies in terms of fuel econ...

  4. Theoretical models for application in school health education research.

    PubMed

    Parcel, G S

    1984-01-01

    Theoretical models that may be useful to research studies in school health education are reviewed. Selected, well-defined theories include social learning theory, problem-behavior theory, theory of reasoned action, communications theory, coping theory, social competence, and social and family theories. Also reviewed are multiple theory models including models of health related-behavior, the PRECEDE Framework, social-psychological approaches and the Activated Health Education Model. Two major reviews of teaching models are also discussed. The paper concludes with a brief outline of the general applications of theory to the field of school health education including applications to basic research, development and design of interventions, program evaluation, and program utilization.

  5. Reality-Theoretical Models-Mathematics: A Ternary Perspective on Physics Lessons in Upper-Secondary School

    ERIC Educational Resources Information Center

    Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas

    2015-01-01

    This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…

  6. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  7. Decision support models for solid waste management: Review and game-theoretic approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr; Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence; Aravossis, Konstantinos

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decisionmore » support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.« less

  8. Toward a Theoretical Model of Employee Turnover: A Human Resource Development Perspective

    ERIC Educational Resources Information Center

    Peterson, Shari L.

    2004-01-01

    This article sets forth the Organizational Model of Employee Persistence, influenced by traditional turnover models and a student attrition model. The model was developed to clarify the impact of organizational practices on employee turnover from a human resource development (HRD) perspective and provide a theoretical foundation for research on…

  9. A comparative study of theoretical graph models for characterizing structural networks of human brain.

    PubMed

    Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang

    2013-01-01

    Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  10. Nursing management of sensory overload in psychiatry – Theoretical densification and modification of the framework model

    PubMed

    Scheydt, Stefan; Needham, Ian; Behrens, Johann

    2017-01-01

    Background: Within the scope of the research project on the subjects of sensory overload and stimulus regulation, a theoretical framework model of the nursing care of patients with sensory overload in psychiatry was developed. In a second step, this theoretical model should now be theoretically compressed and, if necessary, modified. Aim: Empirical verification as well as modification, enhancement and theoretical densification of the framework model of nursing care of patients with sensory overload in psychiatry. Method: Analysis of 8 expert interviews by summarizing and structuring content analysis methods based on Meuser and Nagel (2009) as well as Mayring (2010). Results: The developed framework model (Scheydt et al., 2016b) could be empirically verified, theoretically densificated and extended by one category (perception modulation). Thus, four categories of nursing care of patients with sensory overload can be described in inpatient psychiatry: removal from stimuli, modulation of environmental factors, perceptual modulation as well as help somebody to help him- or herself / coping support. Conclusions: Based on the methodological approach, a relatively well-saturated, credible conceptualization of a theoretical model for the description of the nursing care of patients with sensory overload in stationary psychiatry could be worked out. In further steps, these measures have to be further developed, implemented and evaluated regarding to their efficacy.

  11. Theoretical Characterizaiton of Visual Signatures

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.

    2015-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.

  12. Anticipatory Cognitive Systems: a Theoretical Model

    NASA Astrophysics Data System (ADS)

    Terenzi, Graziano

    This paper deals with the problem of understanding anticipation in biological and cognitive systems. It is argued that a physical theory can be considered as biologically plausible only if it incorporates the ability to describe systems which exhibit anticipatory behaviors. The paper introduces a cognitive level description of anticipation and provides a simple theoretical characterization of anticipatory systems on this level. Specifically, a simple model of a formal anticipatory neuron and a model (i.e. the τ-mirror architecture) of an anticipatory neural network which is based on the former are introduced and discussed. The basic feature of this architecture is that a part of the network learns to represent the behavior of the other part over time, thus constructing an implicit model of its own functioning. As a consequence, the network is capable of self-representation; anticipation, on a oscopic level, is nothing but a consequence of anticipation on a microscopic level. Some learning algorithms are also discussed together with related experimental tasks and possible integrations. The outcome of the paper is a formal characterization of anticipation in cognitive systems which aims at being incorporated in a comprehensive and more general physical theory.

  13. A theoretical model of co-worker responses to work reintegration processes.

    PubMed

    Dunstan, Debra A; Maceachen, Ellen

    2014-06-01

    Emerging research has shown that co-workers have a significant influence on the return-to-work outcomes of partially fit ill or injured employees. By drawing on theoretical findings from the human resource and wider behavioral sciences literatures, our goal was to formulate a theoretical model of the influences on and outcomes of co-worker responses within work reintegration. From a search of 15 data bases covering the social sciences, business and medicine, we identified articles containing models of the factors that influence co-workers' responses to disability accommodations; and, the nature and impact of co-workers' behaviors on employee outcomes. To meet our goal, we combined identified models to form a comprehensive model of the relevant factors and relationships. Internal consistency and externally validity were assessed. The combined model illustrates four key findings: (1) co-workers' behaviors towards an accommodated employee are influenced by attributes of that employee, the illness or injury, the co-worker themselves, and the work environment; (2) the influences-behaviour relationship is mediated by perceptions of the fairness of the accommodation; (3) co-workers' behaviors affect all work reintegration outcomes; and (4) co-workers' behaviours can vary from support to antagonism and are moderated by type of support required, the social intensity of the job, and the level of antagonism. Theoretical models from the wider literature are useful for understanding the impact of co-workers on the work reintegration process. To achieve optimal outcomes, co-workers need to perceive the arrangements as fair. Perceptions of fairness might be supported by co-workers' collaborative engagement in the planning, monitoring and review of work reintegration activities.

  14. The neural mediators of kindness-based meditation: a theoretical model

    PubMed Central

    Mascaro, Jennifer S.; Darcher, Alana; Negi, Lobsang T.; Raison, Charles L.

    2015-01-01

    Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here, we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another’s affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work. PMID:25729374

  15. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  16. Scientific thinking in young children: theoretical advances, empirical research, and policy implications.

    PubMed

    Gopnik, Alison

    2012-09-28

    New theoretical ideas and empirical research show that very young children's learning and thinking are strikingly similar to much learning and thinking in science. Preschoolers test hypotheses against data and make causal inferences; they learn from statistics and informal experimentation, and from watching and listening to others. The mathematical framework of probabilistic models and Bayesian inference can describe this learning in precise ways. These discoveries have implications for early childhood education and policy. In particular, they suggest both that early childhood experience is extremely important and that the trend toward more structured and academic early childhood programs is misguided.

  17. Maturity Model for Advancing Smart Grid Interoperability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Mark; Widergren, Steven E.; Mater, J.

    2013-10-28

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met withmore » process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.« less

  18. Imitative Modeling as a Theoretical Base for Instructing Language-Disordered Children

    ERIC Educational Resources Information Center

    Courtright, John A.; Courtright, Illene C.

    1976-01-01

    A modification of A. Bandura's social learning theory (imitative modeling) was employed as a theoretical base for language instruction with eight language disordered children (5 to 10 years old). (Author/SBH)

  19. A Theoretical Model for Thin Film Ferroelectric Coupled Microstripline Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Quereshi, A. H.

    2000-01-01

    Novel microwave phase shifters consisting of coupled microstriplines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.

  20. Graph theoretical model of a sensorimotor connectome in zebrafish.

    PubMed

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  1. Theoretical Grounding: The "Missing Link" in Suicide Research.

    ERIC Educational Resources Information Center

    Rogers, James R.

    2001-01-01

    Discusses the strengths and limitations of the current pragmatic focus of research in suicidology and presents an argument for theoretical grounding as a precursor for continued advancement in this area. Presents an existential-constructivist framework of "meaning creation" as a theoretical heuristic for understanding suicide. Outlines general…

  2. TEST OF A THEORETICAL COMMUTER EXPOSURE MODEL TO VEHICLE EXHAUST IN TRAFFIC

    EPA Science Inventory

    A theoretical model of commuter exposure is presented as a box or cell model with the automobile passenger compartment representing the microenvironment exposed to CO concentrations resulting from vehicle exhaust leaks and emissions from traffic. Equations which describe this sit...

  3. An alternative theoretical model for an anomalous hollow beam.

    PubMed

    Cai, Yangjian; Wang, Zhaoying; Lin, Qiang

    2008-09-15

    An alternative and convenient theoretical model is proposed to describe a flexible anomalous hollow beam of elliptical symmetry with an elliptical solid core, which was observed in experiment recently (Phys. Rev. Lett, 94 (2005) 134802). In this model, the electric field of anomalous hollow beam is expressed as a finite sum of elliptical Gaussian modes. Flattopped beams, dark hollow beams and Gaussian beams are special cases of our model. Analytical propagation formulae for coherent and partially coherent anomalous hollow beams passing through astigmatic ABCD optical systems are derived. Some numerical examples are calculated to show the propagation and focusing properties of coherent and partially coherent anomalous hollow beams.

  4. A theoretical model for smoking prevention studies in preteen children.

    PubMed

    McGahee, T W; Kemp, V; Tingen, M

    2000-01-01

    The age of the onset of smoking is on a continual decline, with the prime age of tobacco use initiation being 12-14 years. A weakness of the limited research conducted on smoking prevention programs designed for preteen children (ages 10-12) is a well-defined theoretical basis. A theoretical perspective is needed in order to make a meaningful transition from empirical analysis to application of knowledge. Bandura's Social Cognitive Theory (1977, 1986), the Theory of Reasoned Action (Ajzen & Fishbein, 1980), and other literature linking various concepts to smoking behaviors in preteens were used to develop a model that may be useful for smoking prevention studies in preteen children.

  5. Simple control-theoretic models of human steering activity in visually guided vehicle control

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1991-01-01

    A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.

  6. SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution

    Science.gov Websites

    statistical summary of the U.S. distribution systems World-class, high spatial/temporal resolution of solar Systems and Scenarios | Grid Modernization | NREL SMART-DS: Synthetic Models for Advanced , Realistic Testing: Distribution Systems and Scenarios SMART-DS: Synthetic Models for Advanced, Realistic

  7. A utility-theoretic model for QALYs and willingness to pay.

    PubMed

    Klose, Thomas

    2003-01-01

    Despite the widespread use of quality-adjusted life years (QALY) in economic evaluation studies, their utility-theoretic foundation remains unclear. A model for preferences over health, money, and time is presented in this paper. Under the usual assumptions of the original QALY-model, an additive separable presentation of the utilities in different periods exists. In contrast to the usual assumption that QALY-weights do solely depend on aspects of health-related quality of life, wealth-standardized QALY-weights might vary with the wealth level in the presented extension of the original QALY-model resulting in an inconsistent measurement of QALYs. Further assumptions are presented to make the measurement of QALYs consistent with lifetime preferences over health and money. Even under these strict assumptions, QALYs and WTP (which also can be defined in this utility-theoretic model) are not equivalent preference-based measures of the effects of health technologies on an individual level. The results suggest that the individual WTP per QALY can depend on the magnitude of the QALY-gain as well as on the disease burden, when health influences the marginal utility of wealth. Further research seems to be indicated on this structural aspect of preferences over health and wealth and to quantify its impact. Copyright 2002 John Wiley & Sons, Ltd.

  8. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  9. Theoretical modeling of the catch-slip bond transition in biological adhesion

    NASA Astrophysics Data System (ADS)

    Gunnerson, Kim; Pereverzev, Yuriy; Prezhdo, Oleg

    2006-05-01

    The mechanism by which leukocytes leave the blood stream and enter inflamed tissue is called extravasation. This process is facilitated by the ability of selectin proteins, produced by the endothelial cells of blood vessels, to form transient bonds with the leukocytes. In the case of P-selectin, the protein bonds with P-selectin glycoprotein ligands (PSGL-1) produced by the leukocyte. Recent atomic force microscopy and flow chamber analyses of the binding of P-selectin to PSGL-1 provide evidence for an unusual biphasic catch-bond/slip-bond behavior in response to the strength of exerted force. This biphasic process is not well-understood. There are several theoretical models for describing this phenomenon. These models use different profiles for potential energy landscapes and how they change under forces. We are exploring these changes using molecular dynamics. We will present a simple theoretical model as well as share some of our early MD results for describing this phenomenon.

  10. Experimental and Theoretical Basis for a Closed-Form Spectral BRDF Model

    DTIC Science & Technology

    2015-09-17

    EXPERIMENTAL AND THEORETICAL BASIS FOR A CLOSED-FORM SPECTRAL BRDF MODEL DISSERTATION Samuel D. Butler, Major, USAF AFIT-ENP-DS-15-S-021 DEPARTMENT...SPECTRAL BRDF MODEL DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...FOR A CLOSED-FORM SPECTRAL BRDF MODEL DISSERTATION Samuel D. Butler, BS, MS Major, USAF Committee Membership: Michael A. Marciniak, PhD Chairman Kevin

  11. Redesigning Orientation in an Intensive Care Unit Using 2 Theoretical Models.

    PubMed

    Kozub, Elizabeth; Hibanada-Laserna, Maribel; Harget, Gwen; Ecoff, Laurie

    2015-01-01

    To accommodate a higher demand for critical care nurses, an orientation program in a surgical intensive care unit was revised and streamlined. Two theoretical models served as a foundation for the revision and resulted in clear clinical benchmarks for orientation progress evaluation. The purpose of the project was to integrate theoretical frameworks into practice to improve the unit orientation program. Performance improvement methods served as a framework for the revision, and outcomes were measured before and after implementation. The revised orientation program increased 1- and 2-year nurse retention and decreased turnover. Critical care knowledge increased after orientation for both the preintervention and postintervention groups. Incorporating a theoretical basis for orientation has been shown to be successful in increasing the number of nurses completing orientation and improving retention, turnover rates, and knowledge gained.

  12. Advanced Modeling of Micromirror Devices

    NASA Technical Reports Server (NTRS)

    Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.

    1995-01-01

    The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.

  13. Molecular dynamics simulations of theoretical cellulose nanotube models.

    PubMed

    Uto, Takuya; Kodama, Yuta; Miyata, Tatsuhiko; Yui, Toshifumi

    2018-06-15

    Nanotubes are remarkable nanoscale architectures for a wide range of potential applications. In the present paper, we report a molecular dynamics (MD) study of the theoretical cellulose nanotube (CelNT) models to evaluate their dynamic behavior in solution (either chloroform or benzene). Based on the one-quarter chain staggering relationship, we constructed six CelNT models by combining the two chain polarities (parallel (P) and antiparallel (AP)) and three symmetry operations (helical right (H R ), helical left (H L ), and rotation (R)) to generate a circular arrangement of molecular chains. Among the four models that retained the tubular form (P-H R , P-H L , P-R, and AP-R), the P-R and AP-R models have the lowest steric energies in benzene and chloroform, respectively. The structural features of the CelNT models were characterized in terms of the hydroxymethyl group conformation and intermolecular hydrogen bonds. Solvent structuring more clearly occurred with benzene than chloroform, suggesting that the CelNT models may disperse in benzene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. An Emerging Theoretical Model of Music Therapy Student Development.

    PubMed

    Dvorak, Abbey L; Hernandez-Ruiz, Eugenia; Jang, Sekyung; Kim, Borin; Joseph, Megan; Wells, Kori E

    2017-07-01

    Music therapy students negotiate a complex relationship with music and its use in clinical work throughout their education and training. This distinct, pervasive, and evolving relationship suggests a developmental process unique to music therapy. The purpose of this grounded theory study was to create a theoretical model of music therapy students' developmental process, beginning with a study within one large Midwestern university. Participants (N = 15) were music therapy students who completed one 60-minute intensive interview, followed by a 20-minute member check meeting. Recorded interviews were transcribed, analyzed, and coded using open and axial coding. The theoretical model that emerged was a six-step sequential developmental progression that included the following themes: (a) Personal Connection, (b) Turning Point, (c) Adjusting Relationship with Music, (d) Growth and Development, (e) Evolution, and (f) Empowerment. The first three steps are linear; development continues in a cyclical process among the last three steps. As the cycle continues, music therapy students continue to grow and develop their skills, leading to increased empowerment, and more specifically, increased self-efficacy and competence. Further exploration of the model is needed to inform educators' and other key stakeholders' understanding of student needs and concerns as they progress through music therapy degree programs. © the American Music Therapy Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Data Modeling Challenges of Advanced Interoperability.

    PubMed

    Blobel, Bernd; Oemig, Frank; Ruotsalainen, Pekka

    2018-01-01

    Progressive health paradigms, involving many different disciplines and combining multiple policy domains, requires advanced interoperability solutions. This results in special challenges for modeling health systems. The paper discusses classification systems for data models and enterprise business architectures and compares them with the ISO Reference Architecture. On that basis, existing definitions, specifications and standards of data models for interoperability are evaluated and their limitations are discussed. Amendments to correctly use those models and to better meet the aforementioned challenges are offered.

  16. The Theoretical Basis of the Effective School Improvement Model (ESI)

    ERIC Educational Resources Information Center

    Scheerens, Jaap; Demeuse, Marc

    2005-01-01

    This article describes the process of theoretical reflection that preceded the development and empirical verification of a model of "effective school improvement". The focus is on basic mechanisms that could be seen as underlying "getting things in motion" and change in education systems. Four mechanisms are distinguished:…

  17. Path Analysis Tests of Theoretical Models of Children's Memory Performance

    ERIC Educational Resources Information Center

    DeMarie, Darlene; Miller, Patricia H.; Ferron, John; Cunningham, Walter R.

    2004-01-01

    Path analysis was used to test theoretical models of relations among variables known to predict differences in children's memory--strategies, capacity, and metamemory. Children in kindergarten to fourth grade (chronological ages 5 to 11) performed different memory tasks. Several strategies (i.e., sorting, clustering, rehearsal, and self-testing)…

  18. A Game-Theoretic Model of Grounding for Referential Communication Tasks

    ERIC Educational Resources Information Center

    Thompson, William

    2009-01-01

    Conversational grounding theory proposes that language use is a form of rational joint action, by which dialog participants systematically and collaboratively add to their common ground of shared knowledge and beliefs. Following recent work applying "game theory" to pragmatics, this thesis develops a game-theoretic model of grounding that…

  19. E-Learning Systems Support of Collaborative Agreements: A Theoretical Model

    ERIC Educational Resources Information Center

    Aguirre, Sandra; Quemada, Juan

    2012-01-01

    This paper introduces a theoretical model for developing integrated degree programmes through e-learning systems as stipulated by a collaboration agreement signed by two universities. We have analysed several collaboration agreements between universities at the national, European, and transatlantic level as well as various e-learning frameworks. A…

  20. Theoretical insight into reaction mechanisms of 2,4-dinitroanisole with hydroxyl radicals for advanced oxidation processes.

    PubMed

    Zhou, Yang; Liu, Xiaoqiang; Jiang, Weidong; Shu, Yuanjie

    2018-01-24

    The detailed degradation mechanism of an insensitive explosive, 2,4-dinitroanisole (DNAN), in advanced oxidation processes (AOPs) was investigated computationally at the M06-2X/6-311 + G(d,p)/SMD level of theory. Results obtained show that the addition-elimination reaction is the dominant mechanism. The phenol products formed can continue to be oxidized to benzoquinone radicals that are often detected by experiments and may be the initial reactants of ring-opening reactions. The H-abstraction reaction is an unavoidable competing mechanism; the intermediate generated can also undergo the process of addition-elimination reaction. The nitro departure reaction involves not only hydroxyl radical (•OH), but also other active substances (such as •H). More importantly, we found that AOP technology can easily degrade DNAN, similar to TNT and DNT. Thus, this method is worth trying in experiments. The conclusions of this work provide theoretical support for such experimental research. Graphical abstract Possible pathways of degradation by •OH radicals in advanced oxidation processes (AOPs) of the typical insensitive explosive 2,4-dinitroanisole (DNAN) were investigated by density functional theory (DFT) methods. Based on the Gibbs free energy barriers and intermediates, the dominant reaction mechanism was determined. The conclusions will be helpful in utilizing AOP technology to remove DNAN pollution.

  1. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  2. Predictive power of theoretical modelling of the nuclear mean field: examples of improving predictive capacities

    NASA Astrophysics Data System (ADS)

    Dedes, I.; Dudek, J.

    2018-03-01

    We examine the effects of the parametric correlations on the predictive capacities of the theoretical modelling keeping in mind the nuclear structure applications. The main purpose of this work is to illustrate the method of establishing the presence and determining the form of parametric correlations within a model as well as an algorithm of elimination by substitution (see text) of parametric correlations. We examine the effects of the elimination of the parametric correlations on the stabilisation of the model predictions further and further away from the fitting zone. It follows that the choice of the physics case and the selection of the associated model are of secondary importance in this case. Under these circumstances we give priority to the relative simplicity of the underlying mathematical algorithm, provided the model is realistic. Following such criteria, we focus specifically on an important but relatively simple case of doubly magic spherical nuclei. To profit from the algorithmic simplicity we chose working with the phenomenological spherically symmetric Woods–Saxon mean-field. We employ two variants of the underlying Hamiltonian, the traditional one involving both the central and the spin orbit potential in the Woods–Saxon form and the more advanced version with the self-consistent density-dependent spin–orbit interaction. We compare the effects of eliminating of various types of correlations and discuss the improvement of the quality of predictions (‘predictive power’) under realistic parameter adjustment conditions.

  3. Advancing nursing scholarship: the Mozambique model

    PubMed Central

    Bruce, Judith C.; Dippenaar, Joan; Schmollgruber, Shelley; Mphuthi, David D.; Huiskamp, Agnes

    2017-01-01

    ABSTRACT Background: Despite the importance of Human Resources for Health for the development and functioning of health systems worldwide, many countries continue to be plagued by poor health systems and a lack of adequate health care. Health systems failures may be attributed to both quantitative and qualitative nursing shortages including the lack of advanced skills to lead health initiatives, to conduct research and to educate other nurses. The response by development partners is usually framed around the production of skilled nurses through the processes of up-skilling and scaling-up. The outcome is expanded practice but with scant attention to the professional advancement of nurses. Objectives: In this paper we present a two-phased capacity development model that adopted professionalization strategies to advance nursing scholarship and consequent postgraduate specialization of the first cohort of nurses in Mozambique. The main objectives were to: develop and implement a clinical course work master’s degree in nursing; and ensure sustainability by capacitating the host institution to continue with the master’s programme following graduation. Methods: Rigorous processes for project discussions, negotiations and monitoring were necessary amid limited resources and a challenging political climate. Forging in-country partnerships, sustaining alliances and government investment are thus key to the success of the Mozambique model. Outcomes: Notwithstanding some difficulties, the process unfolded over a five-year period, graduating the first cohort of 11 senior nurses with a master’s degree, specializing either in critical care and trauma nursing, or maternal and neonatal health. Conclusions: Bridging the skills gap between generalist and specialist nurses is essential for them to manage complex and high acuity cases and to reverse associated morbidity and mortality. We conclude that this model serves as a professionalization strategy to advance nurses

  4. Exploring Environmental Factors in Nursing Workplaces That Promote Psychological Resilience: Constructing a Unified Theoretical Model.

    PubMed

    Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S; Breen, Lauren J; Witt, Regina R; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin

    2016-01-01

    Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care.

  5. Exploring Environmental Factors in Nursing Workplaces That Promote Psychological Resilience: Constructing a Unified Theoretical Model

    PubMed Central

    Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S.; Breen, Lauren J.; Witt, Regina R.; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin

    2016-01-01

    Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care. PMID:27242567

  6. Theoretical integration and the psychology of sport injury prevention.

    PubMed

    Chan, Derwin King-Chung; Hagger, Martin S

    2012-09-01

    Integrating different theories of motivation to facilitate or predict behaviour change has received an increasing amount of attention within the health, sport and exercise science literature. A recent review article in Sports Medicine, by Keats, Emery and Finch presented an integrated model using two prominent theories in social psychology, self-determination theory (SDT) and the theory of planned behaviour (TPB), aimed at explaining and enhancing athletes' adherence to sport injury prevention. While echoing their optimistic views about the utility of these two theories to explain adherence in this area and the virtues of theoretical integration, we would like to seize this opportunity to clarify several conceptual principles arising from the authors' integration of the theories. Clarifying the theoretical assumptions and explaining precisely how theoretical integration works is crucial not only for improving the comprehensiveness of the integrated framework for predicting injury prevention behaviour, but also to aid the design of effective intervention strategies targeting behavioural adherence. In this article, we use the integration of SDT and TPB as an example to demonstrate how theoretical integration can advance the understanding of injury prevention behaviour in sport.

  7. Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science

    NASA Astrophysics Data System (ADS)

    Ariza, Yefrin; Lorenzano, Pablo; Adúriz-Bravo, Agustín

    2016-10-01

    There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of `theoretical model', stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a `semantic family', and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.

  8. Advanced Atmospheric Modeling for Emergency Response.

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; O'Steen, B. Lance; Addis, Robert P.

    1995-03-01

    Atmospheric transport and diffusion models are an important part of emergency response systems for industrial facilities that have the potential to release significant quantities of toxic or radioactive material into the atmosphere. An advanced atmospheric transport and diffusion modeling system for emergency response and environmental applications, based upon a three-dimensional mesoscale model, has been developed for the U.S. Department of Energy's Savannah River Site so that complex, time-dependent flow fields not explicitly measured can be routinely simulated. To overcome some of the current computational demands of mesoscale models, two operational procedures for the advanced atmospheric transport and diffusion modeling system are described including 1) a semiprognostic calculation to produce high-resolution wind fields for local pollutant transport in the vicinity of the Savannah River Site and 2) a fully prognostic calculation to produce a regional wind field encompassing the southeastern United States for larger-scale pollutant problems. Local and regional observations and large-scale model output are used by the mesoscale model for the initial conditions, lateral boundary conditions, and four-dimensional data assimilation procedure. This paper describes the current status of the modeling system and presents two case studies demonstrating the capabilities of both modes of operation. While the results from the case studies shown in this paper are preliminary and certainly not definitive, they do suggest that the mesoscale model has the potential for improving the prognostic capabilities of atmospheric modeling for emergency response at the Savannah River Site. Long-term model evaluation will be required to determine under what conditions significant forecast errors exist.

  9. Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot

    NASA Astrophysics Data System (ADS)

    Massey, Brian; Morgansen, Kristi; Dabiri, Dana

    2003-11-01

    Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.

  10. An advanced terrain modeler for an autonomous planetary rover

    NASA Technical Reports Server (NTRS)

    Hunter, E. L.

    1980-01-01

    A roving vehicle capable of autonomously exploring the surface of an alien world is under development and an advanced terrain modeler to characterize the possible paths of the rover as hazardous or safe is presented. This advanced terrain modeler has several improvements over the Troiani modeler that include: a crosspath analysis, better determination of hazards on slopes, and methods for dealing with missing returns at the extremities of the sensor field. The results from a package of programs to simulate the roving vehicle are then examined and compared to results from the Troiani modeler.

  11. Achievement Goals and Discrete Achievement Emotions: A Theoretical Model and Prospective Test

    ERIC Educational Resources Information Center

    Pekrun, Reinhard; Elliot, Andrew J.; Maier, Markus A.

    2006-01-01

    A theoretical model linking achievement goals to discrete achievement emotions is proposed. The model posits relations between the goals of the trichotomous achievement goal framework and 8 commonly experienced achievement emotions organized in a 2 (activity/outcome focus) x 2 (positive/negative valence) taxonomy. Two prospective studies tested…

  12. Organizational Learning and Product Design Management: Towards a Theoretical Model.

    ERIC Educational Resources Information Center

    Chiva-Gomez, Ricardo; Camison-Zornoza, Cesar; Lapiedra-Alcami, Rafael

    2003-01-01

    Case studies of four Spanish ceramics companies were used to construct a theoretical model of 14 factors essential to organizational learning. One set of factors is related to the conceptual-analytical phase of the product design process and the other to the creative-technical phase. All factors contributed to efficient product design management…

  13. Theoretical modeling and experimental analyses of laminated wood composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; Vijaya Gopu; Chung Y. Hse

    2005-01-01

    Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel...

  14. Advanced Technology System Scheduling Governance Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, Jim; Carnes, Brian; Hoang, Thuc

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. Themore » process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).« less

  15. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary

    2013-01-01

    Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273

  16. Application of a theoretical model to evaluate COPD disease management.

    PubMed

    Lemmens, Karin M M; Nieboer, Anna P; Rutten-Van Mölken, Maureen P M H; van Schayck, Constant P; Asin, Javier D; Dirven, Jos A M; Huijsman, Robbert

    2010-03-26

    Disease management programmes are heterogeneous in nature and often lack a theoretical basis. An evaluation model has been developed in which theoretically driven inquiries link disease management interventions to outcomes. The aim of this study is to methodically evaluate the impact of a disease management programme for patients with chronic obstructive pulmonary disease (COPD) on process, intermediate and final outcomes of care in a general practice setting. A quasi-experimental research was performed with 12-months follow-up of 189 COPD patients in primary care in the Netherlands. The programme included patient education, protocolised assessment and treatment of COPD, structural follow-up and coordination by practice nurses at 3, 6 and 12 months. Data on intermediate outcomes (knowledge, psychosocial mediators, self-efficacy and behaviour) and final outcomes (dyspnoea, quality of life, measured by the CRQ and CCQ, and patient experiences) were obtained from questionnaires and electronic registries. Implementation of the programme was associated with significant improvements in dyspnoea (p < 0.001) and patient experiences (p < 0.001). No significant improvement was found in mean quality of life scores. Improvements were found in several intermediate outcomes, including investment beliefs (p < 0.05), disease-specific knowledge (p < 0.01; p < 0.001) and medication compliance (p < 0.01). Overall, process improvement was established. The model showed associations between significantly improved intermediate outcomes and improvements in quality of life and dyspnoea. The application of a theory-driven model enhances the design and evaluation of disease management programmes aimed at improving health outcomes. This study supports the notion that a theoretical approach strengthens the evaluation designs of complex interventions. Moreover, it provides prudent evidence that the implementation of COPD disease management programmes can positively influence outcomes of care.

  17. Application of a theoretical model to evaluate COPD disease management

    PubMed Central

    2010-01-01

    Background Disease management programmes are heterogeneous in nature and often lack a theoretical basis. An evaluation model has been developed in which theoretically driven inquiries link disease management interventions to outcomes. The aim of this study is to methodically evaluate the impact of a disease management programme for patients with chronic obstructive pulmonary disease (COPD) on process, intermediate and final outcomes of care in a general practice setting. Methods A quasi-experimental research was performed with 12-months follow-up of 189 COPD patients in primary care in the Netherlands. The programme included patient education, protocolised assessment and treatment of COPD, structural follow-up and coordination by practice nurses at 3, 6 and 12 months. Data on intermediate outcomes (knowledge, psychosocial mediators, self-efficacy and behaviour) and final outcomes (dyspnoea, quality of life, measured by the CRQ and CCQ, and patient experiences) were obtained from questionnaires and electronic registries. Results Implementation of the programme was associated with significant improvements in dyspnoea (p < 0.001) and patient experiences (p < 0.001). No significant improvement was found in mean quality of life scores. Improvements were found in several intermediate outcomes, including investment beliefs (p < 0.05), disease-specific knowledge (p < 0.01; p < 0.001) and medication compliance (p < 0.01). Overall, process improvement was established. The model showed associations between significantly improved intermediate outcomes and improvements in quality of life and dyspnoea. Conclusions The application of a theory-driven model enhances the design and evaluation of disease management programmes aimed at improving health outcomes. This study supports the notion that a theoretical approach strengthens the evaluation designs of complex interventions. Moreover, it provides prudent evidence that the implementation of COPD disease management programmes can

  18. Evaluating the Theoretic Adequacy and Applied Potential of Computational Models of the Spacing Effect.

    PubMed

    Walsh, Matthew M; Gluck, Kevin A; Gunzelmann, Glenn; Jastrzembski, Tiffany; Krusmark, Michael

    2018-06-01

    The spacing effect is among the most widely replicated empirical phenomena in the learning sciences, and its relevance to education and training is readily apparent. Yet successful applications of spacing effect research to education and training is rare. Computational modeling can provide the crucial link between a century of accumulated experimental data on the spacing effect and the emerging interest in using that research to enable adaptive instruction. In this paper, we review relevant literature and identify 10 criteria for rigorously evaluating computational models of the spacing effect. Five relate to evaluating the theoretic adequacy of a model, and five relate to evaluating its application potential. We use these criteria to evaluate a novel computational model of the spacing effect called the Predictive Performance Equation (PPE). Predictive Performance Equation combines elements of earlier models of learning and memory including the General Performance Equation, Adaptive Control of Thought-Rational, and the New Theory of Disuse, giving rise to a novel computational account of the spacing effect that performs favorably across the complete sets of theoretic and applied criteria. We implemented two other previously published computational models of the spacing effect and compare them to PPE using the theoretic and applied criteria as guides. Copyright © 2018 Cognitive Science Society, Inc.

  19. [Theoretical model study about the application risk of high risk medical equipment].

    PubMed

    Shang, Changhao; Yang, Fenghui

    2014-11-01

    Research for establishing a risk monitoring theoretical model of high risk medical equipment at applying site. Regard the applying site as a system which contains some sub-systems. Every sub-system consists of some risk estimating indicators. After quantizing of each indicator, the quantized values are multiplied with corresponding weight and then the products are accumulated. Hence, the risk estimating value of each subsystem is attained. Follow the calculating method, the risk estimating values of each sub-system are multiplied with corresponding weights and then the product is accumulated. The cumulative sum is the status indicator of the high risk medical equipment at applying site. The status indicator reflects the applying risk of the medical equipment at applying site. Establish a risk monitoring theoretical model of high risk medical equipment at applying site. The model can monitor the applying risk of high risk medical equipment at applying site dynamically and specially.

  20. Advances and perspectives in in vitro human gut fermentation modeling.

    PubMed

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Recent advances in plasma modeling for space applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhuvana; Scales, Wayne; Cagas, Petr; Glesner, Colin

    2017-02-01

    This paper presents a brief overview of the application of advanced plasma modeling techniques to several space science and engineering problems currently of significant interest. Recent advances in both kinetic and fluid modeling provide the ability to study a wide variety of problems that may be important to space plasmas including spacecraft-environment interactions, plasma-material interactions for propulsion systems such as Hall thrusters, ionospheric plasma instabilities, plasma separation from magnetic nozzles, active space experiments, and a host of additional problems. Some of the key findings are summarized here.

  2. Theoretical Assessment of the Impact of Climatic Factors in a Vibrio Cholerae Model.

    PubMed

    Kolaye, G; Damakoa, I; Bowong, S; Houe, R; Békollè, D

    2018-05-04

    A mathematical model for Vibrio Cholerae (V. Cholerae) in a closed environment is considered, with the aim of investigating the impact of climatic factors which exerts a direct influence on the bacterial metabolism and on the bacterial reservoir capacity. We first propose a V. Cholerae mathematical model in a closed environment. A sensitivity analysis using the eFast method was performed to show the most important parameters of the model. After, we extend this V. cholerae model by taking account climatic factors that influence the bacterial reservoir capacity. We present the theoretical analysis of the model. More precisely, we compute equilibria and study their stabilities. The stability of equilibria was investigated using the theory of periodic cooperative systems with a concave nonlinearity. Theoretical results are supported by numerical simulations which further suggest the necessity to implement sanitation campaigns of aquatic environments by using suitable products against the bacteria during the periods of growth of aquatic reservoirs.

  3. Advanced aviation environmental modeling tools to inform policymakers

    DOT National Transportation Integrated Search

    2012-08-19

    Aviation environmental models which conform to international guidance have advanced : over the past several decades. Enhancements to algorithms and databases have increasingly : shown these models to compare well with gold standard measured data. The...

  4. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry

    PubMed Central

    Sanchez-Ruiz, Jose M.

    1992-01-01

    A theoretical analysis of several protein denaturation models (Lumry-Eyring models) that include a rate-limited step leading to an irreversibly denatured state of the protein (the final state) has been carried out. The differential scanning calorimetry transitions predicted for these models can be broadly classified into four groups: situations A, B, C, and C′. (A) The transition is calorimetrically irreversible but the rate-limited, irreversible step takes place with significant rate only at temperatures slightly above those corresponding to the transition. Equilibrium thermodynamics analysis is permissible. (B) The transition is distorted by the occurrence of the rate-limited step; nevertheless, it contains thermodynamic information about the reversible unfolding of the protein, which could be obtained upon the appropriate data treatment. (C) The heat absorption is entirely determined by the kinetics of formation of the final state and no thermodynamic information can be extracted from the calorimetric transition; the rate-determining step is the irreversible process itself. (C′) same as C, but, in this case, the rate-determining step is a previous step in the unfolding pathway. It is shown that ligand and protein concentration effects on transitions corresponding to situation C (strongly rate-limited transitions) are similar to those predicted by equilibrium thermodynamics for simple reversible unfolding models. It has been widely held in recent literature that experimentally observed ligand and protein concentration effects support the applicability of equilibrium thermodynamics to irreversible protein denaturation. The theoretical analysis reported here disfavors this claim. PMID:19431826

  5. Game Theoretic Modeling of Water Resources Allocation Under Hydro-Climatic Uncertainty

    NASA Astrophysics Data System (ADS)

    Brown, C.; Lall, U.; Siegfried, T.

    2005-12-01

    Typical hydrologic and economic modeling approaches rely on assumptions of climate stationarity and economic conditions of ideal markets and rational decision-makers. In this study, we incorporate hydroclimatic variability with a game theoretic approach to simulate and evaluate common water allocation paradigms. Game Theory may be particularly appropriate for modeling water allocation decisions. First, a game theoretic approach allows economic analysis in situations where price theory doesn't apply, which is typically the case in water resources where markets are thin, players are few, and rules of exchange are highly constrained by legal or cultural traditions. Previous studies confirm that game theory is applicable to water resources decision problems, yet applications and modeling based on these principles is only rarely observed in the literature. Second, there are numerous existing theoretical and empirical studies of specific games and human behavior that may be applied in the development of predictive water allocation models. With this framework, one can evaluate alternative orderings and rules regarding the fraction of available water that one is allowed to appropriate. Specific attributes of the players involved in water resources management complicate the determination of solutions to game theory models. While an analytical approach will be useful for providing general insights, the variety of preference structures of individual players in a realistic water scenario will likely require a simulation approach. We propose a simulation approach incorporating the rationality, self-interest and equilibrium concepts of game theory with an agent-based modeling framework that allows the distinct properties of each player to be expressed and allows the performance of the system to manifest the integrative effect of these factors. Underlying this framework, we apply a realistic representation of spatio-temporal hydrologic variability and incorporate the impact of

  6. Developing a Model of Advanced Training to Promote Career Advancement for Certified Genetic Counselors: An Investigation of Expanded Skills, Advanced Training Paths, and Professional Opportunities.

    PubMed

    Baty, Bonnie J; Trepanier, Angela; Bennett, Robin L; Davis, Claire; Erby, Lori; Hippman, Catriona; Lerner, Barbara; Matthews, Anne; Myers, Melanie F; Robbins, Carol B; Singletary, Claire N

    2016-08-01

    There are currently multiple paths through which genetic counselors can acquire advanced knowledge and skills. However, outside of continuing education opportunities, there are few formal training programs designed specifically for the advanced training of genetic counselors. In the genetic counseling profession, there is currently considerable debate about the paths that should be available to attain advanced skills, as well as the skills that might be needed for practice in the future. The Association of Genetic Counseling Program Directors (AGCPD) convened a national committee, the Committee on Advanced Training for Certified Genetic Counselors (CATCGC), to investigate varied paths to post-master's training and career development. The committee began its work by developing three related grids that view career advancement from the viewpoints of the skills needed to advance (skills), ways to obtain these skills (paths), and existing genetic counselor positions that offer career change or advancement (positions). Here we describe previous work related to genetic counselor career advancement, the charge of the CATCGC, our preliminary work in developing a model through which to view genetic counselor advanced training and career advancement opportunities, and our next steps in further developing and disseminating the model.

  7. Patient perceptions of patient-centred care: empirical test of a theoretical model.

    PubMed

    Rathert, Cheryl; Williams, Eric S; McCaughey, Deirdre; Ishqaidef, Ghadir

    2015-04-01

    Patient perception measures are gaining increasing interest among scholars and practitioners. The aim of this study was to empirically examine a conceptual model of patient-centred care using patient perception survey data. Patient-centred care is one of the Institute of Medicine's objectives for improving health care in the 21st century. Patient interviews conducted by the Picker Institute/Commonwealth Fund in the 1980s resulted in a theoretical model and survey questions with dimensions and attributes patients defined as patient-centered. The present study used survey data from patients with overnight visits at 142 U.S. hospitals. Regression analysis found significant support for the theoretical model. Perceptions of emotional support had the strongest relationship with overall care ratings. Coordination of care, and physical comfort were strongly related as well. Understanding how patients experience their care can help improve understanding of what patients believe is patient-centred, and of how care processes relate to important patient outcomes. © 2012 John Wiley & Sons Ltd.

  8. Models and Messengers of Resilience: A Theoretical Model of College Students' Resilience, Regulatory Strategy Use, and Academic Achievement

    ERIC Educational Resources Information Center

    Johnson, Marcus L.; Taasoobshirazi, Gita; Kestler, Jessica L.; Cordova, Jackie R.

    2015-01-01

    We tested a theoretical model of college students' ratings of messengers of resilience and models of resilience, students' own perceived resilience, regulatory strategy use and achievement. A total of 116 undergraduates participated in this study. The results of a path analysis indicated that ratings of models of resilience had a direct effect on…

  9. Information-theoretic model selection for optimal prediction of stochastic dynamical systems from data

    NASA Astrophysics Data System (ADS)

    Darmon, David

    2018-03-01

    In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.

  10. A theoretical model of speed-dependent steering torque for rolling tyres

    NASA Astrophysics Data System (ADS)

    Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing

    2016-04-01

    It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.

  11. Advances in cognitive theory and therapy: the generic cognitive model.

    PubMed

    Beck, Aaron T; Haigh, Emily A P

    2014-01-01

    For over 50 years, Beck's cognitive model has provided an evidence-based way to conceptualize and treat psychological disorders. The generic cognitive model represents a set of common principles that can be applied across the spectrum of psychological disorders. The updated theoretical model provides a framework for addressing significant questions regarding the phenomenology of disorders not explained in previous iterations of the original model. New additions to the theory include continuity of adaptive and maladaptive function, dual information processing, energizing of schemas, and attentional focus. The model includes a theory of modes, an organization of schemas relevant to expectancies, self-evaluations, rules, and memories. A description of the new theoretical model is followed by a presentation of the corresponding applied model, which provides a template for conceptualizing a specific disorder and formulating a case. The focus on beliefs differentiates disorders and provides a target for treatment. A variety of interventions are described.

  12. Sound transmission through lightweight double-leaf partitions: theoretical modelling

    NASA Astrophysics Data System (ADS)

    Wang, J.; Lu, T. J.; Woodhouse, J.; Langley, R. S.; Evans, J.

    2005-09-01

    This paper presents theoretical modelling of the sound transmission loss through double-leaf lightweight partitions stiffened with periodically placed studs. First, by assuming that the effect of the studs can be replaced with elastic springs uniformly distributed between the sheathing panels, a simple smeared model is established. Second, periodic structure theory is used to develop a more accurate model taking account of the discrete placing of the studs. Both models treat incident sound waves in the horizontal plane only, for simplicity. The predictions of the two models are compared, to reveal the physical mechanisms determining sound transmission. The smeared model predicts relatively simple behaviour, in which the only conspicuous features are associated with coincidence effects with the two types of structural wave allowed by the partition model, and internal resonances of the air between the panels. In the periodic model, many more features are evident, associated with the structure of pass- and stop-bands for structural waves in the partition. The models are used to explain the effects of incidence angle and of the various system parameters. The predictions are compared with existing test data for steel plates with wooden stiffeners, and good agreement is obtained.

  13. Exploring patient satisfaction predictors in relation to a theoretical model.

    PubMed

    Grøndahl, Vigdis Abrahamsen; Hall-Lord, Marie Louise; Karlsson, Ingela; Appelgren, Jari; Wilde-Larsson, Bodil

    2013-01-01

    The aim is to describe patients' care quality perceptions and satisfaction and to explore potential patient satisfaction predictors as person-related conditions, external objective care conditions and patients' perception of actual care received ("PR") in relation to a theoretical model. A cross-sectional design was used. Data were collected using one questionnaire combining questions from four instruments: Quality from patients' perspective; Sense of coherence; Big five personality trait; and Emotional stress reaction questionnaire (ESRQ), together with questions from previous research. In total, 528 patients (83.7 per cent response rate) from eight medical, three surgical and one medical/surgical ward in five Norwegian hospitals participated. Answers from 373 respondents with complete ESRQ questionnaires were analysed. Sequential multiple regression analysis with ESRQ as dependent variable was run in three steps: person-related conditions, external objective care conditions, and PR (p < 0.05). Step 1 (person-related conditions) explained 51.7 per cent of the ESRQ variance. Step 2 (external objective care conditions) explained an additional 2.4 per cent. Step 3 (PR) gave no significant additional explanation (0.05 per cent). Steps 1 and 2 contributed statistical significance to the model. Patients rated both quality-of-care and satisfaction highly. The paper shows that the theoretical model using an emotion-oriented approach to assess patient satisfaction can explain 54 per cent of patient satisfaction in a statistically significant manner.

  14. [Self-Determination in Medical Rehabilitation - Development of a Conceptual Model for Further Theoretical Discussion].

    PubMed

    Senin, Tatjana; Meyer, Thorsten

    2018-01-22

    Aim was to gather theoretical knowledge about self-determination and to develop a conceptual model for medical rehabilitation- which serves as a basis for discussion. We performed a literature research in electronic databases. Various theories and research results were adopted and transferred to the context of medical rehabilitation and into a conceptual model. The conceptual model of self-determination reflects on a continuum which forms of self-determination may be present in situations of medical rehabilitation treatments. The location on the continuum depends theoretically on the manifestation of certain internal and external factors that may influence each other. The model provides a first conceptualization of self-determination focusing on medical rehabilitation which should be further refined and tested empirically. © Georg Thieme Verlag KG Stuttgart · New York.

  15. A comparative study of a theoretical neural net model with MEG data from epileptic patients and normal individuals.

    PubMed

    Kotini, A; Anninos, P; Anastasiadis, A N; Tamiolakis, D

    2005-09-07

    The aim of this study was to compare a theoretical neural net model with MEG data from epileptic patients and normal individuals. Our experimental study population included 10 epilepsy sufferers and 10 healthy subjects. The recordings were obtained with a one-channel biomagnetometer SQUID in a magnetically shielded room. Using the method of x2-fitting it was found that the MEG amplitudes in epileptic patients and normal subjects had Poisson and Gauss distributions respectively. The Poisson connectivity derived from the theoretical neural model represents the state of epilepsy, whereas the Gauss connectivity represents normal behavior. The MEG data obtained from epileptic areas had higher amplitudes than the MEG from normal regions and were comparable with the theoretical magnetic fields from Poisson and Gauss distributions. Furthermore, the magnetic field derived from the theoretical model had amplitudes in the same order as the recorded MEG from the 20 participants. The approximation of the theoretical neural net model with real MEG data provides information about the structure of the brain function in epileptic and normal states encouraging further studies to be conducted.

  16. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  17. How Career Variety Promotes the Adaptability of Managers: A Theoretical Model

    ERIC Educational Resources Information Center

    Karaevli, Ayse; Tim Hall, Douglas T.

    2006-01-01

    This paper presents a theoretical model showing how managerial adaptability develops from career variety over the span of the person's career. By building on the literature of career theory, adult learning and development, and career adjustment, we offer a new conceptualization of managerial adaptability by identifying its behavioral, cognitive,…

  18. Physics of human cooperation: experimental evidence and theoretical models

    NASA Astrophysics Data System (ADS)

    Sánchez, Angel

    2018-02-01

    In recent years, many physicists have used evolutionary game theory combined with a complex systems perspective in an attempt to understand social phenomena and challenges. Prominent among such phenomena is the issue of the emergence and sustainability of cooperation in a networked world of selfish or self-focused individuals. The vast majority of research done by physicists on these questions is theoretical, and is almost always posed in terms of agent-based models. Unfortunately, more often than not such models ignore a number of facts that are well established experimentally, and are thus rendered irrelevant to actual social applications. I here summarize some of the facts that any realistic model should incorporate and take into account, discuss important aspects underlying the relation between theory and experiments, and discuss future directions for research based on the available experimental knowledge.

  19. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2003-11-01

    Based on lectures given in honor of Stephen Hawking's 60th birthday, this book comprises contributions from the world's leading theoretical physicists. Popular lectures progress to a critical evaluation of more advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. The volume provides a fascinating overview of the variety of subjects to which Stephen Hawking has contributed.

  20. Effect of differentiation of self on adolescent risk behavior: test of the theoretical model.

    PubMed

    Knauth, Donna G; Skowron, Elizabeth A; Escobar, Melicia

    2006-01-01

    Innovative theoretical models are needed to explain the occurrence of high-risk sexual behaviors, alcohol and other-drug (AOD) use, and academic engagement among ethnically diverse, inner-city adolescents. The aim of this study was to test the credibility of a theoretical model based on the Bowen family systems theory to explain adolescent risk behavior. Specifically tested was the relationship between the predictor variables of differentiation of self, chronic anxiety, and social problem solving and the dependent variables of high-risk sexual behaviors, AOD use, and academic engagement. An ex post facto cross-sectional design was used to test the usefulness of the theoretical model. Data were collected from 161 racially/ethnically diverse, inner-city high school students, 14 to 19 years of age. Participants completed self-report written questionnaires, including the Differentiation of Self Inventory, State-Trait Anxiety Inventory, Social Problem Solving for Adolescents, Drug Involvement Scale for Adolescents, and the Sexual Behavior Questionnaire. Consistent with the model, higher levels of differentiation of self related to lower levels of chronic anxiety (p < .001) and higher levels of social problem solving (p < .01). Higher chronic anxiety was related to lower social problem solving (p < .001). A test of mediation showed that chronic anxiety mediates the relationship between differentiation of self and social problem solving (p < .001), indicating that differentiation influences social problem solving through chronic anxiety. Higher levels of social problem solving were related to less drug use (p < .05), less high-risk sexual behaviors (p < .01), and an increase in academic engagement (p < .01). Findings support the theoretical model's credibility and provide evidence that differentiation of self is an important cognitive factor that enables adolescents to manage chronic anxiety and motivates them to use effective problem solving, resulting in less

  1. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    PubMed

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls

  2. The Safety Culture Enactment Questionnaire (SCEQ): Theoretical model and empirical validation.

    PubMed

    de Castro, Borja López; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2017-06-01

    This paper presents the Safety Culture Enactment Questionnaire (SCEQ), designed to assess the degree to which safety is an enacted value in the day-to-day running of nuclear power plants (NPPs). The SCEQ is based on a theoretical safety culture model that is manifested in three fundamental components of the functioning and operation of any organization: strategic decisions, human resources practices, and daily activities and behaviors. The extent to which the importance of safety is enacted in each of these three components provides information about the pervasiveness of the safety culture in the NPP. To validate the SCEQ and the model on which it is based, two separate studies were carried out with data collection in 2008 and 2014, respectively. In Study 1, the SCEQ was administered to the employees of two Spanish NPPs (N=533) belonging to the same company. Participants in Study 2 included 598 employees from the same NPPs, who completed the SCEQ and other questionnaires measuring different safety outcomes (safety climate, safety satisfaction, job satisfaction and risky behaviors). Study 1 comprised item formulation and examination of the factorial structure and reliability of the SCEQ. Study 2 tested internal consistency and provided evidence of factorial validity, validity based on relationships with other variables, and discriminant validity between the SCEQ and safety climate. Exploratory Factor Analysis (EFA) carried out in Study 1 revealed a three-factor solution corresponding to the three components of the theoretical model. Reliability analyses showed strong internal consistency for the three scales of the SCEQ, and each of the 21 items on the questionnaire contributed to the homogeneity of its theoretically developed scale. Confirmatory Factor Analysis (CFA) carried out in Study 2 supported the internal structure of the SCEQ; internal consistency of the scales was also supported. Furthermore, the three scales of the SCEQ showed the expected correlation

  3. Recent progress in the theoretical modelling of Cepheids and RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Marconi, Marcella

    2017-09-01

    Cepheids and RR Lyrae are among the most important primary distance indicators to calibrate the extragalactic distance ladder and excellent stellar population tracers, for Population I and Population II, respectively. In this paper I first mention some recent theoretical studies of Cepheids and RR Lyrae obtained with different theoretical tools. Then I focus the attention on new results based on nonlinear convective pulsation models in the context of some international projects, including VMC@VISTA and the Gaia collaboration. The open problems for both Cepheids and RR Lyrae are briefly discussed together with some challenging future application.

  4. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    PubMed Central

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  5. Developing a theoretical maintenance model for disordered eating in Type 1 diabetes.

    PubMed

    Treasure, J; Kan, C; Stephenson, L; Warren, E; Smith, E; Heller, S; Ismail, K

    2015-12-01

    According to the literature, eating disorders are an increasing problem for more than a quarter of people with Type 1 diabetes and they are associated with accentuated diabetic complications. The clinical outcomes in this group when given standard eating disorder treatments are disappointing. The Medical Research Council guidelines for developing complex interventions suggest that the first step is to develop a theoretical model. To review existing literature to build a theoretical maintenance model for disordered eating in people with Type 1 diabetes. The literature in diabetes relating to models of eating disorder (Fairburn's transdiagnostic model and the dual pathway model) and food addiction was examined and assimilated. The elements common to all eating disorder models include weight/shape concern and problems with mood regulation. The predisposing traits of perfectionism, low self-esteem and low body esteem and the interpersonal difficulties from the transdiagnostic model are also relevant to diabetes. The differences include the use of insulin mismanagement to compensate for breaking eating rules and the consequential wide variations in plasma glucose that may predispose to 'food addiction'. Eating disorder symptoms elicit emotionally driven reactions and behaviours from others close to the individual affected and these are accentuated in the context of diabetes. The next stage is to test the assumptions within the maintenance model with experimental medicine studies to facilitate the development of new technologies aimed at increasing inhibitory processes and moderating environmental triggers. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  6. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    NASA Astrophysics Data System (ADS)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  7. Theoretical model predictions and experimental results for a wavelength switchable Tm:YAG laser.

    PubMed

    Niu, Yanxiong; Wang, Caili; Liu, Wenwen; Niu, Haisha; Xu, Bing; Man, Da

    2014-07-01

    We present a theoretical model study of a quasi-three-level laser with particular attention given to the Tm:YAG laser. The oscillating conditions of this laser were theoretically analyzed from the point of the pump threshold while taking into account reabsorption loss. The laser oscillation at 2.02 μm with large stimulated emission sections was suppressed by selecting the appropriate coating for the cavity mirrors, then an efficient laser-diode side-pumped continuous-wave Tm:YAG crystal laser operating at 2.07 μm was realized. Experiments with the Tm:YAG laser confirmed the accuracy of the model, and the model was able to accurately predict that the high Stark sub-level within the H36 ground state manifold has a low laser threshold and long laser wavelength, which was achieved by decreasing the transmission of the output coupler.

  8. The Social Structuring of Mental Health over the Adult Life Course: Advancing Theory in the Sociology of Aging

    ERIC Educational Resources Information Center

    Clarke, Philippa; Marshall, Victor; House, James; Lantz, Paula

    2011-01-01

    The sociology of aging draws on a broad array of theoretical perspectives and social theories from several disciplines, but rarely has it developed its own theories or theoretical perspectives. We build on past work to further advance and empirically test a model of mental health framed in terms of structural theorizing and situated within the…

  9. Development Mechanism of an Integrated Model for Training of a Specialist and Conceptual-Theoretical Activity of a Teacher

    ERIC Educational Resources Information Center

    Marasulov, Akhmat; Saipov, Amangeldi; ?rymbayeva, Kulimkhan; Zhiyentayeva, Begaim; Demeuov, Akhan; Konakbaeva, Ulzhamal; Bekbolatova, Akbota

    2016-01-01

    The aim of the study is to examine the methodological-theoretical construction bases for development mechanism of an integrated model for a specialist's training and teacher's conceptual-theoretical activity. Using the methods of generalization of teaching experience, pedagogical modeling and forecasting, the authors determine the urgent problems…

  10. MixSIAR: advanced stable isotope mixing models in R

    EPA Science Inventory

    Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...

  11. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1989-03-01

    Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.

  12. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1990-05-01

    Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.

  13. Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces

    PubMed Central

    Kabaso, Doron; Shlomovitz, Roie; Schloen, Kathrin; Stradal, Theresia; Gov, Nir S.

    2011-01-01

    The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. PMID:21573201

  14. The experimental-theoretical model of the jet HF induction discharge of atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gainullin, R.; Kirpichnikov, A.

    2017-11-01

    The paper considers theexperimental-theoretical model devised to determine the regularities of the quasi-stationary electromagnetic field structure of the HFI discharge burning in the inductor of finite dimensions at atmospheric pressure.

  15. Dementia Grief: A Theoretical Model of a Unique Grief Experience

    PubMed Central

    Blandin, Kesstan; Pepin, Renee

    2016-01-01

    Previous literature reveals a high prevalence of grief in dementia caregivers before physical death of the person with dementia that is associated with stress, burden, and depression. To date, theoretical models and therapeutic interventions with grief in caregivers have not adequately considered the grief process, but instead have focused on grief as a symptom that manifests within the process of caregiving. The Dementia Grief Model explicates the unique process of pre-death grief in dementia caregivers. In this paper we introduce the Dementia Grief Model, describe the unique characteristics dementia grief, and present the psychological states associated with the process of dementia grief. The model explicates an iterative grief process involving three states – separation, liminality, and re-emergence – each with a dynamic mechanism that facilitates or hinders movement through the dementia grief process. Finally, we offer potential applied research questions informed by the model. PMID:25883036

  16. Falling Chains as Variable-Mass Systems: Theoretical Model and Experimental Analysis

    ERIC Educational Resources Information Center

    de Sousa, Celia A.; Gordo, Paulo M.; Costa, Pedro

    2012-01-01

    In this paper, we revisit, theoretically and experimentally, the fall of a folded U-chain and of a pile-chain. The model calculation implies the division of the whole system into two subsystems of variable mass, allowing us to explore the role of tensional contact forces at the boundary of the subsystems. This justifies, for instance, that the…

  17. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    NASA Technical Reports Server (NTRS)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  18. Current preclinical models for the advancement of translational bladder cancer research.

    PubMed

    DeGraff, David J; Robinson, Victoria L; Shah, Jay B; Brandt, William D; Sonpavde, Guru; Kang, Yibin; Liebert, Monica; Wu, Xue-Ru; Taylor, John A

    2013-02-01

    Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States. Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future preclinical discoveries with translational potential will require investigators to take full advantage of recent advances in molecular and animal modeling methodologies. We present an overview of current preclinical models and their potential roles in advancing our understanding of this deadly disease and for advancing care. ©2012 AACR.

  19. Venturing into the Unknown: Blogs as a Means of Advancing Leadership Skills

    ERIC Educational Resources Information Center

    Kodish, Slavica

    2017-01-01

    The author describes a theoretically eclectic exploratory assignment that helped students in a managerial communication class practice and advance a comprehensive range of leadership skills. Specifically, the author combined E. M. Eisenberg, L. H. Goodall, and A. Tretheway's (2014) model of leadership with pertinent concepts from the theory of…

  20. Theoretical Models and Operational Frameworks in Public Health Ethics

    PubMed Central

    Petrini, Carlo

    2010-01-01

    The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided. PMID:20195441

  1. Health Professionals' Explanations of Suicidal Behaviour: Effects of Professional Group, Theoretical Intervention Model, and Patient Suicide Experience.

    PubMed

    Rothes, Inês Areal; Henriques, Margarida Rangel

    2017-12-01

    In a help relation with a suicidal person, the theoretical models of suicidality can be essential to guide the health professional's comprehension of the client/patient. The objectives of this study were to identify health professionals' explanations of suicidal behaviors and to study the effects of professional group, theoretical intervention models, and patient suicide experience in professionals' representations. Two hundred and forty-two health professionals filled out a self-report questionnaire. Exploratory principal components analysis was used. Five explanatory models were identified: psychological suffering, affective cognitive, sociocommunicational, adverse life events, and psychopathological. Results indicated that the psychological suffering and psychopathological models were the most valued by the professionals, while the sociocommunicational was seen as the least likely to explain suicidal behavior. Differences between professional groups were found. We concluded that training and reflection on theoretical models in general and in communicative issues in particular are needed in the education of health professionals.

  2. The interrogation decision-making model: A general theoretical framework for confessions.

    PubMed

    Yang, Yueran; Guyll, Max; Madon, Stephanie

    2017-02-01

    This article presents a new model of confessions referred to as the interrogation decision-making model . This model provides a theoretical umbrella with which to understand and analyze suspects' decisions to deny or confess guilt in the context of a custodial interrogation. The model draws upon expected utility theory to propose a mathematical account of the psychological mechanisms that not only underlie suspects' decisions to deny or confess guilt at any specific point during an interrogation, but also how confession decisions can change over time. Findings from the extant literature pertaining to confessions are considered to demonstrate how the model offers a comprehensive and integrative framework for organizing a range of effects within a limited set of model parameters. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Curriculum for the Twenty-First Century: Recent Advances in Economic Theory and Undergraduate Economics

    ERIC Educational Resources Information Center

    Ferguson, William D.

    2011-01-01

    Undergraduate economics lags behind cutting-edge economic theory. The author briefly reviews six related advances that profoundly extend and deepen economic analysis: game-theoretic modeling, collective-action problems, information economics and contracting, social preference theory, conceptualizing rationality, and institutional theory. He offers…

  4. Generalized Constitutive-Based Theoretical and Empirical Models for Hot Working Behavior of Functionally Graded Steels

    NASA Astrophysics Data System (ADS)

    Vanini, Seyed Ali Sadough; Abolghasemzadeh, Mohammad; Assadi, Abbas

    2013-07-01

    Functionally graded steels with graded ferritic and austenitic regions including bainite and martensite intermediate layers produced by electroslag remelting have attracted much attention in recent years. In this article, an empirical model based on the Zener-Hollomon (Z-H) constitutive equation with generalized material constants is presented to investigate the effects of temperature and strain rate on the hot working behavior of functionally graded steels. Next, a theoretical model, generalized by strain compensation, is developed for the flow stress estimation of functionally graded steels under hot compression based on the phase mixture rule and boundary layer characteristics. The model is used for different strains and grading configurations. Specifically, the results for αβγMγ steels from empirical and theoretical models showed excellent agreement with those of experiments of other references within acceptable error.

  5. Electronic health record acceptance by physicians: testing an integrated theoretical model.

    PubMed

    Gagnon, Marie-Pierre; Ghandour, El Kebir; Talla, Pascaline Kengne; Simonyan, David; Godin, Gaston; Labrecque, Michel; Ouimet, Mathieu; Rousseau, Michel

    2014-04-01

    Several countries are in the process of implementing an Electronic Health Record (EHR), but limited physicians' acceptance of this technology presents a serious threat to its successful implementation. The aim of this study was to identify the main determinants of physician acceptance of EHR in a sample of general practitioners and specialists of the Province of Quebec (Canada). We sent an electronic questionnaire to physician members of the Quebec Medical Association. We tested four theoretical models (Technology acceptance model (TAM), Extended TAM, Psychosocial Model, and Integrated Model) using path analysis and multiple linear regression analysis in order to identify the main determinants of physicians' intention to use the EHR. We evaluated the modifying effect of sociodemographic characteristics using multi-group analysis of structural weights invariance. A total of 157 questionnaires were returned. The four models performed well and explained between 44% and 55% of the variance in physicians' intention to use the EHR. The Integrated model performed the best and showed that perceived ease of use, professional norm, social norm, and demonstrability of the results are the strongest predictors of physicians' intention to use the EHR. Age, gender, previous experience and specialty modified the association between those determinants and intention. The proposed integrated theoretical model is useful in identifying which factors could motivate physicians from different backgrounds to use the EHR. Physicians who perceive the EHR to be easy to use, coherent with their professional norms, supported by their peers and patients, and able to demonstrate tangible results are more likely to accept this technology. Age, gender, specialty and experience should also be taken into account when developing EHR implementation strategies targeting physicians. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Theoretical Problems in Materials Science

    NASA Technical Reports Server (NTRS)

    Langer, J. S.; Glicksman, M. E.

    1985-01-01

    Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.

  7. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land

  8. Advanced Small Modular Reactor Economics Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis ofmore » the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In

  9. Coupling biology and oceanography in models.

    PubMed

    Fennel, W; Neumann, T

    2001-08-01

    The dynamics of marine ecosystems, i.e. the changes of observable chemical-biological quantities in space and time, are driven by biological and physical processes. Predictions of future developments of marine systems need a theoretical framework, i.e. models, solidly based on research and understanding of the different processes involved. The natural way to describe marine systems theoretically seems to be the embedding of chemical-biological models into circulation models. However, while circulation models are relatively advanced the quantitative theoretical description of chemical-biological processes lags behind. This paper discusses some of the approaches and problems in the development of consistent theories and indicates the beneficial potential of the coupling of marine biology and oceanography in models.

  10. Theoretical aspect of suitable spatial boundary condition specified for adjoint model on limited area

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Wu, Rongsheng

    2001-12-01

    Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers.

  11. Monte Carlo simulation models of breeding-population advancement.

    Treesearch

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  12. Education, Labour Market and Human Capital Models: Swedish Experiences and Theoretical Analyses.

    ERIC Educational Resources Information Center

    Sohlman, Asa

    An empirical study concerning development of the Swedish educational system from a labor market point of view, and a theoretical study on human capital models are discussed. In "Education and Labour Market; The Swedish Experience 1900-1975," attention is directed to the following concerns: the official educational policy regarding…

  13. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  14. Advanced overlay: sampling and modeling for optimized run-to-run control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  15. Mixed phase clouds: observations and theoretical advances (overview)

    NASA Astrophysics Data System (ADS)

    Korolev, Alexei

    2013-04-01

    Mixed phase clouds play important role in precipitation formation and radiation budget of the Earth. The microphysical measurements in mixed phase clouds are notoriously difficult due to many technical challenges. The airborne instrumentation for characterization of the microstructure of mixed phase clouds is discussed. The results multiyear airborne observations and measurements of frequency of occurrence of mixed phase, characteristic spatial scales, humidity in mixed phase and ice clouds are presented. A theoretical framework describing the thermodynamics and phase transformation of a three phase component system consisting of ice particles, liquid droplets and water vapor is discussed. It is shown that the Wegener-Bergeron-Findeisen process plays different role in clouds with different dynamics. The problem of maintenance and longevity of mixed phase clouds is discussed.

  16. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    ERIC Educational Resources Information Center

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  17. Research and development program for the development of advanced time-temperature dependent constitutive relationships. Volume 1: Theoretical discussion

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    The results of a 10-month research and development program for the development of advanced time-temperature constitutive relationships are presented. The program included (1) the effect of rate of change of temperature, (2) the development of a term to include time independent effects, and (3) improvements in computational efficiency. It was shown that rate of change of temperature could have a substantial effect on the predicted material response. A modification to include time-independent effects, applicable to many viscoplastic constitutive theories, was shown to reduce to classical plasticity. The computation time can be reduced by a factor of two if self-adaptive integration is used when compared to an integration using ordinary forward differences. During the course of the investigation, it was demonstrated that the most important single factor affecting the theoretical accuracy was the choice of material parameters.

  18. [Social determinants of odontalgia in epidemiological studies: theoretical review and proposed conceptual model].

    PubMed

    Bastos, João Luiz Dornelles; Gigante, Denise Petrucci; Peres, Karen Glazer; Nedel, Fúlvio Borges

    2007-01-01

    The epidemiological literature has been limited by the absence of a theoretical framework reflecting the complexity of causal mechanisms for the occurrence of health phenomena / disease conditions. In the field of oral epidemiology, such lack of theory also prevails, since dental caries the leading topic in oral research has been often studied through a biological and reductionist viewpoint. One of the most important consequences of dental caries is dental pain (odontalgia), which has received little attention in studies with sophisticated theoretical models and powerful designs to establish causal relationships. The purpose of this study is to review the scientific literature on the determinants of odontalgia and to discuss theories proposed for the explanation of the phenomenon. Conceptual models and emerging theories on the social determinants of oral health are revised, in an attempt to build up links with the bio-psychosocial pain model, proposing a more elaborate causal model for odontalgia. The framework suggests causal pathways between social structure and oral health through material, psychosocial and behavioral pathways. Aspects of the social structure are highlighted in order to relate them to odontalgia, stressing their importance in discussions of causal relationships in oral health research.

  19. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  20. Exploring the relationship between volunteering and hospice sustainability in the UK: a theoretical model.

    PubMed

    Scott, Ros; Jindal-Snape, Divya; Manwaring, Gaye

    2018-05-02

    To explore the relationship between volunteering and the sustainability of UK voluntary hospices. A narrative literature review was conducted to inform the development of a theoretical model. Eight databases were searched: CINAHL (EBSCO), British Nursing Index, Intute: Health and Life Sciences, ERIC, SCOPUS, ASSIA (CSA), Cochrane Library and Google Scholar. A total of 90 documents were analysed. Emerging themes included the importance of volunteering to the hospice economy and workforce, the quality of services, and public and community support. Findings suggest that hospice sustainability is dependent on volunteers; however, the supply and retention of volunteers is affected by internal and external factors. A theoretical model was developed to illustrate the relationship between volunteering and hospice sustainability. It demonstrates the factors necessary for hospice sustainability and the reciprocal impact that these factors and volunteering have on each other. The model has a practical application as an assessment framework and strategic planning tool.

  1. Risk assessment model for development of advanced age-related macular degeneration.

    PubMed

    Klein, Michael L; Francis, Peter J; Ferris, Frederick L; Hamon, Sara C; Clemons, Traci E

    2011-12-01

    To design a risk assessment model for development of advanced age-related macular degeneration (AMD) incorporating phenotypic, demographic, environmental, and genetic risk factors. We evaluated longitudinal data from 2846 participants in the Age-Related Eye Disease Study. At baseline, these individuals had all levels of AMD, ranging from none to unilateral advanced AMD (neovascular or geographic atrophy). Follow-up averaged 9.3 years. We performed a Cox proportional hazards analysis with demographic, environmental, phenotypic, and genetic covariates and constructed a risk assessment model for development of advanced AMD. Performance of the model was evaluated using the C statistic and the Brier score and externally validated in participants in the Complications of Age-Related Macular Degeneration Prevention Trial. The final model included the following independent variables: age, smoking history, family history of AMD (first-degree member), phenotype based on a modified Age-Related Eye Disease Study simple scale score, and genetic variants CFH Y402H and ARMS2 A69S. The model did well on performance measures, with very good discrimination (C statistic = 0.872) and excellent calibration and overall performance (Brier score at 5 years = 0.08). Successful external validation was performed, and a risk assessment tool was designed for use with or without the genetic component. We constructed a risk assessment model for development of advanced AMD. The model performed well on measures of discrimination, calibration, and overall performance and was successfully externally validated. This risk assessment tool is available for online use.

  2. Theoretical model to explain the problem-solving process in physics

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos

    2011-03-01

    This work reports a theoretical model developed with the aim to explain the mental mechanisms of knowledge building during the problem-solving process in physics using a hybrid approach of assimilation- formation of concepts. The model has been termed conceptual chains and represents graphic diagrams of conceptual dependency, which have yielded information about the background knowledge required during the learning process, as well as about the formation of diverse structures that correspond to distinct forms of networking concepts Additionally, the conceptual constructs of the model have been classified according to five types of knowledge. Evidence was found about the influence of these structures, as well as of the distinct types of knowledge about the degree of difficulty of the problems. I want to be grateful to Laureate International Universities, Baltimore M.D., USA, for the financing granted for the accomplishment of this work.

  3. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  4. A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM)

    DTIC Science & Technology

    2017-10-01

    TECHNICAL REPORT 3079 October 2017 A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM...Head 55190 Networks Division iii EXECUTIVE SUMMARY This report summarizes the methodology developed to improve the radar threshold modeling...PHASED ARRAY RADAR CONFIGURATION ..................................................................... 1 3. METHODOLOGY

  5. The Roy Adaptation Model: A Theoretical Framework for Nurses Providing Care to Individuals With Anorexia Nervosa.

    PubMed

    Jennings, Karen M

    Using a nursing theoretical framework to understand, elucidate, and propose nursing research is fundamental to knowledge development. This article presents the Roy Adaptation Model as a theoretical framework to better understand individuals with anorexia nervosa during acute treatment, and the role of nursing assessments and interventions in the promotion of weight restoration. Nursing assessments and interventions situated within the Roy Adaptation Model take into consideration how weight restoration does not occur in isolation but rather reflects an adaptive process within external and internal environments, and has the potential for more holistic care.

  6. Game-Theoretic Models of Information Overload in Social Networks

    NASA Astrophysics Data System (ADS)

    Borgs, Christian; Chayes, Jennifer; Karrer, Brian; Meeder, Brendan; Ravi, R.; Reagans, Ray; Sayedi, Amin

    We study the effect of information overload on user engagement in an asymmetric social network like Twitter. We introduce simple game-theoretic models that capture rate competition between celebrities producing updates in such networks where users non-strategically choose a subset of celebrities to follow based on the utility derived from high quality updates as well as disutility derived from having to wade through too many updates. Our two variants model the two behaviors of users dropping some potential connections (followership model) or leaving the network altogether (engagement model). We show that under a simple formulation of celebrity rate competition, there is no pure strategy Nash equilibrium under the first model. We then identify special cases in both models when pure rate equilibria exist for the celebrities: For the followership model, we show existence of a pure rate equilibrium when there is a global ranking of the celebrities in terms of the quality of their updates to users. This result also generalizes to the case when there is a partial order consistent with all the linear orders of the celebrities based on their qualities to the users. Furthermore, these equilibria can be computed in polynomial time. For the engagement model, pure rate equilibria exist when all users are interested in the same number of celebrities, or when they are interested in at most two. Finally, we also give a finite though inefficient procedure to determine if pure equilibria exist in the general case of the followership model.

  7. Advanced Residual Strength Degradation Rate Modeling for Advanced Composite Structures. Volume II. Tasks II and III.

    DTIC Science & Technology

    1981-07-01

    ADVANCED COMPOSITE STRUCTURES VOLUME II - TASKS Ix AND III K. N. Lauraitis Tl J. T. Ryder ?l4 D. E. Pettit ~ Lockheed-California Company S Burbank...Strength Degradation Rate Final Report Modeling for Advanced Composite Structures 1 July 1979 to 29 May 1981 Vol II - Task II and III S. PERFORMIN ONG...identify by block namber) composites , graphite/epoxy, impact damage, damaged holes, fatigue, damage propagation, residual strength, NDI 20. ABSTRACT

  8. Particle Engulfment and Pushing By Solidifying Interfaces - Recent Theoretical and Experimental Developments

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Catalina, A. V.; Juretzko, Frank R.; Sen, Subhayu; Curreri, P. A.

    2003-01-01

    The objective of the work on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) include: 1) to obtain fundamental understanding of the physics of particle pushing and engulfment, 2) to develop mathematical models to describe the phenomenon, and 3) to perform critical experiments in the microgravity environment of space to provide benchmark data for model validation. Successful completion of this project will yield vital information relevant to a diverse area of terrestrial applications. With PEP being a long term research effort, this report will focus on advances in the theoretical treatment of the solid/liquid interface interaction with an approaching particle, experimental validation of some aspects of the developed models, and the experimental design aspects of future experiments to be performed on board the International Space Station.

  9. Mechanisms of plasma-assisted catalyzed growth of carbon nanofibres: a theoretical modeling

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Sharma, S. C.; Sharma, R.

    2017-02-01

    A theoretical model is developed to study the nucleation and catalytic growth of carbon nanofibers (CNFs) in a plasma environment. The model includes the charging of CNFs, the kinetics of the plasma species (neutrals, ions and electrons), plasma pretreatment of the catalyst film, and various processes unique to a plasma-exposed catalyst surface such as adsorption of neutrals, thermal dissociation of neutrals, ion induced dissociation, interaction between neutral species, stress exerted by the growing graphene layers and the growth of CNFs. Numerical calculations are carried out for typical glow discharge plasma parameters. It is found that the growth rate of CNFs decreases with the catalyst nanoparticle size. In addition, the effect of hydrogen on the catalyst nanoparticle size, CNF tip diameter, CNF growth rate, and the tilt angle of the graphene layers to the fiber axis are investigated. Moreover, it is also found that the length of CNFs increases with hydrocarbon number density. Our theoretical findings are in good agreement with experimental observations and can be extended to enhance the field emission characteristics of CNFs.

  10. Modeling Tool Advances Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.

  11. Evaluation of reliability modeling tools for advanced fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Scheper, Charlotte

    1986-01-01

    The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.

  12. Modeling Theory of Mind and Cognitive Appraisal with Decision-Theoretic Agents

    DTIC Science & Technology

    2011-04-07

    following key factors: Consistency: People expect, prefer, and are driven to maintain consistency, and avoid cognitive dissonance , be- tween beliefs...Modeling Theory of Mind and Cognitive Appraisal with Decision-Theoretic Agents David V. Pynadath1, Mei Si2, and Stacy C. Marsella1 1Institute for...capacity in appraisal and social emotions, as well as arguing for a uniform process for emotion and cognition . 1 Report Documentation Page Form

  13. Theoretical status of the lifetime predictions:. (ΔΓ/Γ)Bs, τB+/τBd and τΛbBd

    NASA Astrophysics Data System (ADS)

    Lenz, Alexander

    2002-04-01

    We give a review of the theoretical status of the lifetime predictions in the standard model. In case of (ΔΓ/Γ)Bs we are already in a rather advanced stage. We obtain (Δ Γ /Γ )Bs = (9.3+3.4-4.6)%. It seems to be difficult to improve these errors substantially. In addition now some experimental results are available. For τB+/τBd and τΛbBd the theoretical status is much less advanced and the discrepancy between experiment and theory still remains. We conclude with a what-to-do-list for theorists.

  14. An assessment of some theoretical models used for the calculation of the refractive index of InXGa1-xAs

    NASA Astrophysics Data System (ADS)

    Engelbrecht, J. A. A.

    2018-04-01

    Theoretical models used for the determination of the refractive index of InXGa1-XAs are reviewed and compared. Attention is drawn to some problems experienced with some of the models. Models also extended to the mid-infrared region of the electromagnetic spectrum. Theoretical results in the mid-infrared region are then compared to previously published experimental results.

  15. A New Theoretical Approach to Postsecondary Student Disability: Disability-Diversity (Dis)Connect Model

    ERIC Educational Resources Information Center

    Aquino, Katherine C.

    2016-01-01

    Disability is often viewed as an obstacle to postsecondary inclusion, but not a characteristic of student diversity. Additionally, current theoretical frameworks isolate disability from other student diversity characteristics. In response, a new conceptual framework, the Disability-Diversity (Dis)Connect Model (DDDM), was created to address…

  16. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2017-12-13

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  17. Center for Advanced Modeling and Simulation Intern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertman, Vanessa

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  18. Recent modelling advances for ultrasonic TOFD inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darmon, Michel; Ferrand, Adrien; Dorval, Vincent

    The ultrasonic TOFD (Time of Flight Diffraction) Technique is commonly used to detect and characterize disoriented cracks using their edge diffraction echoes. An overview of the models integrated in the CIVA software platform and devoted to TOFD simulation is presented. CIVA allows to predict diffraction echoes from complex 3D flaws using a PTD (Physical Theory of Diffraction) based model. Other dedicated developments have been added to simulate lateral waves in 3D on planar entry surfaces and in 2D on irregular surfaces by a ray approach. Calibration echoes from Side Drilled Holes (SDHs), specimen echoes and shadowing effects from flaws canmore » also been modelled. Some examples of theoretical validation of the models are presented. In addition, experimental validations have been performed both on planar blocks containing calibration holes and various notches and also on a specimen with an irregular entry surface and allow to draw conclusions on the validity of all the developed models.« less

  19. Development of theoretical models of integrated millimeter wave antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.

    1991-01-01

    Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.

  20. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  1. Recent advances of nanotechnology in medicine and engineering

    NASA Astrophysics Data System (ADS)

    Nobile, Lucio; Nobile, Stefano

    2016-05-01

    The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.

  2. Recent advances of nanotechnology in medicine and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobile, Lucio; Nobile, Stefano

    The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.

  3. Droplet size in flow: Theoretical model and application to polymer blends

    NASA Astrophysics Data System (ADS)

    Fortelný, Ivan; Jůza, Josef

    2017-05-01

    The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.

  4. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  5. On Utilizing Optimal and Information Theoretic Syntactic Modeling for Peptide Classification

    NASA Astrophysics Data System (ADS)

    Aygün, Eser; Oommen, B. John; Cataltepe, Zehra

    Syntactic methods in pattern recognition have been used extensively in bioinformatics, and in particular, in the analysis of gene and protein expressions, and in the recognition and classification of bio-sequences. These methods are almost universally distance-based. This paper concerns the use of an Optimal and Information Theoretic (OIT) probabilistic model [11] to achieve peptide classification using the information residing in their syntactic representations. The latter has traditionally been achieved using the edit distances required in the respective peptide comparisons. We advocate that one can model the differences between compared strings as a mutation model consisting of random Substitutions, Insertions and Deletions (SID) obeying the OIT model. Thus, in this paper, we show that the probability measure obtained from the OIT model can be perceived as a sequence similarity metric, using which a Support Vector Machine (SVM)-based peptide classifier, referred to as OIT_SVM, can be devised.

  6. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    NASA Astrophysics Data System (ADS)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  7. Aeroheating model advancements featuring electroless metallic plating

    NASA Technical Reports Server (NTRS)

    Stalmach, C. J., Jr.; Goodrich, W. D.

    1976-01-01

    Discussed are advancements in wind tunnel model construction methods and hypersonic test data demonstrating the methods. The general objective was to develop model fabrication methods for improved heat transfer measuring capability at less model cost. A plated slab model approach was evaluated with cast models containing constantan wires that formed single-wire-to-plate surface thermocouple junctions with a seamless skin of electroless nickel alloy. The surface of a space shuttle orbiter model was selectively plated with scaled tiles to simulate, with high fidelity, the probable misalignments of the heatshield tiles on a flight vehicle. Initial, Mach 8 heating results indicated a minor effect of tile misalignment roughness on boundary layer transition, implying a possible relaxation of heatshield manufacturing tolerances. Some loss of the plated tiles was experienced when the model was tested at high heating rates.

  8. Recent technological advances in using mouse models to study ovarian cancer.

    PubMed

    House, Carrie Danielle; Hernandez, Lidia; Annunziata, Christina Messineo

    2014-01-01

    Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.

  9. Recent Technological Advances in Using Mouse Models to Study Ovarian Cancer

    PubMed Central

    House, Carrie Danielle; Hernandez, Lidia; Annunziata, Christina Messineo

    2014-01-01

    Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC. PMID:24592355

  10. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.

    PubMed

    Gheribi, Aïmen E; Chartrand, Patrice

    2016-02-28

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.

  11. Toward a Theoretical Model of Decision-Making and Resistance to Change among Higher Education Online Course Designers

    ERIC Educational Resources Information Center

    Dodd, Bucky J.

    2013-01-01

    Online course design is an emerging practice in higher education, yet few theoretical models currently exist to explain or predict how the diffusion of innovations occurs in this space. This study used a descriptive, quantitative survey research design to examine theoretical relationships between decision-making style and resistance to change…

  12. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1984-03-09

    Masters, J.L., "Investigation of Characteristic Damage States in Composites Laminat -s," ASME Paper No. 79-WA-AERO-4, 1978. [26] Jivinall, R.C., "Stress...AD-A144 84e CUMULATIVE DAMAGE MODEL FOR RDVRNCED COMPOSITE 1/2 MATERIRLS(U) DYNA EAST CORP PHILADELPHIA PA P C CHOU ET AL. 09 MAR 84 RFWRL-TR-84-4084...MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 1963-A AFWAL-TR-84-4004 •S CUMULATIVE DAMAGE MODEL FOR ADVANCED COMPOSITE MATERIALS PHASE II 0

  13. Experimental and theoretical study of magnetohydrodynamic ship models.

    PubMed

    Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  14. Experimental and theoretical study of magnetohydrodynamic ship models

    PubMed Central

    Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques. PMID:28665941

  15. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  16. Representing general theoretical concepts in structural equation models: The role of composite variables

    USGS Publications Warehouse

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  17. Seismic modeling of Earth's 3D structure: Recent advancements

    NASA Astrophysics Data System (ADS)

    Ritsema, J.

    2008-12-01

    Global models of Earth's seismic structure continue to improve due to the growth of seismic data sets, implementation of advanced wave propagations theories, and increased computational power. In my presentation, I will summarize seismic tomography results from the past 5-10 years. I will compare the most recent P and S velocity models, discuss model resolution and model interpretation, and present an, admittedly biased, list of research directions required to develop the next generation 3D models.

  18. Modeling and mapping oak advance reproduction density using soil and site variables

    Treesearch

    John M. Kabrick; Jason L. Villwock; Daniel C. Dey; Tara L. Keyser; David R. Larsen

    2014-01-01

    Regenerating oaks (Quercus spp.) has remained a widespread and persistent problem throughout their natural range. Research shows that abundant oak advance reproduction is crucial for success. Although it is recognized that oak advance reproduction accumulation is inversely related to site quality, there has been little effort to model oak advance...

  19. Comparison of statistical and theoretical habitat models for conservation planning: the benefit of ensemble prediction

    Treesearch

    D. Todd Jones-Farrand; Todd M. Fearer; Wayne E. Thogmartin; Frank R. Thompson; Mark D. Nelson; John M. Tirpak

    2011-01-01

    Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and...

  20. Identifiability Of Systems With Modeling Errors

    NASA Technical Reports Server (NTRS)

    Hadaegh, Yadolah " fred" ; Bekey, George A.

    1988-01-01

    Advances in theory of modeling errors reported. Recent paper on errors in mathematical models of deterministic linear or weakly nonlinear systems. Extends theoretical work described in NPO-16661 and NPO-16785. Presents concrete way of accounting for difference in structure between mathematical model and physical process or system that it represents.

  1. Piezoelectric transformer structural modeling--a review.

    PubMed

    Yang, Jiashi

    2007-06-01

    A review on piezoelectric transformer structural modeling is presented. The operating principle and the basic behavior of piezoelectric transformers as governed by the linear theory of piezoelectricity are shown by a simple, theoretical analysis on a Rosen transformer based on extensional modes of a nonhomogeneous ceramic rod. Various transformers are classified according to their structural shapes, operating modes, and voltage transforming capability. Theoretical and numerical modeling results from the theory of piezoelectricity are reviewed. More advances modeling on thermal and nonlinear effects also are discussed. The article contains 167 references.

  2. A novel game theoretic approach for modeling competitive information diffusion in social networks with heterogeneous nodes

    NASA Astrophysics Data System (ADS)

    Agha Mohammad Ali Kermani, Mehrdad; Fatemi Ardestani, Seyed Farshad; Aliahmadi, Alireza; Barzinpour, Farnaz

    2017-01-01

    Influence maximization deals with identification of the most influential nodes in a social network given an influence model. In this paper, a game theoretic framework is developed that models a competitive influence maximization problem. A novel competitive influence model is additionally proposed that incorporates user heterogeneity, message content, and network structure. The proposed game-theoretic model is solved using Nash Equilibrium in a real-world dataset. It is shown that none of the well-known strategies are stable and at least one player has the incentive to deviate from the proposed strategy. Moreover, violation of Nash equilibrium strategy by each player leads to their reduced payoff. Contrary to previous works, our results demonstrate that graph topology, as well as the nodes' sociability and initial tendency measures have an effect on the determination of the influential node in the network.

  3. Advanced Numerical and Theoretical Methods for Photonic Crystals and Metamaterials

    NASA Astrophysics Data System (ADS)

    Felbacq, Didier

    2016-11-01

    This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB® is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.

  4. Model-free adaptive control of advanced power plants

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  5. Naturalness of unknown physics: Theoretical models and experimental signatures

    NASA Astrophysics Data System (ADS)

    Kilic, Can

    In the last few decades collider experiments have not only spectacularly confirmed the predictions of the Standard Model but also have not revealed any direct evidence for new physics beyond the SM, which has led theorists to devise numerous models where the new physics couples weakly to the SM or is simply beyond the reach of past experiments. While phenomenologically viable, many such models appear finely tuned, even contrived. This work illustrates three attempts at coming up with explanations to fine-tunings we observe in the world around us, such as the gauge hierarchy problem or the cosmological constant problem, emphasizing both the theoretical aspects of model building as well as possible experimental signatures. First we investigate the "Little Higgs" mechanism and work on a specifical model, the "Minimal Moose" to highlight its impact on precision observables in the SM, and illustrate that it does not require implausible fine-tuning. Next we build a supersymmetric model, the "Fat Higgs", with an extended gauge structure which becomes confining. This model, aside from naturally preserving the unification of the SM gauge couplings at high energies, also makes it possible to evade the bounds on the lightest Higgs boson mass which are quite restrictive in minimal SUSY scenarios. Lastly we take a look at a possible resolution of the cosmological constant problem through the mechanism of "Ghost Condensation" and dwell on astrophysical observables from the Lorentz Violating sector in this model. We use current experimental data to constrain the coupling of this sector to the SM.

  6. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  7. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  8. Theoretical models for the combustion of alloyable materials

    NASA Astrophysics Data System (ADS)

    Armstrong, Robert

    1992-09-01

    The purpose of this work is to extend a theoretical model of layered (laminar) media for SHS combustion presented in an earlier article [1] to explore possible mechanisms for after-burning in SHS ( i.e., gasless) combustion. As before, our particular interest is how the microscopic geometry of the solid reactants is reflected in the combustion wave and in the reaction product. The model is constructed from alternating lamina of two pure reactants that interdiffuse exothermically to form a product. Here, the laminar model is extended to contain layers of differing thicknesses. Using asymptotic theory, it was found that under certain conditions, the combustion wave can become “detached,” and an initial thin flame propagates through the media, leaving a slower, thicker flame following behind ( i.e., afterburning). Thin laminae are consumed in the initial flame and are thick in the secondary. The thin flame has a width determined by the inverse of the activation energy of diffusion, as found previously. The width of the afterburning zone, however, is determined by the absolute time of diffusion for the thicker laminae. Naturally, when the laminae are all the same thickness, there is only one thin flame. The condition for the appearance of afterburning is found to be contingent on the square of the ratio of smallestto-largest thicknesses being considerably less than unity.

  9. Utilities and the Issue of Fairness in a Decision Theoretic Model for Selection

    ERIC Educational Resources Information Center

    Sawyer, Richard L.; And Others

    1976-01-01

    This article examines some of the values that might be considered in a selection situation within the context of a decision theoretic model also described here. Several alternate expressions of fair selection are suggested in the form of utility statements in which these values can be understood and compared. (Author/DEP)

  10. Theoretical Chemistry Comes Alive: Full Partner with Experiment.

    ERIC Educational Resources Information Center

    Goddard, William A., III

    1985-01-01

    The expected thrust for theoretical chemistry in the next decade will be to combine knowledge of fundamental chemical steps/interactions with advances in chemical dynamics, irreversible statistical mechanics, and computer technology to produce simulations of chemical systems with reaction site competition. A sample simulation (using the enzyme…

  11. Advancements in Theoretical Models of Confined Vortex Flowfields

    DTIC Science & Technology

    2007-03-29

    blades, curved vanes, vortex generators, twisted tape inserts, triangular winglets , propellers, coiled wires, tangential injectors, and other...Corresponding boundary conditions consist of the no slip at the wall and blending with the composite inner solution in the outer domain. Following similar

  12. Modeling of rolling element bearing mechanics. Theoretical manual

    NASA Technical Reports Server (NTRS)

    Merchant, David H.; Greenhill, Lyn M.

    1994-01-01

    This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.

  13. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less

  14. Theoretical Advances in Sequential Data Assimilation for the Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Ghil, M.

    2007-05-01

    We concentrate here on two aspects of advanced Kalman--filter-related methods: (i) the stability of the forecast- assimilation cycle, and (ii) parameter estimation for the coupled ocean-atmosphere system. The nonlinear stability of a prediction-assimilation system guarantees the uniqueness of the sequentially estimated solutions in the presence of partial and inaccurate observations, distributed in space and time; this stability is shown to be a necessary condition for the convergence of the state estimates to the true evolution of the turbulent flow. The stability properties of the governing nonlinear equations and of several data assimilation systems are studied by computing the spectrum of the associated Lyapunov exponents. These ideas are applied to a simple and an intermediate model of atmospheric variability and we show that the degree of stabilization depends on the type and distribution of the observations, as well as on the data assimilation method. These results represent joint work with A. Carrassi, A. Trevisan and F. Uboldi. Much is known by now about the main physical mechanisms that give rise to and modulate the El-Nino/Southern- Oscillation (ENSO), but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean-atmosphere model of ENSO. Model behavior is very sensitive to two key parameters: (a) "mu", the ocean-atmosphere coupling coefficient between the sea-surface temperature (SST) and wind stress anomalies; and (b) "delta-s", the surface-layer coefficient. Previous work has shown that "delta- s" determines the period of the model's self-sustained oscillation, while "mu' measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Assimilation of SST

  15. Theoretical Models of Comprehension Skills Tested through a Comprehension Assessment Battery for Primary School Children

    ERIC Educational Resources Information Center

    Tobia, Valentina; Ciancaleoni, Matteo; Bonifacci, Paola

    2017-01-01

    In this study, two alternative theoretical models were compared, in order to analyze which of them best explains primary school children's text comprehension skills. The first one was based on the distinction between two types of answers requested by the comprehension test: local or global. The second model involved texts' input modality: written…

  16. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes.

    PubMed

    Brechwald, Whitney A; Prinstein, Mitchell J

    2011-03-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research.

  17. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    PubMed Central

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2013-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122

  18. Advances in Homology Protein Structure Modeling

    PubMed Central

    Xiang, Zhexin

    2007-01-01

    Homology modeling plays a central role in determining protein structure in the structural genomics project. The importance of homology modeling has been steadily increasing because of the large gap that exists between the overwhelming number of available protein sequences and experimentally solved protein structures, and also, more importantly, because of the increasing reliability and accuracy of the method. In fact, a protein sequence with over 30% identity to a known structure can often be predicted with an accuracy equivalent to a low-resolution X-ray structure. The recent advances in homology modeling, especially in detecting distant homologues, aligning sequences with template structures, modeling of loops and side chains, as well as detecting errors in a model, have contributed to reliable prediction of protein structure, which was not possible even several years ago. The ongoing efforts in solving protein structures, which can be time-consuming and often difficult, will continue to spur the development of a host of new computational methods that can fill in the gap and further contribute to understanding the relationship between protein structure and function. PMID:16787261

  19. Patients’ Acceptance of Smartphone Health Technology for Chronic Disease Management: A Theoretical Model and Empirical Test

    PubMed Central

    Dou, Kaili; Yu, Ping; Liu, Fang; Guan, YingPing; Li, Zhenye; Ji, Yumeng; Du, Ningkai; Lu, Xudong; Duan, Huilong

    2017-01-01

    Background Chronic disease patients often face multiple challenges from difficult comorbidities. Smartphone health technology can be used to help them manage their conditions only if they accept and use the technology. Objective The aim of this study was to develop and test a theoretical model to predict and explain the factors influencing patients’ acceptance of smartphone health technology for chronic disease management. Methods Multiple theories and factors that may influence patients’ acceptance of smartphone health technology have been reviewed. A hybrid theoretical model was built based on the technology acceptance model, dual-factor model, health belief model, and the factors identified from interviews that might influence patients’ acceptance of smartphone health technology for chronic disease management. Data were collected from patient questionnaire surveys and computer log records about 157 hypertensive patients’ actual use of a smartphone health app. The partial least square method was used to test the theoretical model. Results The model accounted for .412 of the variance in patients’ intention to adopt the smartphone health technology. Intention to use accounted for .111 of the variance in actual use and had a significant weak relationship with the latter. Perceived ease of use was affected by patients’ smartphone usage experience, relationship with doctor, and self-efficacy. Although without a significant effect on intention to use, perceived ease of use had a significant positive influence on perceived usefulness. Relationship with doctor and perceived health threat had significant positive effects on perceived usefulness, countering the negative influence of resistance to change. Perceived usefulness, perceived health threat, and resistance to change significantly predicted patients’ intentions to use the technology. Age and gender had no significant influence on patients’ acceptance of smartphone technology. The study also

  20. A model-based analysis of a display for helicopter landing approach. [control theoretical model of human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wheat, L. W.

    1975-01-01

    A control theoretic model of the human pilot was used to analyze a baseline electronic cockpit display in a helicopter landing approach task. The head down display was created on a stroke written cathode ray tube and the vehicle was a UH-1H helicopter. The landing approach task consisted of maintaining prescribed groundspeed and glideslope in the presence of random vertical and horizontal turbulence. The pilot model was also used to generate and evaluate display quickening laws designed to improve pilot vehicle performance. A simple fixed base simulation provided comparative tracking data.

  1. Nursing theory and concept development: a theoretical model of clinical nurses' intentions to stay in their current positions.

    PubMed

    Cowden, Tracy L; Cummings, Greta G

    2012-07-01

    We describe a theoretical model of staff nurses' intentions to stay in their current positions. The global nursing shortage and high nursing turnover rate demand evidence-based retention strategies. Inconsistent study outcomes indicate a need for testable theoretical models of intent to stay that build on previously published models, are reflective of current empirical research and identify causal relationships between model concepts. Two systematic reviews of electronic databases of English language published articles between 1985-2011. This complex, testable model expands on previous models and includes nurses' affective and cognitive responses to work and their effects on nurses' intent to stay. The concepts of desire to stay, job satisfaction, joy at work, and moral distress are included in the model to capture the emotional response of nurses to their work environments. The influence of leadership is integrated within the model. A causal understanding of clinical nurses' intent to stay and the effects of leadership on the development of that intention will facilitate the development of effective retention strategies internationally. Testing theoretical models is necessary to confirm previous research outcomes and to identify plausible sequences of the development of behavioral intentions. Increased understanding of the causal influences on nurses' intent to stay should lead to strategies that may result in higher retention rates and numbers of nurses willing to work in the health sector. © 2012 Blackwell Publishing Ltd.

  2. Identifying Successful Advancement Approaches in Four Catholic Universities: The Effectiveness of the Four Advancement Models of Communication

    ERIC Educational Resources Information Center

    Bonglia, Jean-Pierre K.

    2010-01-01

    The current longitudinal study of the most successful Catholic universities in the United States identifies the prevalence of four advancement models of communication that have contributed to make those institutions successful in their philanthropic efforts. While research by Grunig and Kelly maintained that the two-way symmetrical model of…

  3. Model of twelve properties of a set of organic solvents with graph-theoretical and/or experimental parameters.

    PubMed

    Pogliani, Lionello

    2010-01-30

    Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.

  4. Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis

    PubMed Central

    Qiu, Wanglong

    2013-01-01

    Pancreatic cancer is critical for developed countries, where its rate of diagnosis has been increasing steadily annually. In the past decade, the advances of pancreatic cancer research have not contributed to the decline in mortality rates from pancreatic cancer—the overall 5-year survival rate remains about 5% low. This number only underscores an obvious urgency for us to better understand the biological features of pancreatic carcinogenesis, to develop early detection methods, and to improve novel therapeutic treatments. To achieve these goals, animal modeling that faithfully recapitulates the whole process of human pancreatic cancer is central to making the advancements. In this review, we summarize the currently available animal models for pancreatic cancer and the advances in pancreatic cancer animal modeling. We compare and contrast the advantages and disadvantages of three major categories of these models: (1) carcinogen-induced; (2) xenograft and allograft; and (3) genetically engineered mouse models. We focus more on the genetically engineered mouse models, a category which has been rapidly expanded recently for their capacities to mimic human pancreatic cancer and metastasis, and highlight the combinations of these models with various newly developed strategies and cell-lineage labeling systems. PMID:23114842

  5. 76 FR 68011 - Medicare Program; Advanced Payment Model

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ..., coordinated care and generate cost savings. The Advance Payment Model will test whether and how pre-paying a..., Medicaid, and Children's Health Insurance Program (CHIP) beneficiaries. One potential mechanism for achieving this goal is for CMS to partner with groups of health care providers of services and suppliers...

  6. Theoretical Model of Electrode Polarization and AC Electroosmotic Fluid Flow in Planar Electrode Arrays.

    PubMed

    Scott, Matthew; Kaler, Karan V. I. S.; Paul, Reginald

    2001-06-15

    Strong frequency-dependent fluid flow has been observed near the surface of microelectrode arrays. Modeling this phenomenon has proven to be difficult, with existing theories unable to account for the qualitative trend observed in the frequency spectra of this flow. Using recent electrode polarization results, a more comprehensive model of the double layer on the electrode surface is used to obtain good theoretical agreement with experimental data. Copyright 2001 Academic Press.

  7. Theoretical and numerical study of axisymmetric lattice Boltzmann models

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Lu, Xi-Yun

    2009-07-01

    The forcing term in the lattice Boltzmann equation (LBE) is usually used to mimic Navier-Stokes equations with a body force. To derive axisymmetric model, forcing terms are incorporated into the two-dimensional (2D) LBE to mimic the additional axisymmetric contributions in 2D Navier-Stokes equations in cylindrical coordinates. Many axisymmetric lattice Boltzmann D2Q9 models were obtained through the Chapman-Enskog expansion to recover the 2D Navier-Stokes equations in cylindrical coordinates [I. Halliday , Phys. Rev. E 64, 011208 (2001); K. N. Premnath and J. Abraham, Phys. Rev. E 71, 056706 (2005); T. S. Lee, H. Huang, and C. Shu, Int. J. Mod. Phys. C 17, 645 (2006); T. Reis and T. N. Phillips, Phys. Rev. E 75, 056703 (2007); J. G. Zhou, Phys. Rev. E 78, 036701 (2008)]. The theoretical differences between them are discussed in detail. Numerical studies were also carried out by simulating two different flows to make a comparison on these models’ accuracy and τ sensitivity. It is found all these models are able to obtain accurate results and have the second-order spatial accuracy. However, the model C [J. G. Zhou, Phys. Rev. E 78, 036701 (2008)] is the most stable one in terms of τ sensitivity. It is also found that if density of fluid is defined in its usual way and not directly relevant to source terms, the lattice Boltzmann model seems more stable.

  8. Application of Recent Advances in Forward Modeling of Emissions from Boreal and Temperate Wildfires to Real-time Forecasting of Aerosol and Trace Gas Concentrations

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Reid, J. S.; Kasischke, E. S.; Allen, D. J.

    2005-12-01

    The magnitude of trace gas and aerosol emissions from wildfires is a scientific problem with important implications for atmospheric composition, and is also integral to understanding carbon cycling in terrestrial ecosystems. Recent ecological research on modeling wildfire emissions has integrated theoretical advances derived from ecological fieldwork with improved spatial and temporal databases to produce "post facto" estimates of emissions with high spatial and temporal resolution. These advances have been shown to improve agreement with atmospheric observations at coarse scales, but can in principle be applied to applications, such as forecasting, at finer scales. However, several of the approaches employed in these forward models are incompatible with the requirements of real-time forecasting, requiring modification of data inputs and calculation methods. Because of the differences in data inputs used for real-time and "post-facto" emissions modeling, the key uncertainties in the forward problem are not necessarily the same for these two applications. However, adaptation of these advances in forward modeling to forecasting applications has the potential to improve air quality forecasts, and also to provide a large body of experimental data which can be used to constrain crucial uncertainties in current conceptual models of wildfire emissions. This talk describes a forward modeling method developed at the University of Maryland and its application to the Fire Locating and Modeling of Burning Emissions (FLAMBE) system at the Naval Research Laboratory. Methods for applying the outputs of the NRL aerosol forecasting system to the inverse problem of constraining emissions will also be discussed. The system described can use the feedback supplied by atmospheric observations to improve the emissions source description in the forecasting model, and can also be used for hypothesis testing regarding fire behavior and data inputs.

  9. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  10. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    PubMed

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical

  11. A theoretical model describing the one-dimensional growth of single crystals on free sustained substrates

    NASA Astrophysics Data System (ADS)

    Ye, Ziran; Wang, Ke; Lu, Chenxi; Jin, Ying; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Sun, Guofang; Xu, Fengyun; Ye, Gaoxiang

    2018-03-01

    We develop a theoretical model that interprets the growth mechanism of zinc (Zn) crystal nanorods on a liquid substrate by thermal evaporation. During deposition, Zn atoms diffuse randomly on an isotropic and quasi-free sustained substrate, the nucleation of the atoms results in the primary nanorod (or seed crystal) growth. Subsequently, a characteristic one-dimensional atomic aggregation is proposed, which leads to the accelerating growth of the crystal nanorod along its preferential growth direction until the growth terminates. The theoretical results are in good agreement with the experimental findings.

  12. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  13. Color and psychological functioning: a review of theoretical and empirical work

    PubMed Central

    Elliot, Andrew J.

    2015-01-01

    In the past decade there has been increased interest in research on color and psychological functioning. Important advances have been made in theoretical work and empirical work, but there are also important weaknesses in both areas that must be addressed for the literature to continue to develop apace. In this article, I provide brief theoretical and empirical reviews of research in this area, in each instance beginning with a historical background and recent advancements, and proceeding to an evaluation focused on weaknesses that provide guidelines for future research. I conclude by reiterating that the literature on color and psychological functioning is at a nascent stage of development, and by recommending patience and prudence regarding conclusions about theory, findings, and real-world application. PMID:25883578

  14. Some theoretical models and constructs generic to substance abuse prevention programs for adolescents: possible relevance and limitations for problem gambling.

    PubMed

    Evans, Richard I

    2003-01-01

    For the past several years the author and his colleagues have explored the area of how social psychological constructs and theoretical models can be applied to the prevention of health threatening behaviors in adolescents. In examining the need for the development of gambling prevention programs for adolescents, it might be of value to consider the application of such constructs and theoretical models as a foundation to the development of prevention programs in this emerging problem behavior among adolescents. In order to provide perspective to the reader, the present paper reviews the history of various psychosocial models and constructs generic to programs directed at prevention of substance abuse in adolescents. A brief history of some of these models, possibly most applicable to gambling prevention programs, are presented. Social inoculation, reasoned action, planned behavior, and problem behavior theory, are among those discussed. Some deficits of these models, are also articulated. How such models may have relevance to developing programs for prevention of problem gambling in adolescents is also discussed. However, the inherent differences between gambling and more directly health threatening behaviors such as substance abuse must, of course, be seriously considered in utilizing such models. Most current gambling prevention programs have seldom been guided by theoretical models. Developers of gambling prevention programs should consider theoretical foundations, particularly since such foundations not only provide a guide for programs, but may become critical tools in evaluating their effectiveness.

  15. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  16. Hospital nurses' wellbeing at work: a theoretical model.

    PubMed

    Utriainen, Kati; Ala-Mursula, Leena; Kyngäs, Helvi

    2015-09-01

    To develop a theoretical model of hospital nurses' wellbeing at work. The concept of wellbeing at work is presented without an exact definition and without considering different contents. A model was developed in a deductive manner and empirical data collected from nurses (n = 233) working in a university hospital. Explorative factor analysis was used. The main concepts were: patients' experience of high-quality care; assistance and support among nurses; nurses' togetherness and cooperation; fluent practical organisation of work; challenging and meaningful work; freedom to express diverse feelings in the work community; well-conducted everyday nursing; status related to the work itself; fair and supportive leadership; opportunities for professional development; fluent communication with other professionals; and being together with other nurses in an informal way. Themes included: collegial relationships; enhancing high-quality patient care; supportive and fair leadership; challenging, meaningful and well organised work; and opportunities for professional development. Object-dependent wellbeing was supported. Managers should focus on strengthening the positive aspect of wellbeing at work, focusing on providing fluently organised work practices, fair and supportive leadership and togetherness while allowing nurses to implement their own ideas and promote the experience of meaningfulness. © 2014 John Wiley & Sons Ltd.

  17. Metal hydride hydrogen compression: recent advances and future prospects

    NASA Astrophysics Data System (ADS)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  18. Hash Functions and Information Theoretic Security

    NASA Astrophysics Data System (ADS)

    Bagheri, Nasour; Knudsen, Lars R.; Naderi, Majid; Thomsen, Søren S.

    Information theoretic security is an important security notion in cryptography as it provides a true lower bound for attack complexities. However, in practice attacks often have a higher cost than the information theoretic bound. In this paper we study the relationship between information theoretic attack costs and real costs. We show that in the information theoretic model, many well-known and commonly used hash functions such as MD5 and SHA-256 fail to be preimage resistant.

  19. Models in Educational Administration: Revisiting Willower's "Theoretically Oriented" Critique

    ERIC Educational Resources Information Center

    Newton, Paul; Burgess, David; Burns, David P.

    2010-01-01

    Three decades ago, Willower (1975) argued that much of what we take to be theory in educational administration is in fact only theoretically oriented. If we accept Willower's assessment of the field as true, what implications does this statement hold for the academic study and practical application of the theoretically oriented aspects of our…

  20. Recent theoretical advances on superradiant phase transitions

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-03-01

    The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.

  1. A Theoretical Trombone

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2014-01-01

    What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that…

  2. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  3. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less

  4. Efficient field-theoretic simulation of polymer solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villet, Michael C.; Fredrickson, Glenn H., E-mail: ghf@mrl.ucsb.edu; Department of Materials, University of California, Santa Barbara, California 93106

    2014-12-14

    We present several developments that facilitate the efficient field-theoretic simulation of polymers by complex Langevin sampling. A regularization scheme using finite Gaussian excluded volume interactions is used to derive a polymer solution model that appears free of ultraviolet divergences and hence is well-suited for lattice-discretized field theoretic simulation. We show that such models can exhibit ultraviolet sensitivity, a numerical pathology that dramatically increases sampling error in the continuum lattice limit, and further show that this pathology can be eliminated by appropriate model reformulation by variable transformation. We present an exponential time differencing algorithm for integrating complex Langevin equations for fieldmore » theoretic simulation, and show that the algorithm exhibits excellent accuracy and stability properties for our regularized polymer model. These developments collectively enable substantially more efficient field-theoretic simulation of polymers, and illustrate the importance of simultaneously addressing analytical and numerical pathologies when implementing such computations.« less

  5. Satellite, climatological, and theoretical inputs for modeling of the diurnal cycle of fire emissions

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.

    2009-12-01

    The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.

  6. Patients' Acceptance of Smartphone Health Technology for Chronic Disease Management: A Theoretical Model and Empirical Test.

    PubMed

    Dou, Kaili; Yu, Ping; Deng, Ning; Liu, Fang; Guan, YingPing; Li, Zhenye; Ji, Yumeng; Du, Ningkai; Lu, Xudong; Duan, Huilong

    2017-12-06

    Chronic disease patients often face multiple challenges from difficult comorbidities. Smartphone health technology can be used to help them manage their conditions only if they accept and use the technology. The aim of this study was to develop and test a theoretical model to predict and explain the factors influencing patients' acceptance of smartphone health technology for chronic disease management. Multiple theories and factors that may influence patients' acceptance of smartphone health technology have been reviewed. A hybrid theoretical model was built based on the technology acceptance model, dual-factor model, health belief model, and the factors identified from interviews that might influence patients' acceptance of smartphone health technology for chronic disease management. Data were collected from patient questionnaire surveys and computer log records about 157 hypertensive patients' actual use of a smartphone health app. The partial least square method was used to test the theoretical model. The model accounted for .412 of the variance in patients' intention to adopt the smartphone health technology. Intention to use accounted for .111 of the variance in actual use and had a significant weak relationship with the latter. Perceived ease of use was affected by patients' smartphone usage experience, relationship with doctor, and self-efficacy. Although without a significant effect on intention to use, perceived ease of use had a significant positive influence on perceived usefulness. Relationship with doctor and perceived health threat had significant positive effects on perceived usefulness, countering the negative influence of resistance to change. Perceived usefulness, perceived health threat, and resistance to change significantly predicted patients' intentions to use the technology. Age and gender had no significant influence on patients' acceptance of smartphone technology. The study also confirmed the positive relationship between intention to use

  7. Advanced relativistic VLBI model for geodesy

    NASA Astrophysics Data System (ADS)

    Soffel, Michael; Kopeikin, Sergei; Han, Wen-Biao

    2017-07-01

    Our present relativistic part of the geodetic VLBI model for Earthbound antennas is a consensus model which is considered as a standard for processing high-precision VLBI observations. It was created as a compromise between a variety of relativistic VLBI models proposed by different authors as documented in the IERS Conventions 2010. The accuracy of the consensus model is in the picosecond range for the group delay but this is not sufficient for current geodetic purposes. This paper provides a fully documented derivation of a new relativistic model having an accuracy substantially higher than one picosecond and based upon a well accepted formalism of relativistic celestial mechanics, astrometry and geodesy. Our new model fully confirms the consensus model at the picosecond level and in several respects goes to a great extent beyond it. More specifically, terms related to the acceleration of the geocenter are considered and kept in the model, the gravitational time-delay due to a massive body (planet, Sun, etc.) with arbitrary mass and spin-multipole moments is derived taking into account the motion of the body, and a new formalism for the time-delay problem of radio sources located at finite distance from VLBI stations is presented. Thus, the paper presents a substantially elaborated theoretical justification of the consensus model and its significant extension that allows researchers to make concrete estimates of the magnitude of residual terms of this model for any conceivable configuration of the source of light, massive bodies, and VLBI stations. The largest terms in the relativistic time delay which can affect the current VLBI observations are from the quadrupole and the angular momentum of the gravitating bodies that are known from the literature. These terms should be included in the new geodetic VLBI model for improving its consistency.

  8. Verification of Gyrokinetic codes: theoretical background and applications

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia

    2016-10-01

    In fusion plasmas the strong magnetic field allows the fast gyro motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the consequent transport. We present a new and generic theoretical framework and specific numerical applications to test the validity and the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The indirect verification of numerical scheme is proposed via the Benchmark process. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC), and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations using the generic variational formulation. Then, we derive and include the models implemented in ORB5 and GENE inside this hierarchy. At the computational level, detailed verification of global electromagnetic test cases based on the CYCLONE are considered, including a parametric β-scan covering the transition between the ITG to KBM and the spectral properties at the nominal β value.

  9. Testing and Implementation of Advanced Reynolds Stress Models

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1997-01-01

    A research program was proposed for the testing and implementation of advanced turbulence models for non-equilibrium turbulent flows of aerodynamic importance that are of interest to NASA. Turbulence models that are being developed in connection with the Office of Naval Research ARI in Non-equilibrium are provided for implementation and testing in aerodynamic flows at NASA Langley Research Center. Close interactions were established with researchers at Nasa Langley RC and refinements to the models were made based on the results of these tests. The models that have been considered include two-equation models with an anisotropic eddy viscosity as well as full second-order closures. Three types of non-equilibrium corrections to the models have been considered in connection with the ARI on Nonequilibrium Turbulence: conducted for ONR.

  10. Advances in Games Technology: Software, Models, and Intelligence

    ERIC Educational Resources Information Center

    Prakash, Edmond; Brindle, Geoff; Jones, Kevin; Zhou, Suiping; Chaudhari, Narendra S.; Wong, Kok-Wai

    2009-01-01

    Games technology has undergone tremendous development. In this article, the authors report the rapid advancement that has been observed in the way games software is being developed, as well as in the development of games content using game engines. One area that has gained special attention is modeling the game environment such as terrain and…

  11. PREFACE International Conference on Theoretical Physics Dubna-Nano 2010

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury

    2010-11-01

    The International Conference on Theoretical Physics 'Dubna-Nano2010' was held on 5-10 July 2010, at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The previous conference of this series was at Dubna in 2008. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (graphene, nanotubes, fullerenes), quantum dots, quantum transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, modelling, applications and perspectives. Approximately 120 scientists from 26 countries participated in the conference. The program included 63 oral talks and 70 posters. The 62 contributions are included in these proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference indeed successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about 'Dubna-Nano2010' is available at the homepage http://theor.jinr.ru/~nano10. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  12. Mono- and binuclear non-heme iron chemistry from a theoretical perspective.

    PubMed

    Rokob, Tibor András; Chalupský, Jakub; Bím, Daniel; Andrikopoulos, Prokopis C; Srnec, Martin; Rulíšek, Lubomír

    2016-09-01

    In this minireview, we provide an account of the current state-of-the-art developments in the area of mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, mostly from a theoretical and computational perspective. The sheer complexity, and at the same time the beauty, of the NHFe(2) world represents a challenge for experimental as well as theoretical methods. We emphasize that the concerted progress on both theoretical and experimental side is a conditio sine qua non for future understanding, exploration and utilization of the NHFe(2) systems. After briefly discussing the current challenges and advances in the computational methodology, we review the recent spectroscopic and computational studies of NHFe(2) enzymatic and inorganic systems and highlight the correlations between various experimental data (spectroscopic, kinetic, thermodynamic, electrochemical) and computations. Throughout, we attempt to keep in mind the most fascinating and attractive phenomenon in the NHFe(2) chemistry, which is the fact that despite the strong oxidative power of many reactive intermediates, the NHFe(2) enzymes perform catalysis with high selectivity. We conclude with our personal viewpoint and hope that further developments in quantum chemistry and especially in the field of multireference wave function methods are needed to have a solid theoretical basis for the NHFe(2) studies, mostly by providing benchmarking and calibration of the computationally efficient and easy-to-use DFT methods.

  13. Recent advances in scalable non-Gaussian geostatistics: The generalized sub-Gaussian model

    NASA Astrophysics Data System (ADS)

    Guadagnini, Alberto; Riva, Monica; Neuman, Shlomo P.

    2018-07-01

    Geostatistical analysis has been introduced over half a century ago to allow quantifying seemingly random spatial variations in earth quantities such as rock mineral content or permeability. The traditional approach has been to view such quantities as multivariate Gaussian random functions characterized by one or a few well-defined spatial correlation scales. There is, however, mounting evidence that many spatially varying quantities exhibit non-Gaussian behavior over a multiplicity of scales. The purpose of this minireview is not to paint a broad picture of the subject and its treatment in the literature. Instead, we focus on very recent advances in the recognition and analysis of this ubiquitous phenomenon, which transcends hydrology and the Earth sciences, brought about largely by our own work. In particular, we use porosity data from a deep borehole to illustrate typical aspects of such scalable non-Gaussian behavior, describe a very recent theoretical model that (for the first time) captures all these behavioral aspects in a comprehensive manner, show how this allows generating random realizations of the quantity conditional on sampled values, point toward ways of incorporating scalable non-Gaussian behavior in hydrologic analysis, highlight the significance of doing so, and list open questions requiring further research.

  14. Insights from animal models of bladder cancer: recent advances, challenges, and opportunities

    PubMed Central

    John, Bincy Anu; Said, Neveen

    2017-01-01

    Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with increasing incidence and mortality. Treatment of bladder cancer has not advanced in the past 30 years. Therefore, there is a crucial unmet need for novel therapies, especially for high grade/stage disease that can only be achieved by preclinical model systems that faithfully recapitulate the human disease. Animal models are essential elements in bladder cancer research to comprehensively study the multistep cascades of carcinogenesis, progression and metastasis. They allow for the investigation of premalignant phases of the disease that are not clinically encountered. They can be useful for identification of diagnostic and prognostic biomarkers for disease progression and for preclinical identification and validation of therapeutic targets/candidates, advancing translation of basic research to clinic. This review summarizes the latest advances in the currently available bladder cancer animal models, their translational potential, merits and demerits, and the prevalent tumor evaluation modalities. Thereby, findings from these model systems would provide valuable information that can help researchers and clinicians utilize the model that best answers their research questions. PMID:28915710

  15. Simplified and advanced modelling of traction control systems of heavy-haul locomotives

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Cole, Colin

    2015-05-01

    Improving tractive effort is a very complex task in locomotive design. It requires the development of not only mechanical systems but also power systems, traction machines and traction algorithms. At the initial design stage, traction algorithms can be verified by means of a simulation approach. A simple single wheelset simulation approach is not sufficient because all locomotive dynamics are not fully taken into consideration. Given that many traction control strategies exist, the best solution is to use more advanced approaches for such studies. This paper describes the modelling of a locomotive with a bogie traction control strategy based on a co-simulation approach in order to deliver more accurate results. The simplified and advanced modelling approaches of a locomotive electric power system are compared in this paper in order to answer a fundamental question. What level of modelling complexity is necessary for the investigation of the dynamic behaviours of a heavy-haul locomotive running under traction? The simulation results obtained provide some recommendations on simulation processes and the further implementation of advanced and simplified modelling approaches.

  16. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  17. Guiding Empirical and Theoretical Explorations of Organic Matter Decay By Synthesizing Temperature Responses of Enzyme Kinetics, Microbes, and Isotope Fluxes

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Ballantyne, F.; Lehmeier, C.; Min, K.

    2014-12-01

    Soil organic matter (SOM) transformation rates generally increase with temperature, but whether this is realized depends on soil-specific features. To develop predictive models applicable to all soils, we must understand two key, ubiquitous features of SOM transformation: the temperature sensitivity of myriad enzyme-substrate combinations and temperature responses of microbial physiology and metabolism, in isolation from soil-specific conditions. Predicting temperature responses of production of CO2 vs. biomass is also difficult due to soil-specific features: we cannot know the identity of active microbes nor the substrates they employ. We highlight how recent empirical advances describing SOM decay can help develop theoretical tools relevant across diverse spatial and temporal scales. At a molecular level, temperature effects on purified enzyme kinetics reveal distinct temperature sensitivities of decay of diverse SOM substrates. Such data help quantify the influence of microbial adaptations and edaphic conditions on decay, have permitted computation of the relative availability of carbon (C) and nitrogen (N) liberated upon decay, and can be used with recent theoretical advances to predict changes in mass specific respiration rates as microbes maintain biomass C:N with changing temperature. Enhancing system complexity, we can subject microbes to temperature changes while controlling growth rate and without altering substrate availability or identity of the active population, permitting calculation of variables typically inferred in soils: microbial C use efficiency (CUE) and isotopic discrimination during C transformations. Quantified declines in CUE with rising temperature are critical for constraining model CUE estimates, and known changes in δ13C of respired CO2 with temperature is useful for interpreting δ13C-CO2 at diverse scales. We suggest empirical studies important for advancing knowledge of how microbes respond to temperature, and ideas for theoretical

  18. Theoretical size distribution of fossil taxa: analysis of a null model

    PubMed Central

    Reed, William J; Hughes, Barry D

    2007-01-01

    Background This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. Model New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. Conclusion The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family. PMID:17376249

  19. Advancing Ecological Models to Compare Scale in Multi-Level Educational Change

    ERIC Educational Resources Information Center

    Woo, David James

    2016-01-01

    Education systems as units of analysis have been metaphorically likened to ecologies to model change. However, ecological models to date have been ineffective in modelling educational change that is multi-scale and occurs across multiple levels of an education system. Thus, this paper advances two innovative, ecological frameworks that improve on…

  20. Theoretical foundation, methods, and criteria for calibrating human vibration models using frequency response functions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726

  1. Theoretical models for stellar X-ray polarization in compact objects

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1991-01-01

    Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.

  2. Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

    NASA Astrophysics Data System (ADS)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2018-03-01

    The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.

  3. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1990-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.

  4. ADVANCED UTILITY SIMULATION MODEL, REPORT OF SENSITIVITY TESTING, CALIBRATION, AND MODEL OUTPUT COMPARISONS (VERSION 3.0)

    EPA Science Inventory

    The report gives results of activities relating to the Advanced Utility Simulation Model (AUSM): sensitivity testing. comparison with a mature electric utility model, and calibration to historical emissions. The activities were aimed at demonstrating AUSM's validity over input va...

  5. A non-traditional fluid problem: transition between theoretical models from Stokes’ to turbulent flow

    NASA Astrophysics Data System (ADS)

    Salomone, Horacio D.; Olivieri, Néstor A.; Véliz, Maximiliano E.; Raviola, Lisandro A.

    2018-05-01

    In the context of fluid mechanics courses, it is customary to consider the problem of a sphere falling under the action of gravity inside a viscous fluid. Under suitable assumptions, this phenomenon can be modelled using Stokes’ law and is routinely reproduced in teaching laboratories to determine terminal velocities and fluid viscosities. In many cases, however, the measured physical quantities show important deviations with respect to the predictions deduced from the simple Stokes’ model, and the causes of these apparent ‘anomalies’ (for example, whether the flow is laminar or turbulent) are seldom discussed in the classroom. On the other hand, there are various variable-mass problems that students tackle during elementary mechanics courses and which are discussed in many textbooks. In this work, we combine both kinds of problems and analyse—both theoretically and experimentally—the evolution of a system composed of a sphere pulled by a chain of variable length inside a tube filled with water. We investigate the effects of different forces acting on the system such as weight, buoyancy, viscous friction and drag force. By means of a sequence of mathematical models of increasing complexity, we obtain a progressive fit that accounts for the experimental data. The contrast between the various models exposes the strengths and weaknessess of each one. The proposed experience can be useful for integrating concepts of elementary mechanics and fluids, and is suitable as laboratory practice, stressing the importance of the experimental validation of theoretical models and showing the model-building processes in a didactic framework.

  6. Promoting advance directives among African Americans: a faith-based model.

    PubMed

    Bullock, Karen

    2006-02-01

    Studies show that African Americans are less likely than other ethnic groups to complete advance directives. However, what influences African Americans' decisions to complete or not complete advance directives is unclear. Using a faith-based promotion model, 102 African Americans aged 55 years or older were recruited from local churches and community-based agencies to participate in a pilot study to promote advance care planning. Focus groups were used to collect data on participants' preferences for care, desire to make personal choices, values and attitudes, beliefs about death and dying, and advance directives. A standardized interview was used in the focus groups, and the data were organized and analyzed using NUDIST 4 software (QRS Software, Victoria, Australia). Three fourths of the participants refused to complete advance directives. The following factors influenced the participants' decisions about end-of-life care and completion of an advance directive: spirituality; view of suffering, death, and dying; social support networks; barriers to utilization; and mistrust of the health care system. The dissemination of information apprises individuals of their right to self-determine about their care, but educational efforts may not produce a significant change in behavior toward completion of advance care planning. Thus, ongoing efforts are needed to improve the trust that African Americans have in medical and health care providers.

  7. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  8. A Theoretical Manpower Optimization Model for the Air Force Installation Contracting Agency (AFICA)

    DTIC Science & Technology

    2017-12-01

    development and enterprise-wide market intelligence. The theoretical manpower model proposed by this project optimizes manpower in respect to contracting...procurement needs and/or more effectively leverage spend, market position, market knowledge (e.g., price benchmarks), and capabilities (e.g., IT...CONS level because the process savings are not clearly traceable to a contract action. For example, to augment the market intelligence of category

  9. Modelling for Prediction vs. Modelling for Understanding: Commentary on Musso et al. (2013)

    ERIC Educational Resources Information Center

    Edelsbrunner, Peter; Schneider, Michael

    2013-01-01

    Musso et al. (2013) predict students' academic achievement with high accuracy one year in advance from cognitive and demographic variables, using artificial neural networks (ANNs). They conclude that ANNs have high potential for theoretical and practical improvements in learning sciences. ANNs are powerful statistical modelling tools but they can…

  10. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.

    PubMed

    Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A

    2010-10-11

    We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.

  11. Advanced classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided.

  12. Metal hydride hydrogen compression: Recent advances and future prospects

    DOE PAGES

    Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; ...

    2016-03-17

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less

  13. Theoretical Models of Low-Resolution Microwave Rotational Spectra of Ethane- and Propanethiol

    NASA Astrophysics Data System (ADS)

    Kadjar, Ch. O.; Kazimova, S. B.; Hasanova, A. S.; Ismailzadeh, G. I.; Menzeleyev, M. R.

    2018-05-01

    Additive modeling of low-resolution microwave spectra of heteroisomeric substituted hydrocarbons produced theoretical spectra of ethanethiol and propanethiol in the range 0-2 THz with maxima at 465 ± 20 and 240 ± 20 GHz. More precise calculations in a narrow frequency band of these ranges used spectral line half-widths of 1.5, 0.8, and 0.5 MHz that modeled conditions in different layers of Earth's troposphere. The strongest extrema of the low-resolution spectra of the studied molecules were found at 486 ± 5, 446 ± 5, and 436 ± 5 (ethanethiol) and at 257 ± 5, 239 ± 5, and 234 ± 5 GHz (propanethiol). Various aspects of the application of the results were discussed.

  14. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  15. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication.

    PubMed

    Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia

    2016-10-01

    Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Toward a comprehensive, theoretical model of compassion fatigue: An integrative literature review.

    PubMed

    Coetzee, Siedine K; Laschinger, Heather K S

    2018-03-01

    This study was an integrative literature review in relation to compassion fatigue models, appraising these models, and developing a comprehensive theoretical model of compassion fatigue. A systematic search on PubMed, EbscoHost (Academic Search Premier, E-Journals, Medline, PsycINFO, Health Source Nursing/Academic Edition, CINAHL, MasterFILE Premier and Health Source Consumer Edition), gray literature, and manual searches of included reference lists was conducted in 2016. The studies (n = 11) were analyzed, and the strengths and limitations of the compassion fatigue models identified. We further built on these models through the application of the conservation of resources theory and the social neuroscience of empathy. The compassion fatigue model shows that it is not empathy that puts nurses at risk of developing compassion fatigue, but rather a lack of resources, inadequate positive feedback, and the nurse's response to personal distress. By acting on these three aspects, the risk of developing compassion fatigue can be addressed, which could improve the retention of a compassionate and committed nurse workforce. © 2017 John Wiley & Sons Australia, Ltd.

  17. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Patrick

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energymore » advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.« less

  18. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  19. Theoretical model of an optothermal microactuator directly driven by laser beams

    NASA Astrophysics Data System (ADS)

    Han, Xu; Zhang, Haijun; Xu, Rui; Wang, Shuying; Qin, Chun

    2015-07-01

    This paper proposes a novel method of optothermal microactuation based on single and dual laser beams (spots). The theoretical model of the optothermal temperature distribution of an expansion arm is established and simulated, indicating that the maximum temperature of the arm irradiated by dual laser spots, at the same laser power level, is much lower than that irradiated by one single spot, and thus the risk of burning out and damaging the optothermal microactuator (OTMA) can be effectively avoided. To verify the presented method, a 750 μm long OTMA with a 100 μm wide expansion arm is designed and microfabricated, and single/dual laser beams with a wavelength of 650 nm are adopted to carry out experiments. The experimental results showed that the optothermal deflection of the OTMA under the irradiation of dual laser spots is larger than that under the irradiation of a single spot with the same power, which is in accordance with theoretical prediction. This method of optothermal microactuation may expand the practical applications of microactuators, which serve as critical units in micromechanical devices and micro-opto-electro-mechanical systems (MOEMS).

  20. Accelerating advances in continental domain hydrologic modeling

    USGS Publications Warehouse

    Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew R.; Wagener, Thorsten; Farmer, William H.; Andreassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas M.

    2015-01-01

    In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.

  1. Strengthening Theoretical Testing in Criminology Using Agent-based Modeling.

    PubMed

    Johnson, Shane D; Groff, Elizabeth R

    2014-07-01

    The Journal of Research in Crime and Delinquency ( JRCD ) has published important contributions to both criminological theory and associated empirical tests. In this article, we consider some of the challenges associated with traditional approaches to social science research, and discuss a complementary approach that is gaining popularity-agent-based computational modeling-that may offer new opportunities to strengthen theories of crime and develop insights into phenomena of interest. Two literature reviews are completed. The aim of the first is to identify those articles published in JRCD that have been the most influential and to classify the theoretical perspectives taken. The second is intended to identify those studies that have used an agent-based model (ABM) to examine criminological theories and to identify which theories have been explored. Ecological theories of crime pattern formation have received the most attention from researchers using ABMs, but many other criminological theories are amenable to testing using such methods. Traditional methods of theory development and testing suffer from a number of potential issues that a more systematic use of ABMs-not without its own issues-may help to overcome. ABMs should become another method in the criminologists toolbox to aid theory testing and falsification.

  2. [Cognitive Reserve Scale: testing the theoretical model and norms].

    PubMed

    Leon-Estrada, I; Garcia-Garcia, J; Roldan-Tapia, L

    2017-01-01

    The cognitive reserve theory may contribute to explain cognitive performance differences among individuals with similar cognitive decline and among healthy ones. However, more psychometric analysis are needed to guarantee the usage of tests for assessing cognitive reserve. To study validity evidences in relation to the structure of the Cognitive Reserve Scale (CRS) and to create reference norms to interpret the scores. A total of 172 participants completed the scale and they were classified into two age groups: aged 36-64 years (n = 110) and 65-88 years (n = 62). The exploratory factor analysis using ESEM revealed that the data fitted the proposed model. Overall, the discriminative indices were acceptable (between 0.21 and 0.50) and congruence was observed in the periods of young adulthood, adulthood and late adulthood, in both age group. Besides, the index of reliability (Cronbach's alpha: 0.80) and the typical mean error test (mean: 51.40 ± 11.11) showed adequate values for this type of instrument. The CRS seemed to be set under the hypothetical theoretical model, and the scores might be interpreted by the norms showed. This study provided guarantees for the usage of the CRS in research.

  3. A game theoretic model of drug launch in India.

    PubMed

    Bhaduri, Saradindu; Ray, Amit Shovon

    2006-01-01

    There is a popular belief that drug launch is delayed in developing countries like India because of delayed transfer of technology due to a 'post-launch' imitation threat through weak intellectual property rights (IPR). In fact, this belief has been a major reason for the imposition of the Trade Related Intellectual Property Rights regime under the WTO. This construct undermines the fact that in countries like India, with high reverse engineering capabilities, imitation can occur even before the formal technology transfer, and fails to recognize the first mover advantage in pharmaceutical markets. This paper argues that the first mover advantage is important and will vary across therapeutic areas, especially in developing countries with diverse levels of patient enlightenment and quality awareness. We construct a game theoretic model of incomplete information to examine the delay in drug launch in terms of costs and benefits of first move, assumed to be primarily a function of the therapeutic area of the new drug. Our model shows that drug launch will be delayed only for external (infective/communicable) diseases, while drugs for internal, non-communicable diseases (accounting for the overwhelming majority of new drug discovery) will be launched without delay.

  4. Crypt dynamics and colorectal cancer: advances in mathematical modelling.

    PubMed

    van Leeuwen, I M M; Byrne, H M; Jensen, O E; King, J R

    2006-06-01

    Mathematical modelling forms a key component of systems biology, offering insights that complement and stimulate experimental studies. In this review, we illustrate the role of theoretical models in elucidating the mechanisms involved in normal intestinal crypt dynamics and colorectal cancer. We discuss a range of modelling approaches, including models that describe cell proliferation, migration, differentiation, crypt fission, genetic instability, APC inactivation and tumour heterogeneity. We focus on the model assumptions, limitations and applications, rather than on the technical details. We also present a new stochastic model for stem-cell dynamics, which predicts that, on average, APC inactivation occurs more quickly in the stem-cell pool in the absence of symmetric cell division. This suggests that natural niche succession may protect stem cells against malignant transformation in the gut. Finally, we explain how we aim to gain further understanding of the crypt system and of colorectal carcinogenesis with the aid of multiscale models that cover all levels of organization from the molecular to the whole organ.

  5. Autonomy, liberalism and advance care planning.

    PubMed Central

    Ikonomidis, S; Singer, P A

    1999-01-01

    The justification for advance directives is grounded in the notion that they extend patient autonomy into future states of incompetency through patient participation in decision making about end-of-life care. Four objections challenge the necessity and sufficiency of individual autonomy, perceived to be a defining feature of liberal philosophical theory, as a basis of advance care planning. These objections are that the liberal concept of autonomy (i) implies a misconception of the individual self, (ii) entails the denial of values of social justice, (iii) does not account for justifiable acts of paternalism, and (iv) does not account for the importance of personal relationships in the advance care planning process. The last objection is especially pertinent in light of recent empirical research highlighting the importance of personal relationships in advance care planning. This article examines these four objections to autonomy, and the liberal theoretical framework with which it is associated, in order to re-evaluate the philosophical basis of advance care planning. We argue that liberal autonomy (i) is not a misconceived concept as critics assume, (ii) does not entail the denial of values of social justice, (iii) can account for justifiable acts of paternalism, though it (iv) is not the best account of the value of personal relationships that arise in advance care planning. In conclusion, we suggest that liberalism is a necessary component of a theoretical framework for advance care planning but that it needs to be supplemented with theories that focus explicitly on the significance of personal relationships. PMID:10635509

  6. Comparison of Theoretical Stresses and Deflections of Multicell Wings with Experimental Results Obtained from Plastic Models

    NASA Technical Reports Server (NTRS)

    Zender, George W

    1956-01-01

    The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.

  7. Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat K; Palmintier, Bryan S; Hodge, Brian S

    The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present themore » goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.« less

  8. Theoretical Characterizaiton of Visual Signatures (Muzzle Flash)

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Scales, A. N.; Vanderley, D. L.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.

    2014-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet and infrared spectra of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. We are currently employing quantum chemistry methods at various levels of sophistication to optimize molecular geometries, compute vibrational frequencies, and determine the optical spectra of specific gas-phase molecules and radicals of interest. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A comparison of computational results to experimental values found in the literature is used to assess the affect of basis set and functional choice on calculation accuracy. The current status of this work will be presented at the conference. Work supported by the ARL, and USMA.

  9. Advanced Fluid Reduced Order Models for Compressible Flow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tezaur, Irina Kalashnikova; Fike, Jeffrey A.; Carlberg, Kevin Thomas

    This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly themore » POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.« less

  10. Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From thesemore » five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.« less

  11. Theoretical and observational constraints on Tachyon Inflation

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; De-Santiago, Josue; German, Gabriel; Hidalgo, Juan Carlos; Rigel Mora-Luna, Refugio

    2018-03-01

    We constrain several models in Tachyonic Inflation derived from the large-N formalism by considering theoretical aspects as well as the latest observational data. On the theoretical side, we assess the field range of our models by means of the excursion of the equivalent canonical field. On the observational side, we employ BK14+PLANCK+BAO data to perform a parameter estimation analysis as well as a Bayesian model selection to distinguish the most favoured models among all four classes here presented. We observe that the original potential V propto sech(T) is strongly disfavoured by observations with respect to a reference model with flat priors on inflationary observables. This realisation of Tachyon inflation also presents a large field range which may demand further quantum corrections. We also provide examples of potentials derived from the polynomial and the perturbative classes which are both statistically favoured and theoretically acceptable.

  12. CAM Modalities Can Stimulate Advances in Theoretical Biology

    PubMed Central

    2005-01-01

    Most complementary medicine is distinguished by not being supported by underlying theory accepted by Western science. However, for those who accept their validity, complementary and alternative medicine (CAM) modalities offer clues to understanding physiology and medicine more deeply. Ayurveda and vibrational medicine are stimulating new approaches to biological regulation. The new biophysics can be integrated to yield a single consistent theory, which may well underly much of CAM—a true ‘physics of physick’. The resulting theory seems to be a new, fundamental theory of health and etiology. It suggests that many CAM approaches to health care are scientifically in advance of those based on current Western biology. Such theories may well constitute the next steps in our scientific understanding of biology itself. If successfully developed, these ideas could result in a major paradigm shift in both biology and medicine, which will benefit all interested parties—consumers, health professionals, scientists, institutions and governments. PMID:15841271

  13. Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study.

    PubMed

    Farrell, Tracy L; Poquet, Laure; Dew, Tristan P; Barber, Stuart; Williamson, Gary

    2012-02-01

    There is a considerable need to rationalize the membrane permeability and mechanism of transport for potential nutraceuticals. The aim of this investigation was to develop a theoretical permeability equation, based on a reported descriptive absorption model, enabling calculation of the transcellular component of absorption across Caco-2 monolayers. Published data for Caco-2 permeability of 30 drugs transported by the transcellular route were correlated with the descriptors 1-octanol/water distribution coefficient (log D, pH 7.4) and size, based on molecular mass. Nonlinear regression analysis was used to derive a set of model parameters a', β', and b' with an integrated molecular mass function. The new theoretical transcellular permeability (TTP) model obtained a good fit of the published data (R² = 0.93) and predicted reasonably well (R² = 0.86) the experimental apparent permeability coefficient (P(app)) for nine non-training set compounds reportedly transported by the transcellular route. For the first time, the TTP model was used to predict the absorption characteristics of six phenolic acids, and this original investigation was supported by in vitro Caco-2 cell mechanistic studies, which suggested that deviation of the P(app) value from the predicted transcellular permeability (P(app)(trans)) may be attributed to involvement of active uptake, efflux transporters, or paracellular flux.

  14. A theoretical model for analysing gender bias in medicine.

    PubMed

    Risberg, Gunilla; Johansson, Eva E; Hamberg, Katarina

    2009-08-03

    During the last decades research has reported unmotivated differences in the treatment of women and men in various areas of clinical and academic medicine. There is an ongoing discussion on how to avoid such gender bias. We developed a three-step-theoretical model to understand how gender bias in medicine can occur and be understood. In this paper we present the model and discuss its usefulness in the efforts to avoid gender bias. In the model gender bias is analysed in relation to assumptions concerning difference/sameness and equity/inequity between women and men. Our model illustrates that gender bias in medicine can arise from assuming sameness and/or equity between women and men when there are genuine differences to consider in biology and disease, as well as in life conditions and experiences. However, gender bias can also arise from assuming differences when there are none, when and if dichotomous stereotypes about women and men are understood as valid. This conceptual thinking can be useful for discussing and avoiding gender bias in clinical work, medical education, career opportunities and documents such as research programs and health care policies. Too meet the various forms of gender bias, different facts and measures are needed. Knowledge about biological differences between women and men will not reduce bias caused by gendered stereotypes or by unawareness of health problems and discrimination associated with gender inequity. Such bias reflects unawareness of gendered attitudes and will not change by facts only. We suggest consciousness-rising activities and continuous reflections on gender attitudes among students, teachers, researchers and decision-makers.

  15. Team Resilience as a Second-Order Emergent State: A Theoretical Model and Research Directions

    PubMed Central

    Bowers, Clint; Kreutzer, Christine; Cannon-Bowers, Janis; Lamb, Jerry

    2017-01-01

    Resilience has been recognized as an important phenomenon for understanding how individuals overcome difficult situations. However, it is not only individuals who face difficulties; it is not uncommon for teams to experience adversity. When they do, they must be able to overcome these challenges without performance decrements.This manuscript represents a theoretical model that might be helpful in conceptualizing this important construct. Specifically, it describes team resilience as a second-order emergent state. We also include research propositions that follow from the model. PMID:28861013

  16. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-07-01

    STANDARS 963-A AFWAL- TR- 82-4094 CUMULATIVE DAMAGE MODEL FOR ADVANCED COMPOSITE MATERIALS GENERAL DYNAMICS FORT WORTH DIVISION P. 0. BOX 748 FORT...WORTH, TEXAS 76101 July 1982 Final Report for Period 23 February 1981 to 23 May 19k2. Approved. for public rel ts ; dA.st ? ,* -i; .c- ,. a-. LJ ( MAR 2... procurement operation, the United Scat-.s Government thereby Incurr no responsibility nor any obligation whatsoever; and the fact t.’at the government may

  17. Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Etienne, Z. B.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Suvorova, S.; Moran, W.; Evans, R. J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-06-01

    Results are presented from a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run. The search combines a frequency domain matched filter (Bessel-weighted F -statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, h095 %=4.0 ×1 0-25, 8.3 ×1 0-25, and 3.0 ×1 0-25 for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are ≤10 times higher than the theoretical torque-balance limit at 106 Hz.

  18. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Suresh C.; Gupta, Neha

    2015-12-15

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less

  19. Verification of Gyrokinetic codes: Theoretical background and applications

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia; Bottino, Alberto; Görler, Tobias; Sonnendrücker, Eric; Told, Daniel; Villard, Laurent

    2017-05-01

    In fusion plasmas, the strong magnetic field allows the fast gyro-motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the subsequent transport. Naturally, these codes require thorough verification and validation. Here, we present a new and generic theoretical framework and specific numerical applications to test the faithfulness of the implemented models to theory and to verify the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which has rarely been done and therefore makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The verification of the numerical scheme is proposed via the benchmark effort. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC) and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations implemented in the ORB5 and GENE codes using the Lagrangian variational formulation. At the computational level, detailed verifications of global electromagnetic test cases developed from the CYCLONE Base Case are considered, including a parametric β-scan covering the transition from ITG to KBM and the spectral properties at the nominal β value.

  20. The water dimer II: Theoretical investigations

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    2018-05-01

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. In this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interactions in clusters and the condensed phases of water.

  1. Advancing an Information Model for Environmental Observations

    NASA Astrophysics Data System (ADS)

    Horsburgh, J. S.; Aufdenkampe, A. K.; Hooper, R. P.; Lehnert, K. A.; Schreuders, K.; Tarboton, D. G.; Valentine, D. W.; Zaslavsky, I.

    2011-12-01

    have been modified to support data management for the Critical Zone Observatories (CZOs). This paper will present limitations of the existing information model used by the CUAHSI HIS that have been uncovered through its deployment and use, as well as new advances to the information model, including: better representation of both in situ observations from field sensors and observations derived from environmental samples, extensibility in attributes used to describe observations, and observation provenance. These advances have been developed by the HIS team and the broader scientific community and will enable the information model to accommodate and better describe wider classes of environmental observations and to better meet the needs of the hydrologic science and CZO communities.

  2. Information-Theoretic Perspectives on Geophysical Models

    NASA Astrophysics Data System (ADS)

    Nearing, Grey

    2016-04-01

    practice of science (except by Gong et al., 2013, whose fundamental insight is the basis for this talk), and here I offer two examples of practical methods that scientists might use to approximately measure ontological information. I place this practical discussion in the context of several recent and high-profile experiments that have found that simple out-of-sample statistical models typically (vastly) outperform our most sophisticated terrestrial hydrology models. I offer some perspective on several open questions about how to use these findings to improve our models and understanding of these systems. Cartwright, N. (1983) How the Laws of Physics Lie. New York, NY: Cambridge Univ Press. Clark, M. P., Kavetski, D. and Fenicia, F. (2011) 'Pursuing the method of multiple working hypotheses for hydrological modeling', Water Resources Research, 47(9). Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory. New York, NY: Wiley-Interscience. Cox, R. T. (1946) 'Probability, frequency and reasonable expectation', American Journal of Physics, 14, pp. 1-13. Csiszár, I. (1972) 'A Class of Measures of Informativity of Observation Channels', Periodica Mathematica Hungarica, 2(1), pp. 191-213. Davies, P. C. W. (1990) 'Why is the physical world so comprehensible', Complexity, entropy and the physics of information, pp. 61-70. Gong, W., Gupta, H. V., Yang, D., Sricharan, K. and Hero, A. O. (2013) 'Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach', Water Resources Research, 49(4), pp. 2253-2273. Jaynes, E. T. (2003) Probability Theory: The Logic of Science. New York, NY: Cambridge University Press. Nearing, G. S. and Gupta, H. V. (2015) 'The quantity and quality of information in hydrologic models', Water Resources Research, 51(1), pp. 524-538. Popper, K. R. (2002) The Logic of Scientific Discovery. New York: Routledge. Van Horn, K. S. (2003) 'Constructing a logic of plausible inference: a guide to cox's theorem

  3. Dilatation-dissipation corrections for advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1992-01-01

    This paper analyzes dilatation-dissipation based compressibility corrections for advanced turbulence models. Numerical computations verify that the dilatation-dissipation corrections devised by Sarkar and Zeman greatly improve both the k-omega and k-epsilon model predicted effect of Mach number on spreading rate. However, computations with the k-gamma model also show that the Sarkar/Zeman terms cause an undesired reduction in skin friction for the compressible flat-plate boundary layer. A perturbation solution for the compressible wall layer shows that the Sarkar and Zeman terms reduce the effective von Karman constant in the law of the wall. This is the source of the inaccurate k-gamma model skin-friction predictions for the flat-plate boundary layer. The perturbation solution also shows that the k-epsilon model has an inherent flaw for compressible boundary layers that is not compensated for by the dilatation-dissipation corrections. A compressibility modification for k-gamma and k-epsilon models is proposed that is similar to those of Sarkar and Zeman. The new compressibility term permits accurate predictions for the compressible mixing layer, flat-plate boundary layer, and a shock separated flow with the same values for all closure coefficients.

  4. Prediction of the amount of urban waste solids by applying a gray theoretical model.

    PubMed

    Li, Xiao-Ming; Zeng, Guang-Ming; Wang, Ming; Liu, Jin-Jin

    2003-01-01

    Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non-linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0, 0.21(2)), and the probability of the residual within the range ( -0.17, 0.19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.

  5. Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei

    2018-04-01

    Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.

  6. Theoretical modeling of PEB procedure on EUV resist using FDM formulation

    NASA Astrophysics Data System (ADS)

    Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo

    2018-03-01

    Semiconductor manufacturing industry has reduced the size of wafer for enhanced productivity and performance, and Extreme Ultraviolet (EUV) light source is considered as a promising solution for downsizing. A series of EUV lithography procedures contain complex photo-chemical reaction on photoresist, and it causes technical difficulties on constructing theoretical framework which facilitates rigorous investigation of underlying mechanism. Thus, we formulated finite difference method (FDM) model of post exposure bake (PEB) process on positive chemically amplified resist (CAR), and it involved acid diffusion coupled-deprotection reaction. The model is based on Fick's second law and first-order chemical reaction rate law for diffusion and deprotection, respectively. Two kinetic parameters, diffusion coefficient of acid and rate constant of deprotection, which were obtained by experiment and atomic scale simulation were applied to the model. As a result, we obtained time evolutional protecting ratio of each functional group in resist monomer which can be used to predict resulting polymer morphology after overall chemical reactions. This achievement will be the cornerstone of multiscale modeling which provides fundamental understanding on important factors for EUV performance and rational design of the next-generation photoresist.

  7. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle

    Treesearch

    Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan Wikaira

    2007-01-01

    A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...

  8. A unified theoretical framework for mapping models for the multi-state Hamiltonian.

    PubMed

    Liu, Jian

    2016-11-28

    We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.

  9. ADVANCED UTILITY SIMULATION MODEL DOCUMENTATION OF SYSTEM DESIGN STATE LEVEL MODEL (VERSION 1.0)

    EPA Science Inventory

    The report is one of 11 in a series describing the initial development of the Advanced Utility Simulation Model (AUSM) by the Universities Research Group on Energy (URGE) and its continued development by the Science Applications International Corporation (SAIC) research team. The...

  10. MIP models for connected facility location: A theoretical and computational study☆

    PubMed Central

    Gollowitzer, Stefan; Ljubić, Ivana

    2011-01-01

    This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized. We model ConFL using seven compact and three mixed integer programming formulations of exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models is provided. For two exponential size models we develop a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of randomly generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented models with respect to the quality of obtained bounds and the corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%. PMID:25009366

  11. Impact of Patient and Procedure Mix on Finances of Perinatal Centres – Theoretical Models for Economic Strategies in Perinatal Centres

    PubMed Central

    Hildebrandt, T.; Kraml, F.; Wagner, S.; Hack, C. C.; Thiel, F. C.; Kehl, S.; Winkler, M.; Frobenius, W.; Faschingbauer, F.; Beckmann, M. W.; Lux, M. P.

    2013-01-01

    Introduction: In Germany, cost and revenue structures of hospitals with defined treatment priorities are currently being discussed to identify uneconomic services. This discussion has also affected perinatal centres (PNCs) and represents a new economic challenge for PNCs. In addition to optimising the time spent in hospital, the hospital management needs to define the “best” patient mix based on costs and revenues. Method: Different theoretical models were proposed based on the cost and revenue structures of the University Perinatal Centre for Franconia (UPF). Multi-step marginal costing was then used to show the impact on operating profits of changes in services and bed occupancy rates. The current contribution margin accounting used by the UPF served as the basis for the calculations. The models demonstrated the impact of changes in services on costs and revenues of a level 1 PNC. Results: Contribution margin analysis was used to calculate profitable and unprofitable DRGs based on average inpatient cost per day. Nineteen theoretical models were created. The current direct costing used by the UPF and a theoretical model with a 100 % bed occupancy rate were used as reference models. Significantly higher operating profits could be achieved by doubling the number of profitable DRGs and halving the number of less profitable DRGs. Operating profits could be increased even more by changing the rates of profitable DRGs per bed occupancy. The exclusive specialisation on pathological and high-risk pregnancies resulted in operating losses. All models which increased the numbers of caesarean sections or focused exclusively on c-sections resulted in operating losses. Conclusion: These theoretical models offer a basis for economic planning. They illustrate the enormous impact potential changes can have on the operating profits of PNCs. Level 1 PNCs require high bed occupancy rates and a profitable patient mix to cover the extremely high costs incurred due to the services

  12. Does the U.S. exercise contagion on Italy? A theoretical model and empirical evidence

    NASA Astrophysics Data System (ADS)

    Cerqueti, Roy; Fenga, Livio; Ventura, Marco

    2018-06-01

    This paper deals with the theme of contagion in financial markets. At this aim, we develop a model based on Mixed Poisson Processes to describe the abnormal returns of financial markets of two considered countries. In so doing, the article defines the theoretical conditions to be satisfied in order to state that one of them - the so-called leader - exercises contagion on the others - the followers. Specifically, we employ an invariant probabilistic result stating that a suitable transformation of a Mixed Poisson Process is still a Mixed Poisson Process. The theoretical claim is validated by implementing an extensive simulation analysis grounded on empirical data. The countries considered are the U.S. (as the leader) and Italy (as the follower) and the period under scrutiny is very large, ranging from 1970 to 2014.

  13. Theoretical kinetic studies of models for binding myosin subfragment-1 to regulated actin: Hill model versus Geeves model.

    PubMed Central

    Chen , Y; Yan, B; Chalovich, J M; Brenner, B

    2001-01-01

    It was previously shown that a one-dimensional Ising model could successfully simulate the equilibrium binding of myosin S1 to regulated actin filaments (T. L. Hill, E. Eisenberg and L. Greene, Proc. Natl. Acad. Sci. U.S.A. 77:3186-3190, 1980). However, the time course of myosin S1 binding to regulated actin was thought to be incompatible with this model, and a three-state model was subsequently developed (D. F. McKillop and M. A. Geeves, Biophys. J. 65:693-701, 1993). A quantitative analysis of the predicted time course of myosin S1 binding to regulated actin, however, was never done for either model. Here we present the procedure for the theoretical evaluation of the time course of myosin S1 binding for both models and then show that 1) the Hill model can predict the "lag" in the binding of myosin S1 to regulated actin that is observed in the absence of Ca++ when S1 is in excess of actin, and 2) both models generate very similar families of binding curves when [S1]/[actin] is varied. This result shows that, just based on the equilibrium and pre-steady-state kinetic binding data alone, it is not possible to differentiate between the two models. Thus, the model of Hill et al. cannot be ruled out on the basis of existing pre-steady-state and equilibrium binding data. Physical mechanisms underlying the generation of the lag in the Hill model are discussed. PMID:11325734

  14. Vaporization dynamics of volatile perfluorocarbon droplets: A theoretical model and in vitro validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doinikov, Alexander A., E-mail: doinikov@bsu.by; Bouakaz, Ayache; Sheeran, Paul S.

    2014-10-15

    Purpose: Perfluorocarbon (PFC) microdroplets, called phase-change contrast agents (PCCAs), are a promising tool in ultrasound imaging and therapy. Interest in PCCAs is motivated by the fact that they can be triggered to transition from the liquid state to the gas state by an externally applied acoustic pulse. This property opens up new approaches to applications in ultrasound medicine. Insight into the physics of vaporization of PFC droplets is vital for effective use of PCCAs and for anticipating bioeffects. PCCAs composed of volatile PFCs (with low boiling point) exhibit complex dynamic behavior: after vaporization by a short acoustic pulse, a PFCmore » droplet turns into a vapor bubble which undergoes overexpansion and damped radial oscillation until settling to a final diameter. This behavior has not been well described theoretically so far. The purpose of our study is to develop an improved theoretical model that describes the vaporization dynamics of volatile PFC droplets and to validate this model by comparison with in vitro experimental data. Methods: The derivation of the model is based on applying the mathematical methods of fluid dynamics and thermodynamics to the process of the acoustic vaporization of PFC droplets. The used approach corrects shortcomings of the existing models. The validation of the model is carried out by comparing simulated results with in vitro experimental data acquired by ultrahigh speed video microscopy for octafluoropropane (OFP) and decafluorobutane (DFB) microdroplets of different sizes. Results: The developed theory allows one to simulate the growth of a vapor bubble inside a PFC droplet until the liquid PFC is completely converted into vapor, and the subsequent overexpansion and damped oscillations of the vapor bubble, including the influence of an externally applied acoustic pulse. To evaluate quantitatively the difference between simulated and experimental results, the L2-norm errors were calculated for all cases where

  15. Collective behavior in animal groups: theoretical models and empirical studies

    PubMed Central

    Giardina, Irene

    2008-01-01

    Collective phenomena in animal groups have attracted much attention in the last years, becoming one of the hottest topics in ethology. There are various reasons for this. On the one hand, animal grouping provides a paradigmatic example of self-organization, where collective behavior emerges in absence of centralized control. The mechanism of group formation, where local rules for the individuals lead to a coherent global state, is very general and transcends the detailed nature of its components. In this respect, collective animal behavior is a subject of great interdisciplinary interest. On the other hand, there are several important issues related to the biological function of grouping and its evolutionary success. Research in this field boasts a number of theoretical models, but much less empirical results to compare with. For this reason, even if the general mechanisms through which self-organization is achieved are qualitatively well understood, a quantitative test of the models assumptions is still lacking. New analysis on large groups, which require sophisticated technological procedures, can provide the necessary empirical data. PMID:19404431

  16. Testing theoretical models of magnetic damping using an air track

    NASA Astrophysics Data System (ADS)

    Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Giménez, Marcos H.

    2008-03-01

    Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the analysis of magnetic braking using a magnet fixed to the glider of an air track. The forces acting on the glider, a result of the eddy currents, can be easily observed and measured. As a consequence of the air track inclination, the glider accelerates at the beginning, although it asymptotically tends towards a uniform rectilinear movement characterized by a terminal speed. This speed depends on the interaction between the magnetic field and the conductivity properties of the air track. Compared with previous related approaches, in our experimental setup the magnet fixed to the glider produces a magnetic braking force which acts continuously, rather than over a short period of time. The experimental results satisfactorily concur with the theoretical models adapted to this configuration.

  17. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests

    NASA Astrophysics Data System (ADS)

    Collins, Ian F.; Hilder, Tamsyn

    2002-11-01

    Modern ideas of thermomechanics are used to develop families of models describing the elastic/plastic behaviour of cohesionless soils deforming under triaxial conditions. Once the form of the free energy and dissipation potential functions have been specified, the corresponding yield loci, flow rules, isotropic and kinematic hardening rules as well as the elasticity law are deduced in a systematic manner. The families contain the classical linear frictional (Coulomb type) models and the classical critical state models as special cases. The generalized models discussed here include non-associated flow rules, shear as well as volumetric hardening, anisotropic responses and rotational yield loci. The various parameters needed to describe the models can be interpreted in terms of ratio of the plastic work, which is dissipated, to that which is stored. Non-associated behaviour is found to occur whenever this division between dissipated and stored work is not equal. Micro-level interpretations of stored plastic work are discussed. The models automatically satisfy the laws of thermodynamics, and there is no need to invoke any stability postulates. Some classical forms of the peak-strength/dilatancy relationship are established theoretically. Some representative drained and undrained paths are computed.

  18. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  19. Advances in heat conduction models and approaches for the prediction of lattice thermal conductivity of dielectric materials

    NASA Astrophysics Data System (ADS)

    Saikia, Banashree

    2017-03-01

    An overview of predominant theoretical models used for predicting the thermal conductivities of dielectric materials is given. The criteria used for different theoretical models are explained. This overview highlights a unified theory based on temperature-dependent thermal-conductivity theories, and a drifting of the equilibrium phonon distribution function due to normal three-phonon scattering processes causes transfer of phonon momentum to (a) the same phonon modes (KK-S model) and (b) across the phonon modes (KK-H model). Estimates of the lattice thermal conductivities of LiF and Mg2Sn for the KK-H model are presented graphically.

  20. Proof of concept of an artificial muscle: theoretical model, numerical model, and hardware experiment.

    PubMed

    Haeufle, D F B; Günther, M; Blickhan, R; Schmitt, S

    2011-01-01

    Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, the contraction dynamics of this CE concept were analyzed in a numerical simulation of quick release experiments against different loads. A hyperbolic force-velocity relation was found. The results correspond to measurements of the contraction dynamics of a technical prototype. Deviations from the theoretical prediction could partly be explained by the low stiffness of the SE, which was modeled analog to the metal spring in the hardware prototype. The numerical model and hardware prototype together, are a proof of this CE concept and can be seen as a well-founded starting point for the development of Hill-type artificial muscles. This opens up new vistas for the technical realization of natural movements with rehabilitation devices. © 2011 IEEE

  1. Traffic model for advanced satellite designs and experiments for ISDN services

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The data base structure and fields for categorizing and storing Integrated Services Digital Network (ISDN) user characteristics is outlined. This traffic model data base will be used to exercise models of the ISDN Advanced Communication Satellite to determine design parameters and performance for the NASA Satellite Communications Applications Research (SCAR) Program.

  2. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  3. The Water Dimer II: Theoretical Investigations

    DOE PAGES

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    2018-03-29

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. Here in this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interaction in clusters and the condensed phases of water.

  4. The Water Dimer II: Theoretical Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. Here in this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interaction in clusters and the condensed phases of water.

  5. The mathematical and theoretical biology institute--a model of mentorship through research.

    PubMed

    Camacho, Erika T; Kribs-Zaleta, Christopher M; Wirkus, Stephen

    2013-01-01

    This article details the history, logistical operations, and design philosophy of the Mathematical and Theoretical Biology Institute (MTBI), a nationally recognized research program with an 18-year history of mentoring researchers at every level from high school through university faculty, increasing the number of researchers from historically underrepresented minorities, and motivating them to pursue research careers by allowing them to work on problems of interest to them and supporting them in this endeavor. This mosaic profile highlights how MTBI provides a replicable multi-level model for research mentorship.

  6. Theoretical model for design and analysis of protectional eyewear.

    PubMed

    Zelzer, B; Speck, A; Langenbucher, A; Eppig, T

    2013-05-01

    Protectional eyewear has to fulfill both mechanical and optical stress tests. To pass those optical tests the surfaces of safety spectacles have to be optimized to minimize optical aberrations. Starting with the surface data of three measured safety spectacles, a theoretical spectacle model (four spherical surfaces) is recalculated first and then optimized while keeping the front surface unchanged. Next to spherical power, astigmatic power and prism imbalance we used the wavefront error (five different viewing directions) to simulate the optical performance and to optimize the safety spectacle geometries. All surfaces were spherical (maximum global deviation 'peak-to-valley' between the measured surface and the best-fit sphere: 0.132mm). Except the spherical power of the model Axcont (-0.07m(-1)) all simulated optical performance before optimization was better than the limits defined by standards. The optimization reduced the wavefront error by 1% to 0.150 λ (Windor/Infield), by 63% to 0.194 λ (Axcont/Bolle) and by 55% to 0.199 λ (2720/3M) without dropping below the measured thickness. The simulated optical performance of spectacle designs could be improved when using a smart optimization. A good optical design counteracts degradation by parameter variation throughout the manufacturing process. Copyright © 2013. Published by Elsevier GmbH.

  7. A theoretical model for analysing gender bias in medicine

    PubMed Central

    Risberg, Gunilla; Johansson, Eva E; Hamberg, Katarina

    2009-01-01

    During the last decades research has reported unmotivated differences in the treatment of women and men in various areas of clinical and academic medicine. There is an ongoing discussion on how to avoid such gender bias. We developed a three-step-theoretical model to understand how gender bias in medicine can occur and be understood. In this paper we present the model and discuss its usefulness in the efforts to avoid gender bias. In the model gender bias is analysed in relation to assumptions concerning difference/sameness and equity/inequity between women and men. Our model illustrates that gender bias in medicine can arise from assuming sameness and/or equity between women and men when there are genuine differences to consider in biology and disease, as well as in life conditions and experiences. However, gender bias can also arise from assuming differences when there are none, when and if dichotomous stereotypes about women and men are understood as valid. This conceptual thinking can be useful for discussing and avoiding gender bias in clinical work, medical education, career opportunities and documents such as research programs and health care policies. Too meet the various forms of gender bias, different facts and measures are needed. Knowledge about biological differences between women and men will not reduce bias caused by gendered stereotypes or by unawareness of health problems and discrimination associated with gender inequity. Such bias reflects unawareness of gendered attitudes and will not change by facts only. We suggest consciousness-rising activities and continuous reflections on gender attitudes among students, teachers, researchers and decision-makers. PMID:19646289

  8. Tapered fiber optic applicator for laser ablation: Theoretical and experimental assessment of thermal effects on ex vivo model.

    PubMed

    Saccomandi, P; Di Matteo, F M; Schena, E; Quero, G; Massaroni, C; Giurazza, F; Costamagna, G; Silvestri, S

    2017-07-01

    Laser Ablation (LA) is a minimally invasive technique for tumor removal. The laser light is guided into the target tissue by a fiber optic applicator; thus the physical features of the applicator tip strongly influence size and shape of the tissue lesion. This study aims to verify the geometry of the lesion achieved by a tapered-tip applicator, and to investigate the percentage of thermally damaged cells induced by the tapered-tip fiber optic applicator. A theoretical model was implemented to simulate: i) the distribution of laser light fluence rate in the tissue through Monte Carlo method, ii) the induced temperature distribution, by means of the Bio Heat Equation, iii) the tissue injury, by Arrhenius integral. The results obtained by the implementation of the theoretical model were experimentally assessed. Ex vivo porcine liver underwent LA with tapered-tip applicator, at different laser settings (laser power of 1 W and 1.7 W, deposited energy equal to 330 J and 500 J, respectively). Almost spherical volume lesions were produced. The thermal damage was assessed by measuring the diameter of the circular-shaped lesion. The comparison between experimental results and theoretical prediction shows that the thermal damage discriminated by visual inspection always corresponds to a percentage of damaged cells of 96%. A tapered-tip applicator allows obtaining localized and reproducible damage close to spherical shape, whose diameter is related to the laser settings, and the simple theoretical model described is suitable to predict the effects, in terms of thermal damage, on ex vivo liver. Further trials should be addressed to adapt the model also on in vivo tissue, aiming to develop a tool useful to support the physician in clinical application of LA.

  9. Interactive 3D visualization for theoretical virtual observatories

    NASA Astrophysics Data System (ADS)

    Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-06-01

    Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  10. Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.

    1993-01-01

    Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.

  11. Rockfall travel distances theoretical distributions

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, Michel; Derron, Marc-Henri; Pedrazzini, Andrea

    2017-04-01

    The probability of propagation of rockfalls is a key part of hazard assessment, because it permits to extrapolate the probability of propagation of rockfall either based on partial data or simply theoretically. The propagation can be assumed frictional which permits to describe on average the propagation by a line of kinetic energy which corresponds to the loss of energy along the path. But loss of energy can also be assumed as a multiplicative process or a purely random process. The distributions of the rockfall block stop points can be deduced from such simple models, they lead to Gaussian, Inverse-Gaussian, Log-normal or exponential negative distributions. The theoretical background is presented, and the comparisons of some of these models with existing data indicate that these assumptions are relevant. The results are either based on theoretical considerations or by fitting results. They are potentially very useful for rockfall hazard zoning and risk assessment. This approach will need further investigations.

  12. A theoretical trombone

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2014-09-01

    What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that compare well to both the desired frequencies of the musical pitches and those actually played on a real trombone.

  13. Optimal pacing strategy: from theoretical modelling to reality in 1500-m speed skating.

    PubMed

    Hettinga, F J; De Koning, J J; Schmidt, L J I; Wind, N A C; Macintosh, B R; Foster, C

    2011-01-01

    Athletes are trained to choose the pace which is perceived to be correct during a specific effort, such as the 1500-m speed skating competition. The purpose of the present study was to "override" self-paced (SP) performance by instructing athletes to execute a theoretically optimal pacing profile. Seven national-level speed-skaters performed a SP 1500-m which was analysed by obtaining velocity (every 100 m) and body position (every 200 m) with video to calculate total mechanical power output. Together with gross efficiency and aerobic kinetics, obtained in separate trials, data were used to calculate aerobic and anaerobic power output profiles. An energy flow model was applied to SP, simulating a range of pacing strategies, and a theoretically optimal pacing profile was imposed in a second race (IM). Final time for IM was ∼2 s slower than SP. Total power distribution per lap differed, with a higher power over the first 300 m for IM (637.0 (49.4) vs 612.5 (50.0) W). Anaerobic parameters did not differ. The faster first lap resulted in a higher aerodynamic drag coefficient and perhaps a less effective push-off. Experienced athletes have a well-developed performance template, and changing pacing strategy towards a theoretically optimal fast start protocol had negative consequences on speed-skating technique and did not result in better performance.

  14. Prefission Constriction of Golgi Tubular Carriers Driven by Local Lipid Metabolism: A Theoretical Model

    PubMed Central

    Shemesh, Tom; Luini, Alberto; Malhotra, Vivek; Burger, Koert N. J.; Kozlov, Michael M.

    2003-01-01

    Membrane transport within mammalian cells is mediated by small vesicular as well as large pleiomorphic transport carriers (TCs). A major step in the formation of TCs is the creation and subsequent narrowing of a membrane neck connecting the emerging carrier with the initial membrane. In the case of small vesicular TCs, neck formation may be directly induced by the coat proteins that cover the emerging vesicle. However, the mechanism underlying the creation and narrowing of a membrane neck in the generation of large TCs remains unknown. We present a theoretical model for neck formation based on the elastic model of membranes. Our calculations suggest a lipid-driven mechanism with a central role for diacylglycerol (DAG). The model is applied to a well-characterized in vitro system that reconstitutes TC formation from the Golgi complex, namely the pearling and fission of Golgi tubules induced by CtBP/BARS, a protein that catalyzes the conversion of lysophosphatidic acid into phosphatidic acid. In view of the importance of a PA-DAG cycle in the formation of Golgi TCs, we assume that the newly formed phosphatidic acid undergoes rapid dephosphorylation into DAG. DAG possesses a unique molecular shape characterized by an extremely large negative spontaneous curvature, and it redistributes rapidly between the membrane monolayers and along the membrane surface. Coupling between local membrane curvature and local lipid composition results, by mutual enhancement, in constrictions of the tubule into membrane necks, and a related inhomogeneous lateral partitioning of DAG. Our theoretical model predicts the exact dimensions of the constrictions observed in the pearling Golgi tubules. Moreover, the model is able to explain membrane neck formation by physiologically relevant mole fractions of DAG. PMID:14645071

  15. The universal, collaborative and dynamic model of specialist and advanced nursing and midwifery practice: A way forward?

    PubMed

    O'Connor, Laserina; Casey, Mary; Smith, Rita; Fealy, Gerard M; Brien, Denise O'; O'Leary, Denise; Stokes, Diarmuid; McNamara, Martin S; Glasgow, Mary Ellen; Cashin, Andrew

    2018-03-01

    To inform and guide the development of a future model of specialist and advanced nursing and midwifery practice. There is a sizable body of empirical literature supporting the unique contributions of specialist and advanced practice roles to health care. However, there is very little international evidence to inform the integration of a future model for advanced or specialist practice in the Irish healthcare system. A qualitative study was conducted to initiate this important area of inquiry. Purposive sampling was used to generate a sample of informants (n = 15) for the interviews. Nurses and midwives working in specialist and advanced practice and participants from other areas such as legislative, regulatory, policy, medicine and education were included in the sampling frame. Arguments for a new model of specialist and advanced practice were voiced. A number of participants proposed that flexibility within specialist and advanced practitioner career pathways was essential. Otherwise, there existed the possibility of being directed into specialised "silos," precluding movement to another area of integrated practice. Future specialist and advanced practice education programmes need to include topics such as the development of emotional and political intelligence. The contribution of specialist and advanced practice roles to the health service includes providing rapid access to care, seamless patient flow across services, early discharge and lead coordinator of the patient's care trajectory. There was a recommendation of moving towards a universal model to cultivate specialist and advanced nurse and midwife practitioners. The model design has Universal application in a range of contexts "U." It is Collaborative in its inclusivity of all key stakeholders "C." The model is Dynamic pertinent to accommodating movement of nurses and midwives across health continua rather than plateauing in very specialised "silos" "D." © 2017 John Wiley & Sons Ltd.

  16. Theoretical investigation on the magnetic and electric properties in TbSb compound through an anisotropic microscopic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Ribeiro, P. O.; Alho, B. P.

    2016-05-14

    We report the strong correlations between the magnetoresistivity and the magnetic entropy change in the cubic antiferromagnetic TbSb compound. The theoretical investigation was performed through a microscopic model which takes into account the crystalline electrical field anisotropy, exchange coupling interactions between the up and down magnetic sublattices, and the Zeeman interaction. The easy magnetization directions changes from 〈001〉 to 〈110〉 and then to 〈111〉 observed experimentally was successfully theoretically described. Also, the calculation of the temperature dependence of electric resistivity showed good agreement with the experimental data. Theoretical predictions were calculated for the temperature dependence of the magnetic entropy andmore » resistivity changes upon magnetic field variation. Besides, the difference in the spin up and down sublattices resistivity was investigated.« less

  17. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    EPA Science Inventory

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  18. Extending the surrogacy analogy: applying the advance directive model to biobanks.

    PubMed

    Solomon, Stephanie; Mongoven, Ann

    2015-01-01

    Biobank donors and biobank governance face a conceptual challenge akin to clinical patients and their designated surrogate decision-makers, the necessity of making decisions and policies now that must be implemented under future unknown circumstances. We propose that biobanks take advantage of this parallel to learn lessons from the historical trajectory of advance directives and develop models analogous to current 'best practice' advance directives such as Values Histories and TheFive Wishes. We suggest how such models could improve biobanks' engagement both with communities and with individual donors by being more honest about the limits of current disclosure and eliciting information to ensure the protection of donor interests more robustly through time than current 'informed consent' processes in biobanking. © 2014 S. Karger AG, Basel.

  19. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.

    PubMed

    Wang, Gangsheng; Post, Wilfred M

    2012-09-01

    We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.

  20. Standard model with a complex scalar singlet: Cosmological implications and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Ramsey-Musolf, Michael J.; Senaha, Eibun

    2018-01-01

    We analyze the theoretical and phenomenological considerations for the electroweak phase transition and dark matter in an extension of the standard model with a complex scalar singlet (cxSM). In contrast with earlier studies, we use a renormalization group improved scalar potential and treat its thermal history in a gauge-invariant manner. We find that the parameter space consistent with a strong first-order electroweak phase transition (SFOEWPT) and present dark matter phenomenological constraints is significantly restricted compared to results of a conventional, gauge-noninvariant analysis. In the simplest variant of the cxSM, recent LUX data and a SFOEWPT require a dark matter mass close to half the mass of the standard model-like Higgs boson. We also comment on various caveats regarding the perturbative treatment of the phase transition dynamics.

  1. Characterizing the In-Phase Reflection Bandwidth Theoretical Limit of Artificial Magnetic Conductors With a Transmission Line Model

    NASA Technical Reports Server (NTRS)

    Xie, Yunsong; Fan, Xin; Chen, Yunpeng; Wilson, Jeefrey D.; Simons, Rainee N.; Xiao, John Q.

    2013-01-01

    We validate through simulation and experiment that artificial magnetic conductors (AMC s) can be well characterized by a transmission line model. The theoretical bandwidth limit of the in-phase reflection can be expressed in terms of the effective RLC parameters from the surface patch and the properties of the substrate. It is found that the existence of effective inductive components will reduce the in-phase reflection bandwidth of the AMC. Furthermore, we propose design strategies to optimize AMC structures with an in-phase reflection bandwidth closer to the theoretical limit.

  2. Advancing Cyberinfrastructure to support high resolution water resources modeling

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Ogden, F. L.; Jones, N.; Horsburgh, J. S.

    2012-12-01

    Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics

  3. Mass transport in micellar surfactant solutions: 2. Theoretical modeling of adsorption at a quiescent interface.

    PubMed

    Danov, K D; Kralchevsky, P A; Denkov, N D; Ananthapadmanabhan, K P; Lips, A

    2006-01-31

    Here, we apply the detailed theoretical model of micellar kinetics from part 1 of this study to the case of surfactant adsorption at a quiescent interface, i.e., to the relaxation of surface tension and adsorption after a small initial perturbation. Our goal is to understand why for some surfactant solutions the surface tension relaxes as inverse-square-root of time, 1/t(1/2), but two different expressions for the characteristic relaxation time are applicable to different cases. In addition, our aim is to clarify why for other surfactant solutions the surface tension relaxes exponentially. For this goal, we carried out a computer modeling of the adsorption process, based on the general system of equations derived in part 1. This analysis reveals the existence of four different consecutive relaxation regimes (stages) for a given micellar solution: two exponential regimes and two inverse-square-root regimes, following one after another in alternating order. Experimentally, depending on the specific surfactant and method, one usually registers only one of these regimes. Therefore, to interpret properly the data, one has to identify which of these four kinetic regimes is observed in the given experiment. Our numerical results for the relaxation of the surface tension, micelle concentration and aggregation number are presented in the form of kinetic diagrams, which reveal the stages of the relaxation process. At low micelle concentrations, "rudimentary" kinetic diagrams could be observed, which are characterized by merging of some stages. Thus, the theoretical modeling reveals a general and physically rich picture of the adsorption process. To facilitate the interpretation of experimental data, we have derived convenient theoretical expressions for the time dependence of surface tension and adsorption in each of the four regimes.

  4. Ecological invasion, roughened fronts, and a competitor's extreme advance: integrating stochastic spatial-growth models.

    PubMed

    O'Malley, Lauren; Korniss, G; Caraco, Thomas

    2009-07-01

    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibits universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.

  5. How prayer heals: a theoretical model.

    PubMed

    Levin, J S

    1996-01-01

    This article presents a theoretical model that outlines various possible explanations for the healing effects of prayer. Four classes of mechanisms are defined on the basis of whether healing has naturalistic or supernatural origins and whether it operates locally or nonlocally. Through this framework, most of the currently proposed hypotheses for understanding absent healing and other related phenomena-hypotheses that invoke such concepts as subtle energy, psi, consciousness, morphic fields, and extended mind-are shown to be no less naturalistic than the Newtonian, mechanistic forces of allopathic biomedicine so often derided for their materialism. In proposing that prayer may heal through nonlocal means according to mechanisms and theories proposed by the new physics, Dossey is almost alone among medical scholars in suggesting the possible limitations and inadequacies of hypotheses based on energies, forces, and fields. Yet even such nonlocal effects can be conceived of as naturalistic; that is, they are explained by physical laws that may be unbelievable or unfamiliar to most physicians but that are nonetheless becoming recognized as operant laws of the natural universe. The concept of the supernatural, however, is something altogether different, and is, by definition, outside of or beyond nature. Herein may reside an either wholly or partly transcendent Creator-God who is believed by many to heal through means that transcend the laws of the created universe, both its local and nonlocal elements, and that are thus inherently inaccessible to and unknowable by science. Such an explanation for the effects of prayer merits consideration and, despite its unprovability by medical science, should not be dismissed out of hand.

  6. Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Yang, Zhibing; Chen, Yi-Feng; Tokunaga, Tetsu

    2018-04-01

    When a more viscous fluid displaces a less viscous one in porous media, viscous pressure drop stabilizes the displacement front against capillary pressure fluctuation. For this favorable viscous ratio conditions, previous studies focused on the front instability under slow flow conditions but did not address competing effects of wettability and flow rate. Here we study how this competition controls displacement patterns. We propose a theoretical model that describes the crossover from fingering to stable flow as a function of invading fluid contact angle θ and capillary number Ca. The phase diagram predicted by the model shows that decreasing θ stabilizes the displacement for θ≥45° and the critical contact angle θc increases with Ca. The boundary between corner flow and cooperative filling for θ < 45° is also described. This work extends the classic phase diagram and has potential applications in predicting CO2 capillary trapping and manipulating wettability to enhance gas/oil displacement efficiency.

  7. Food addiction spectrum: a theoretical model from normality to eating and overeating disorders.

    PubMed

    Piccinni, Armando; Marazziti, Donatella; Vanelli, Federica; Franceschini, Caterina; Baroni, Stefano; Costanzo, Davide; Cremone, Ivan Mirko; Veltri, Antonello; Dell'Osso, Liliana

    2015-01-01

    The authors comment on the recently proposed food addiction spectrum that represents a theoretical model to understand the continuum between several conditions ranging from normality to pathological states, including eating disorders and obesity, as well as why some individuals show a peculiar attachment to food that can become an addiction. Further, they review the possible neurobiological underpinnings of these conditions that include dopaminergic neurotransmission and circuits that have long been implicated in drug addiction. The aim of this article is also that at stimulating a debate regarding the possible model of a food (or eating) addiction spectrum that may be helpful towards the search of novel therapeutic approaches to different pathological states related to disturbed feeding or overeating.

  8. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less

  9. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts

    NASA Astrophysics Data System (ADS)

    Sun, Ligang; He, Xiaoqiao; Lu, Jian

    2018-02-01

    The recent studies on nanotwinned (NT) and hierarchical nanotwinned (HNT) face-centered cubic (FCC) metals are presented in this review. The HNT structures have been supposed as a kind of novel structure to bring about higher strength/ductility than NT counterparts in crystalline materials. We primarily focus on the recent developments of the experimental, atomistic and theoretical studies on the NT and HNT structures in the metallic materials. Some advanced bottom-up and top-down techniques for the fabrication of NT and HNT structures are introduced. The deformation induced HNT structures are available by virtue of severe plastic deformation (SPD) based techniques while the synthesis of growth HNT structures is so far almost unavailable. In addition, some representative molecular dynamics (MD) studies on the NT and HNT FCC metals unveil that the nanoscale effects such as twin spacing, grain size and plastic anisotropy greatly alter the performance of NT and HNT metals. The HNT structures may initiate unique phenomena in comparison with the NT ones. Furthermore, based on the phenomena and mechanisms revealed by experimental and MD simulation observations, a series of theoretical models have been proposed. They are effective to describe the mechanical behaviors of NT and HNT metals within the applicable scope. So far the development of manufacturing technologies of HNT structures, as well as the studies on the effects of HNT structures on the properties of metals are still in its infancy. Further exploration is required to promote the design of advanced materials.

  10. A Game-Theoretic Model of Marketing Skin Whiteners.

    PubMed

    Mendoza, Roger Lee

    2015-01-01

    Empirical studies consistently find that people in less developed countries tend to regard light or "white" skin, particularly among women, as more desirable or superior. This is a study about the marketing of skin whiteners in these countries, where over 80 percent of users are typically women. It proceeds from the following premises: a) Purely market or policy-oriented approaches toward the risks and harms of skin whitening are cost-inefficient; b) Psychosocial and informational factors breed uninformed and risky consumer choices that favor toxic skin whiteners; and c) Proliferation of toxic whiteners in a competitive buyer's market raises critical supplier accountability issues. Is intentional tort a rational outcome of uncooperative game equilibria? Can voluntary cooperation nonetheless evolve between buyers and sellers of skin whiteners? These twin questions are key to addressing the central paradox in this study: A robust and expanding buyer's market, where cheap whitening products abound at a high risk to personal and societal health and safety. Game-theoretic modeling of two-player and n-player strategic interactions is proposed in this study for both its explanatory and predictive value. Therein also lie its practical contributions to the economic literature on skin whitening.

  11. [Theoretical modeling and experimental research on direct compaction characteristics of multi-component pharmaceutical powders based on the Kawakita equation].

    PubMed

    Si, Guo-Ning; Chen, Lan; Li, Bao-Guo

    2014-04-01

    Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.

  12. Merging Theoretical Models and Therapy Approaches in the Context of Internet Gaming Disorder: A Personal Perspective.

    PubMed

    Young, Kimberly S; Brand, Matthias

    2017-01-01

    Although, it is not yet officially recognized as a clinical entity which is diagnosable, Internet Gaming Disorder (IGD) has been included in section III for further study in the DSM-5 by the American Psychiatric Association (APA, 2013). This is important because there is increasing evidence that people of all ages, in particular teens and young adults, are facing very real and sometimes very severe consequences in daily life resulting from an addictive use of online games. This article summarizes general aspects of IGD including diagnostic criteria and arguments for the classification as an addictive disorder including evidence from neurobiological studies. Based on previous theoretical considerations and empirical findings, this paper examines the use of one recently proposed model, the Interaction of Person-Affect-Cognition-Execution (I-PACE) model, for inspiring future research and for developing new treatment protocols for IGD. The I-PACE model is a theoretical framework that explains symptoms of Internet addiction by looking at interactions between predisposing factors, moderators, and mediators in combination with reduced executive functioning and diminished decision making. Finally, the paper discusses how current treatment protocols focusing on Cognitive-Behavioral Therapy for Internet addiction (CBT-IA) fit with the processes hypothesized in the I-PACE model.

  13. Merging Theoretical Models and Therapy Approaches in the Context of Internet Gaming Disorder: A Personal Perspective

    PubMed Central

    Young, Kimberly S.; Brand, Matthias

    2017-01-01

    Although, it is not yet officially recognized as a clinical entity which is diagnosable, Internet Gaming Disorder (IGD) has been included in section III for further study in the DSM-5 by the American Psychiatric Association (APA, 2013). This is important because there is increasing evidence that people of all ages, in particular teens and young adults, are facing very real and sometimes very severe consequences in daily life resulting from an addictive use of online games. This article summarizes general aspects of IGD including diagnostic criteria and arguments for the classification as an addictive disorder including evidence from neurobiological studies. Based on previous theoretical considerations and empirical findings, this paper examines the use of one recently proposed model, the Interaction of Person-Affect-Cognition-Execution (I-PACE) model, for inspiring future research and for developing new treatment protocols for IGD. The I-PACE model is a theoretical framework that explains symptoms of Internet addiction by looking at interactions between predisposing factors, moderators, and mediators in combination with reduced executive functioning and diminished decision making. Finally, the paper discusses how current treatment protocols focusing on Cognitive-Behavioral Therapy for Internet addiction (CBT-IA) fit with the processes hypothesized in the I-PACE model. PMID:29104555

  14. Is an advance care planning model feasible in community palliative care? A multi-site action research approach.

    PubMed

    Blackford, Jeanine; Street, Annette

    2012-09-01

    This article reports a study to determine the feasibility of an advance care planning model developed with Australian community palliative care services. An effective advance care planning programme involves an organizational wide commitment and preparedness for health service reform to embed advance care planning into routine practice. Internationally, such programmes have been implemented predominantly in aged and acute care with more recent work in primary care. A multi-site action research was conducted over a 16-month period in 2007-2009 with three Victorian community palliative care services. Using mixed method data collection strategies to assess feasibility, we conducted a baseline audit of staff and clients; analysed relevant documents (client records, policies, procedures and quality improvement strategies) pre-implementation and post-implementation and conducted key informant interviews (n = 9). Three community palliative care services: one regional and two metropolitan services in Victoria, Australia. The services demonstrated that it was feasible to embed the Model into their organizational structures. Advance care planning conversations and involvement of family was an important outcome measure rather than completion rate of advance care planning documents in community settings. Services adapted and applied their own concept of community, which widened the impact of the model. Changes to quality audit processes were essential to consolidate the model into routine palliative care practice. An advance care planning model is feasible for community palliative care services. Quality audit processes are an essential component of the Model with documentation of advance care planning discussion established as an important outcome measure. © 2011 Blackwell Publishing Ltd.

  15. A Dialectical Approach to Theoretical Integration in Developmental-Contextual Identity Research

    ERIC Educational Resources Information Center

    Seaman, Jayson; Sharp, Erin Hiley; Coppens, Andrew D.

    2017-01-01

    Future advances in identity research will depend on integration across major theoretical traditions. Developmental-contextualism has established essential criteria to guide this effort, including specifying the context of identity development, its timing over the life course, and its content. This article assesses 4 major traditions of identity…

  16. A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo

    PubMed Central

    David, Allan E.; Cole, Adam J.; Chertok, Beata; Park, Yoon Shin; Yang, Victor C.

    2011-01-01

    Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our “corrected” mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies. PMID:21295085

  17. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  18. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1991-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. The two outstanding problems of interest are: (1) the origins and nature of chaos in baroclinically unstable flows; and (2) the physical mechanisms responsible for high speed zonal winds and banding on the giant planets. The methods used to study these problems, and the insights gained, are useful in more general atmospheric and climate dynamic settings. Because the planetary curvature or beta-effect is crucial in the large scale nonlinear dynamics, the motions of rotating convecting liquids in spherical shells were studied using electrohydrodynamic polarization forces to generate radial gravity and centrally directed buoyancy forces in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. The interpretation and extension of these results have led to the construction of efficient numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. Efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument have led us to develop theoretical and numerical models of baroclinic instability. Some surprising properties of both these models were discovered.

  19. Theoretical Analysis of an Iron Mineral-Based Magnetoreceptor Model in Birds

    PubMed Central

    Solov'yov, Ilia A.; Greiner, Walter

    2007-01-01

    Sensing the magnetic field has been established as an essential part of navigation and orientation of various animals for many years. Only recently has the first detailed receptor concept for magnetoreception been published based on histological and physical results. The considered mechanism involves two types of iron minerals (magnetite and maghemite) that were found in subcellular compartments within sensory dendrites of the upper beak of several bird species. But so far a quantitative evaluation of the proposed receptor is missing. In this article, we develop a theoretical model to quantitatively and qualitatively describe the magnetic field effects among particles containing iron minerals. The analysis of forces acting between these subcellular compartments shows a particular dependence on the orientation of the external magnetic field. The iron minerals in the beak are found in the form of crystalline maghemite platelets and assemblies of magnetite nanoparticles. We demonstrate that the pull or push to the magnetite assemblies, which are connected to the cell membrane, may reach a value of 0.2 pN—sufficient to excite specific mechanoreceptive membrane channels in the nerve cell. The theoretical analysis of the assumed magnetoreceptor system in the avian beak skin clearly shows that it might indeed be a sensitive biological magnetometer providing an essential part of the magnetic map for navigation. PMID:17496012

  20. Advance finite element modeling of rotor blade aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Sangha, K. B.; Panda, B.

    1994-01-01

    An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.

  1. Random walk on lattices: Graph-theoretic approach to simulating long-range diffusion-attachment growth models

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate

    2014-03-01

    Interest in thin-film fabrication for industrial applications have driven both theoretical and computational aspects of modeling its growth. One of the earliest attempts toward understanding the morphological structure of a film's surface is through a class of solid-on-solid limited-mobility growth models such as the Family, Wolf-Villain, or Das Sarma-Tamborenea models, which have produced fascinating surface roughening behaviors. These models, however, restrict the motion of an incidence atom to be within the neighborhood of its landing site, which renders them inept for simulating long-distance surface diffusion such as that observed in thin-film growth using a molecular-beam epitaxy technique. Naive extension of these models by repeatedly applying the local diffusion rules for each hop to simulate large diffusion length can be computationally very costly when certain statistical aspects are demanded. We present a graph-theoretic approach to simulating a long-range diffusion-attachment growth model. Using the Markovian assumption and given a local diffusion bias, we derive the transition probabilities for a random walker to traverse from one lattice site to the others after a large, possibly infinite, number of steps. Only computation with linear-time complexity is required for the surface morphology calculation without other probabilistic measures. The formalism is applied, as illustrations, to simulate surface growth on a two-dimensional flat substrate and around a screw dislocation under the modified Wolf-Villain diffusion rule. A rectangular spiral ridge is observed in the latter case with a smooth front feature similar to that obtained from simulations using the well-known multiple registration technique. An algorithm for computing the inverse of a class of substochastic matrices is derived as a corollary.

  2. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  3. Dual-Retrieval Models and Neurocognitive Impairment

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Reyna, V. F.; Gomes, C. F. A.; Kenney, A. E.; Gross, C. J.; Taub, E. S.; Spreng, R. N.

    2014-01-01

    Advances in dual-retrieval models of recall make it possible to use clinical data to test theoretical hypotheses about mild cognitive impairment (MCI) and Alzheimer's dementia (AD), the most common forms of neurocognitive impairment. Hypotheses about the nature of the episodic memory declines in these diseases, about decline versus sparing of…

  4. On the Road to Translation for PTSD Treatment: Theoretical and Practical Considerations of the Use of Human Models of Conditioned Fear for Drug Development.

    PubMed

    Risbrough, Victoria B; Glenn, Daniel E; Baker, Dewleen G

    The use of quantitative, laboratory-based measures of threat in humans for proof-of-concept studies and target development for novel drug discovery has grown tremendously in the last 2 decades. In particular, in the field of posttraumatic stress disorder (PTSD), human models of fear conditioning have been critical in shaping our theoretical understanding of fear processes and importantly, validating findings from animal models of the neural substrates and signaling pathways required for these complex processes. Here, we will review the use of laboratory-based measures of fear processes in humans including cued and contextual conditioning, generalization, extinction, reconsolidation, and reinstatement to develop novel drug treatments for PTSD. We will primarily focus on recent advances in using behavioral and physiological measures of fear, discussing their sensitivity as biobehavioral markers of PTSD symptoms, their response to known and novel PTSD treatments, and in the case of d-cycloserine, how well these findings have translated to outcomes in clinical trials. We will highlight some gaps in the literature and needs for future research, discuss benefits and limitations of these outcome measures in designing proof-of-concept trials, and offer practical guidelines on design and interpretation when using these fear models for drug discovery.

  5. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    NASA Astrophysics Data System (ADS)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  6. A theoretical model for optical oximetry at the capillary-level by optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of RBCs in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e. measuring hemoglobin sO2) is feasible from dispersed red blood cells (RBCs) at the single-capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. Here we provide a theoretical model to calculate the backscattering spectra of single RBCs based on the first-order Born approximation, considering the orientation, size variation, and deformation of RBCs. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different deformations of RBCs, allowing the sO2 of individual RBCs in capillaries to be characterized. The theoretical model is verified by Mie theory and experiments using visible light optical coherence tomography (vis-OCT). Thus, this study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single-capillary level by backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single-capillary level. This is promising for in vivo backscattering-based optical oximetry at the single-capillary level, to measure local capillary sO2 for early diagnosis, progression monitoring, and treatment evaluation of diabetic retinopathy and cancer.

  7. Penetration of alkali atoms throughout a graphene membrane: theoretical modeling

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Virojanadara, C.

    2012-02-01

    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.

  8. Penetration of alkali atoms throughout a graphene membrane: theoretical modeling.

    PubMed

    Boukhvalov, D W; Virojanadara, C

    2012-03-07

    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.

  9. Aerodynamic Analyses Requiring Advanced Computers, part 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

  10. Modelling of an advanced charging system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the

  11. Advanced EUV mask and imaging modeling

    NASA Astrophysics Data System (ADS)

    Evanschitzky, Peter; Erdmann, Andreas

    2017-10-01

    The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.

  12. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  13. Devil in the Details: A Critical Review of "Theoretical Loss".

    PubMed

    Tom, Matthew A; Shaffer, Howard J

    2016-09-01

    In their review of Internet gambling studies, Auer and Griffiths (J Gambl Stud 30(4), 879-887, 2014) question the validity of using bet size as an indicator of gambling intensity. Instead, in that review and in a response (Auer and Griffiths, J Gambl Stud 31(3), 921-931, 2015) to a previous comment (Braverman et al., J Gambl Stud 31(2), 359-366, 2015), Auer and Griffiths suggested using "theoretical loss" as a preferable measure of gambling intensity. This comment extends and advances the discussion about measures of gambling intensity. In this paper, we describe previously identified problems that Auer and Griffiths need to address to sustain theoretical loss as a viable measure of gambling intensity and add details to the discussion that demonstrate difficulties associated with the use of theoretical loss with certain gambling games.

  14. Advances in Swine Biomedical Model Genomics

    PubMed Central

    Lunney, Joan K.

    2007-01-01

    This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies. PMID:17384736

  15. Tube Bulge Process : Theoretical Analysis and Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Velasco, Raphael; Boudeau, Nathalie

    2007-05-01

    This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress.

  16. Health behavior change in advance care planning: an agent-based model.

    PubMed

    Ernecoff, Natalie C; Keane, Christopher R; Albert, Steven M

    2016-02-29

    A practical and ethical challenge in advance care planning research is controlling and intervening on human behavior. Additionally, observing dynamic changes in advance care planning (ACP) behavior proves difficult, though tracking changes over time is important for intervention development. Agent-based modeling (ABM) allows researchers to integrate complex behavioral data about advance care planning behaviors and thought processes into a controlled environment that is more easily alterable and observable. Literature to date has not addressed how best to motivate individuals, increase facilitators and reduce barriers associated with ACP. We aimed to build an ABM that applies the Transtheoretical Model of behavior change to ACP as a health behavior and accurately reflects: 1) the rates at which individuals complete the process, 2) how individuals respond to barriers, facilitators, and behavioral variables, and 3) the interactions between these variables. We developed a dynamic ABM of the ACP decision making process based on the stages of change posited by the Transtheoretical Model. We integrated barriers, facilitators, and other behavioral variables that agents encounter as they move through the process. We successfully incorporated ACP barriers, facilitators, and other behavioral variables into our ABM, forming a plausible representation of ACP behavior and decision-making. The resulting distributions across the stages of change replicated those found in the literature, with approximately half of participants in the action-maintenance stage in both the model and the literature. Our ABM is a useful method for representing dynamic social and experiential influences on the ACP decision making process. This model suggests structural interventions, e.g. increasing access to ACP materials in primary care clinics, in addition to improved methods of data collection for behavioral studies, e.g. incorporating longitudinal data to capture behavioral dynamics.

  17. The Educational Situation Quality Model: Recent Advances.

    PubMed

    Doménech-Betoret, Fernando

    2018-01-01

    The purpose of this work was to present an educational model developed in recent years entitled the "The Educational Situation Quality Model" (MOCSE, acronym in Spanish). MOCSE can be defined as an instructional model that simultaneously considers the teaching-learning process, where motivation plays a central role. It explains the functioning of an educational setting by organizing and relating the most important variables which, according to the literature, contribute to student learning. Besides being a conceptual framework, this model also provides a methodological procedure to guide research and to promote reflection in the classroom. It allows teachers to implement effective research-action programs to improve teacher-students satisfaction and learning outcomes in the classroom context. This work explains the model's characteristics and functioning, recent advances, and how teachers can use it in an educational setting with a specific subject. This proposal integrates approaches from several relevant psycho-educational theories and introduces a new perspective into the existing literature that will allow researchers to make progress in studying educational setting functioning. The initial MOCSE configuration has been refined over time in accordance with the empirical results obtained from previous research, carried out within the MOCSE framework and with the subsequent reflections that derived from these results. Finally, the contribution of the model to improve learning outcomes and satisfaction, and its applicability in the classroom, are also discussed.

  18. Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment.

    PubMed

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2008-09-15

    We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.

  19. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostadin, Damevski

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less

  20. [On-line processing mechanisms in text comprehension: a theoretical review on constructing situation models].

    PubMed

    Iseki, Ryuta

    2004-12-01

    This article reviewed research on construction of situation models during reading. To position variety of research in overall process appropriately, an unitary framework was devised in terms of three theories for on-line processing: resonance process, event-indexing model, and constructionist theory. Resonance process was treated as a basic activation mechanism in the framework. Event-indexing model was regarded as a screening system which selected and encoded activated information in situation models along with situational dimensions. Constructionist theory was considered to have a supervisory role based on coherence and explanation. From a view of the unitary framework, some problems concerning each theory were examined and possible interpretations were given. Finally, it was pointed out that there were little theoretical arguments on associative processing at global level and encoding text- and inference-information into long-term memory.

  1. How Students Experience and Navigate Transitions in Undergraduate Medical Education: An Application of Bourdieu's Theoretical Model

    ERIC Educational Resources Information Center

    Balmer, Dorene F.; Richards, Boyd F.; Varpio, Lara

    2015-01-01

    Using Bourdieu's theoretical model as a lens for analysis, we sought to understand how students experience the undergraduate medical education (UME) milieu, focusing on how they navigate transitions from the preclinical phase, to the major clinical year (MCY), and to the preparation for residency phase. Twenty-two medical students participated in…

  2. Rethinking High School Principal Compensation Practices: An Analysis of Salaries in South Carolina and Theoretical Models

    ERIC Educational Resources Information Center

    Newman, Tim A.

    2012-01-01

    This study described the current state of principal salaries in South Carolina and compared the salaries of similar size schools by specific report card performance and demographic variables. Based on the findings, theoretical models were proposed, and comparisons were made with current salary data. School boards, human resource personnel and…

  3. PREFACE: Conference of Theoretical Physics and Nonlinear Phenomena (CTPNP) 2014: ''From Universe to String's Scale''

    NASA Astrophysics Data System (ADS)

    2014-10-01

    Theoretical physics is the first step for the development of science and technology. For more than 100 years it has delivered new and sophisticated discoveries which have changed human views of their surroundings and universe. Theoretical physics has also revealed that the governing law in our universe is not deterministic, and it is undoubtedly the foundation of our modern civilization. Contrary to its importance, research in theoretical physics is not well advanced in some developing countries such as Indonesia. This workshop provides the formal meeting in Indonesia devoted to the field of theoretical physics and is organized to cover all subjects of theoretical physics as well as nonlinear phenomena in order to create a gathering place for the theorists in Indonesia and surrounding countries, to motivate young physicists to keep doing active researches in the field and to encourage constructive communication among the community members. Following the success of the tenth previous meetings in this conference series, the eleventh conference was held in Sebelas Maret University (UNS), Surakarta, Indonesia on 15 February 2014. In addition, the conference was proceeded by School of Advance Physics at Gadjah Mada University (UGM), Yogyakarta, on 16-17 February 2014. The conference is expected to provide distinguished experts and students from various research fields of theoretical physics and nonlinear phenomena in Indonesia as well as from other continents the opportunities to present their works and to enhance contacts among them. The introduction to the conference is continued in the pdf.

  4. Implementation of a documentation model comprising nursing terminologies--theoretical and methodological issues.

    PubMed

    von Krogh, Gunn; Nåden, Dagfinn

    2008-04-01

    To describe and discuss theoretical and methodological issues of implementation of a nursing services documentation model comprising NANDA nursing diagnoses, Nursing Intervention Classification and Nursing Outcome Classification terminologies. The model is developed for electronic patient record and was implemented in a psychiatric hospital on an organizational level and on five test wards in 2001-2005. The theory of Rogers guided the process of innovation, whereas the implementation procedure of McCloskey and Bulecheck combined with adult learning principals guided the test site implementation. The test wards managed in different degrees to adopt the model. Two wards succeeded fully, including a ward with high percentage of staff with interdisciplinary background. Better planning regarding the impact of the organization's innovative aptitude, the innovation strategies and the use of differentiated methods regarding the clinician's individual premises for learning nursing terminologies might have enhanced the adoption to the model. To better understand the nature of barriers and the importance of careful planning regarding the implementation of electronic patient record elements in nursing care services, focusing on nursing terminologies. Further to indicate how a theory and specific procedure can be used to guide the process of implementation throughout the different levels of management.

  5. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams.

    PubMed

    Schuwirth, Nele; Reichert, Peter

    2013-02-01

    For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.

  6. A Theoretical Math Model for Projecting AIS3+ Thoracic Injury for Belted Occupants in Frontal Impact.

    PubMed

    Laituri, Tony R; Sullivan, Donald; Sullivan, Kaye; Prasad, Priya

    2004-11-01

    A theoretical math model was created to assess the net effect of aging populations versus evolving system designs from the standpoint of thoracic injury potential. The model was used to project the next twenty-five years of thoracic injuries in Canada. The choice of Canada was topical because rulemaking for CMVSS 208 has been proposed recently. The study was limited to properly-belted, front-outboard, adult occupants in 11-1 o'clock frontal crashes. Moreover, only AIS3+ thoracic injury potential was considered. The research consisted of four steps. First, sub-models were developed and integrated. The sub-models were made for numerous real-world effects including population growth, crash involvement, fleet penetration of various systems (via system introduction, vehicle production, and vehicle attrition), and attendant injury risk estimation. Second, existing NASS data were used to estimate the number of AIS3+ chest-injured drivers in Canada in 2001. This served as data for model validation. Third, the projection model was correlated favorably with the 2001 field estimate. Finally, for the scenario that 2004-2030 model-year systems would perform like 2000-2003 model-year systems, a projection was made to estimate the long-term effect of eliminating designs that would not comply with the proposed CMVSS 208. The 2006-2030-projection result for this scenario: 764 occupants would benefit from the proposed regulation. This projection was considered to be conservative because future innovation was not considered, and, to date, the fleet's average chest deflections have been decreasing. The model also predicted that, through 2016, the effect of improving system performance would be more influential than the population-aging effect; thereafter, the population-aging effect would somewhat counteract the effect of improving system performance. This theoretical math model can provide insights for both designers and rule makers.

  7. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges.

    PubMed

    Ernst, Marielle; Kriston, Levente; Romero, Javier M; Frölich, Andreas M; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time.

  8. Structural modeling and analysis of an effluent treatment process for electroplating--a graph theoretic approach.

    PubMed

    Kumar, Abhishek; Clement, Shibu; Agrawal, V P

    2010-07-15

    An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.

  9. Physical Violence between Siblings: A Theoretical and Empirical Analysis

    ERIC Educational Resources Information Center

    Hoffman, Kristi L.; Kiecolt, K. Jill; Edwards, John N.

    2005-01-01

    This study develops and tests a theoretical model to explain sibling violence based on the feminist, conflict, and social learning theoretical perspectives and research in psychology and sociology. A multivariate analysis of data from 651 young adults generally supports hypotheses from all three theoretical perspectives. Males with brothers have…

  10. Advances in Learning and Behavioral Disabilities. Volume 10. Part A: Theoretical Perspectives [and] Part B: Intervention Research.

    ERIC Educational Resources Information Center

    Scruggs, Thomas E., Ed.; Mastropieri, Margo A., Ed.

    This two-volume set presents 11 papers on the state of the art in learning and behavioral disabilities, the first volume, Part A, includes 6 papers providing theoretical perspectives and, the second volume, Part B, includes 5 papers on intervention research. The theoretical papers are: "Defining Emotional or Behavioral Disorders: Divergence…

  11. Theoretical size distribution of fossil taxa: analysis of a null model.

    PubMed

    Reed, William J; Hughes, Barry D

    2007-03-22

    This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family.

  12. A Game-Theoretical Model to Improve Process Plant Protection from Terrorist Attacks.

    PubMed

    Zhang, Laobing; Reniers, Genserik

    2016-12-01

    The New York City 9/11 terrorist attacks urged people from academia as well as from industry to pay more attention to operational security research. The required focus in this type of research is human intention. Unlike safety-related accidents, security-related accidents have a deliberate nature, and one has to face intelligent adversaries with characteristics that traditional probabilistic risk assessment techniques are not capable of dealing with. In recent years, the mathematical tool of game theory, being capable to handle intelligent players, has been used in a variety of ways in terrorism risk assessment. In this article, we analyze the general intrusion detection system in process plants, and propose a game-theoretical model for security management in such plants. Players in our model are assumed to be rational and they play the game with complete information. Both the pure strategy and the mixed strategy solutions are explored and explained. We illustrate our model by an illustrative case, and find that in our case, no pure strategy but, instead, a mixed strategy Nash equilibrium exists. © 2016 Society for Risk Analysis.

  13. HIGH-TEMPERATURE, SHORT-TIME SULFATION OF CALCIUM- BASED SORBENTS. 2. EXPERIMENTAL DATA AND THEORETICAL MODEL PREDICTIONS

    EPA Science Inventory

    The fundamental processes for injection of CaCO3 and Ca(OH)2 for the removal of SO2 from combustion gases of coal-fired boilers are analyzed on the basis of experimental data and a comprehensive theoretical model. Sulfation data were obtained in a 30-kW isothermal gas-particle t...

  14. Advanced practice nursing role delineation in acute and critical care: application of the strong model of advanced practice.

    PubMed

    Mick, D J; Ackerman, M H

    2000-01-01

    This purpose of this study was to differentiate between the roles of clinical nurse specialists and acute care nurse practitioners. Hypothesized blending of the clinical nurse specialist and acute care nurse practitioner roles is thought to result in an acute care clinician who integrates the clinical skills of the nurse practitioner with the systems knowledge, educational commitment, and leadership ability of the clinical nurse specialist. Ideally, this role blending would facilitate excellence in both direct and indirect patient care. The Strong Model of Advanced Practice, which incorporates practice domains of direct comprehensive care, support of systems, education, research, and publication and professional leadership, was tested to search for practical evidence of role blending. This descriptive, exploratory, pilot study included subjects (N = 18) solicited from an academic medical center and from an Internet advanced practice listserv. Questionnaires included self-ranking of expertise in practice domains, as well as valuing of role-related tasks. Content validity was judged by an expert panel of advanced practice nurses. Analyses of descriptive statistics revealed that clinical nurse specialists, who had more experience both as registered nurses and in the advanced practice nurse role, self-ranked their expertise higher in all practice domains. Acute care nurse practitioners placed higher importance on tasks related to direct comprehensive care, including conducting histories and physicals, diagnosing, and performing diagnostic procedures, whereas clinical nurse specialists assigned greater importance to tasks related to education, research, and leadership. Levels of self-assessed clinical expertise as well as valuing of role-related tasks differed among this sample of clinical nurse specialists and acute care nurse practitioners. Groundwork has been laid for continuing exploration into differentiation in advanced practice nursing roles. As the clinical

  15. Verification, Validation and Credibility Assessment of a Computational Model of the Advanced Resistive Exercise Device (ARED)

    NASA Technical Reports Server (NTRS)

    Werner, C. R.; Humphreys, B. T.; Mulugeta, L.

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.

  16. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  17. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  18. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J.; Hou, Y.; Zhu, Z.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  19. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    NASA Astrophysics Data System (ADS)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  20. Business Model Evaluation for an Advanced Multimedia Service Portfolio

    NASA Astrophysics Data System (ADS)

    Pisciella, Paolo; Zoric, Josip; Gaivoronski, Alexei A.

    In this paper we analyze quantitatively a business model for the collaborative provision of an advanced mobile data service portfolio composed of three multimedia services: Video on Demand, Internet Protocol Television and User Generated Content. We provide a description of the provision system considering the relation occurring between tecnical aspects and business aspects for each agent providing the basic multimedia service. Such a techno-business analysis is then projected into a mathematical model dealing with the problem of the definition of incentives between the different agents involved in a collaborative service provision. Through the implementation of this model we aim at shaping the behaviour of each of the contributing agents modifying the level of profitability that the Service Portfolio yields to each of them.

  1. Models of borderline personality disorder: recent advances and new perspectives.

    PubMed

    D'Agostino, Alessandra; Rossi Monti, Mario; Starcevic, Vladan

    2018-01-01

    The purpose of this article is to review the most relevant conceptual models of borderline personality disorder (BPD), with a focus on recent developments in this area. Several conceptual models have been proposed with the aim of better understanding BPD: the borderline personality organization, emotion dysregulation, reflective (mentalization) dysfunction, interpersonal hypersensitivity and hyperbolic temperament models. These models have all been supported to some extent and their common components include disorganized attachment and traumatic early experiences, emotion dysregulation, interpersonal sensitivity and difficulties with social cognition. An attempt to integrate some components of the conceptual models of BPD has resulted in an emerging new perspective, the interpersonal dysphoria model, which emphasizes dysphoria as an overarching phenomenon that connects the dispositional and situational aspects of BPD. Various conceptual models have expanded our understanding of BPD, but it appears that further development entails theoretical integration. More research is needed to better understand interactions between various components of BPD, including the situational factors that activate symptoms of BPD. This will help develop therapeutic approaches that are more tailored to the heterogeneous psychopathology of BPD.

  2. Advancing engagement methods for trials: the CORE study relational model of engagement for a stepped wedge cluster randomised controlled trial of experience-based co-design for people living with severe mental illnesses.

    PubMed

    Richard, Lauralie; Piper, Donella; Weavell, Wayne; Callander, Rosemary; Iedema, Rick; Furler, John; Pierce, David; Godbee, Kali; Gunn, Jane; Palmer, Victoria J

    2017-04-08

    Engagement is essential in trials research but is rarely embedded across all stages of the research continuum. The development, use, effectiveness and value of engagement in trials research is poorly researched and understood, and models of engagement are rarely informed by theory. This article describes an innovative methodological approach for the development and application of a relational model of engagement in a stepped wedge designed cluster randomised controlled trial (RCT), the CORE study. The purpose of the model is to embed engagement across the continuum of the trial which will test if an experience-based co-design intervention improves psychosocial recovery for people affected by severe mental illness. The model was developed in three stages and used a structured iterative approach. A context mapping assessment of trial sites was followed by a literature review on recruitment and retention of hard-to-reach groups in complex interventions and RCTs. Relevant theoretical and philosophical underpinnings were identified by an additional review of literature to inform model development and enactment of engagement activities. Policy, organisational and service user data combined with evidence from the literature on barriers to recruitment provided contextual information. Four perspectives support the theoretical framework of the relational model of engagement and this is organised around two facets: the relational and continuous. The relational facet is underpinned by relational ethical theories and participatory action research principles. The continuous facet is supported by systems thinking and translation theories. These combine to enact an ethics of engagement and evoke knowledge mobilisation to reach the higher order goals of the model. Engagement models are invaluable for trials research, but there are opportunities to advance their theoretical development and application, particularly within stepped wedge designed studies where there may be a

  3. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  4. A Theoretical Model of Concept Learning in Economics. Studies in Economic Education, No. 10. Revised Edition.

    ERIC Educational Resources Information Center

    Lephardt, Noreen E.; Lephardt, George P.

    A paradigm for learning economic concepts based on cognitive development and learning theory is offered as a guideline for teaching and research. Discussion is divided into two sections. The first section establishes the model's theoretical framework, which is based on two propositions. The first of these is that economic knowledge is not a fixed…

  5. Advanced Performance Modeling with Combined Passive and Active Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dovrolis, Constantine; Sim, Alex

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performancemore » information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.« less

  6. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates

    PubMed Central

    El-Khouly, Fatma E.; van Vuurden, Dannis G.; Stroink, Thom; Hulleman, Esther; Kaspers, Gertjan J. L.; Hendrikse, N. Harry; Veldhuijzen van Zanten, Sophie E. M.

    2017-01-01

    Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG), patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB). We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED) may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment) of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%)—carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole—are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG. PMID:29164054

  7. Conceptualizing Telehealth in Nursing Practice: Advancing a Conceptual Model to Fill a Virtual Gap.

    PubMed

    Nagel, Daniel A; Penner, Jamie L

    2016-03-01

    Increasingly nurses use various telehealth technologies to deliver health care services; however, there has been a lag in research and generation of empirical knowledge to support nursing practice in this expanding field. One challenge to generating knowledge is a gap in development of a comprehensive conceptual model or theoretical framework to illustrate relationships of concepts and phenomena inherent to adoption of a broad range of telehealth technologies to holistic nursing practice. A review of the literature revealed eight published conceptual models, theoretical frameworks, or similar entities applicable to nursing practice. Many of these models focus exclusively on use of telephones and four were generated from qualitative studies, but none comprehensively reflect complexities of bridging nursing process and elements of nursing practice into use of telehealth. The purpose of this article is to present a review of existing conceptual models and frameworks, discuss predominant themes and features of these models, and present a comprehensive conceptual model for telehealth nursing practice synthesized from this literature for consideration and further development. This conceptual model illustrates characteristics of, and relationships between, dimensions of telehealth practice to guide research and knowledge development in provision of holistic person-centered care delivery to individuals by nurses through telehealth technologies. © The Author(s) 2015.

  8. Progress in Earth System Modeling since the ENIAC Calculation

    NASA Astrophysics Data System (ADS)

    Fung, I.

    2009-05-01

    The success of the first numerical weather prediction experiment on the ENIAC computer in 1950 was hinged on the expansion of the meteorological observing network, which led to theoretical advances in atmospheric dynamics and subsequently the implementation of the simplified equations on the computer. This paper briefly reviews the progress in Earth System Modeling and climate observations, and suggests a strategy to sustain and expand the observations needed to advance climate science and prediction.

  9. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights.

    PubMed

    Harrison, Nicholas R; Laroche, Fabrice J F; Gutierrez, Alejandro; Feng, Hui

    2016-01-01

    Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.

  10. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights

    PubMed Central

    Harrison, Nicholas R.; Laroche, Fabrice J.F.; Gutierrez, Alejandro

    2016-01-01

    Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients. PMID:27165361

  11. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  12. Absorption line indices in the UV. I. Empirical and theoretical stellar population models

    NASA Astrophysics Data System (ADS)

    Maraston, C.; Nieves Colmenárez, L.; Bender, R.; Thomas, D.

    2009-01-01

    Aims: Stellar absorption lines in the optical (e.g. the Lick system) have been extensively studied and constitute an important stellar population diagnostic for galaxies in the local universe and up to moderate redshifts. Proceeding towards higher look-back times, galaxies are younger and the ultraviolet becomes the relevant spectral region where the dominant stellar populations shine. A comprehensive study of ultraviolet absorption lines of stellar population models is however still lacking. With this in mind, we study absorption line indices in the far and mid-ultraviolet in order to determine age and metallicity indicators for UV-bright stellar populations in the local universe as well as at high redshift. Methods: We explore empirical and theoretical spectral libraries and use evolutionary population synthesis to compute synthetic line indices of stellar population models. From the empirical side, we exploit the IUE-low resolution library of stellar spectra and system of absorption lines, from which we derive analytical functions (fitting functions) describing the strength of stellar line indices as a function of gravity, temperature and metallicity. The fitting functions are entered into an evolutionary population synthesis code in order to compute the integrated line indices of stellar populations models. The same line indices are also directly evaluated on theoretical spectral energy distributions of stellar population models based on Kurucz high-resolution synthetic spectra, In order to select indices that can be used as age and/or metallicity indicators for distant galaxies and globular clusters, we compare the models to data of template globular clusters from the Magellanic Clouds with independently known ages and metallicities. Results: We provide synthetic line indices in the wavelength range ~1200 Å to ~3000 Å for stellar populations of various ages and metallicities.This adds several new indices to the already well-studied CIV and SiIV absorptions

  13. M dwarfs: Theoretical work

    NASA Technical Reports Server (NTRS)

    Mullan, Dermott J.

    1987-01-01

    Theoretical work on the atmospheres of M dwarfs has progressed along lines parallel to those followed in the study of other classes of stars. Such models have become increasingly sophisticated as improvements in opacities, in the equation of state, and in the treatment of convection were incorporated during the last 15 to 20 years. As a result, spectrophotometric data on M dwarfs can now be fitted rather well by current models. The various attempts at modeling M dwarf photospheres in purely thermal terms are summarized. Some extensions of these models to include the effects of microturbulence and magnetic inhomogeneities are presented.

  14. Making the case for a model mental health advance directive statute.

    PubMed

    Clausen, Judy A

    2014-01-01

    Acute episodes of mental illness temporarily destroy the capacity required to give informed consent and often prevent people from realizing they are sick, causing them to refuse intervention. Once a person refuses treatment, the only way to obtain care is as an involuntary patient. Even in the midst of acute episodes, many people do not meet commitment criteria because they are not likely to injure themselves or others and are still able to care for their basic needs. Left untreated, the episode will likely spiral out of control. By the time the person finally meets strict commitment criteria, devastation has already occurred. This Article argues that an individual should have the right to enter a Ulysses arrangement, a special type of mental health advance directive that authorizes a doctor to administer treatment during a future episode even if the episode causes the individual to refuse care. The Uniform Law Commissioners enacted the Uniform Health-Care Decisions Act as a model statute to address all types of advance health care planning, including planning for mental illness. However, the Act focuses on end-of-life care and fails to address many issues faced by people with mental illness. For example, the Act does not empower people to enter Ulysses arrangements and eliminates writing and witnessing requirements that protect against fraud and coercion. This Article recommends that the Uniform Law Commissioners adopt a model mental health advance directive statute that empowers people to enter Ulysses arrangements and provides safeguards against abuse. Appendix A sets forth model provisions.

  15. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    NASA Astrophysics Data System (ADS)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  16. Recent Theoretical Studies On Excitation and Recombination

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    2000-01-01

    New advances in the theoretical treatment of atomic processes in plasmas are described. These enable not only an integrated, unified, and self-consistent treatment of important radiative and collisional processes, but also large-scale computation of atomic data with high accuracy. An extension of the R-matrix work, from excitation and photoionization to electron-ion recombination, includes a unified method that subsumes both the radiative and the di-electronic recombination processes in an ab initio manner. The extensive collisional calculations for iron and iron-peak elements under the Iron Project are also discussed.

  17. Cell models of arrhythmogenic cardiomyopathy: advances and opportunities

    PubMed Central

    Stadiotti, Ilaria; Perrucci, Gianluca L.; Tondo, Claudio; Pompilio, Giulio

    2017-01-01

    ABSTRACT Arrhythmogenic cardiomyopathy is a rare genetic disease that is mostly inherited as an autosomal dominant trait. It is associated predominantly with mutations in desmosomal genes and is characterized by the replacement of the ventricular myocardium with fibrous fatty deposits, arrhythmias and a high risk of sudden death. In vitro studies have contributed to our understanding of the pathogenic mechanisms underlying this disease, including its genetic determinants, as well as its cellular, signaling and molecular defects. Here, we review what is currently known about the pathogenesis of arrhythmogenic cardiomyopathy and focus on the in vitro models that have advanced our understanding of the disease. Finally, we assess the potential of established and innovative cell platforms for elucidating unknown aspects of this disease, and for screening new potential therapeutic agents. This appraisal of in vitro models of arrhythmogenic cardiomyopathy highlights the discoveries made about this disease and the uses of these models for future basic and therapeutic research. PMID:28679668

  18. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  19. The TEF modeling and analysis approach to advance thermionic space power technology

    NASA Astrophysics Data System (ADS)

    Marshall, Albert C.

    1997-01-01

    Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.

  20. Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model.

    PubMed

    Chiu, Chia-Yi; Köhn, Hans-Friedrich

    2016-09-01

    The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output "AND" gate (DINA) model and the Deterministic Input Noisy Output "OR" gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model.

  1. A set-theoretic model reference adaptive control architecture for disturbance rejection and uncertainty suppression with strict performance guarantees

    NASA Astrophysics Data System (ADS)

    Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.

    2018-05-01

    Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.

  2. Comprehensive nursing case management. An advanced practice model.

    PubMed

    Taylor, P

    1999-01-01

    Under managed care and capitated reimbursement systems, case management is a core strategy for providing high-quality, cost-effective care by decreasing fragmentation, enhancing quality, ensuring efficient use of resources, and containing costs. Although case management is used in various areas of the healthcare arena, it suffers from a lack of consensus regarding its definition, essential components, and appropriate application. The purpose of this paper is to examine the components and limitations of existing case management models, outline the competencies of an effective case manager, and present a model of advanced practice nursing case management that focuses on a continuum of care that integrates medical and psychosocial resources to promote optimal clinical fiscal outcomes and enables patients to work as partners with the healthcare team in facilitating and maintaining their physical and emotional well-being.

  3. An empirical/theoretical model with dimensionless numbers to predict the performance of electrodialysis systems on the basis of operating conditions.

    PubMed

    Karimi, Leila; Ghassemi, Abbas

    2016-07-01

    Among the different technologies developed for desalination, the electrodialysis/electrodialysis reversal (ED/EDR) process is one of the most promising for treating brackish water with low salinity when there is high risk of scaling. Multiple researchers have investigated ED/EDR to optimize the process, determine the effects of operating parameters, and develop theoretical/empirical models. Previously published empirical/theoretical models have evaluated the effect of the hydraulic conditions of the ED/EDR on the limiting current density using dimensionless numbers. The reason for previous studies' emphasis on limiting current density is twofold: 1) to maximize ion removal, most ED/EDR systems are operated close to limiting current conditions if there is not a scaling potential in the concentrate chamber due to a high concentration of less-soluble salts; and 2) for modeling the ED/EDR system with dimensionless numbers, it is more accurate and convenient to use limiting current density, where the boundary layer's characteristics are known at constant electrical conditions. To improve knowledge of ED/EDR systems, ED/EDR models should be also developed for the Ohmic region, where operation reduces energy consumption, facilitates targeted ion removal, and prolongs membrane life compared to limiting current conditions. In this paper, theoretical/empirical models were developed for ED/EDR performance in a wide range of operating conditions. The presented ion removal and selectivity models were developed for the removal of monovalent ions and divalent ions utilizing the dominant dimensionless numbers obtained from laboratory scale electrodialysis experiments. At any system scale, these models can predict ED/EDR performance in terms of monovalent and divalent ion removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Effects of Social Injustice and Inequality on Children's Moral Judgments and Behavior: Towards a Theoretical Model

    ERIC Educational Resources Information Center

    Arsenio, William F.; Gold, Jason

    2006-01-01

    Our goal in this paper is to examine the potential origins of children's understanding of morally relevant transgressions, with a particular focus on how children's perceptions of both proximal and distal unfairness might influence their social reasoning and behavior. A preliminary theoretical model is presented that addresses connections among…

  5. Patterns of Control over the Teaching-Studying-Learning Process and Classrooms as Complex Dynamic Environments: A Theoretical Framework

    ERIC Educational Resources Information Center

    Harjunen, Elina

    2012-01-01

    In this theoretical paper the role of power in classroom interactions is examined in terms of a dominance continuum to advance a theoretical framework justifying the emergence of three ways of distributing power when it comes to dealing with the control over the teaching-studying-learning (TSL) "pattern of teacher domination," "pattern of…

  6. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models

    DOE PAGES

    Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; ...

    2015-04-06

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less

  7. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less

  8. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.

    PubMed

    Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y

    2016-04-01

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. © 2015 Society for Risk Analysis.

  9. Quantum memories: emerging applications and recent advances

    NASA Astrophysics Data System (ADS)

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-11-01

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  10. Quantum memories: emerging applications and recent advances.

    PubMed

    Heshami, Khabat; England, Duncan G; Humphreys, Peter C; Bustard, Philip J; Acosta, Victor M; Nunn, Joshua; Sussman, Benjamin J

    2016-11-12

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  11. Quantum memories: emerging applications and recent advances

    PubMed Central

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198

  12. The isotropic local Wigner-Seitz model: An accurate theoretical model for the quasi-free electron energy in fluids

    NASA Astrophysics Data System (ADS)

    Evans, Cherice; Findley, Gary L.

    The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.

  13. Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2011-06-01

    It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Pugetmore » Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.« less

  14. Community of inquiry model: advancing distance learning in nurse anesthesia education.

    PubMed

    Pecka, Shannon L; Kotcherlakota, Suhasini; Berger, Ann M

    2014-06-01

    The number of distance education courses offered by nurse anesthesia programs has increased substantially. Emerging distance learning trends must be researched to ensure high-quality education for student registered nurse anesthetists. However, research to examine distance learning has been hampered by a lack of theoretical models. This article introduces the Community of Inquiry model for use in nurse anesthesia education. This model has been used for more than a decade to guide and research distance learning in higher education. A major strength of this model learning. However, it lacks applicability to the development of higher order thinking for student registered nurse anesthetists. Thus, a new derived Community of Inquiry model was designed to improve these students' higher order thinking in distance learning. The derived model integrates Bloom's revised taxonomy into the original Community of Inquiry model and provides a means to design, evaluate, and research higher order thinking in nurse anesthesia distance education courses.

  15. The theoretical model of the school-based prevention programme Unplugged.

    PubMed

    Vadrucci, Serena; Vigna-Taglianti, Federica D; van der Kreeft, Peer; Vassara, Maro; Scatigna, Maria; Faggiano, Fabrizio; Burkhart, Gregor

    2016-12-01

    Unplugged is a school-based prevention programme designed and tested in the EU-Dap trial. The programme consists of 12 units delivered by class teachers to adolescents 12-14 years old. It is a strongly interactive programme including a training of personal and social skills with a specific focus on normative beliefs. The aim of this work is to define the theoretical model of the program, the contribution of the theories to the units, and the targeted mediators. The programme integrates several theories: Social Learning, Social Norms, Health Belief, theory of Reasoned Action-Attitude, and Problem Behaviour theory. Every theory contributes to the development of the units' contents, with specific weights. Knowledge, risk perception, attitudes towards drugs, normative beliefs, critical and creative thinking, relationship skills, communication skills, assertiveness, refusal skills, ability to manage emotions and to cope with stress, empathy, problem solving and decision making skills are the targeted mediators of the program. © The Author(s) 2015.

  16. Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications.

    PubMed

    Atahan-Evrenk, Sule; Aspuru-Guzik, Alán

    2014-01-01

    The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

  17. Advances in Special Education: Volume I. Basic Constructs and Theoretical Orientations. A Research Annual.

    ERIC Educational Resources Information Center

    Keogh, Barbara K., Ed.

    Intended for graduate students in special education, the text presents seven author contributed papers dealing with theoretical issues in the field. M. Faust and W. Faust ("Cognitive Constructing: Levels of Processing and Developmental Change") consider cognitive processing from a developmental perspective. In "Memory Processes in Exceptional…

  18. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  19. Next-Gen 3: Sequencing, Modeling, and Advanced Biofuels - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zengler, Karsten; Palsson, Bernhard; Lewis, Nathan

    Successful, scalable implementation of biofuels is dependent on the efficient and near complete utilization of diverse biomass sources. One approach is to utilize the large recalcitrant biomass fraction (or any organic waste stream) through the thermochemical conversion of organic compounds to syngas, a mixture of carbon monoxide (CO), carbon dioxide (CO 2), and hydrogen (H 2), which can subsequently be metabolized by acetogenic microorganisms to produce next-gen biofuels. The goal of this proposal was to advance the development of the acetogen Clostridium ljungdahlii as a chassis organism for next-gen biofuel production from cheap, renewable sources and to detail the interconnectivitymore » of metabolism, energy conservation, and regulation of acetogens using next-gen sequencing and next-gen modeling. To achieve this goal we determined optimization of carbon and energy utilization through differential translational efficiency in C. ljungdahlii. Furthermore, we reconstructed a next-generation model of all major cellular processes, such as macromolecular synthesis and transcriptional regulation and deployed this model to predicting proteome allocation, overflow metabolism, and metal requirements in this model acetogen. In addition we explored the evolutionary significance of tRNA operon structure using the next-gen model and determined the optimal operon structure for bioproduction. Our study substantially enhanced the knowledgebaase for chemolithoautotrophs and their potential for advanced biofuel production. It provides next-generation modeling capability, offer innovative tools for genome-scale engineering, and provide novel methods to utilize next-generation models for the design of tunable systems that produce commodity chemicals from inexpensive sources.« less

  20. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite

    2018-05-01

    This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.