Science.gov

Sample records for advanced tissue engineering

  1. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  2. Advances in meniscal tissue engineering.

    PubMed

    Eli, Nnaemeka; Oragui, Emeka; Khan, Wasim

    2011-01-01

    Injuries and lesions to the meniscal cartilage of the knee joint are common. As a result of its limited regenerative capacity, early degenerative changes to the articular surface frequently occur, resulting in pain and poor function. Currently available surgical interventions include repair of tears, and partial and total meniscectomy but the results are inconsistent and often poor. Interest in the field of meniscal tissue engineering with the possibilities of better treatment outcomes has grown in recent times. Current research has focused on the use of mesenchymal stem cells, fibrochondrocytes, meniscal derived cells and fibroblast-like synoviocytes in tissue engineering. Mesenchymal stem cells are multipotent cells that have been identified in a number of tissues including bone marrow and synovium. Current research is aimed at defining the correct combination of cytokines and growth factors necessary to induce specific tissue formation and includes transforming growth factor-β (TGF-β), Platelet Derived Growth Factor (PDGF) and Fibroblast Growth Factor 2 (FGF2). Scaffolds provide mechanical stability and integrity, and supply a template for three-dimensional organization of the developing tissue. A number of experimental and animal models have been used to investigate the ideal scaffolds for meniscal tissue engineering. The ideal scaffold for meniscal tissue engineering has not been identified but biodegradable scaffolds have shown the most promising results. In addition to poly-glycolic acid (PGA) and poly-lactic acid (PLLA) scaffolds, new synthetic hydrogels and collagen sponges are also being explored. There are two synthetic meniscal implants currently in clinical use and there are a number of clinical trials in the literature with good short- and medium-term results. Both products are indicated for segmental tissue loss and not for complete meniscal replacement. The long-term results of these implants are unknown and we wait to see whether they will be

  3. Bone tissue engineering: recent advances and challenges.

    PubMed

    Amini, Ami R; Laurencin, Cato T; Nukavarapu, Syam P

    2012-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.

  4. Bone Tissue Engineering: Recent Advances and Challenges

    PubMed Central

    Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.

    2013-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648

  5. Distilling complexity to advance cardiac tissue engineering.

    PubMed

    Ogle, Brenda M; Bursac, Nenad; Domian, Ibrahim; Huang, Ngan F; Menasché, Philippe; Murry, Charles E; Pruitt, Beth; Radisic, Milica; Wu, Joseph C; Wu, Sean M; Zhang, Jianyi; Zimmermann, Wolfram-Hubertus; Vunjak-Novakovic, Gordana

    2016-06-01

    The promise of cardiac tissue engineering is in the ability to recapitulate in vitro the functional aspects of a healthy heart and disease pathology as well as to design replacement muscle for clinical therapy. Parts of this promise have been realized; others have not. In a meeting of scientists in this field, five central challenges or "big questions" were articulated that, if addressed, could substantially advance the current state of the art in modeling heart disease and realizing heart repair. PMID:27280684

  6. Recent advances in bone tissue engineering scaffolds

    PubMed Central

    Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit

    2012-01-01

    Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815

  7. Distilling complexity to advance cardiac tissue engineering

    PubMed Central

    Ogle, Brenda M.; Bursac, Nenad; Domian, Ibrahim; Huang, Ngan F; Menasché, Philippe; Murry, Charles; Pruitt, Beth; Radisic, Milica; Wu, Joseph C; Wu, Sean M; Zhang, Jianyi; Zimmermann, Wolfram-Hubertus; Vunjak-Novakovic, Gordana

    2016-01-01

    The promise of cardiac tissue engineering is in the ability to recapitulate in vitro the functional aspects of healthy heart and disease pathology as well as to design replacement muscle for clinical therapy. Parts of this promise have been realized; others have not. In a meeting of scientists in this field, five central challenges or “big questions” were articulated that, if addressed, could substantially advance the current state-of-the-art in modeling heart disease and realizing heart repair. PMID:27280684

  8. Bioreactors Drive Advances in Tissue Engineering

    NASA Technical Reports Server (NTRS)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both

  9. Stem and progenitor cells: advancing bone tissue engineering.

    PubMed

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  10. Recent advances in tissue engineering: an invited review.

    PubMed

    Pearson, R G; Bhandari, R; Quirk, R A; Shakesheff, K M

    2002-01-01

    Tissue formation within the body, as part of a development or repair process, is a complex event in which cell populations self-assemble into functional units. There is intense academic, medical, and commercial interest in finding methods of replicating these events outside the body. This interest has accelerated with the demonstration of the engineering of skin and cartilage tissue in the laboratory and there is now worldwide activity in the in vitro regeneration of tissues including nerve, liver, bone, heart valves, blood vessels, bladder, and kidney. Approaches to tissue engineering center on the need to provide signals to cell populations to promote cell proliferation and differentiation. This review considers recent advances in methods of providing these signals to cells using examples of progress in the engineering of complex tissues.

  11. Recent advances in nerve tissue engineering.

    PubMed

    Zhang, Bill G X; Quigley, Anita F; Myers, Damian E; Wallace, Gordon G; Kapsa, Robert M I; Choong, Peter F M

    2014-04-01

    Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.

  12. Advances in polymeric systems for tissue engineering and biomedical applications.

    PubMed

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.

  13. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Safonov, V.; Zykova, A.; Smolik, J.; Rogovska, R.; Donkov, N.; Goltsev, A.; Dubrava, T.; Rassokha, I.; Georgieva, V.

    2012-03-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  14. Recent advances in application of biosensors in tissue engineering.

    PubMed

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  15. Recent Advances in Application of Biosensors in Tissue Engineering

    PubMed Central

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  16. Recent advances in application of biosensors in tissue engineering.

    PubMed

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  17. Transport Advances in Disposable Bioreactors for Liver Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Catapano, Gerardo; Patzer, John F.; Gerlach, Jörg Christian

    Acute liver failure (ALF) is a devastating diagnosis with an overall survival of approximately 60%. Liver transplantation is the therapy of choice for ALF patients but is limited by the scarce availability of donor organs. The prognosis of ALF patients may improve if essential liver functions are restored during liver failure by means of auxiliary methods because liver tissue has the capability to regenerate and heal. Bioartificial liver (BAL) approaches use liver tissue or cells to provide ALF patients with liver-specific metabolism and synthesis products necessary to relieve some of the symptoms and to promote liver tissue regeneration. The most promising BAL treatments are based on the culture of tissue engineered (TE) liver constructs, with mature liver cells or cells that may differentiate into hepatocytes to perform liver-specific functions, in disposable continuous-flow bioreactors. In fact, adult hepatocytes perform all essential liver functions. Clinical evaluations of the proposed BALs show that they are safe but have not clearly proven the efficacy of treatment as compared to standard supportive treatments. Ambiguous clinical results, the time loss of cellular activity during treatment, and the presence of a necrotic core in the cell compartment of many bioreactors suggest that improvement of transport of nutrients, and metabolic wastes and products to or from the cells in the bioreactor is critical for the development of therapeutically effective BALs. In this chapter, advanced strategies that have been proposed over to improve mass transport in the bioreactors at the core of a BAL for the treatment of ALF patients are reviewed.

  18. Corneal Tissue Engineering: Recent Advances and Future Perspectives

    PubMed Central

    Ghezzi, Chiara E.; Rnjak-Kovacina, Jelena

    2015-01-01

    To address the growing need for corneal transplants two main approaches are being pursued: allogenic and synthetic materials. Allogenic tissue from human donors is currently the preferred choice; however, there is a worldwide shortage in donated corneal tissue. In addition, tissue rejection often limits the long-term success of this approach. Alternatively, synthetic homologs to donor corneal grafts are primarily considered temporary replacements until suitable donor tissue becomes available, as they result in a high incidence of graft failure. Tissue engineered cornea analogs would provide effective cornea tissue substitutes and alternatives to address the need to reduce animal testing of commercial products. Recent progress toward these needs is reviewed here, along with future perspectives. PMID:25434371

  19. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    PubMed

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  20. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering.

    PubMed

    Ingavle, Ganesh C; Leach, J Kent

    2014-08-01

    Polymeric nanofibers have potential as tissue engineering scaffolds, as they mimic the nanoscale properties and structural characteristics of native extracellular matrix (ECM). Nanofibers composed of natural and synthetic polymers, biomimetic composites, ceramics, and metals have been fabricated by electrospinning for various tissue engineering applications. The inherent advantages of electrospinning nanofibers include the generation of substrata with high surface area-to-volume ratios, the capacity to precisely control material and mechanical properties, and a tendency for cellular in-growth due to interconnectivity within the pores. Furthermore, the electrospinning process affords the opportunity to engineer scaffolds with micro- to nanoscale topography similar to the natural ECM. This review describes the fundamental aspects of the electrospinning process when applied to spinnable natural and synthetic polymers; particularly, those parameters that influence fiber geometry, morphology, mesh porosity, and scaffold mechanical properties. We describe cellular responses to fiber morphology achieved by varying processing parameters and highlight successful applications of electrospun nanofibrous scaffolds when used to tissue engineer bone, skin, and vascular grafts.

  1. The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions.

    PubMed

    Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P

    2015-01-01

    Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.

  2. Innovative tissue engineering structures through advanced manufacturing technologies.

    PubMed

    Ciardelli, Gianluca; Chiono, Valeria; Cristallini, Caterina; Barbani, Niccoletta; Ahluwalia, Arti; Vozzi, Giovanni; Previti, Antonino; Tantussi, Giovanni; Giusti, Paolo

    2004-04-01

    Awide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(epsilon-caprolactone) and poly-(epsilon-caprolactone)-poly-(oxyethylene)-poly-(epsilon-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10-300 mm Hg, resulting in controlled polymer deposition of 5-600 microm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 microm x 700 microm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found

  3. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science.

  4. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration.

    PubMed

    Leijten, Jeroen; Rouwkema, Jeroen; Zhang, Yu Shrike; Nasajpour, Amir; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-27

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in the generation of such implants, by enabling spatiotemporal control of the cellular microenvironment. Here we review the role, function and progress of a wide range of nano- and microtechnologies that are driving the advancements in the field of tissue engineering. PMID:27101419

  5. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  6. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  7. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  8. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy.

    PubMed

    Li, Kuei-Chang; Hu, Yu-Chen

    2015-05-01

    Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.

  9. Biomimetic tissue-engineered systems for advancing cancer research: NCI Strategic Workshop report.

    PubMed

    Schuessler, Teresa K; Chan, Xin Yi; Chen, Huanhuan Joyce; Ji, Kyungmin; Park, Kyung Min; Roshan-Ghias, Alireza; Sethi, Pallavi; Thakur, Archana; Tian, Xi; Villasante, Aranzazu; Zervantonakis, Ioannis K; Moore, Nicole M; Nagahara, Larry A; Kuhn, Nastaran Z

    2014-10-01

    Advanced technologies and biomaterials developed for tissue engineering and regenerative medicine present tractable biomimetic systems with potential applications for cancer research. Recently, the National Cancer Institute convened a Strategic Workshop to explore the use of tissue biomanufacturing for development of dynamic, physiologically relevant in vitro and ex vivo biomimetic systems to study cancer biology and drug efficacy. The workshop provided a forum to identify current progress, research gaps, and necessary steps to advance the field. Opportunities discussed included development of tumor biomimetic systems with an emphasis on reproducibility and validation of new biomimetic tumor models, as described in this report.

  10. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  11. Skin tissue engineering advances in severe burns: review and therapeutic applications.

    PubMed

    Chua, Alvin Wen Choong; Khoo, Yik Cheong; Tan, Bien Keem; Tan, Kok Chai; Foo, Chee Liam; Chong, Si Jack

    2016-01-01

    Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes: a class of products that is still fraught with limitations for clinical use. Although the ability to grow autologous keratinocytes in-vitro from a small skin biopsy into sheets of stratified epithelium (within 3 to 4 weeks) helped alleviate the problem of insufficient donor site for extensive burn, many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision. Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully. Despite the availability of these commercial products, they all suffer from the same problems of extremely high cost, sub-normal skin microstructure and inconsistent engraftment, especially in full thickness burns. Clinical practice for severe burn treatment has since evolved to incorporate these tissue-engineered skin substitutes, usually as an adjunct to speed up epithelization for wound closure and/or to improve quality of life by improving the functional and cosmetic results long-term. This review seeks to bring the reader through the beginnings of skin tissue engineering, the utilization of some of the key products developed for the treatment of severe burns and the hope of harnessing stem cells to improve on current practice. PMID:27574673

  12. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy.

    PubMed

    Gong, Ting; Heng, Boon Chin; Lo, Edward Chin Man; Zhang, Chengfei

    2016-01-01

    Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering-stem cells, scaffolds, and signaling molecules-has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration. PMID:27069484

  13. Advanced Imaging and Tissue Engineering of the Human Limbal Epithelial Stem Cell Niche

    PubMed Central

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J.; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E.; Vernon, Amanda J.; Funderburgh, James L.; Daniels, Julie T.

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein. PMID:25388395

  14. Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed. PMID:21196351

  15. Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering.

    PubMed

    Stout, David A

    2015-01-01

    Since the discovery and synthesis of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) over a decade ago, researchers have envisioned and discovered new potential applications for these materials. CNTs and CNFs have rapidly become a platform technology for a variety of uses, including biomedical applications due to their mechanical, electrical, thermal, optical and structural properties. CNTs and CNFs are also advantageous due to their ability to be produced in many different shapes and sizes. Since their discovery, of the many imaginable applications, CNTs and CNFs have gained a significant amount of attention and therapeutic potential in tissue engineering and drug delivery applications. In recent years, CNTs and CNFs have made significant contributions in designing new strategies for, delivery of pharmaceuticals, genes and molecular probes into cells, stem cell therapies and assisting in tissue regeneration. Furthermore, it is widely expressed that these materials will significantly contribute to the next generation of health care technologies in treating diseases and contributing to tissue growth. Hence, this review seeks to explore the recent advancements, current status and limitations of CNTs and CNFs for drug delivery and tissue engineering applications.

  16. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy

    PubMed Central

    Gong, Ting; Heng, Boon Chin; Lo, Edward Chin Man; Zhang, Chengfei

    2016-01-01

    Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration. PMID:27069484

  17. Recent Advances in Cartilage Tissue Engineering: From the Choice of Cell Sources to the Use of Bioreactors

    NASA Astrophysics Data System (ADS)

    Martin, Ivan; Démarteau, Olivier; Braccini, Alessandra

    Grafting engineered cartilage tissues represents a promising approach for the repair of joint injuries. Recent animal experiments have demonstrated that tissues engineered by culturing chondrocytes on 3D scaffolds in bioreactors provide functional templates for orderly repair of large osteochondral lesions. To date, however, a reproducible generation of uniform cartilage tissues of predefined size starting from adult human cells has not been achieved. In this paper we review some of the recent advances and challenges ahead in the identification of appropriate (i) cell sources, (ii) bioactive factors, (iii) 3D scaffolds and (iv) bioreactors for human cartilage tissue engineering. We also present an example of how integrated efforts in these different areas can help addressing fundamental questions and advancing the field of cartilage tissue engineering towards clinical use. The presented experiment demonstrates that human nasal chondrocytes are responsive to dynamic loading and thus could be further investigated as a cell source for implantation in a joint environment.

  18. Engineering Orthopedic Tissue Interfaces

    PubMed Central

    Yang, Peter J.

    2009-01-01

    While a wide variety of approaches to engineering orthopedic tissues have been proposed, less attention has been paid to the interfaces, the specialized areas that connect two tissues of different biochemical and mechanical properties. The interface tissue plays an important role in transitioning mechanical load between disparate tissues. Thus, the relatively new field of interfacial tissue engineering presents new challenges—to not only consider the regeneration of individual orthopedic tissues, but also to design the biochemical and cellular composition of the linking tissue. Approaches to interfacial tissue engineering may be distinguished based on if the goal is to recreate the interface itself, or generate an entire integrated tissue unit (such as an osteochondral plug). As background for future efforts in engineering orthopedic interfaces, a brief review of the biology and mechanics of each interface (cartilage–bone, ligament–bone, meniscus–bone, and muscle–tendon) is presented, followed by an overview of the state-of-the-art in engineering each tissue, including advances and challenges specific to regenerating the interfaces. PMID:19231983

  19. Stem cells for regenerative medicine: advances in the engineering of tissues and organs

    NASA Astrophysics Data System (ADS)

    Ringe, Jochen; Kaps, Christian; Burmester, Gerd-Rüdiger; Sittinger, Michael

    2002-07-01

    The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as mesenchymal stem or mesenchymal progenitor cells (MSC). These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, MSC have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma, which suggest these cells as an attractive cell source for tissue engineering approaches. The interest in modern biological technologies such as tissue engineering has dramatically increased since it is feasible to isolate living, healthy cells from the body, expand them under cell culture conditions, combine them with biocompatible carrier materials and retransplant them into patients. Therefore, tissue engineering gives the opportunity to generate living substitutes for tissues and organs, which may overcome the drawbacks of classical tissue reconstruction: lacking quality and quantity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Due to the prerequisite for tissue engineering to ensure a sufficient number of tissue specific cells without donor site morbidity, much attention has been drawn to multipotential progenitor cells such as embryonic stem cells, periosteal cells and mesenchymal stem cells. In this report we review the state of the art in tissue engineering with mesenchymal stem and mesenchymal progenitor cells with emphasis on bone and cartilage reconstruction. Furthermore, several issues of importance, especially with regard to the clinical application of mesenchymal stem cells, are discussed.

  20. Advances in tissue engineering through stem cell-based co-culture.

    PubMed

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use.

  1. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering.

    PubMed

    Sasaki, Masato; Karikkineth, Bijoy Chandapillai; Nagamine, Kuniaki; Kaji, Hirokazu; Torimitsu, Keiichi; Nishizawa, Matsuhiko

    2014-11-01

    Hydrogel-based, molecular permeable electronic devices are considered to be promising for electrical stimulation and recording of living tissues, either in vivo or in vitro. This study reports the fabrication of the first hydrogel-based devices that remain highly electrically conductive under substantial stretch and bending. Using a simple technique involving a combination of chemical polymerization and electropolymerization of poly (3,4-ethylenedioxythiophene) (PEDOT), a tight bonding of a conductive composite of PEDOT and polyurethane (PU) to an elastic double-network hydrogel is achieved to make fully organic PEDOT/PU-hydrogel hybrids. Their response to repeated bending, mechanical stretching, hydration-dessication cycles, storage in aqueous condition for up to 6 months, and autoclaving is assessed, demonstrating excellent stability, without any mechanical or electrical damage. The hybrids exhibit a high electrical conductivity of up to 120 S cm(-1) at 100% elongation. The adhesion, proliferation, and differentiation of neural and muscle cells cultured on these hybrids are demonstrated, as well as the fabrication of 3D hybrids, advancing the field of tissue engineering with integrated electronics. PMID:24912988

  2. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication.

    PubMed

    Hoque, M Enamul; Chuan, Y Leng; Pashby, Ian

    2012-02-01

    Advances in scaffold design and fabrication technology have brought the tissue engineering field stepping into a new era. Conventional techniques used to develop scaffolds inherit limitations, such as lack of control over the pore morphology and architecture as well as reproducibility. Rapid prototyping (RP) technology, a layer-by-layer additive approach offers a unique opportunity to build complex 3D architectures overcoming those limitations that could ultimately be tailored to cater for patient-specific applications. Using RP methods, researchers have been able to customize scaffolds to mimic the biomechanical properties (in terms of structural integrity, strength, and microenvironment) of the organ or tissue to be repaired/replaced quite closely. This article provides intensive description on various extrusion based scaffold fabrication techniques and review their potential utility for TE applications. The extrusion-based technique extrudes the molten polymer as a thin filament through a nozzle onto a platform layer-by-layer and thus building 3D scaffold. The technique allows full control over pore architecture and dimension in the x- and y- planes. However, the pore height in z-direction is predetermined by the extruding nozzle diameter rather than the technique itself. This review attempts to assess the current state and future prospects of this technology.

  3. Corneal stem cells and tissue engineering: Current advances and future perspectives.

    PubMed

    de Araujo, Aline Lütz; Gomes, José Álvaro Pereira

    2015-06-26

    Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there are many challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed.

  4. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    NASA Astrophysics Data System (ADS)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  5. Adipose tissue engineering: state of the art, recent advances and innovative approaches.

    PubMed

    Tanzi, Maria Cristina; Farè, Silvia

    2009-09-01

    Adipose tissue is a highly specialized connective tissue found either in white or brown forms, the white form being the most abundant in adult humans. Loss or damage of white adipose tissue due to aging or pathological conditions needs reconstructive approaches. To date, two main strategies are being investigated for generating functional adipose tissue: autologous tissue/cell transplantation and adipose tissue engineering. Free-fat transplantation rarely achieves sufficient tissue augmentation owing to delayed neovascularization, with subsequent cell necrosis and graft volume shrinkage. Tissue engineering approaches represent, instead, a more suitable alternative for adipose tissue regeneration; they can be performed either with in situ or de novo adipogenesis. In situ adipogenesis or transplantation of encapsulated cells can be useful in healing small-volume defects, whereas restoration of large defects, where vascularization and a rapid volumetric gain are strict requirements, needs de novo strategies with 3D scaffold/filling matrix combinations. For adipose tissue engineering, the use of adult mesenchymal stem cells (both adipose- and bone marrow-derived stem cells) or of preadipocytes is preferred to the use of mature adipocytes, which have low expandability and poor ability for volume retention. This review intends to assemble and describe recent work on this topic, critically presenting successes obtained and drawbacks faced to date.

  6. Tailoring surface topographies of polymers by using ion beam: Recent advances and the potential applications in biomedical and tissue engineering

    NASA Astrophysics Data System (ADS)

    Hasebe, Terumitsu; Nagashima, So; Yoshimoto, Yukihiro; Hotta, Atsushi; Suzuki, Tetsuya

    2012-07-01

    Ion beam technique has recently been actively employed to create various patterns on the surface of polymers. In this paper, we highlight some of the recent advances in tailoring surface topographies of polymers by using ion beam and present a brief discussion on the potential applications in biomedical and tissue engineering.

  7. Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration

    PubMed Central

    Guo, Weimin; Liu, Shuyun; Zhu, Yun; Yu, Changlong; Lu, Shibi; Yuan, Mei; Gao, Yue; Huang, Jingxiang; Yuan, Zhiguo; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Chen, Jifeng; Zhang, Li; Sui, Xiang; Xu, Wenjing; Guo, Quanyi

    2015-01-01

    The meniscus plays a crucial role in maintaining knee joint homoeostasis. Meniscal lesions are relatively common in the knee joint and are typically categorized into various types. However, it is difficult for inner avascular meniscal lesions to self-heal. Untreated meniscal lesions lead to meniscal extrusions in the long-term and gradually trigger the development of knee osteoarthritis (OA). The relationship between meniscal lesions and knee OA is complex. Partial meniscectomy, which is the primary method to treat a meniscal injury, only relieves short-term pain; however, it does not prevent the development of knee OA. Similarly, other current therapeutic strategies have intrinsic limitations in clinical practice. Tissue engineering technology will probably address this challenge by reconstructing a meniscus possessing an integrated configuration with competent biomechanical capacity. This review describes normal structure and biomechanical characteristics of the meniscus, discusses the relationship between meniscal lesions and knee OA, and summarizes the classifications and corresponding treatment strategies for meniscal lesions to understand meniscal regeneration from physiological and pathological perspectives. Last, we present current advances in meniscal scaffolds and provide a number of prospects that will potentially benefit the development of meniscal regeneration methods. PMID:26199629

  8. Recent Advances in Biohybrid Materials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Wan, Ying; Li, Xing; Wang, Shenqi

    2016-07-01

    Biohybrid materials play an important role in tissue engineering, artificial organs and regenerative medicine due to their regulation of cell function through specific cell-matrix interactions involving integrins, mostly those of fibroblasts and myofibroblasts, and ligands on the matrix surface, which have become current research focus. In this paper, recent progress of biohybrid materials, mainly including main types of biohybrid materials, rapid prototype (RP) technique for construction of 3D biohybrid materials, was reviewed in detail; moreover, their applications in tissue engineering, artificial organs and regenerative medicine were also reviewed in detail. At last, we address the challenges biohybrid materials may face.

  9. Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering.

    PubMed

    Shamloo, Amir; Mohammadaliha, Negar; Mohseni, Mina

    2015-10-20

    This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal gradients of biochemical factors is attainable inside microdevices. Since biomaterials with tunable properties are a worthwhile option to construct artificial extracellular matrix, in vitro platforms that simultaneously utilize natural, synthetic, or engineered biomaterials inside microfluidic devices are phenomenally advantageous to experimental studies in the field of tissue engineering. Additionally, collaboration between experimental and computational methods is a useful way to predict and understand mechanisms responsible for complex biological phenomena. Computational results can be verified by using experimental platforms. Computational methods can also broaden the understanding of the mechanisms behind the biological phenomena observed during experiments. Furthermore, computational methods are powerful tools to optimize the fabrication of microfluidic devices and biomaterials with specific features. Here we present a succinct review of the benefits of microfluidic devices, biomaterial, and computational methods in the case of tissue engineering and regeneration medicine. Furthermore, some breakthroughs in biological phenomena including the neuronal axon development, cancerous cell migration and blood vessel formation via angiogenesis by virtue of the aforementioned approaches

  10. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  11. Tissue-engineered oral mucosa.

    PubMed

    Moharamzadeh, K; Colley, H; Murdoch, C; Hearnden, V; Chai, W L; Brook, I M; Thornhill, M H; Macneil, S

    2012-07-01

    Advances in tissue engineering have permitted the three-dimensional (3D) reconstruction of human oral mucosa for various in vivo and in vitro applications. Tissue-engineered oral mucosa have been further optimized in recent years for clinical applications as a suitable graft material for intra-oral and extra-oral repair and treatment of soft-tissue defects. Novel 3D in vitro models of oral diseases such as cancer, Candida, and bacterial invasion have been developed as alternatives to animal models for investigation of disease phenomena, their progression, and treatment, including evaluation of drug delivery systems. The introduction of 3D oral mucosal reconstructs has had a significant impact on the approaches to biocompatibility evaluation of dental materials and oral healthcare products as well as the study of implant-soft tissue interfaces. This review article discusses the recent advances in tissue engineering and applications of tissue-engineered human oral mucosa.

  12. Tissue engineering in flexor tendon surgery: current state and future advances.

    PubMed

    Galvez, M G; Crowe, C; Farnebo, S; Chang, J

    2014-01-01

    Tissue engineering of flexor tendons addresses a challenge often faced by hand surgeons: the restoration of function and improvement of healing with a limited supply of donor tendons. Creating an engineered tendon construct is dependent upon understanding the normal healing mechanisms of the tendon and tendon sheath. The production of a tendon construct includes: creating a three-dimensional scaffold; seeding cells within the scaffold; encouraging cellular growth within the scaffold while maintaining a gliding surface; and finally ensuring mechanical strength. An effective construct incorporates these factors in its design, with the ultimate goal of creating tendon substitutes that are readily available to the reconstructive hand surgeon.

  13. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  14. Form Follows Function: Advances in Trilayered Structure Replication for Aortic Heart Valve Tissue Engineering

    PubMed Central

    Simionescu, Dan T.; Chen, Joseph; Jaeggli, Michael; Wang, Bo; Liao, Jun

    2013-01-01

    Tissue engineering the aortic heart valve is a challenging endeavor because of the particular hemodynamic and biologic conditions present in the native aortic heart valve. The backbone of an ideal valve substitute should be a scaffold that is strong enough to withstand billions of repetitive bending, flexing and stretching cycles, while also being slowly degradable to allow for remodeling. In this review we highlight three overlooked aspects that might influence the long term durability of tissue engineered valves: replication of the native valve trilayered histoarchitecture, duplication of the three-dimensional shape of the valve and cell integration efforts focused on getting the right number and type of cells to the right place within the valve structure and driving them towards homeostatic maintenance of the valve matrix. We propose that the trilayered structure in the native aortic valve that includes a middle spongiosa layer cushioning the motions of the two external fibrous layers should be our template for creation of novel scaffolds with improved mechanical durability. Furthermore, since cells adapt to micro-loads within the valve structure, we believe that interstitial cell remodeling of the valvular matrix will depend on the accurate replication of the structures and loads, resulting in successful regeneration of the valve tissue and extended durability. PMID:23355946

  15. [Vascular prostheses: 50 years of advancement from synthetic towards tissue engineering and cell therapy].

    PubMed

    Chlupác, J; Filová, E; Bacáková, L

    2010-01-01

    Since more than 50 years, the gold standard in synthetic vascular prostheses has been represented by polyethylene terephtalate (PET, Dacron) and expanded polytetrafluoroethylene (ePTFE). These polymers perform well as sustitutes of large-caliber vessels, however, their long-term patencies are disappointing in small-caliber applications (< 6 mm). Thus, patient's own artery or vein remains the material of choice in coronary, crural or microvessel bypass surgery. Synthetic materials fail due to thrombosis and insufficient healing process that consists in highly incomplete endothelial cells coverage and intimal hyperplasia caused by compliance mismatch and hemodynamic imbalance. To find better small-caliber vascular graft, surgical techniques have been modified, novel biomaterials have been investigated and cell and tissue culture technologies have been adopted. Partly or fully tissue-engineered vascular grafts have been produced and experimentally and clinically evaluated with some promising result. The aim of this review is to briefly list currently used and examined vascular graft materials with special attention to cell/biomaterial ineractions, tissue engineering and authors' own experience. PMID:21351411

  16. Research Advances in Tissue Engineering Materials for Sustained Release of Growth Factors

    PubMed Central

    Zhao, Hai-yang; Wu, Jiang; Zhu, Jing-jing; Xiao, Ze-cong; He, Chao-chao; Shi, Hong-xue; Li, Xiao-kun; Yang, Shu-lin; Xiao, Jian

    2015-01-01

    Growth factors are a class of cytokines that stimulate cell growth and are widely used in clinical practice, such as wound healing, revascularization, bone repair, and nervous system disease. However, free growth factors have a short half-life and are instable in vivo. Therefore, the search of excellent carriers to enhance sustained release of growth factors in vivo has become an area of intense research interest. The development of controlled-release systems that protect the recombinant growth factors from enzymatic degradation and provide sustained delivery at the injury site during healing should enhance the growth factor's application in tissue regeneration. Thus, this study reviews current research on commonly used carriers for sustained release of growth factors and their sustained release effects for preservation of their bioactivity and their accomplishment in tissue engineering approaches. PMID:26347885

  17. Research Advances in Tissue Engineering Materials for Sustained Release of Growth Factors.

    PubMed

    Zhao, Hai-yang; Wu, Jiang; Zhu, Jing-jing; Xiao, Ze-cong; He, Chao-chao; Shi, Hong-xue; Li, Xiao-kun; Yang, Shu-lin; Xiao, Jian

    2015-01-01

    Growth factors are a class of cytokines that stimulate cell growth and are widely used in clinical practice, such as wound healing, revascularization, bone repair, and nervous system disease. However, free growth factors have a short half-life and are instable in vivo. Therefore, the search of excellent carriers to enhance sustained release of growth factors in vivo has become an area of intense research interest. The development of controlled-release systems that protect the recombinant growth factors from enzymatic degradation and provide sustained delivery at the injury site during healing should enhance the growth factor's application in tissue regeneration. Thus, this study reviews current research on commonly used carriers for sustained release of growth factors and their sustained release effects for preservation of their bioactivity and their accomplishment in tissue engineering approaches.

  18. Tissue engineering in urology.

    PubMed

    Gustafson, C J; Kratz, G

    2001-05-01

    Techniques that are aimed at regeneration of human tissues and organs (tissue engineering) have recently entered into clinical practice. Tissue engineering is currently among the fastest growing areas in medicine, and involves the application of the principles of biology and engineering to the development of functional substitutes for damaged tissues. One of the main limitations of reconstructive surgery in the genitourinary tract is the lack of autologous tissue. This could be changed by the ability to cultivate the patient's own tissues in vitro, or by stimulating the cells in vivo into regeneration of new tissues. The present review discusses how tissue engineering can be used to regenerate some of the tissues of the genitourinary tract. Even though these methods have only recently been introduced clinically into genitourinary medicine, numerous scientific studies have been reported that indicate that these techniques may be of great importance in the near future.

  19. Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control.

    PubMed

    Ristovski, Nikola; Bock, Nathalie; Liao, Sam; Powell, Sean K; Ren, Jiongyu; Kirby, Giles T S; Blackwood, Keith A; Woodruff, Maria A

    2015-03-25

    Direct writing melt electrospinning is an additive manufacturing technique capable of the layer-by-layer fabrication of highly ordered 3d tissue engineering scaffolds from micron-diameter fibers. The utility of these scaffolds, however, is limited by the maximum achievable height of controlled fiber deposition, beyond which the structure becomes increasingly disordered. A source of this disorder is charge build-up on the deposited polymer producing unwanted coulombic forces. In this study, the authors introduce a novel melt electrospinning platform with dual voltage power supplies to reduce undesirable charge effects and improve fiber deposition control. The authors produced and characterized several 90° cross-hatched fiber scaffolds using a range of needle/collector plate voltages. Fiber thickness was found to be sensitive only to overall potential and invariant to specific tip/collector voltage. The authors also produced ordered scaffolds up to 200 layers thick (fiber spacing 1 mm and diameter 40 μm) and characterized structure in terms of three distinct zones: ordered, semiordered, and disordered. Our in vitro analysis indicates successful cell attachment and distribution throughout the scaffolds, with little evidence of cell death after seven days. This study demonstrates the importance of electrostatic control for reducing destabilizing polymer charge effects and enabling the fabrication of morphologically suitable scaffolds for tissue engineering.

  20. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  1. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering

    PubMed Central

    Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; D'Alessandro, T.; Sandri, M.; Bañobre-López, M.; Piñeiro-Redondo, Y.; Uhlarz, M.; Tampieri, A.; Rivas, J.; Herrmannsdörfer, T.; Dediu, V. A.; Ambrosio, L.; De Santis, R.

    2013-01-01

    In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation. PMID:23303218

  2. Tissue engineering of reproductive tissues and organs.

    PubMed

    Atala, Anthony

    2012-07-01

    Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract.

  3. Micro- and nanotechnology in cardiovascular tissue engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  4. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.

    PubMed

    El-Ghannam, Ahmed R

    2004-06-01

    The synthesis of a new resorbable porous bioactive silica-calcium phosphate composite (SCPC) that can be used as a tissue-engineering scaffold for bone regeneration is described. The effects of chemical composition and thermal treatment on crystallization and the mechanism of phase transformation in SCPC were evaluated. In the silica-rich samples, beta-rhenanite (beta-NaCaPO(4)) and alpha-cristobalite (SiO(2)) were the dominant phases after treatment at 800 degrees C. On the other hand, in the calcium phosphate-rich samples, calcium pyrophosphate (Ca(2)P(2)O(7)) was formed in addition to beta-rhenanite and alpha-cristobalaite. X-ray diffraction analyses showed a shift in the 2 theta value of the main peak(s) of all phases indicating the formation of solid solutions. Phase transformation reactions were accompanied by a loss of water molecules that contributed to the formation of pores in the size range 10-300 microm. All SCPC samples adsorbed a significantly higher quantity of serum protein than bioactive glass (p < 0.0001). In addition, the silica-rich SCPC adsorbed a significantly higher amount of serum protein than the calcium phosphate-rich samples (p < 0.003). While the crystallization of amorphous silica into L-quartz significantly inhibited serum protein adsorption, the transformation of L-quartz into alpha-cristobalite solid solution (ss) significantly enhanced protein adsorption. On the other hand, in conjunction with the transformation of brushite (CaHPO(4)) into pyro- and tri-calcium phosphates, there was a significant decrease in protein adsorption. However, as pyro- and tri-calcium phosphates transformed into beta-rhenanite, by thermal treatment, protein adsorption increased markedly. Critical-size bone defects grafted with silica-rich SCPC were filled with new bone and contained minimal residues of the graft material. Bone defects grafted with bioactive glass enhanced new bone formation, however, with very limited resorption. The enhanced resorption of

  5. Advancement of the Subchondral Bone Plate in Translational Models of Osteochondral Repair: Implications for Tissue Engineering Approaches.

    PubMed

    Orth, Patrick; Madry, Henning

    2015-12-01

    Subchondral bone plate advancement is of increasing relevance for translational models of osteochondral repair in tissue engineering (TE). Especially for therapeutic TE approaches, a basic scientific knowledge of its chronological sequence, possible etiopathogenesis, and clinical implications are indispensable. This review summarizes the knowledge on this topic gained from a total of 31 translational investigations, including 1009 small and large animals. Experimental data indicate that the advancement of the subchondral bone plate frequently occurs during the spontaneous repair of osteochondral defects and following established articular cartilage repair approaches for chondral lesions such as marrow stimulation and TE-based strategies such as autologous chondrocyte implantation. Importantly, this subchondral bone reaction proceeds in a defined chronological and spatial pattern, reflecting both endochondral ossification and intramembranous bone formation. Subchondral bone plate advancement arises earlier in small animals and defects, but is more pronounced at the long term in large animals. Possible etiopathologies comprise a disturbed subchondral bone/articular cartilage crosstalk and altered biomechanical conditions or neovascularization. Of note, no significant correlation was found so far between subchondral bone plate advancement and articular cartilage repair. This evidence from translational animal models adverts to an increasing awareness of this previously underestimated pathology. Future research will shed more light on the advancement of the subchondral bone plate in TE models of cartilage repair. PMID:26066580

  6. Advancement of the Subchondral Bone Plate in Translational Models of Osteochondral Repair: Implications for Tissue Engineering Approaches.

    PubMed

    Orth, Patrick; Madry, Henning

    2015-12-01

    Subchondral bone plate advancement is of increasing relevance for translational models of osteochondral repair in tissue engineering (TE). Especially for therapeutic TE approaches, a basic scientific knowledge of its chronological sequence, possible etiopathogenesis, and clinical implications are indispensable. This review summarizes the knowledge on this topic gained from a total of 31 translational investigations, including 1009 small and large animals. Experimental data indicate that the advancement of the subchondral bone plate frequently occurs during the spontaneous repair of osteochondral defects and following established articular cartilage repair approaches for chondral lesions such as marrow stimulation and TE-based strategies such as autologous chondrocyte implantation. Importantly, this subchondral bone reaction proceeds in a defined chronological and spatial pattern, reflecting both endochondral ossification and intramembranous bone formation. Subchondral bone plate advancement arises earlier in small animals and defects, but is more pronounced at the long term in large animals. Possible etiopathologies comprise a disturbed subchondral bone/articular cartilage crosstalk and altered biomechanical conditions or neovascularization. Of note, no significant correlation was found so far between subchondral bone plate advancement and articular cartilage repair. This evidence from translational animal models adverts to an increasing awareness of this previously underestimated pathology. Future research will shed more light on the advancement of the subchondral bone plate in TE models of cartilage repair.

  7. Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing

    PubMed Central

    Varkey, Mathew; Ding, Jie; Tredget, Edward E.

    2015-01-01

    Skin protects the body from exogenous substances and functions as a barrier to fluid loss and trauma. The skin comprises of epidermal, dermal and hypodermal layers, which mainly contain keratinocytes, fibroblasts and adipocytes, respectively, typically embedded on extracellular matrix made up of glycosaminoglycans and fibrous proteins. When the integrity of skin is compromised due to injury as in burns the coverage of skin has to be restored to facilitate repair and regeneration. Skin substitutes are preferred for wound coverage when the loss of skin is extensive especially in the case of second or third degree burns. Different kinds of skin substitutes with different features are commercially available; they can be classified into acellular skin substitutes, those with cultured epidermal cells and no dermal components, those with only dermal components, and tissue engineered substitutes that contain both epidermal and dermal components. Typically, adult wounds heal by fibrosis. Most organs are affected by fibrosis, with chronic fibrotic diseases estimated to be a leading cause of morbidity and mortality. In the skin, fibroproliferative disorders such as hypertrophic scars and keloid formation cause cosmetic and functional problems. Dermal fibroblasts are understood to be heterogeneous; this may have implications on post-burn wound healing since studies have shown that superficial and deep dermal fibroblasts are anti-fibrotic and pro-fibrotic, respectively. Selective use of superficial dermal fibroblasts rather than the conventional heterogeneous dermal fibroblasts may prove beneficial for post-burn wound healing. PMID:26184327

  8. Bioreactors for tissue engineering.

    PubMed

    Chen, Huang-Chi; Hu, Yu-Chen

    2006-09-01

    Bioreactors are essential in tissue engineering, not only because they provide an in vitro environment mimicking in vivo conditions for the growth of tissue substitutes, but also because they enable systematic studies of the responses of living tissues to various mechanical and biochemical cues. The basic principles of bioreactor design are reviewed, the bioreactors commonly used for the tissue engineering of cartilage, bone and cardiovascular systems are assessed in terms of their performance and usefulness. Several novel bioreactor types are also reviewed. PMID:16955350

  9. Nanomaterials, Inflammation and Tissue Engineering

    PubMed Central

    Padmanabhan, Jagannath

    2014-01-01

    Nanomaterials exhibit unique properties that are absent in the bulk material because decreasing material size leads to an exponential increase in surface area, surface area to volume ratio, and effective stiffness, resulting in altered physiochemical properties. Diverse categories of nanomaterials such as nanoparticles, nanoporous scaffolds, nanopatterned surfaces, nanofibers and carbon nanotubes can be generated using advanced fabrication and processing techniques. These materials are being increasingly incorporated in tissue engineering scaffolds to facilitate the development of biomimetic substitutes to replace damaged tissues and organs. Long term success of nanomaterials in tissue engineering is contingent upon the inflammatory responses they elicit in vivo. This review seeks to summarize the recent developments in our understanding of biochemical and biophysical attributes of nanomaterials and the inflammatory responses they elicit, with a focus on strategies for nanomaterial design in tissue engineering applications. PMID:25421333

  10. Functional cardiac tissue engineering

    PubMed Central

    Liau, Brian; Zhang, Donghui; Bursac, Nenad

    2013-01-01

    Heart attack remains the leading cause of death in both men and women worldwide. Stem cell-based therapies, including the use of engineered cardiac tissues, have the potential to treat the massive cell loss and pathological remodeling resulting from heart attack. Specifically, embryonic and induced pluripotent stem cells are a promising source for generation of therapeutically relevant numbers of functional cardiomyocytes and engineering of cardiac tissues in vitro. This review will describe methodologies for successful differentiation of pluripotent stem cells towards the cardiovascular cell lineages as they pertain to the field of cardiac tissue engineering. The emphasis will be placed on comparing the functional maturation in engineered cardiac tissues and developing heart and on methods to quantify cardiac electrical and mechanical function at different spatial scales. PMID:22397609

  11. Tissue engineering: orthopedic applications.

    PubMed

    Laurencin, C T; Ambrosio, A M; Borden, M D; Cooper, J A

    1999-01-01

    Because of an aging population and increased occurrence of sports-related injuries, musculoskeletal disorders have become one of the major health concerns in the United States. Current treatments, although fairly successful, do not provide the optimum therapy. These treatments typically rely on donor tissues obtained either from the patient or from another source. The former raises the issue of supply, whereas the latter poses the risk of rejection and disease transfer. This has prompted orthopedic surgeons and scientists to look for viable alternatives. In recent years, tissue engineering has gained increasing support as a method to treat orthopedic disorders. Because it uses principles of engineering, biology, and chemistry, tissue engineering may provide a more effective approach to the treatment of musculoskeletal disorders than traditional methods. This chapter presents a review of current methods and new tissue-engineering techniques for the treatment of disorders affecting bone, ligament, and cartilage.

  12. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  13. Tissue-engineered urinary conduits.

    PubMed

    Kates, Max; Singh, Anirudha; Matsui, Hotaka; Steinberg, Gary D; Smith, Norm D; Schoenberg, Mark P; Bivalacqua, Trinity J

    2015-03-01

    The role of tissue engineering in the cystectomy population rests on the principle of sparing healthy intestinal tissue while replacing diseased bladder. Over the last 25 years advances in cell biology and material science have improved the quality and durability of bladder replacement in animals. The neo-urinary conduit ([NUC]-Tengion) employs autologous fat smooth muscle cells which are seeded onto synthetic, biodegradable scaffolds. This seeded construct is then implanted in the patient and purportedly regenerates native urinary tissue to serve as a passive channel connecting the ureters to the skin surface. Preclinical animal studies as well as the first phase I human trial implanting the NUC are reviewed. While the ultimate goal of creating a durable, effective, tissue-engineered conduit is still in its infancy, important technical and experimental strides have been made. PMID:25677229

  14. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.

    PubMed

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2015-08-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine.

  15. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review.

    PubMed

    Zakaria, Siti Maisurah; Sharif Zein, Sharif Hussein; Othman, Mohd Roslee; Yang, Fang; Jansen, John A

    2013-10-01

    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophase hydroxyapatite that has similar properties with natural hydroxyapatite. Sustainable methods to mass-produce synthetic hydroxyapatite nanoparticles are being developed to meet the increasing demand for these materials and to further develop the progress made in hard tissue regeneration, especially for orthopedic and dental applications. This article reviews the current developments in nanophase hydroxyapatite through various manufacturing techniques and modifications.

  16. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering

    PubMed Central

    Wankhade, Umesh D.; Shen, Michael; Kolhe, Ravindra; Fulzele, Sadanand

    2016-01-01

    Obesity is a complex, multifactorial disease that has been extensively researched in recent times. Obesity is characterized by excess deposition of adipose tissue in response to surplus energy. Despite the negative connotations of adipose tissue (AT), it serves as a critical endocrine organ. Adipose tissue is a source of several adipokines and cytokines which have been deemed important for both normal metabolic function and disease formation. The discoveries of metabolically active brown AT in adult humans and adipose tissue derived stem cells (ADSC) have been key findings in the past decade with potential therapeutic implications. ADSCs represent an enticing pool of multipotent adult stem cells because of their noncontroversial nature, relative abundance, ease of isolation, and expandability. A decade and a half since the discovery of ADSCs, the scientific community is still working to uncover their therapeutic potential in a wide range of diseases. In this review, we provide an overview of the recent developments in the field of ADSCs and examine their potential use in transplantation and cell-based therapies for the regeneration of diseased organs and systems. We also hope to provide perspective on how to best utilize this readily available, powerful pool of stem cells in the future. PMID:26981130

  17. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering.

    PubMed

    Wankhade, Umesh D; Shen, Michael; Kolhe, Ravindra; Fulzele, Sadanand

    2016-01-01

    Obesity is a complex, multifactorial disease that has been extensively researched in recent times. Obesity is characterized by excess deposition of adipose tissue in response to surplus energy. Despite the negative connotations of adipose tissue (AT), it serves as a critical endocrine organ. Adipose tissue is a source of several adipokines and cytokines which have been deemed important for both normal metabolic function and disease formation. The discoveries of metabolically active brown AT in adult humans and adipose tissue derived stem cells (ADSC) have been key findings in the past decade with potential therapeutic implications. ADSCs represent an enticing pool of multipotent adult stem cells because of their noncontroversial nature, relative abundance, ease of isolation, and expandability. A decade and a half since the discovery of ADSCs, the scientific community is still working to uncover their therapeutic potential in a wide range of diseases. In this review, we provide an overview of the recent developments in the field of ADSCs and examine their potential use in transplantation and cell-based therapies for the regeneration of diseased organs and systems. We also hope to provide perspective on how to best utilize this readily available, powerful pool of stem cells in the future.

  18. Engineering graded tissue interfaces.

    PubMed

    Phillips, Jennifer E; Burns, Kellie L; Le Doux, Joseph M; Guldberg, Robert E; García, Andrés J

    2008-08-26

    Interfacial zones between tissues provide specialized, transitional junctions central to normal tissue function. Regenerative medicine strategies focused on multiple cell types and/or bi/tri-layered scaffolds do not provide continuously graded interfaces, severely limiting the integration and biological performance of engineered tissue substitutes. Inspired by the bone-soft tissue interface, we describe a biomaterial-mediated gene transfer strategy for spatially regulated genetic modification and differentiation of primary dermal fibroblasts within tissue-engineered constructs. We demonstrate that zonal organization of osteoblastic and fibroblastic cellular phenotypes can be engineered by a simple, one-step seeding of fibroblasts onto scaffolds containing a spatial distribution of retrovirus encoding the osteogenic transcription factor Runx2/Cbfa1. Gradients of immobilized retrovirus, achieved via deposition of controlled poly(L-lysine) densities, resulted in spatial patterns of transcription factor expression, osteoblastic differentiation, and mineralized matrix deposition. Notably, this graded distribution of mineral deposition and mechanical properties was maintained when implanted in vivo in an ectopic site. Development of this facile and robust strategy is significant toward the regeneration of continuous interfacial zones that mimic the cellular and microstructural characteristics of native tissue.

  19. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  20. Bioactive glass in tissue engineering.

    PubMed

    Rahaman, Mohamed N; Day, Delbert E; Bal, B Sonny; Fu, Qiang; Jung, Steven B; Bonewald, Lynda F; Tomsia, Antoni P

    2011-06-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed.

  1. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  2. Biomechanics and mechanobiology in functional tissue engineering.

    PubMed

    Guilak, Farshid; Butler, David L; Goldstein, Steven A; Baaijens, Frank P T

    2014-06-27

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of "functional tissue engineering" has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements.

  3. Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging.

    PubMed

    Choi, Andy H; Ben-Nissan, Besim

    2015-07-01

    A number of materials have been applied as implant coatings and as tissue regeneration materials. Calcium phosphate holds a special consideration, due to its chemical similarity to human bone and, most importantly, its dissolution characteristics, which allow for bone growth and regeneration. The applications of molecular and nanoscale-based biological materials have been and will continue to play an ever increasing role in enhancing and improving the osseointegration of dental and orthopedic implants. More recently, extensive research efforts have been focused on the development and applications of fluorescent nanoparticles and nanocoatings for in vivo imaging and diagnostics as well as devising methods of adding luminescent or fluorescent capabilities to enhance the in vivo functionality of calcium phosphate-based biomedical materials. PMID:26119630

  4. Whyever bladder tissue engineering clinical applications still remain unusual even though many intriguing technological advances have been reached?

    PubMed

    Alberti, C

    2016-01-01

    To prevent problematic outcomes of bowel-based bladder reconstructive surgery, such as prosthetic tumors and systemic metabolic complications, research works, to either regenerate and strengthen failing organ or build organ replacement biosubstitute, have been turned, from 90s of the last century, to both regenerative medicine and tissue engineering.Various types of acellular matrices, naturally-derived materials, synthetic polymers have been used for either "unseeded" (cell free) or autologous "cell seeded" tissue engineering scaffolds. Different categories of cell sources - from autologous differentiated urothelial and smooth muscle cells to natural or laboratory procedure-derived stem cells - have been taken into consideration to reach the construction of suitable "cell seeded" templates. Current clinically validated bladder tissue engineering approaches essentially consist of augmentation cystoplasty in patients suffering from poorly compliant neuropathic bladder. No clinical applications of wholly tissue engineered neobladder have been carried out to radical-reconstructive surgical treatment of bladder malignancies or chronic inflammation-due vesical coarctation. Reliable reasons why bladder tissue engineering clinical applications so far remain unusual, particularly imply the risk of graft ischemia, hence its both fibrous contraction and even worse perforation. Therefore, the achievement of graft vascular network (vasculogenesis) could allow, together with the promotion of host surrounding vessel sprouting (angiogenesis), an effective graft blood supply, so avoiding the ischemia-related serious complications.

  5. Whyever bladder tissue engineering clinical applications still remain unusual even though many intriguing technological advances have been reached?

    PubMed Central

    ALBERTI, C.

    2016-01-01

    To prevent problematic outcomes of bowel-based bladder reconstructive surgery, such as prosthetic tumors and systemic metabolic complications, research works, to either regenerate and strengthen failing organ or build organ replacement biosubstitute, have been turned, from 90s of the last century, to both regenerative medicine and tissue engineering. Various types of acellular matrices, naturally-derived materials, synthetic polymers have been used for either “unseeded” (cell free) or autologous “cell seeded” tissue engineering scaffolds. Different categories of cell sources – from autologous differentiated urothelial and smooth muscle cells to natural or laboratory procedure-derived stem cells – have been taken into consideration to reach the construction of suitable “cell seeded” templates. Current clinically validated bladder tissue engineering approaches essentially consist of augmentation cystoplasty in patients suffering from poorly compliant neuropathic bladder. No clinical applications of wholly tissue engineered neobladder have been carried out to radical-reconstructive surgical treatment of bladder malignancies or chronic inflammation-due vesical coarctation. Reliable reasons why bladder tissue engineering clinical applications so far remain unusual, particularly imply the risk of graft ischemia, hence its both fibrous contraction and even worse perforation. Therefore, the achievement of graft vascular network (vasculogenesis) could allow, together with the promotion of host surrounding vessel sprouting (angiogenesis), an effective graft blood supply, so avoiding the ischemia-related serious complications. PMID:27142819

  6. Multiscale tissue engineering for liver reconstruction

    PubMed Central

    Sudo, Ryo

    2014-01-01

    The liver is a target of in vitro tissue engineering despite its capability to regenerate in vivo. The construction of liver tissues in vitro remains challenging. In this review, conventional 3D cultures of hepatocytes are first discussed. Recent advances in the 3D culturing of liver cells are then summarized in the context of in vitro liver tissue reconstruction at the micro- and macroscales. The application of microfluidics technology to liver tissue engineering has been introduced as a bottom-up approach performed at the microscale, whereas whole-organ bioengineering technology was introduced as a top-down approach performed at the macroscale. Mesoscale approaches are also discussed in considering the integration of micro- and macroscale approaches. Multiple parallel multiscale liver tissue engineering studies are ongoing; however, no tissue-engineered liver that is appropriate for clinical use has yet been realized. The integration of multiscale tissue engineering studies is essential for further understanding of liver reconstruction strategies. PMID:24500493

  7. Stereolithography in tissue engineering.

    PubMed

    Skoog, Shelby A; Goering, Peter L; Narayan, Roger J

    2014-03-01

    Several recent research efforts have focused on use of computer-aided additive fabrication technologies, commonly referred to as additive manufacturing, rapid prototyping, solid freeform fabrication, or three-dimensional printing technologies, to create structures for tissue engineering. For example, scaffolds for tissue engineering may be processed using rapid prototyping technologies, which serve as matrices for cell ingrowth, vascularization, as well as transport of nutrients and waste. Stereolithography is a photopolymerization-based rapid prototyping technology that involves computer-driven and spatially controlled irradiation of liquid resin. This technology enables structures with precise microscale features to be prepared directly from a computer model. In this review, use of stereolithography for processing trimethylene carbonate, polycaprolactone, and poly(D,L-lactide) poly(propylene fumarate)-based materials is considered. In addition, incorporation of bioceramic fillers for fabrication of bioceramic scaffolds is reviewed. Use of stereolithography for processing of patient-specific implantable scaffolds is also discussed. In addition, use of photopolymerization-based rapid prototyping technology, known as two-photon polymerization, for production of tissue engineering scaffolds with smaller features than conventional stereolithography technology is considered.

  8. Soft tissue engineering in craniomaxillofacial surgery

    PubMed Central

    Kim, Roderick Y; Fasi, Anthony C; Feinberg, Stephen E

    2014-01-01

    Craniofacial soft tissue reconstruction may be required following trauma, tumor resection, and to repair congenital deformities. Recent advances in the field of tissue engineering have significantly widened the reconstructive armamentarium of the surgeon. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signaling molecules has enabled the surgeon to design, recreate the missing tissue in its near natural form. This has resolved the issues like graft rejection, wound dehiscence, or poor vascularity. Successfully reconstructed tissue through soft tissue engineering protocols would help surgeon to restore the form and function of the lost tissue in its originality. This manuscript intends to provide a glimpse of the basic principle of tissue engineering, contemporary, and future direction of this field as applied to craniofacial surgery. PMID:24987591

  9. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  10. Injectable tissue-engineered soft tissue for tissue augmentation.

    PubMed

    Rhee, Sung-Mi; You, Hi-Jin; Han, Seung-Kyu

    2014-11-01

    Soft tissue augmentation is a process of implanting tissues or materials to treat wrinkles or soft tissue defects in the body. Over the years, various materials have evolved to correct soft tissue defects, including a number of tissues and polymers. Autogenous dermis, autogenous fat, autogenous dermis-fat, allogenic dermis, synthetic implants, and fillers have been widely accepted for soft tissue augmentations. Tissue engineering technology has also been introduced and opened a new venue of opportunities in this field. In particular, a long-lasting filler consisting of hyaluronic acid filler and living human mesenchymal cells called "injectable tissue-engineered soft tissue" has been created and applied clinically, as this strategy has many advantages over conventional methods. Fibroblasts and adipose-derived stromal vascular fraction cells can be clinically used as injectable tissue-engineered soft tissue at present. In this review, information on the soft tissue augmentation method using the injectable tissue-engineered soft tissue is provided.

  11. Advanced engine study program

    NASA Astrophysics Data System (ADS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-06-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  12. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  13. Skin tissue engineering.

    PubMed

    Mansbridge, Jonathan

    2008-01-01

    The major applications of tissue-engineered skin substitutes are in promoting the healing of acute and chronic wounds. Several approaches have been taken by commercial companies to develop products to address these conditions. Skin substitutes include both acellular and cellular devices. While acellular skin substitutes act as a template for dermal formation, this discussion mainly covers cellular devices. In addressing therapeutic applications in tissue engineering generally, a valuable precursor is an understanding of the mechanism of the underlying pathology. While this is straightforward in many cases, it has not been available for wound healing. Investigation of the mode of action of the tissue-engineered skin substitutes has led to considerable insight into the mechanism of formation, maintenance and treatment of chronic wounds. Four aspects mediating healing are considered here for their mechanism of action: (i) colonization of the wound bed by live fibroblasts in the implant, (ii) the secretion of growth factors, (iii) provision of a suitable substrate for cell migration, particularly keratinocytes and immune cells, and (iv) modification of the immune system by secretion of neutrophil recruiting chemokines. An early event in acute wound healing is an influx of neutrophils that destroy planktonic bacteria. However, if the bacteria are able to form biofilm, they become resistant to neutrophil action and prevent reepithelialization. In this situation the wound becomes chronic. In chronic wounds, fibroblasts show a senescence-like phenotype with decreased secretion of neutrophil chemoattractants that make it more likely that biofilms become established. Treatment of the chronic wounds involves debridement to eliminate biofilm, and the use of antimicrobials. A role of skin substitutes is to provide non-senescent fibroblasts that attract and activate neutrophils to prevent biofilm re-establishment. The emphasis of the conclusion is the importance of preventing

  14. Tissue engineering the kidney.

    PubMed

    Hammerman, Marc R

    2003-04-01

    The means by which kidney function can be replaced in humans include dialysis and renal allotransplantation. Dialytic therapies are lifesaving, but often poorly tolerated. Transplantation of human kidneys is limited by the availability of donor organs. During the past decades, a number of different approaches have been applied toward tissue engineering the kidney as a means to replace renal function. The goals of one or another of them included the recapitulation of renal filtration, reabsorptive and secretory functions, and replacement of endocrine/metabolic activities. This review will delineate the progress to date recorded for five approaches: (1) integration of new nephrons into the kidney; (2) growing new kidneys in situ; (3) use of stem cells; (4) generation of histocompatible tissues using nuclear transplantation; and (5) bioengineering of an artificial kidney. All five approaches utilize cellular therapy. The first four employ transplantation as well, and the fifth uses dialysis.

  15. Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up

    PubMed Central

    Nichol, Jason W.; Khademhosseini, Ali

    2009-01-01

    Tissue engineering creates biological tissues that aim to improve the function of diseased or damaged tissues. To enhance the function of engineered tissues there is a need to generate structures that mimic the intricate architecture and complexity of native organs and tissues. With the desire to create more complex tissues with features such as developed and functional microvasculature, cell binding motifs and tissue specific morphology, tissue engineering techniques are beginning to focus on building modular microtissues with repeated functional units. The emerging field known as modular tissue engineering focuses on fabricating tissue building blocks with specific microarchitectural features and using these modular units to engineer biological tissues from the bottom up. In this review we will examine the promise and shortcomings of “bottom-up” approaches to creating engineered biological tissues. Specifically, we will survey the current techniques for controlling cell aggregation, proliferation and extracellular matrix deposition, as well as approaches to generating shape-controlled tissue modules. We will then highlight techniques utilized to create macroscale engineered biological tissues from modular microscale units. PMID:20179781

  16. Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up.

    PubMed

    Nichol, Jason W; Khademhosseini, Ali

    2009-01-01

    Tissue engineering creates biological tissues that aim to improve the function of diseased or damaged tissues. To enhance the function of engineered tissues there is a need to generate structures that mimic the intricate architecture and complexity of native organs and tissues. With the desire to create more complex tissues with features such as developed and functional microvasculature, cell binding motifs and tissue specific morphology, tissue engineering techniques are beginning to focus on building modular microtissues with repeated functional units. The emerging field known as modular tissue engineering focuses on fabricating tissue building blocks with specific microarchitectural features and using these modular units to engineer biological tissues from the bottom up. In this review we will examine the promise and shortcomings of "bottom-up" approaches to creating engineered biological tissues. Specifically, we will survey the current techniques for controlling cell aggregation, proliferation and extracellular matrix deposition, as well as approaches to generating shape-controlled tissue modules. We will then highlight techniques utilized to create macroscale engineered biological tissues from modular microscale units.

  17. 3D Printing for Tissue Engineering

    PubMed Central

    Jia, Jia; Yao, Hai; Mei, Ying

    2016-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication. PMID:26869728

  18. Heart Regeneration with Engineered Myocardial Tissue

    PubMed Central

    Bajpai, Vivek K.; Andreadis, Stelios T.; Murry, Charles E.

    2014-01-01

    Heart disease is the leading cause of morbidity and mortality worldwide, and regenerative therapies that replace damaged myocardium could benefit millions of patients annually. The many cell types in the heart, including cardiomyocytes, endothelial cells, vascular smooth muscle cells, pericytes, and cardiac fibroblasts, communicate via intercellular signaling and modulate each other’s function. Although much progress has been made in generating cells of the cardiovascular lineage from human pluripotent stem cells, a major challenge now is creating the tissue architecture to integrate a microvascular circulation and afferent arterioles into such an engineered tissue. Recent advances in cardiac and vascular tissue engineering will move us closer to the goal of generating functionally mature tissue. Using the biology of the myocardium as the foundation for designing engineered tissue and addressing the challenges to implantation and integration, we can bridge the gap from bench to bedside for a clinically tractable engineered cardiac tissue. PMID:24819474

  19. Biomaterials for vascular tissue engineering

    PubMed Central

    Ravi, Swathi; Chaikof, Elliot L

    2010-01-01

    Cardiovascular disease is the leading cause of mortality in the USA. The limited availability of healthy autologous vessels for bypass grafting procedures has led to the fabrication of prosthetic vascular conduits. While synthetic polymers have been extensively studied as substitutes in vascular engineering, they fall short of meeting the biological challenges at the blood–material interface. Various tissue engineering strategies have emerged to address these flaws and increase long-term patency of vascular grafts. Vascular cell seeding of scaffolds and the design of bioactive polymers for in situ arterial regeneration have yielded promising results. This article describes the advances made in biomaterials design to generate suitable materials that not only match the mechanical properties of native vasculature, but also promote cell growth, facilitate extracellular matrix production and inhibit thrombogenicity. PMID:20017698

  20. Tissue bionics: examples in biomimetic tissue engineering.

    PubMed

    Green, David W

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  1. Tissue engineering strategies for bone regeneration.

    PubMed

    Mistry, Amit S; Mikos, Antonios G

    2005-01-01

    Bone loss due to trauma or disease is an increasingly serious health problem. Current clinical treatments for critical-sized defects are problematic and often yield poor healing due to the complicated anatomy and physiology of bone tissue, as well as the limitations of medical technology. Bone tissue engineering offers a promising alternative strategy of healing severe bone injuries by utilizing the body's natural biological response to tissue damage in conjunction with engineering principles. Osteogenic cells, growth factors, and biomaterial scaffolds form the foundation of the many bone tissue engineering strategies employed to achieve repair and restoration of damaged tissue. An ideal biomaterial scaffold will provide mechanical support to an injured site and also deliver growth factors and cells into a defect to encourage tissue growth. Additionally, this biomaterial should degrade in a controlled manner without causing a significant inflammatory response. The following chapter highlights multiple strategies and the most recent advances in various areas of research for bone tissue regeneration.

  2. Advanced Combustion Engineering.

    ERIC Educational Resources Information Center

    Bartholomew, Calvin H.

    1987-01-01

    Describes the development of the Advanced Combustion Engineering Research Center (ACERC), which is a cooperative project of Brigham Young University, the University of Utah, and 25 governmental and industrial research laboratories. Discusses the research objectives, the academic program, the industrial relations and technology transfer program,…

  3. Biomaterials for hollow organ tissue engineering.

    PubMed

    Hendow, Eseelle K; Guhmann, Pauline; Wright, Bernice; Sofokleous, Panagiotis; Parmar, Nina; Day, Richard M

    2016-01-01

    Tissue engineering is a rapidly advancing field that is likely to transform how medicine is practised in the near future. For hollow organs such as those found in the cardiovascular and respiratory systems or gastrointestinal tract, tissue engineering can provide replacement of the entire organ or provide restoration of function to specific regions. Larger tissue-engineered constructs often require biomaterial-based scaffold structures to provide support and structure for new tissue growth. Consideration must be given to the choice of material and manufacturing process to ensure the de novo tissue closely matches the mechanical and physiological properties of the native tissue. This review will discuss some of the approaches taken to date for fabricating hollow organ scaffolds and the selection of appropriate biomaterials. PMID:27014369

  4. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.

    PubMed

    Xing, Jin-Feng; Zheng, Mei-Ling; Duan, Xuan-Ming

    2015-08-01

    3D printing technology has attracted much attention due to its high potential in scientific and industrial applications. As an outstanding 3D printing technology, two-photon polymerization (TPP) microfabrication has been applied in the fields of micro/nanophotonics, micro-electromechanical systems, microfluidics, biomedical implants and microdevices. In particular, TPP microfabrication is very useful in tissue engineering and drug delivery due to its powerful fabrication capability for precise microstructures with high spatial resolution on both the microscopic and the nanometric scale. The design and fabrication of 3D hydrogels widely used in tissue engineering and drug delivery has been an important research area of TPP microfabrication. The resolution is a key parameter for 3D hydrogels to simulate the native 3D environment in which the cells reside and the drug is controlled to release with optimal temporal and spatial distribution in vitro and in vivo. The resolution of 3D hydrogels largely depends on the efficiency of TPP initiators. In this paper, we will review the widely used photoresists, the development of TPP photoinitiators, the strategies for improving the resolution and the microfabrication of 3D hydrogels.

  5. Biomaterials for tissue engineering: summary

    NASA Technical Reports Server (NTRS)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  6. Engineering tissue with BioMEMS.

    PubMed

    Borenstein, Jeffrey T; Vunjak-Novakovic, Gordana

    2011-11-01

    In summary, microfluidic-BioMEMS platforms are increasingly contributing to tissue engineering in many different ways. First, the accurate control of the cell environment in settings suitable for cell screening and with imaging compatibility is greatly advancing our ability to optimize cell sources for a variety of tissue-engineering applications. Second, the microfluidic technology is ideal for the formation of perfusable networks, either to study their stability and maturation or to use these networks as templates for engineering vascularized tissues. Third, the approaches based on microfluidic and BioMEMS devices enable engineering and the study of minimally functional modules of complex tissues, such as liver sinusoid, kidney nephron, and lung bronchiole. This brief article highlighted some of the unique advantages of this elegant technology using representative examples of tissue-engineering research. We focused on some of the universal needs of the area of tissue engineering: tissue vascularization, faithful recapitulation in vitro of functional units of our tissues and organs, and predictable selection and differentiation of stem cells that are being addressed using the power and versatility of microfluidic-BioMEMS platforms.

  7. Optical Coherence Tomography in Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Yang, Ying; Wang, Ruikang K.; Boppart, Stephen A.

    Tissue engineering holds the promise for a therapeutic solution in regenerative medicine. The primary goal of tissue engineering is the development of physiologically functional and biocompatible tissues/organs being implanted for the repair and replacement of damaged or diseased ones. Given the complexity in the developing processes of engineered tissues, which involves multi-dimensional interactions among cells of different types, three-dimensionally constructed scaffolds, and actively intervening bioreactors, a capable real-time imaging tool is critically required for expanding our knowledge about the developing process of desired tissues or organs. It has been recognized that optical coherence tomography (OCT), an emerging noninvasive imaging technique that provides high spatial resolution (up to the cellular level) and three-dimensional imaging capability, is a promising investigative tool for tissue engineering. This chapter discusses the existing and potential applications of OCT in tissue engineering. Example OCT investigations of the three major components of tissue engineering, i.e., cells, scaffolds, and bioreactors are overviewed. Imaging examples of OCT and its enabling functions and variants, e.g., Doppler OCT, polarization-sensitive OCT, optical coherence microscopy are emphasized. Remaining challenges in the application of OCT to tissue engineering are discussed, and the prospective solutions including the combination of OCT with other high-contrast and high-resolution modalities such as two-photon fluorescence microscopy are suggested as well. It is expected that OCT, along with its functional variants, will make important contributions toward revealing the complex cellular dynamics in engineered tissues as well as help us culture demanding tissue/organ implants that will advance regenerative medicine.

  8. New Methods in Tissue Engineering

    PubMed Central

    Sheahan, Timothy P.; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions. PMID:25893203

  9. Trends in Tissue Engineering for Blood Vessels

    PubMed Central

    Nemeno-Guanzon, Judee Grace; Lee, Soojung; Berg, Johan Robert; Jo, Yong Hwa; Yeo, Jee Eun; Nam, Bo Mi; Koh, Yong-Gon; Lee, Jeong Ik

    2012-01-01

    Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient's conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering. PMID:23251085

  10. Biomimetic Materials for Tissue Engineering

    PubMed Central

    Ma, Peter X

    2008-01-01

    Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for transplantation. Biomaterials play a pivotal role as scaffolds to provide three-dimensional templates and synthetic extracellular-matrix environments for tissue regeneration. It is often beneficial for the scaffolds to mimic certain advantageous characteristics of the natural extracellular matrix, or developmental or would healing programs. This article reviews current biomimetic materials approaches in tissue engineering. These include synthesis to achieve certain compositions or properties similar to those of the extracellular matrix, novel processing technologies to achieve structural features mimicking the extracellular matrix on various levels, approaches to emulate cell-extracellular matrix interactions, and biologic delivery strategies to recapitulate a signaling cascade or developmental/would-healing program. The article also provides examples of enhanced cellular/tissue functions and regenerative outcomes, demonstrating the excitement and significance of the biomimetic materials for tissue engineering and regeneration. PMID:18045729

  11. The Expanding World of Tissue Engineering: The Building Blocks and New Applications of Tissue Engineered Constructs

    PubMed Central

    Zorlutuna, Pinar; Vrana, Nihal Engin; Khademhosseini, Ali

    2013-01-01

    The field of tissue engineering has been growing in the recent years as more products have made it to the market and as new uses for the engineered tissues have emerged, motivating many researchers to engage in this multidisciplinary field of research. Engineered tissues are now not only considered as end products for regenerative medicine, but also have emerged as enabling technologies for other fields of research ranging from drug discovery to biorobotics. This widespread use necessitates a variety of methodologies for production of tissue engineered constructs. In this review, these methods together with their non-clinical applications will be described. First, we will focus on novel materials used in tissue engineering scaffolds; such as recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the modular tissue engineering area will be discussed. Then scaffold-free production methods, based on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering and new methods that provide improved control over cell behavior such as pathway engineering and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we will summarize the emerging uses of engineered constructs such as model tissues for drug discovery, cancer research and biorobotics applications. PMID:23268388

  12. Silk scaffolds for musculoskeletal tissue engineering

    PubMed Central

    Yao, Danyu

    2015-01-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues. PMID:26445979

  13. Silk scaffolds for musculoskeletal tissue engineering.

    PubMed

    Yao, Danyu; Liu, Haifeng; Fan, Yubo

    2016-02-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues.

  14. Chitin scaffolds in tissue engineering.

    PubMed

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine.

  15. Chitin Scaffolds in Tissue Engineering

    PubMed Central

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  16. Septal cartilage tissue engineering: new horizons.

    PubMed

    Greene, Jacqueline J; Watson, Deborah

    2010-10-01

    Cartilage tissue engineering is a dynamically changing field that has the potential to address some of the tissue repair challenges seen in nasal and craniofacial reconstructive surgeries. The scope of the problem includes limited autologous tissue availability, donor site morbidity associated with the harvesting of these tissue grafts, and the risk of an immune reaction to allogenic or synthetic implants that might be used as alternatives. Current tissue engineering strategies involve harvesting a small biopsy specimen from a patient and then isolating chondrocytes through enzymatic digestion of the extracellular matrix. These isolated chondrocytes can be expanded in monolayer and reseeded into a three-dimensional scaffold that could potentially be used as autologous surgical grafts. Using cell-expansion techniques, it would be feasible to generate abundant amounts of cartilage in defined shapes and sizes. The ideal tissue-engineered cartilage would resemble native tissue in terms of its biochemical, structural, and metabolic properties so that it could restore stability, function, and contour to the damaged or defective facial region. In this article, emerging technology and major challenges are described to highlight recent advances and overall trends within septal cartilage tissue engineering.

  17. The growth of tissue engineering.

    PubMed

    Lysaght, M J; Reyes, J

    2001-10-01

    This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.

  18. Commercial considerations in tissue engineering

    PubMed Central

    Mansbridge, Jonathan

    2006-01-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well. PMID:17005024

  19. Commercial considerations in tissue engineering.

    PubMed

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  20. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  1. Tissue engineering and reparative medicine.

    PubMed

    Sipe, Jean D

    2002-06-01

    Reparative medicine is a critical frontier in biomedical and clinical research. The National Institutes of Health Bioengineering Consortium (BECON) convened a symposium titled "Reparative Medicine: Growing Tissues and Organs," which was held on June 25 and 26, 2001 in Bethesda, Maryland. The relevant realms of cells, molecular signaling, extracellular matrix, engineering design principles, vascular assembly, bioreactors, storage and translation, and host remodeling and the immune response that are essential to tissue engineering were discussed. This overview of the scientific program summarizes the plenary talks, extended poster presentations and breakout session reports with an emphasis on scientific and technical hurdles that must be overcome to achieve the promise of restoring, replacing, or enhancing tissue and organ function that tissue engineering offers.

  2. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  3. Tissue engineering: state of the art in oral rehabilitation

    PubMed Central

    SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.

    2009-01-01

    SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277

  4. Tissue-engineered tracheal transplantation.

    PubMed

    Baiguera, Silvia; Birchall, Martin A; Macchiarini, Paolo

    2010-03-15

    Regenerative medicine offers new tools with which to tackle disorders for which there is currently no good therapeutic option. The trachea is an ideal organ in which to explore the clinical potential of tissue engineering because severe large airway disease is poorly managed by conventional treatments, and the success of a graft is determined only by its ability to conduct air lifelong: that is, whether it can become a sustainable biological conduit. We define the component parts of tissue engineering and review the experimental methods used to produce airway implants to date, including a recent successful, first-in-man experience. PMID:20061996

  5. Multiphoton tomography for tissue engineering

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2008-02-01

    Femtosecond laser multiphoton tomography has been employed in the field of tissue engineering to perform 3D high-resolution imaging of the extracellular matrix proteins elastin and collagen as well as of living cells without any fixation, slicing, and staining. Near infrared 80 MHz picojoule femtosecond laser pulses are able to excite the endogenous fluorophores NAD(P)H, flavoproteins, melanin, and elastin via a non-resonant two-photon excitation process. In addition, collagen can be imaged by second harmonic generation. Using a two-PMT detection system, the ratio of elastin to collagen was determined during optical sectioning. A high submicron spatial resolution and 50 picosecond temporal resolution was achieved using galvoscan mirrors and piezodriven focusing optics as well as a time-correlated single photon counting module with a fast microchannel plate detector and fast photomultipliers. Multiphoton tomography has been used to optimize the tissue engineering of heart valves and vessels in bioincubators as well as to characterize artificial skin. Stem cell characterization and manipulation are of major interest for the field of tissue engineering. Using the novel sub-20 femtosecond multiphoton nanoprocessing laser microscope FemtOgene, the differentiation of human stem cells within spheroids has been in vivo monitored with submicron resolution. In addition, the efficient targeted transfection has been demonstrated. Clinical studies on the interaction of tissue-engineered products with the natural tissue environment can be performed with in vivo multiphoton tomograph DermaInspect.

  6. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  7. Tissue engineering: current strategies and future directions.

    PubMed

    Olson, Jennifer L; Atala, Anthony; Yoo, James J

    2011-04-01

    Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future. PMID:22111050

  8. Cell and tissue engineering for liver disease.

    PubMed

    Bhatia, Sangeeta N; Underhill, Gregory H; Zaret, Kenneth S; Fox, Ira J

    2014-07-16

    Despite the tremendous hurdles presented by the complexity of the liver's structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.

  9. Cell and Tissue Engineering for Liver Disease

    PubMed Central

    Bhatia, Sangeeta N.; Underhill, Gregory H.; Zaret, Kenneth S.; Fox, Ira J.

    2015-01-01

    Despite the tremendous hurdles presented by the complexity of the liver’s structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near and long-term prospects for such cell-based therapies and the unique challenges for clinical translation. PMID:25031271

  10. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  11. Nanostructured biomaterials for tissue engineering bone.

    PubMed

    Webster, Thomas J; Ahn, Edward S

    2007-01-01

    Advances in several critical research fields (processing, catalytic, optical, actuation, electrical, mechanical, etc.) have started to benefit from nanotechnology. Nano-technology can be broadly defined as the use of materials and systems whose structures and components exhibit novel and significantly changed properties when control is gained at the atomic, molecular, and supramolecular levels. Specifically, such advances have been found for materials when particulate size is decreased to below 100 nm. However, to date, relatively few advantages have been described for biological applications (specifically, those involving bone tissue engineering). This chapter elucidates several promising examples of how nanophase materials can be used to improve orthopedic implant applications. These include mechanical advantages as well as altered cell functions, leading to increased bone tissue regeneration on a wide range of nanophase materials including ceramics, polymers, metals, and composites thereof. Such advances were previously unimaginable with conventional materials possessing large micron-sized particulates.

  12. Engineering functionally graded tissue engineering scaffolds.

    PubMed

    Leong, K F; Chua, C K; Sudarmadji, N; Yeong, W Y

    2008-04-01

    Tissue Engineering (TE) aims to create biological substitutes to repair or replace failing organs or tissues due to trauma or ageing. One of the more promising approaches in TE is to grow cells on biodegradable scaffolds, which act as temporary supports for the cells to attach, proliferate and differentiate; after which the scaffold will degrade, leaving behind a healthy regenerated tissue. Tissues in nature, including human tissues, exhibit gradients across a spatial volume, in which each identifiable layer has specific functions to perform so that the whole tissue/organ can behave normally. Such a gradient is termed a functional gradient. A good TE scaffold should mimic such a gradient, which fulfils the biological and mechanical requirements of the target tissue. Thus, the design and fabrication process of such scaffolds become more complex and the introduction of computer-aided tools will lend themselves well to ease these challenges. This paper reviews the needs and characterization of these functional gradients and the computer-aided systems used to ease the complexity of the scaffold design stage. These include the fabrication techniques capable of building functionally graded scaffolds (FGS) using both conventional and rapid prototyping (RP) techniques. They are able to fabricate both continuous and discrete types of FGS. The challenge in fabricating continuous FGS using RP techniques lies in the development of suitable computer aided systems to facilitate continuous FGS design. What have been missing are the appropriate models that relate the scaffold gradient, e.g. pore size, porosity or material gradient, to the biological and mechanical requirements for the regeneration of the target tissue. The establishment of these relationships will provide the foundation to develop better computer-aided systems to help design a suitable customized FGS.

  13. Advanced rotary engine studies

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  14. Silk fibroin in tissue engineering.

    PubMed

    Kasoju, Naresh; Bora, Utpal

    2012-07-01

    Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field.

  15. Engineering of implantable liver tissues.

    PubMed

    Sakai, Yasuyuki; Nishikawa, M; Evenou, F; Hamon, M; Huang, H; Montagne, K P; Kojima, N; Fujii, T; Niino, T

    2012-01-01

    In this chapter, from the engineering point of view, we introduce the results from our group and related research on three typical configurations of engineered liver tissues; cell sheet-based tissues, sheet-like macroporous scaffold-based tissues, and tissues based on special scaffolds that comprise a flow channel network. The former two do not necessitate in vitro prevascularization and are thus promising in actual human clinical trials for liver diseases that can be recovered by relatively smaller tissue mass. The third approach can implant a much larger mass but is still not yet feasible. In all cases, oxygen supply is the key engineering factor. For the first configuration, direct oxygen supply using an oxygen-permeable polydimethylsiloxane membrane enables various liver cells to exhibit distinct behaviors, complete double layers of mature hepatocytes and fibroblasts, spontaneous thick tissue formation of hepatocarcinoma cells and fetal hepatocytes. Actual oxygen concentration at the cell level can be strictly controlled in this culture system. Using this property, we found that initially low then subsequently high oxygen concentrations were favorable to growth and maturation of fetal cells. For the second configuration, combination of poly-L: -lactic acid 3D scaffolds and appropriate growth factor cocktails provides a suitable microenvironment for the maturation of cells in vitro but the cell growth is limited to a certain distance from the inner surfaces of the macropores. However, implantation to the mesentery leaves of animals allows the cells again to proliferate and pack the remaining spaces of the macroporous structure, suggesting the high feasibility of 3D culture of hepatocyte progenitors for liver tissue-based therapies. For the third configuration, we proposed a design criterion concerning the dimensions of flow channels based on oxygen diffusion and consumption around the channel. Due to the current limitation in the resolution of 3D

  16. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    PubMed

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  17. Tissue engineering and its implications in dentistry.

    PubMed

    Tyagi, Parimala; Dhindsa, Manpreet Kaur

    2009-01-01

    Tissue engineering is a novel and highly exciting field of research. With tissue engineering techniques it may be possible to repair damaged tissues or even create replacement organs. This article reviews the principles underlying key tissue engineering strategies and the typical components used. Examples of tissue engineering include passive approaches, such as dental implants, and inductive approaches, in which specific molecular signals are used to activate cells.

  18. Biomaterials in tooth tissue engineering: a review.

    PubMed

    Sharma, Sarang; Srivastava, Dhirendra; Grover, Shibani; Sharma, Vivek

    2014-01-01

    Biomaterials play a crucial role in the field of tissue engineering. They are utilized for fabricating frameworks known as scaffolds, matrices or constructs which are interconnected porous structures that establish a cellular microenvironment required for optimal tissue regeneration. Several natural and synthetic biomaterials have been utilized for fabrication of tissue engineering scaffolds. Amongst different biomaterials, polymers are the most extensively experimented and employed materials. They can be tailored to provide good interconnected porosity, large surface area, adequate mechanical strengths, varying surface characterization and different geometries required for tissue regeneration. A single type of material may however not meet all the requirements. Selection of two or more biomaterials, optimization of their physical, chemical and mechanical properties and advanced fabrication techniques are required to obtain scaffold designs intended for their final application. Current focus is aimed at designing biomaterials such that they will replicate the local extra cellular environment of the native organ and enable cell-cell and cell-scaffold interactions at micro level required for functional tissue regeneration. This article provides an insight into the different biomaterials available and the emerging use of nano engineering principles for the construction of bioactive scaffolds in tooth regeneration.

  19. Drug releasing systems in cardiovascular tissue engineering

    PubMed Central

    Spadaccio, Cristiano; Chello, Massimo; Trombetta, Marcella; Rainer, Alberto; Toyoda, Yoshiya; Genovese, Jorge A

    2009-01-01

    Abstract Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date. PMID:19379142

  20. Biomaterials in Tooth Tissue Engineering: A Review

    PubMed Central

    Sharma, Sarang; Srivastava, Dhirendra; Grover, Shibani; Sharma, Vivek

    2014-01-01

    Biomaterials play a crucial role in the field of tissue engineering. They are utilized for fabricating frameworks known as scaffolds, matrices or constructs which are interconnected porous structures that establish a cellular microenvironment required for optimal tissue regeneration. Several natural and synthetic biomaterials have been utilized for fabrication of tissue engineering scaffolds. Amongst different biomaterials, polymers are the most extensively experimented and employed materials. They can be tailored to provide good interconnected porosity, large surface area, adequate mechanical strengths, varying surface characterization and different geometries required for tissue regeneration. A single type of material may however not meet all the requirements. Selection of two or more biomaterials, optimization of their physical, chemical and mechanical properties and advanced fabrication techniques are required to obtain scaffold designs intended for their final application. Current focus is aimed at designing biomaterials such that they will replicate the local extra cellular environment of the native organ and enable cell-cell and cell-scaffold interactions at micro level required for functional tissue regeneration. This article provides an insight into the different biomaterials available and the emerging use of nano engineering principles for the construction of bioactive scaffolds in tooth regeneration. PMID:24596804

  1. Hydrogel Composite Materials for Tissue Engineering Scaffolds

    NASA Astrophysics Data System (ADS)

    Shapiro, Jenna M.; Oyen, Michelle L.

    2013-04-01

    Hydrogels are appealing for biomaterials applications due to their compositional similarity with highly hydrated natural biological tissues. However, for structurally demanding tissue engineering applications, hydrogel use is limited by poor mechanical properties. Here, composite materials approaches are considered for improving hydrogel properties while attempting to more closely mimic natural biological tissue structures. A variety of composite material microstructures is explored, based on multiple hydrogel constituents, particle reinforcement, electrospun nanometer to micrometer diameter polymer fibers with single and multiple fiber networks, and combinations of these approaches to form fully three-dimensional fiber-reinforced hydrogels. Natural and synthetic polymers are examined for formation of a range of scaffolds and across a range of engineered tissue applications. Following a discussion of the design and fabrication of composite scaffolds, interactions between living biological cells and composite scaffolds are considered across the full life cycle of tissue engineering from scaffold fabrication to in vivo use. We conclude with a summary of progress in this area to date and make recommendations for continuing research and for advanced hydrogel scaffold development.

  2. Biomimetic nanofibrous scaffolds for bone tissue engineering

    PubMed Central

    Holzwarth, Jeremy M.; Ma, Peter X.

    2011-01-01

    Bone tissue engineering is a highly interdisciplinary field that seeks to tackle the most challenging bone-related clinical issues. The major components of bone tissue engineering are the scaffold, cells, and growth factors. This review will focus on the scaffold and recent advancements in developing scaffolds that can mimic the natural extracellular matrix of bone. Specifically, these novel scaffolds mirror the nanofibrous collagen network that comprises the majority of the non-mineral portion of bone matrix. Using two main fabrication techniques, electrospinning and thermally-induced phase separation, and incorporating bone-like minerals, such as hydroxyapatite, composite nanofibrous scaffolds can improve cell adhesion, stem cell differentiation, and tissue formation. This review will cover the two main processing techniques and how they are being applied to fabricate scaffolds for bone tissue engineering. It will then cover how these scaffolds can enhance the osteogenic capabilities of a variety of cell types and survey the ability of the constructs to support the growth of clinically relevant bone tissue. PMID:21944829

  3. Tissue engineering principles in orthopaedic surgery.

    PubMed

    Jackson, D W; Simon, T M

    1999-10-01

    Advances in the fields of biotechnology and biomaterials offer the orthopaedic surgeon the exciting possibility of repair or regeneration of tissue lost to injury, disease, or aging. The promising area of tissue engineering represents a multidisciplinary approach aimed at solving some of the most perplexing biologic problems, namely, the creation of new tissues and organs similar to the original tissues and organs. In addition, strategies using new synthetic polymer formulations can facilitate tissue replacement and represent alternatives to tissue regeneration in certain conditions. Although biotechnology has broad application over many medical specialties, orthopaedics is receiving a large focus of the research effort devoted to techniques for developing bone, articular cartilage, ligaments, and tendons. Because bioengineered tissue and/or techniques to stimulate tissue regeneration soon may be used clinically, orthopaedic surgeons should have a working knowledge of the basic concepts involved. Terms, such as biomaterial, biotechnology, matrices of synthetic or biologic polymers or both, adhesion, cohesion, porosity, induction, conduction, stem cell, progenitor cell, mesenchymal cell, tissue growth factor, bone morphogenetic protein, mitogenic and chemotactic factors, and numerous other terms will become part of the working language of clinicians of the twenty-first century.

  4. Biomaterials in myocardial tissue engineering

    PubMed Central

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  5. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  6. Multiphasic Scaffolds for Periodontal Tissue Engineering

    PubMed Central

    Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.W.; Bartold, P.M.

    2014-01-01

    For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor–based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. PMID:25139362

  7. Nanofiber Scaffold Gradients for Interfacial Tissue Engineering

    PubMed Central

    Ramalingam, Murugan; Young, Marian F.; Thomas, Vinoy; Sun, Limin; Chow, Laurence C.; Tison, Christopher K.; Chatterjee, Kaushik; Miles, William C.; Simon, Carl G.

    2012-01-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues. PMID:22286209

  8. 3D bioprinting for engineering complex tissues.

    PubMed

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  9. 3D bioprinting for engineering complex tissues.

    PubMed

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. PMID:26724184

  10. Tissue engineering of blood vessel

    PubMed Central

    Zhang, Wen Jie; Liu, Wei; Cui, Lei; Cao, Yilin

    2007-01-01

    Abstract Vascular grafts are in large demand for coronary and peripheral bypass surgeries. Although synthetic grafts have been developed, replacement of vessels with purely synthetic polymeric conduits often leads to the failure of such graft, especially in the grafts less than 6 mm in diameter or in the areas of low blood flow, mainly due to the early formation of thrombosis. Moreover, the commonly used materials lack growth potential, and long-term results have revealed several material-related failures, such as stenosis, thromboembolization, calcium deposition and infection. Tissue engineering has become a promising approach for generating a bio-compatible vessel graft with growth potential. Since the first success of constructing blood vessels with collagen and cultured vascular cells by Weinberg and Bell, there has been considerable progress in the area of vessel engineering. To date, tissue- engineered blood vessels (TEBVs) could be successfully constructed in vitro, and be used to repair the vascular defects in animal models. This review describes the major progress in the field, including the seeding cell sources, the biodegradable scaffolds, the construction technologies, as well as the encouraging achievements in clinical applications. The remaining challenges are also discussed. PMID:17979876

  11. Cardiac Conduction through Engineered Tissue

    PubMed Central

    Choi, Yeong-Hoon; Stamm, Christof; Hammer, Peter E.; Kwaku, Kevin F.; Marler, Jennifer J.; Friehs, Ingeborg; Jones, Mara; Rader, Christine M.; Roy, Nathalie; Eddy, Mau-Thek; Triedman, John K.; Walsh, Edward P.; McGowan, Francis X.; del Nido, Pedro J.; Cowan, Douglas B.

    2006-01-01

    In children, interruption of cardiac atrioventricular (AV) electrical conduction can result from congenital defects, surgical interventions, and maternal autoimmune diseases during pregnancy. Complete AV conduction block is typically treated by implanting an electronic pacemaker device, although long-term pacing therapy in pediatric patients has significant complications. As a first step toward developing a substitute treatment, we implanted engineered tissue constructs in rat hearts to create an alternative AV conduction pathway. We found that skeletal muscle-derived cells in the constructs exhibited sustained electrical coupling through persistent expression and function of gap junction proteins. Using fluorescence in situ hybridization and polymerase chain reaction analyses, myogenic cells in the constructs were shown to survive in the AV groove of implanted hearts for the duration of the animal’s natural life. Perfusion of hearts with fluorescently labeled lectin demonstrated that implanted tissues became vascularized and immunostaining verified the presence of proteins important in electromechanical integration of myogenic cells with surrounding recipient rat cardiomyocytes. Finally, using optical mapping and electrophysiological analyses, we provide evidence of permanent AV conduction through the implant in one-third of recipient animals. Our experiments provide a proof-of-principle that engineered tissue constructs can function as an electrical conduit and, ultimately, may offer a substitute treatment to conventional pacing therapy. PMID:16816362

  12. Clinical translation of controlled protein delivery systems for tissue engineering

    PubMed Central

    Spiller, Kara L.; Vunjak-Novakovic, Gordana

    2013-01-01

    Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed. PMID:25787736

  13. Nano scaffolds and stem cell therapy in liver tissue engineering

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  14. Advances in engineering plastics

    SciTech Connect

    Leonard, L.

    1997-12-01

    New polymers are being commercialized in record numbers, offering the product designer a new realm of possibilities, and promising tough competition to the traditional engineering resins. Most of the growth is in single-site catalyzed resins. Metallocene (and non-metallocene) single-site catalysts enhance polymer architecture to generate highly uniform molecules, and even permit tailoring new categories of polymers. These new materials include the truly unique aliphatic polyketone, syndiotactic polystyrene (SPS); polyethylene naphthalate (PEN) resins; and novel variations of established polymers. This article provides a closer look at these newcomers to the plastics marketplace, with an emphasis on their properties and potential applications.

  15. Advances in water engineering

    SciTech Connect

    Tebbutt, T.H.Y.

    1985-01-01

    Water is the world's most important natural resource and its efficient utilization requires a proper understanding of the multifunctional role of water in modern society. The philosophy of integrating both quality and quantity considerations of water engineering is an essential aspect of optimal use of resources and this book provides a collection of 41 papers to emphasize this philosophy. Each section of the contents includes a state-of-the art review followed by specialist contributions on a specific topic so that the reader can gain an overview of the area as well as being informed about the latest developments in particular aspects of the subject.

  16. Hybrid Multicomponent Hydrogels for Tissue Engineering

    PubMed Central

    Jia, Xinqiao; Kiick, Kristi L.

    2009-01-01

    Artificial ECMs that not only closely mimic the hybrid nature of the natural ECM but also provide tunable material properties and enhanced biological functions are attractive candidates for tissue engineering applications. This review summarizes recent advances in developing multicomponent hybrid hydrogels by integrating modular and heterogeneous building blocks into well-defined, multifunctional hydrogel composites. The individual building blocks can be chemically, morphologically, and functionally diverse, and the hybridization can occur at molecular level or microscopic scale. The modular nature of the designs, combined with the potential synergistic effects of the hybrid systems, has resulted in novel hydrogel matrices with robust structure and defined functions. PMID:19107720

  17. Bottom-up tissue engineering

    PubMed Central

    Elbert, Donald L.

    2011-01-01

    Recapitulating the elegant structures formed during development is an extreme synthetic and biological challenge. Great progress has been made in developing materials to support transplanted cells, yet the complexity of tissues is far beyond that found in even the most advanced scaffolds. Self-assembly is a motif used in development and a route for the production of complex materials. Self-assembly of peptides, proteins and other molecules at the nanoscale is promising, but in addition, intriguing ideas are emerging for self-assembly of micron-scale structures. In this brief review, very recent advances in the assembly of micron-scale cell aggregates and microgels will be described and discussed. PMID:21524904

  18. Strategies for Whole Lung Tissue Engineering

    PubMed Central

    Calle, Elizabeth A.; Ghaedi, Mahboobe; Sundaram, Sumati; Sivarapatna, Amogh; Tseng, Michelle K.

    2014-01-01

    Recent work has demonstrated the feasibility of using decellularized lung extracellular matrix scaffolds to support the engineering of functional lung tissue in vitro. Rendered acellular through the use of detergents and other reagents, the scaffolds are mounted in organ-specific bioreactors where cells in the scaffold are provided with nutrients and appropriate mechanical stimuli such as ventilation and perfusion. Though initial studies are encouraging, a great deal remains to be done to advance the field and transition from rodent lungs to whole human tissue engineered lungs. To do so, a variety of hurdles must be overcome. In particular, a reliable source of human-sized scaffolds, as well as a method of terminal sterilization of scaffolds, must be identified. Continued research in lung cell and developmental biology will hopefully help identify the number and types of cells that will be required to regenerate functional lung tissue. Finally, bioreactor designs must be improved in order to provide more precise ventilation stimuli and vascular perfusion in order to avoid injury to or death of the cells cultivated within the scaffold. Ultimately, the success of efforts to engineer a functional lung in vitro will critically depend on the ability to create a fully endothelialized vascular network that provides sufficient barrier function and alveolar-capillary surface area to exchange gas at rates compatible with healthy lung function. PMID:24691527

  19. Utilizing stem cells for three-dimensional neural tissue engineering.

    PubMed

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs.

  20. Polyelectrolyte Multilayers in Tissue Engineering

    PubMed Central

    Detzel, Christopher J.; Larkin, Adam L.

    2011-01-01

    The layer-by-layer assembly of sequentially adsorbed, alternating polyelectrolytes has become increasingly important over the past two decades. The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. More recently, PEMs are being used in biological applications ranging from biomaterials, tissue engineering, regenerative medicine, and drug delivery. The ability to manipulate the chemical, physical, surface, and topographical properties of these multilayer architectures by simply changing the pH, ionic strength, thickness, and postassembly modifications render them highly suitable to probe the effects of external stimuli on cellular responsiveness. In the field of regenerative medicine, the ability to sequester growth factors and to tether peptides to PEMs has been exploited to direct the lineage of progenitor cells and to subsequently maintain a desired phenotype. Additional novel applications include the use of PEMs in the assembly of three-dimensional layered architectures and as coatings for individual cells to deliver tunable payloads of drugs or bioactive molecules. This review focuses on literature related to the modulation of chemical and physical properties of PEMs for tissue engineering applications and recent research efforts in maintaining and directing cellular phenotype in stem cell differentiation. PMID:21210759

  1. Nanotechnological strategies for engineering complex tissues

    NASA Astrophysics Data System (ADS)

    Dvir, Tal; Timko, Brian P.; Kohane, Daniel S.; Langer, Robert

    2011-01-01

    Tissue engineering aims at developing functional substitutes for damaged tissues and organs. Before transplantation, cells are generally seeded on biomaterial scaffolds that recapitulate the extracellular matrix and provide cells with information that is important for tissue development. Here we review the nanocomposite nature of the extracellular matrix, describe the design considerations for different tissues and discuss the impact of nanostructures on the properties of scaffolds and their uses in monitoring the behaviour of engineered tissues. We also examine the different nanodevices used to trigger certain processes for tissue development, and offer our view on the principal challenges and prospects of applying nanotechnology in tissue engineering.

  2. Interface tissue engineering: next phase in musculoskeletal tissue repair.

    PubMed

    Sahoo, Sambit; Teh, Thomas Kh; He, Pengfei; Toh, Siew Lok; Goh, James Ch

    2011-05-01

    Increasing incidence of musculoskeletal injuries coupled with limitations in the current treatment options have necessitated tissue engineering and regenerative medicine- based approaches. Moving forward from engineering isolated musculoskeletal tissues, research strategies are now being increasingly focused on repairing and regenerating the interfaces between dissimilar musculoskeletal tissues with the aim to achieve seamless integration of engineered musculoskeletal tissues. This article reviews the state-of-the-art in the tissue engineering of musculoskeletal tissue interfaces with a focus on Singapore's contribution in this emerging field. Various biomimetic scaffold and cellbased strategies, the use of growth factors, gene therapy and mechanical loading, as well as animal models for functional validation of the tissue engineering strategies are discussed.

  3. Challenges in translating vascular tissue engineering to the pediatric clinic.

    PubMed

    Duncan, Daniel R; Breuer, Christopher K

    2011-01-01

    The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts. PMID:21999145

  4. Textile Processes for Engineering Tissues with Biomimetic Architectures and Properties.

    PubMed

    Fallahi, Afsoon; Khademhosseini, Ali; Tamayol, Ali

    2016-09-01

    Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructs with biomimetic properties have attracted significant attention in the field of tissue engineering. This Forum article highlights the most prominent advances of the field in the areas of fiber fabrication and construct engineering. PMID:27499277

  5. Textile Processes for Engineering Tissues with Biomimetic Architectures and Properties.

    PubMed

    Fallahi, Afsoon; Khademhosseini, Ali; Tamayol, Ali

    2016-09-01

    Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructs with biomimetic properties have attracted significant attention in the field of tissue engineering. This Forum article highlights the most prominent advances of the field in the areas of fiber fabrication and construct engineering.

  6. Advanced Technology for Engineering Education

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  7. Combined additive manufacturing approaches in tissue engineering.

    PubMed

    Giannitelli, S M; Mozetic, P; Trombetta, M; Rainer, A

    2015-09-01

    Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives.

  8. Microfluidic systems for stem cell-based neural tissue engineering.

    PubMed

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-01

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  9. Bioactive glass-based scaffolds for bone tissue engineering.

    PubMed

    Will, Julia; Gerhardt, Lutz-Christian; Boccaccini, Aldo R

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate glasses. A brief historical review and the fundamental requirements in the field of bone tissue engineering scaffolds will be presented, followed by a detailed overview of recent developments in bioactive glass-based scaffolds. In addition, the effects of ionic dissolution products of bioactive glasses on osteogenesis and angiogenic properties of scaffolds are briefly addressed. Finally, promising areas of future research and requirements for the advancement of the field are highlighted and discussed.

  10. Polysaccharide-based strategies for heart tissue engineering.

    PubMed

    Silva, Amanda K A; Juenet, Maya; Meddahi-Pellé, Anne; Letourneur, Didier

    2015-02-13

    Polysaccharides are abundant biomolecules in nature presenting important roles in a wide variety of living systems processes. Considering the structural and biological functions of polysaccharides, their properties have raised interest for tissue engineering. Herein, we described the latest advances in cardiac tissue engineering mediated by polysaccharides. We reviewed the data already obtained in vitro and in vivo in this field with several types of polysaccharides. Cardiac injection, intramyocardial in situ polymerization strategies, and scaffold-based approaches involving polysaccharides for heart tissue engineering are thus discussed.

  11. Application of microtechnologies for the vascularization of engineered tissues

    PubMed Central

    2011-01-01

    Recent advances in medicine and healthcare allow people to live longer, increasing the need for the number of organ transplants. However, the number of organ donors has not been able to meet the demand, resulting in an organ shortage. The field of tissue engineering has emerged to produce organs to overcome this limitation. While tissue engineering of connective tissues such as skin and blood vessels have currently reached clinical studies, more complex organs are still far away from commercial availability due to pending challenges with in vitro engineering of 3D tissues. One of the major limitations of engineering large tissue structures is cell death resulting from the inability of nutrients to diffuse across large distances inside a scaffold. This task, carried out by the vasculature inside the body, has largely been described as one of the foremost important challenges in engineering 3D tissues since it remains one of the key steps for both in vitro production of tissue engineered construct and the in vivo integration of a transplanted tissue. This short review highlights the important challenges for vascularization and control of the microcirculatory system within engineered tissues, with particular emphasis on the use of microfabrication approaches. PMID:22040627

  12. Vascular Tissue Engineering: Building Perfusable Vasculature for Implantation

    PubMed Central

    Gui, Liqiong; Niklason, Laura E.

    2014-01-01

    Tissue and organ replacement is required when there are no alternative therapies available. Although vascular tissue engineering was originally developed to meet the clinical demands of small-diameter vascular conduits as bypass grafts, it has evolved into a highly advanced field where perfusable vasculatures are generated for implantation. Herein, we review several cutting-edge techniques that have led to implantable human blood vessels in clinical trials, the novel approaches that build complex perfusable microvascular networks in functional tissues, the use of stem cells to generate endothelial cells for vascularization, as well as the challenges in bringing vascular tissue engineering technologies into the clinics. PMID:24533306

  13. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  14. Bone Tissue Engineering: Past-Present-Future.

    PubMed

    Quarto, Rodolfo; Giannoni, Paolo

    2016-01-01

    Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter.

  15. Tumor Engineering: The Other Face of Tissue Engineering

    PubMed Central

    2010-01-01

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue. We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of ‘tumor engineering’, that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. PMID:20214448

  16. Advanced engineering environment pilot project.

    SciTech Connect

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  17. Vascularized Bone Tissue Engineering: Approaches for Potential Improvement

    PubMed Central

    Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing

    2012-01-01

    Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012

  18. Tissue engineering for pulmonary diseases: insights from the laboratory.

    PubMed

    Kubo, Hiroshi

    2012-04-01

    Recent advances in stem cell research and tissue engineering have opened new paradigms for future therapies towards many intractable diseases. Many tissue engineering approaches are also applied in the pulmonary research field. Several materials have been utilized as scaffolds to support lung tissue engineering to recapitulate the three-dimensional (3D) structure of the lung. Natural products and synthetic polymers are the two major components of the scaffold materials. Decellularization of allogeneic or xenogenic donor lungs is also utilized to obtain biological 3D matrix scaffolds. Decellularized lungs are recellularized with stem or progenitor cells. Cell sources are the key components for tissue engineering. The best cell source for tissue engineering is autologous cells obtained from patients because it does not induce an immunological response after transplantation. However, the stem/progenitor population in adult organs is generally small, and their capacity for proliferation or differentiation is limited. Knowledge about the endogenous stem/progenitor population in lung tissue has been expanded recently. Although the lung is the most challenging organ for tissue engineering because of its complex 3D structure and more than 40 different cell types, several breakthroughs in respiratory research have been made. These results give us a greater understanding of the possibilities and the limitations of tissue engineering for pulmonary diseases.

  19. A Review of Three-Dimensional Printing in Tissue Engineering.

    PubMed

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed.

  20. MECHANICAL DESIGN CRITERIA FOR INTERVERTEBRAL DISC TISSUE ENGINEERING

    PubMed Central

    Nerurkar, Nandan L.; Elliott, Dawn M.; Mauck, Robert L.

    2009-01-01

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviour, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying measures where functional equivalence was achieved, and others where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. PMID:20080239

  1. Recent advances in protein profiling of tissues and tissue fluids.

    PubMed

    Yang, Shi; Huang, Chun-Ming

    2007-08-01

    Creating protein profiles of tissues and tissue fluids, which contain secreted proteins and peptides released from various cells, is critical for biomarker discovery as well as drug and vaccine target selection. It is extremely difficult to obtain pure samples from tissues or tissue fluids, however, and identification of complex protein mixtures is still a challenge for mass spectrometry analysis. Here, we summarize recent advances in techniques for extracting proteins from tissues for mass spectrometry profiling and imaging. We also introduce a novel technique using a capillary ultrafiltration (CUF) probe to enable in vivo collection of proteins from the tissue microenvironment. The CUF probe technique is compared with existing sampling techniques, including perfusion, saline wash, fine-needle aspiration and microdialysis. In this review, we also highlight quantitative mass spectrometric proteomic approaches with, and without, stable-isotope labels. Advances in quantitative proteomics will significantly improve protein profiling of tissue and tissue fluid samples collected by CUF probes.

  2. Adipose and mammary epithelial tissue engineering.

    PubMed

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  3. Adipose and mammary epithelial tissue engineering

    PubMed Central

    Zhu, Wenting; Nelson, Celeste M.

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast. PMID:23628872

  4. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  5. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  6. The role of bioreactors in tissue engineering.

    PubMed

    Martin, Ivan; Wendt, David; Heberer, Michael

    2004-02-01

    Ex vivo engineering of living tissues is a rapidly developing area with the potential to impact significantly on a wide-range of biomedical applications. Major obstacles to the generation of functional tissues and their widespread clinical use are related to a limited understanding of the regulatory role of specific physicochemical culture parameters on tissue development, and the high manufacturing costs of the few commercially available engineered tissue products. By enabling reproducible and controlled changes of specific environmental factors, bioreactor systems provide both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In addition, by automating and standardizing tissue manufacture in controlled closed systems, bioreactors could reduce production costs, thus facilitating a wider use of engineered tissues.

  7. Biomimetic strategies for engineering composite tissues.

    PubMed

    Lee, Nancy; Robinson, Jennifer; Lu, Helen

    2016-08-01

    The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration.

  8. Biomimetic strategies for engineering composite tissues.

    PubMed

    Lee, Nancy; Robinson, Jennifer; Lu, Helen

    2016-08-01

    The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration. PMID:27010653

  9. Cell-Based Strategies for Meniscus Tissue Engineering

    PubMed Central

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  10. Ethical considerations in tissue engineering research: Case studies in translation.

    PubMed

    Baker, Hannah B; McQuilling, John P; King, Nancy M P

    2016-04-15

    Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of "modest translational distance" and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology. PMID:26282436

  11. Advanced engineering environment collaboration project.

    SciTech Connect

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  12. The Cummins advanced turbocompound diesel engine evaluation

    NASA Technical Reports Server (NTRS)

    Hoehne, J. L.; Werner, J. R.

    1982-01-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  13. Tissue engineering in the rheumatic diseases

    PubMed Central

    Ringe, Jochen; Sittinger, Michael

    2009-01-01

    Diseases such as degenerative or rheumatoid arthritis are accompanied by joint destruction. Clinically applied tissue engineering technologies like autologous chondrocyte implantation, matrix-assisted chondrocyte implantation, or in situ recruitment of bone marrow mesenchymal stem cells target the treatment of traumatic defects or of early osteoarthritis. Inflammatory conditions in the joint hamper the application of tissue engineering during chronic joint diseases. Here, most likely, cartilage formation is impaired and engineered neocartilage will be degraded. Based on the observations that mesenchymal stem cells (a) develop into joint tissues and (b) in vitro and in vivo show immunosuppressive and anti-inflammatory qualities indicating a transplant-protecting activity, these cells are prominent candidates for future tissue engineering approaches for the treatment of rheumatic diseases. Tissue engineering also provides highly organized three-dimensional in vitro culture models of human cells and their extracellular matrix for arthritis research. PMID:19232063

  14. Amelogenin in Enamel Tissue Engineering

    PubMed Central

    2016-01-01

    In this chapter the basic premises, the recent findings and the future challenges in the use of amelogenin for enamel tissue engineering are being discoursed on. Results emerging from the experiments performed to assess the fundamental physicochemical mechanisms of the interaction of amelogenin, the main protein of the enamel matrix, and the growing crystals of apatite, are mentioned, alongside a moderately comprehensive literature review of the subject at hand. The clinical importance of understanding this protein/mineral interaction at the nanoscale are highlighted as well as the potential for tooth enamel to act as an excellent model system for studying some of the essential aspects of biomineralization processes in general. The dominant paradigm stating that amelogenin directs the uniaxial growth of apatite crystals in enamel by slowing down the growth of (hk0) faces on which it adheres is being questioned based on the results demonstrating the ability of amelogenin to promote the nucleation and crystal growth of apatite under constant titration conditions designed to mimic those present in the developing enamel matrix. The role of numerous minor components of the enamel matrix is being highlighted as essential and impossible to compensate for by utilizing its more abundant ingredients only. It is concluded that the three major aspects of amelogenesis outlined hereby – (1) the assembly of amelogenin and other enamel matrix proteins, (2) the proteolytic activity, and (3) crystallization – need to be in precise synergy with each other in order for the grounds for the proper imitation of amelogenesis in the lab to be created. PMID:26545753

  15. Nanofibers and their applications in tissue engineering

    PubMed Central

    Vasita, Rajesh; Katti, Dhirendra S

    2006-01-01

    Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259

  16. Capillary force lithography for cardiac tissue engineering.

    PubMed

    Macadangdang, Jesse; Lee, Hyun Jung; Carson, Daniel; Jiao, Alex; Fugate, James; Pabon, Lil; Regnier, Michael; Murry, Charles; Kim, Deok-Ho

    2014-06-10

    Cardiovascular disease remains the leading cause of death worldwide(1). Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart's extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale(2). Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering(3-5). A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling(2). Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart(6-9). Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)(8) and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function(10-14). Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively(15,16). Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip

  17. Capillary Force Lithography for Cardiac Tissue Engineering

    PubMed Central

    Macadangdang, Jesse; Lee, Hyun Jung; Carson, Daniel; Jiao, Alex; Fugate, James; Pabon, Lil; Regnier, Michael; Murry, Charles; Kim, Deok-Ho

    2014-01-01

    Cardiovascular disease remains the leading cause of death worldwide1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart’s extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering3-5. A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart6-9. Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function10-14. Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA

  18. Tendon Tissue Engineering: Progress, Challenges, and Translation to the Clinic

    PubMed Central

    Shearn, Jason T.; Kinneberg, Kirsten R.C.; Dyment, Nathaniel A.; Galloway, Marc T.; Kenter, Keith; Wylie, Christopher; Butler, David L.

    2013-01-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products. PMID:21625053

  19. Tendon tissue engineering: progress, challenges, and translation to the clinic.

    PubMed

    Shearn, J T; Kinneberg, K R; Dyment, N A; Galloway, M T; Kenter, K; Wylie, C; Butler, D L

    2011-06-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products.

  20. Tumor Engineering: The Other Face of Tissue Engineering

    SciTech Connect

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by 'applying principles of engineering and the life sciences toward the development of biological substitutes. Mortality figures and direct health care costs for cancer patients rival those of patients who experience organ failure. Cancer is the second leading cause of death in the United States (Source: American Cancer Society) and it is estimated that direct medical costs for cancer patients approach $100B yearly in the United States alone (Source: National Cancer Institute). In addition, any promising therapy that emerges from the laboratory costs roughly $1.7B to take from bench to bedside. Whereas we have indeed waged war on cancer, the

  1. Concise review: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology.

    PubMed

    Buikema, Jan Willem; Van Der Meer, Peter; Sluijter, Joost P G; Domian, Ibrahim J

    2013-12-01

    Advanced heart failure represents a leading public health problem in the developed world. The clinical syndrome results from the loss of viable and/or fully functional myocardial tissue. Designing new approaches to augment the number of functioning human cardiac muscle cells in the failing heart serve as the foundation of modern regenerative cardiovascular medicine. A number of clinical trials have been performed in an attempt to increase the number of functional myocardial cells by the transplantation of a diverse group of stem or progenitor cells. Although there are some encouraging suggestions of a small early therapeutic benefit, to date, no evidence for robust cell or tissue engraftment has been shown, emphasizing the need for new approaches. Clinically meaningful cardiac regeneration requires the identification of the optimum cardiogenic cell types and their assembly into mature myocardial tissue that is functionally and electrically coupled to the native myocardium. We here review recent advances in stem cell biology and tissue engineering and describe how the convergence of these two fields may yield novel approaches for cardiac regeneration.

  2. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    PubMed

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  3. Composite scaffolds for cartilage tissue engineering.

    PubMed

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  4. Tissue Engineering: Step Ahead in Maxillofacial Reconstruction.

    PubMed

    Rai, Raj; Raval, Rushik; Khandeparker, Rakshit Vijay Sinai; Chidrawar, Swati K; Khan, Abdul Ahad; Ganpat, Makne Sachin

    2015-09-01

    Within the precedent decade, a new field of "tissue engineering" or "tissue regeneration" emerge that offers an innovative and exhilarating substitute for maxillofacial reconstruction. It offers a new option to supplement existing treatment regimens for reconstruction/regeneration of the oral and craniofacial complex, which includes the teeth, periodontium, bones, soft tissues (oral mucosa, conjunctiva, skin), salivary glands, and the temporomandibular joint (bone and cartilage), as well as blood vessels, muscles, tendons, and nerves. Tissue engineering is based on harvesting the stem cells which are having potential to form an organ. Harvested cells are then transferred into scaffolds that are manufactured in a laboratory to resemble the structure of the desired tissue to be replaced. This article reviews the principles of tissue engineering and its various applications in oral and maxillofacial surgery.

  5. Protein–Hydrogel Interactions in Tissue Engineering: Mechanisms and Applications

    PubMed Central

    Zustiak, Silviya P.; Wei, Yunqian

    2013-01-01

    Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein–hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel–protein interactions that will advance our ability to control the cell–biomaterial interface. PMID:23150926

  6. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  7. Gradient nanofiber scaffolds for tissue engineering.

    PubMed

    Seidi, Azadeh; Sampathkumar, Kaarunya; Srivastava, Alok; Ramakrishna, Seeram; Ramalingam, Murugan

    2013-07-01

    Scaffolds are one of the key factors for the success of tissue engineering, in particular when dealing with anchorage-dependent cells. The concept of using scaffolds in tissue engineering lies in mimicking the physical, chemical and biological features of native extracellular matrix (ECM) in order to support cell function, which in turn regulates cellular microenvironment that directs cell growth and subsequent tissue formation. Nanofibers fabricated from both synthetic and natural polymers are being used as scaffolds in many tissue engineering applications. At the molecular level, native ECM is made up of a gradient of fibrous proteins and polysaccharides that are nanoscale structures. The gradient cues of ECM, directs critical cell behaviors such as alignment, motility and differentiation, particularly in the region between soft and hard tissues called interfacial tissue. Therefore, it is essential to develop gradient nanofiber scaffolds particularly for interfacial tissue engineering applications. Keeping these points in view, in this article, we review the recent developments of gradient nanofiber scaffolds, their design strategies, and their applications in tissue engineering. PMID:23901487

  8. 3-dimensional bioprinting for tissue engineering applications.

    PubMed

    Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho

    2016-01-01

    The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds.

  9. 3-dimensional bioprinting for tissue engineering applications.

    PubMed

    Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho

    2016-01-01

    The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds. PMID:27114828

  10. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    PubMed Central

    Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941

  11. Liposomes in tissue engineering and regenerative medicine

    PubMed Central

    Monteiro, Nelson; Martins, Albino; Reis, Rui L.; Neves, Nuno M.

    2014-01-01

    Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches. PMID:25401172

  12. Tissue engineering: Perfusable vascular networks

    NASA Astrophysics Data System (ADS)

    Forgacs, Gabor

    2012-09-01

    A rapid vascular casting approach that uses carbohydrate glass as a sacrificial template allows tissues to be built that can be kept alive for longer in the laboratory until needed for transplantation.

  13. Advanced General Aviation Turbine Engine (GATE) study

    NASA Technical Reports Server (NTRS)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  14. Biomaterials and scaffold design: key to tissue-engineering cartilage.

    PubMed

    Raghunath, Joanne; Rollo, John; Sales, Kevin M; Butler, Peter E; Seifalian, Alexander M

    2007-02-01

    Cartilage remains one of the most challenging tissues to reconstruct or replace, owing to its complex geometry in facial structures and mechanical strength at articular surfaces in joints. This non-vascular tissue has poor replicative capacity and damage results in its functionally inferior repair tissue, fibrocartilage. This has led to a drive for advancements in tissue engineering. The variety of polymers and fabrication techniques available continues to expand. Pore size, porosity, biocompatibility, shape specificity, integration with native tissue, degradation tailored to rate of neocartilage formation and cost efficiency are important factors which need consideration in the development of a scaffold. The present review considers the current polymers and fabrication methodologies used in scaffold engineering for cartilage and postulates whether we are closer to developing the ideal scaffold for clinical application.

  15. Genetically Engineered Immunotherapy for Advanced Cancer

    Cancer.gov

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  16. Engineering cell attachments to scaffolds in cartilage tissue engineering

    NASA Astrophysics Data System (ADS)

    Steward, Andrew J.; Liu, Yongxing; Wagner, Diane R.

    2011-04-01

    One of the challenges of tissue engineering, a promising cell-based treatment for damaged or diseased cartilage, is designing the scaffold that provides structure while the tissue regenerates. In addition to the scaffold material's biocompatibility, mechanical properties, and ease of manufacturing, scaffold interactions with the cells must also be considered. In cartilage tissue engineering, a range of scaffolds with various degrees of cell attachment have been proposed, but the attachment density and type have yet to be optimized. Several techniques have been developed to modulate cell adhesion to the scaffold. These studies suggest that the need for cell attachment in cartilage tissue engineering may vary with cell type, stage of differentiation, culture condition, and scaffold material. Further studies will elucidate the role of cell attachment in cartilage regeneration and enhance efforts to engineer cell-based cartilage therapies.

  17. New engine and advanced component design

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the proceedings on new engine and advance component design. Topics covered include: development of low emission high performance four valve engines, the effect of engine build options on powerplant inertias, silicon nitride turbocharger rotor for high performance automotive engines and development of Toyota reflex Burn (TRB) system in DI diesel.

  18. Bioreactor Development for Lung Tissue Engineering

    PubMed Central

    Panoskaltsis-Mortari, Angela

    2015-01-01

    Rationale Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. Objective The goal was to comprehensively review the current state of bioreactor development for the lung. Methods A search using PubMed was done for published, peer-reviewed papers using the keywords “lung” AND “bioreactor” or “bioengineering” or “tissue engineering” or “ex vivo perfusion”. Main Results Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. Conclusions Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest

  19. Hard-Soft Tissue Interface Engineering.

    PubMed

    Armitage, Oliver E; Oyen, Michelle L

    2015-01-01

    The musculoskeletal system is comprised of three distinct tissue categories: structural mineralized tissues, actuating muscular soft tissues, and connective tissues. Where connective tissues - ligament, tendon and cartilage - meet with bones, a graded interface in mechanical properties occurs that allows the transmission of load without creating stress concentrations that would cause tissue damage. This interface typically occurs over less than 1 mm and contains a three order of magnitude difference in elastic stiffness, in addition to changes in cell type and growth factor concentrations among others. Like all engineered tissues, the replication of these interfaces requires the production of scaffolds that will provide chemical and mechanical cues, resulting in biologically accurate cellular differentiation. For interface tissues however, the scaffold must provide spatially graded chemical and mechanical cues over sub millimetre length scales. Naturally, this complicates the manufacture of the scaffolds and every stage of their subsequent cell seeding and growth, as each region has different optimal conditions. Given the higher degree of difficulty associated with replicating interface tissues compared to surrounding homogeneous tissues, it is likely that the development of complex musculoskeletal tissue systems will continue to be limited by the engineering of connective tissues interfaces with bone.

  20. Bioactive composite materials for tissue engineering scaffolds.

    PubMed

    Boccaccini, Aldo R; Blaker, Jonny J

    2005-05-01

    Synthetic bioactive and bioresorbable composite materials are becoming increasingly important as scaffolds for tissue engineering. Next-generation biomaterials should combine bioactive and bioresorbable properties to activate in vivo mechanisms of tissue regeneration, stimulating the body to heal itself and leading to replacement of the scaffold by the regenerating tissue. Certain bioactive ceramics such as tricalcium phosphate and hydroxyapatite as well as bioactive glasses, such as 45S5 Bioglass, react with physiologic fluids to form tenacious bonds with hard (and in some cases soft) tissue. However, these bioactive materials are relatively stiff, brittle and difficult to form into complex shapes. Conversely, synthetic bioresorbable polymers are easily fabricated into complex structures, yet they are too weak to meet the demands of surgery and the in vivo physiologic environment. Composites of tailored physical, biologic and mechanical properties as well as predictable degradation behavior can be produced combining bioresorbable polymers and bioactive inorganic phases. This review covers recent international research presenting the state-of-the-art development of these composite systems in terms of material constituents, fabrication technologies, structural and bioactive properties, as well as in vitro and in vivo characteristics for applications in tissue engineering and tissue regeneration. These materials may represent the effective optimal solution for tailored tissue engineering scaffolds, making tissue engineering a realistic clinical alternative in the near future.

  1. Tissue Engineering: Step Ahead in Maxillofacial Reconstruction

    PubMed Central

    Rai, Raj; Raval, Rushik; Khandeparker, Rakshit Vijay Sinai; Chidrawar, Swati K; Khan, Abdul Ahad; Ganpat, Makne Sachin

    2015-01-01

    Within the precedent decade, a new field of “tissue engineering” or “tissue regeneration” emerge that offers an innovative and exhilarating substitute for maxillofacial reconstruction. It offers a new option to supplement existing treatment regimens for reconstruction/regeneration of the oral and craniofacial complex, which includes the teeth, periodontium, bones, soft tissues (oral mucosa, conjunctiva, skin), salivary glands, and the temporomandibular joint (bone and cartilage), as well as blood vessels, muscles, tendons, and nerves. Tissue engineering is based on harvesting the stem cells which are having potential to form an organ. Harvested cells are then transferred into scaffolds that are manufactured in a laboratory to resemble the structure of the desired tissue to be replaced. This article reviews the principles of tissue engineering and its various applications in oral and maxillofacial surgery. PMID:26435634

  2. Tissue engineering chamber promotes adipose tissue regeneration in adipose tissue engineering models through induced aseptic inflammation.

    PubMed

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang; Lu, Feng

    2014-11-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin- perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34-/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction.

  3. Programmed electronic advance for engines

    SciTech Connect

    Dogadko, P.

    1987-03-03

    An ignition advance control is described for an internal combustion engine including a crankshaft, a throttle control, and at least one cylinder, the ignition advance control comprising a spark ignition circuit associated with the cylinder and including trigger means operative to cause an ignition spark, means for generating a control pulse associated with the cylinder, latch means for enabling the trigger means in response to generation of the control pulse, means for generating a constant plurality of sequentially occurring electrical reference pulses during each revolution of the crankshaft, means for counting the reference pulses developed during each revolution of the crankshaft, means for firing the enabled trigger means in response to the counting means counting a predetermined number of the reference pulses to cause the ignition spark at a predetermined ignition point in each revolution of the crankshaft, means for sensing the position of the throttle control, and means responsive to the throttle sensing means for varying the predetermined number of reference pulses solely in accordance with the position of the throttle control to vary the predetermined ignition point as appropriate for the position of the throttle control.

  4. Tissue engineered constructs for peripheral nerve surgery

    PubMed Central

    Johnson, P. J.; Wood, M. D.; Moore, A. M.; Mackinnon, S. E.

    2013-01-01

    Summary Background Tissue engineering has been defined as “an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. Methods A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. Results Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. Conclusions The field of tissue engineering should consider its challenge to not only meet the autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft. PMID:24385980

  5. Stem cells in bone tissue engineering.

    PubMed

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Mantalaris, Anathathios; Hwang, Yu-Shik

    2010-12-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone.

  6. Cartilage tissue engineering using resorbable scaffolds.

    PubMed

    Rotter, Nicole; Bücheler, Markus; Haisch, Andreas; Wollenberg, Barbara; Lang, Stephan

    2007-01-01

    Cartilage tissue engineering holds considerable promise for orthopaedic and reconstructive head and neck surgery. With an increasingly ageing population, the number of patients affected by arthritis and recurrent joint pain is constantly growing, along with the associated socio-economic costs. In head and neck surgery reconstructive procedures gain increasing importance in multimodal tumour therapies. These procedures require the harvesting of large amounts of donor tissue, which causes significant donor site morbidity. Therefore, in vitro-engineered cartilage may provide for a cost-effective and clinically valuable medical need. This article presents an overview of the clinical background as well as considerations for engineered cartilage in the head and neck, and provides examples of cartilage tissue engineering based on various scaffolds.

  7. Tissue engineering: from research to dental clinics

    PubMed Central

    Rosa, Vinicius; Bona, Alvaro Della; Cavalcanti, Bruno Neves; Nör, Jacques Eduardo

    2013-01-01

    Tissue engineering is an interdisciplinary field that combines the principles of engineering, material and biological sciences toward the development of therapeutic strategies and biological substitutes that restore, maintain, replace or improve biological functions. The association of biomaterials, stem cells, growth and differentiation factors have yielded the development of new treatment opportunities in most of the biomedical areas, including Dentistry. The objective of this paper is to present the principles underlying tissue engineering and the current scenario, the challenges and the perspectives of this area in Dentistry. Significance The growth of tissue engineering as a research field have provided a novel set of therapeutic strategies for biomedical applications. The emerging knowledge arisen from studies in the dental area may translate into new methods for caring or improving the alternatives used to treat patients in the daily clinic. PMID:22240278

  8. Electrical stimulation: a novel tool for tissue engineering.

    PubMed

    Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H

    2013-02-01

    New advances in tissue engineering are being made through the application of different types of electrical stimuli to influence cell proliferation and differentiation. Developments made in the last decade have allowed us to improve the structure and functionality of tissue-engineered products through the use of growth factors, hormones, drugs, physical stimuli, bioreactor use, and two-dimensional (2-D) and three-dimensional (3-D) artificial extracellular matrices (with various material properties and topography). Another potential type of stimulus is electricity, which is important in the physiology and development of the majority of all human tissues. Despite its great potential, its role in tissue regeneration and its ability to influence cell migration, orientation, proliferation, and differentiation has rarely been considered in tissue engineering. This review highlights the importance of endogenous electrical stimulation, gathering the current knowledge on its natural occurrence and role in vivo, discussing the novel methods of delivering this stimulus and examining its cellular and tissue level effects, while evaluating how the technique could benefit the tissue engineering discipline in the future.

  9. The potential impact of bone tissue engineering in the clinic.

    PubMed

    Mishra, Ruchi; Bishop, Tyler; Valerio, Ian L; Fisher, John P; Dean, David

    2016-09-01

    Bone tissue engineering (BTE) intends to restore structural support for movement and mineral homeostasis, and assist in hematopoiesis and the protective functions of bone in traumatic, degenerative, cancer, or congenital malformation. While much effort has been put into BTE, very little of this research has been translated to the clinic. In this review, we discuss current regenerative medicine and restorative strategies that utilize tissue engineering approaches to address bone defects within a clinical setting. These approaches involve the primary components of tissue engineering: cells, growth factors and biomaterials discussed briefly in light of their clinical relevance. This review also presents upcoming advanced approaches for BTE applications and suggests a probable workpath for translation from the laboratory to the clinic. PMID:27549369

  10. Engineering Complex Orthopaedic Tissues via Strategic Biomimicry

    PubMed Central

    Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.

    2014-01-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  11. Engineering complex orthopaedic tissues via strategic biomimicry.

    PubMed

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H

    2015-03-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  12. Engineering complex orthopaedic tissues via strategic biomimicry.

    PubMed

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H

    2015-03-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  13. Imaging challenges in biomaterials and tissue engineering.

    PubMed

    Appel, Alyssa A; Anastasio, Mark A; Larson, Jeffery C; Brey, Eric M

    2013-09-01

    Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.

  14. New Era in Health Care: Tissue Engineering

    PubMed Central

    Parveen, S; Krishnakumar, K; Sahoo, SK

    2006-01-01

    Abstract Tissue engineering is a rapidly expanding field, which applies the principles and methods of physical sciences, life sciences and engineering to understand physiological and pathological systems and to modify and create cells and tissues for therapeutic applications. It has emerged as a rapidly expanding ‘interdisciplinary field’ that is a significant potential alternative wherein tissue and organ failure is addressed by implanting natural, synthetic, or semi synthetic tissue or organ mimics that grow into the required functionality or that are fully functional from the start. This review presents in a comprehensive manner the various considerations for the reconstruction of various tissues and organs as well as the various applications of this young emerging field in different disciplines. PMID:24692857

  15. Silk Fibroin Scaffolds for Urologic Tissue Engineering.

    PubMed

    Sack, Bryan S; Mauney, Joshua R; Estrada, Carlos R

    2016-02-01

    Urologic tissue engineering efforts have been largely focused on bladder and urethral defect repair. The current surgical gold standard for treatment of poorly compliant pathological bladders and severe urethral stricture disease is enterocystoplasty and onlay urethroplasty with autologous tissue, respectively. The complications associated with autologous tissue use and harvesting have led to efforts to develop tissue-engineered alternatives. Natural and synthetic materials have been used with varying degrees of success, but none has proved consistently reliable for urologic tissue defect repair in humans. Silk fibroin (SF) scaffolds have been tested in bladder and urethral repair because of their favorable biomechanical properties including structural strength, elasticity, biodegradability, and biocompatibility. SF scaffolds have been used in multiple animal models and have demonstrated robust regeneration of smooth muscle and urothelium. The pre-clinical data involving SF scaffolds in urologic defect repair are encouraging and suggest that they hold potential for future clinical use.

  16. Engineering Superficial Zone Features in Tissue Engineered Cartilage

    PubMed Central

    Chen, Tony; Hilton, Matthew J.; Brown, Edward B.; Zuscik, Michael J.; Awad, Hani A.

    2013-01-01

    A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here we report that hydrodynamic conditions that mimic the motion-induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features. PMID:23239161

  17. Bioreactors for connective tissue engineering: design and monitoring innovations.

    PubMed

    El Haj, A J; Hampson, K; Gogniat, G

    2009-01-01

    The challenges for the tissue engineering of connective tissue lie in creating off-the-shelf tissue constructs which are capable of providing organs for transplantation. These strategies aim to grow a complex tissue with the appropriate mechanical integrity necessary for functional load bearing. Monolayer culture systems lack correlation with the in vivo environment and the naturally occur ring cell phenotypes. Part of the development of more recent models is to create growth environments or bioreactors which enable three-dimensional culture. Evidence suggests that in order to grow functional load-bearing tissues in a bioreactor, the cells must experience mechanical loading stimuli similar to that experienced in vivo which sets out the requirements for mechanical loading bioreactors. An essential part of developing new bioreactors for tissue growth is identifying ways of routinely and continuously measuring neo-tissue formation and in order to fully identify the successful generation of a tissue implant, the appropriate on-line monitoring must be developed. New technologies are being developed to advance our efforts to grow tissue ex vivo. The bioreactor is a critical part of these developments in supporting growth of biological implants and combining this with new advances in the detection of tissue formation allows us to refine our protocols and move nearer to off-the-shelf implants for clinical applications. PMID:19290498

  18. Bioreactors for Connective Tissue Engineering: Design and Monitoring Innovations

    NASA Astrophysics Data System (ADS)

    Haj, A. J. El; Hampson, K.; Gogniat, G.

    The challenges for the tissue engineering of connective tissue lie in creating off-the-shelf tissue constructs which are capable of providing organs for transplantation. These strategies aim to grow a complex tissue with the appropri ate mechanical integrity necessary for functional load bearing. Monolayer culture systems lack correlation with the in vivo environment and the naturally occur ring cell phenotypes. Part of the development of more recent models is to create growth environments or bioreactors which enable three-dimensional culture. Evidence suggests that in order to grow functional load-bearing tissues in a bioreactor, the cells must experience mechanical loading stimuli similar to that experienced in vivo which sets out the requirements for mechanical loading bioreactors. An essential part of developing new bioreactors for tissue growth is identifying ways of routinely and continuously measuring neo-tissue formation and in order to fully identify the successful generation of a tissue implant, the appropriate on-line monitoring must be developed. New technologies are being developed to advance our efforts to grow tissue ex vivo. The bioreactor is a critical part of these develop ments in supporting growth of biological implants and combining this with new advances in the detection of tissue formation allows us to refine our protocols and move nearer to off-the-shelf implants for clinical applications.

  19. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    PubMed

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals. PMID:24597549

  20. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    PubMed

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  1. Systemic Therapy for Advanced Soft Tissue Sarcoma.

    PubMed

    Sheng, Jennifer Y; Movva, Sujana

    2016-10-01

    Soft tissue sarcomas are rare tumors that present with distant metastasis in up to 10% of patients. Survival has improved significantly because of advancements in histologic classification and improved management approaches. Older agents such as doxorubicin, ifosfamide, gemcitabine, and paclitaxel continue to demonstrate objective response rates from 18% to 25%. Newer agents such as trabectedin, eribulin, aldoxorubicin, and olaratumab have demonstrated improvements in progression-free survival, overall survival, or toxicity profiles. Future studies on treatment of advanced soft tissue sarcoma will continue to concentrate on reducing toxicity, personalization of therapy, and targeting novel pathways. PMID:27542647

  2. Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications

    PubMed Central

    Nicodemus, Garret D.

    2008-01-01

    Abstract Encapsulating cells in biodegradable hydrogels offers numerous attractive features for tissue engineering, including ease of handling, a highly hydrated tissue-like environment for cell and tissue growth, and the ability to form in vivo. Many properties important to the design of a hydrogel scaffold, such as swelling, mechanical properties, degradation, and diffusion, are closely linked to the crosslinked structure of the hydrogel, which is controlled through a variety of different processing conditions. Degradation may be tuned by incorporating hydrolytically or enzymatically labile segments into the hydrogel or by using natural biopolymers that are susceptible to enzymatic degradation. Because cells are present during the gelation process, the number of suitable chemistries and formulations are limited. In this review, we describe important considerations for designing biodegradable hydrogels for cell encapsulation and highlight recent advances in material design and their applications in tissue engineering. PMID:18498217

  3. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.

    PubMed

    Sengupta, Debanti; Heilshorn, Sarah C

    2010-06-01

    A common goal in tissue engineering is to attain the ability to tailor specific cell-scaffold interactions and thereby gain control over cell behavior. The tunable nature of protein-engineered biomaterials enables independent tailoring of a range of biomaterial properties, creating an attractive alternative to synthetic polymeric scaffolds or harvested natural scaffolds. Protein-engineered biomaterials are comprised of modular peptide domains with various functionalities that are encoded into a DNA plasmid, transfected into an organism of choice, and expressed and purified to yield a biopolymer with exact molecular-level sequence specification. Because of the modular design strategy of protein-engineered biomaterials, these scaffolds can be easily modified to enable optimization for specific tissue engineering applications. By including multiple peptide domains with different functionalities in a single, modular biomaterial, the scaffolds can be designed to mimic the diverse properties of the natural extracellular matrix, including cell adhesion, cell signaling, elasticity, and biodegradability. Recently, the field of protein-engineered biomaterials has expanded to include functional modules that are not normally present in the extracellular matrix, thus expanding the scope and functionality of these materials. For example, these modules can include noncanonical amino acids, inorganic-binding domains, and DNA-binding sequences. The modularity, tunability, and sequence specificity of protein-engineered biomaterials make them attractive candidates for use as substrates for a variety of tissue engineering applications. PMID:20141386

  4. The materials used in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-01

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  5. The materials used in bone tissue engineering

    SciTech Connect

    Tereshchenko, V. P. Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  6. Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration

    PubMed Central

    Brown, Patrick T.; Handorf, Andrew M.; Jeon, Won Bae; Li, Wan-Ju

    2014-01-01

    The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation. PMID:23432679

  7. Strategies for cell engineering in tissue repair.

    PubMed

    Brown, R A; Smith, K D; Angus McGrouther, D

    1997-01-01

    Cellular and tissue engineering are new areas of research, currently attracting considerable interest because of the remarkable potential they have for clinical application. Some claims have indeed been dramatic, including the possibility of growing complete, artificial organs, such as the liver. However, amid such long-term aspirations there is the very real possibility that small tissues (artificial grafts) may be fabricated in the near future for use in reconstructive surgery. Logically, we should focus on how it is possible to produce modest, engineered tissues for tissue repair. It is evident that strategies to date either depend on innate information within implanted cells, to reform the target tissue or aim to provide appropriate environmental cues or guidance to direct cell behavior. It is argued here that present knowledge of tissue repair biology points us toward the latter approach, providing external cues which will direct how cells should organize the new tissue. This will be particularly true where we need to reproduce microscopic and ultrastructural features of the original tissue architecture. A number of such cues have been identified, and methods are already available, including substrate chemistry, substrate contact guidance, mechanical loading, and biochemical mediators to provide these cues. Examples of these are already being used with some success to control the formation of tissue structures.

  8. Composite tissue engineering on polycaprolactone nanofiber scaffolds.

    PubMed

    Reed, Courtney R; Han, Li; Andrady, Anthony; Caballero, Montserrat; Jack, Megan C; Collins, James B; Saba, Salim C; Loboa, Elizabeth G; Cairns, Bruce A; van Aalst, John A

    2009-05-01

    Tissue engineering has largely focused on single tissue-type reconstruction (such as bone); however, the basic unit of healing in any clinically relevant scenario is a compound tissue type (such as bone, periosteum, and skin). Nanofibers are submicron fibrils that mimic the extracellular matrix, promoting cellular adhesion, proliferation, and migration. Stem cell manipulation on nanofiber scaffolds holds significant promise for future tissue engineering. This work represents our initial efforts to create the building blocks for composite tissue reflecting the basic unit of healing. Polycaprolactone (PCL) nanofibers were electrospun using standard techniques. Human foreskin fibroblasts, murine keratinocytes, and periosteal cells (4-mm punch biopsy) harvested from children undergoing palate repair were grown in appropriate media on PCL nanofibers. Human fat-derived mesenchymal stem cells were osteoinduced on PCL nanofibers. Cell growth was assessed with fluorescent viability staining; cocultured cells were differentiated using antibodies to fibroblast- and keratinocyte-specific surface markers. Osteoinduction was assessed with Alizarin red S. PCL nanofiber scaffolds supported robust growth of fibroblasts, keratinocytes, and periosteal cells. Cocultured periosteal cells (with fibroblasts) and keratinocytes showed improved longevity of the keratinocytes, though growth of these cell types was randomly distributed throughout the scaffold. Robust osteoinduction was noted on PCL nanofibers. Composite tissue engineering using PCL nanofiber scaffolds is possible, though the major obstacles to the trilaminar construct are maintaining an appropriate interface between the tissue types and neovascularization of the composite structure. PMID:19387150

  9. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    PubMed Central

    Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan

    2012-01-01

    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283

  10. Bioreactor-Based Tumor Tissue Engineering

    PubMed Central

    Guller, A.E.; Grebenyuk, P.N.; Shekhter, A.B.; Zvyagin, A.V.; Deyev, S. M.

    2016-01-01

    This review focuses on modeling of cancer tumors using tissue engineering technology. Tumor tissue engineering (TTE) is a new method of three-dimensional (3D) simulation of malignant neoplasms. Design and development of complex tissue engineering constructs (TECs) that include cancer cells, cell-bearing scaffolds acting as the extracellular matrix, and other components of the tumor microenvironment is at the core of this approach. Although TECs can be transplanted into laboratory animals, the specific aim of TTE is the most realistic reproduction and long-term maintenance of the simulated tumor properties in vitro for cancer biology research and for the development of new methods of diagnosis and treatment of malignant neoplasms. Successful implementation of this challenging idea depends on bioreactor technology, which will enable optimization of culture conditions and control of tumor TECs development. In this review, we analyze the most popular bioreactor types in TTE and the emerging applications. PMID:27795843

  11. Extracellular Matrix Revisited: Roles in Tissue Engineering

    PubMed Central

    2016-01-01

    The extracellular matrix (ECM) is a heterogeneous, connective network composed of fibrous glycoproteins that coordinate in vivo to provide the physical scaffolding, mechanical stability, and biochemical cues necessary for tissue morphogenesis and homeostasis. This review highlights some of the recently raised aspects of the roles of the ECM as related to the fields of biophysics and biomedical engineering. Fundamental aspects of focus include the role of the ECM as a basic cellular structure, for novel spontaneous network formation, as an ideal scaffold in tissue engineering, and its essential contribution to cell sheet technology. As these technologies move from the laboratory to clinical practice, they are bound to shape the vast field of tissue engineering for medical transplantations. PMID:27230457

  12. Nanostructured scaffolds for bone tissue engineering.

    PubMed

    Li, Xiaoming; Wang, Lu; Fan, Yubo; Feng, Qingling; Cui, Fu-Zhai; Watari, Fumio

    2013-08-01

    It has been demonstrated that nanostructured materials, compared with conventional materials, may promote greater amounts of specific protein interactions, thereby more efficiently stimulating new bone formation. It has also been indicated that, when features or ingredients of scaffolds are nanoscaled, a variety of interactions can be stimulated at the cellular level. Some of those interactions induce favorable cellular functions while others may leads to toxicity. This review presents the mechanism of interactions between nanoscaled materials and cells and focuses on the current research status of nanostructured scaffolds for bone tissue engineering. Firstly, the main requirements for bone tissue engineering scaffolds were discussed. Then, the mechanism by which nanoscaled materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed.

  13. Tissue Engineered Strategies for Pseudoarthrosis

    PubMed Central

    Longo, Umile Giuseppe; Trovato, Ugo; Loppini, Mattia; Rizzello, Giacomo; Khan, Wasim Sardar; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Numerous classification systems of non-union have been proposed based on: presence or absence of infection, radiographic features, clinical findings, biologic activity, location and shape. The management of pseudarthrosis is strongly related to the type of non-union (infected versus uninfected, atrophic versus hypertrophic). Surgical management of pseudarthrosis is generally effective with a success rate ranging from 75 to 100%. Nevertheless, in a relatively high number of instances several combined treatments are required for the fracture healing. The current gold standard to stimulate the bone regeneration is represented by the revision surgery with the application of autologous bone grafts. However, several approaches have been described to promote and enhance the bone tissue regeneration, including extracorporeal shock wave therapy (ESWT), ultrasound, electromagnetic, bone morphogenic proteins (BMPs) and platelet-rich-plasma (PRP). The aim of the present study was to perform a systematic review of the literature evaluating the current therapies to promote and enhance the bone tissue healing. The systematic review was performed according to PRISMA guidelines with a PRISMA checklist and algorithm. Limitations of the present systematic review are mainly related to the scanty quality of the studies available in the literature. Although the therapies previously described for the management of patients with non-unions seems to be effective, the limitations of the included studies, especially the extensive clinical heterogeneity, make not possible to provide clear recommendations regarding the application of these approaches. The problems remain the need to better understand the most effective treatment options, subject to surgical stabilization as a first step. PMID:23248729

  14. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  15. Bioactive polymers for cardiac tissue engineering

    NASA Astrophysics Data System (ADS)

    Wall, Samuel Thomas

    2007-05-01

    Prevalent in the US and worldwide, acute myocardial infarctions (AMI) can cause ischemic injuries to the heart that persist and lead to progressive degradation of the organ. Tissue engineering techniques exploiting biomaterials present a hopeful means of treating these injuries, either by mechanically stabilizing the injured ventricle, or by fostering cell growth to replace myocytes lost to damage. This thesis describes the development and testing of a synthetic extracellular matrix for cardiac tissue engineering applications. The first stage of this process was using an advanced finite element model of an injured ovine left ventricle to evaluate the potential benefits of injecting synthetic materials into the heart. These simulations indicated that addition of small amounts non-contractile material (on the order of 1--5% total wall volume) to infarct border zone regions reduced pathological systolic fiber stress to levels near those found in normal remote regions. Simulations also determined that direct addition to the infarct itself caused increases in ventricle ejection fraction while the underlying performance of the pump, ascertained by the Starling relation, was not improved. From these theoretical results, biomaterials were developed specifically for injection into the injured myocardium, and were characterized and tested for their mechanical properties and ability to sustain the proliferation of a stem cell population suitable for transplantation. Thermoresponsive synthetic copolymer hydrogels consisting of N-isopropylacrylamide and acrylic acid, p(NIPAAm-co-AAc), crosslinked with protease degradable amino acid sequences and modified with integrin binding ligands were synthesized, characterized in vitro, and used for myocardial implantation. These injectable materials could maintain a population of bone marrow derived mesenchymal stem cells in both two dimensional and three dimensional culture, and when tested in vivo in a murine infarct model they

  16. Electrical stimulation systems for cardiac tissue engineering

    PubMed Central

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087

  17. Electrical stimulation systems for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures.

  18. Bioactive scaffolds for engineering vascularized cardiac tissues

    PubMed Central

    Chiu, Loraine; Radisic, Milica; Vunjak-Novakovic, Gordana

    2013-01-01

    Functional vascularization is a key requirement for the development and function of most tissues, and most critically cardiac muscle. Rapid and irreversible loss of cardiomyocytes during cardiac infarction directly results from the lack of blood supply. Contractile cardiac grafts, engineered using cardiovascular cells in conjunction with biomaterial scaffolds, are an actively studied method for cardiac repair. In this article, we focus on biomaterial scaffolds designed to mediate the development and maturation of vascular networks, by immobilized growth factors. The interactive effects of multiple vasculogenic factors are discussed in the context of cardiac tissue engineering. PMID:20857391

  19. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING

    PubMed Central

    Sant, Shilpa; Hancock, Matthew J.; Donnelly, Joseph P.; Iyer, Dharini; Khademhosseini, Ali

    2011-01-01

    During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell–material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell–material interactions in context with the long-term goals of tissue engineering. PMID:21874065

  20. Recombinant protein scaffolds for tissue engineering.

    PubMed

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-02-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation.

  1. Silk hydrogel for cartilage tissue engineering

    PubMed Central

    Chao, Pen-Hsiu Grace; Yodmuang, Supansa; Wang, Xiaoqin; Sun, Lin; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2011-01-01

    Cartilage tissue engineering based on cultivation of immature chondrocytes in agarose hydrogel can yield tissue constructs with biomechanical properties comparable to native cartilage. However, agarose is immunogenic and non-degradable, and our capability to modify the structure, composition, and mechanical properties of this material is rather limited. In contrast, silk hydrogel is biocompatible and biodegradable, and it can be produced using a water-based method without organic solvents that enables precise control of structural and mechanical properties in a range of interest for cartilage tissue engineering. We observed that one particular preparation of silk hydrogel yielded cartilaginous constructs with biochemical content and mechanical properties matching constructs based on agarose. This finding and the possibility to vary the properties of silk hydrogel motivated this study of the factors underlying the suitability of hydrogels for cartilage tissue engineering. We present data resulting from a systematic variation of silk hydrogel properties, silk extraction method, gel concentration, and gel structure. Data suggest that silk hydrogel can be used as a tool for studies of the hydrogel-related factors and mechanisms involved in cartilage formation, as well as a tailorable and fully degradable scaffold for cartilage tissue engineering. PMID:20725950

  2. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering

    PubMed Central

    Chang, H.M.; Wang, Z.H.; Luo, H.N.; Xu, M.; Ren, X.Y.; Zheng, G.X.; Wu, B.J.; Zhang, X.H.; Lu, X.Y.; Chen, F.; Jing, X.H.; Wang, L.

    2014-01-01

    Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-based scaffolds in tissue engineering. Advances in the preparation, modification, and application of PHBHHx scaffolds are discussed. PMID:25003631

  3. Peptide Amphiphiles in Corneal Tissue Engineering

    PubMed Central

    Miotto, Martina; Gouveia, Ricardo M.; Connon, Che J.

    2015-01-01

    The increasing interest in effort towards creating alternative therapies have led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues. This has been particularly evident in the development of new approaches applied to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a response to the shortage of donor tissue and the lack of suitable alternative biological scaffolds preventing the treatment of millions of blind people worldwide. This review is focused on recent developments in corneal tissue engineering, specifically on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide amphiphiles have generated great interest as therapeutic molecules, both in vitro and in vivo. Here we introduce this rapidly developing field, and examine innovative applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue in vitro. The advantages of peptide amphiphiles over other biomaterials, namely their wide range of functions and applications, versatility, and transferability are also discussed to better understand how these fascinating molecules can help solve current challenges in corneal regeneration. PMID:26258796

  4. Stem Cells and Scaffolds for Vascularizing Engineered Tissue Constructs

    NASA Astrophysics Data System (ADS)

    Luong, E.; Gerecht, S.

    The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.

  5. Bioreactor Technology in Cardiovascular Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Mertsching, H.; Hansmann, J.

    Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.

  6. Outlook for Tissue Engineering of the Tympanic Membrane

    PubMed Central

    Villar-Fernandez, Maria A.; Lopez-Escamez, Jose A.

    2015-01-01

    Tympanic membrane perforation is a common problem leading to hearing loss. Despite the autoregenerative activity of the eardrum, chronic perforations require surgery using different materials, from autologous tissue - fascia, cartilage, fat or perichondrium - to paper patch. However, both, surgical procedures (myringoplasty or tympanoplasty) and the materials employed, have a number of limitations. Therefore, the advances in this field are incorporating the principles of tissue engineering, which includes the use of scaffolds, biomolecules and cells. This discipline allows the development of new biocompatible materials that reproduce the structure and mechanical properties of the native tympanic membrane, while it seeks to implement new therapeutic approaches that can be performed in an outpatient setting. Moreover, the creation of an artificial tympanic membrane commercially available would reduce the duration of the surgery and costs. The present review analyzes the current treatment of tympanic perforations and examines the techniques of tissue engineering, either to develop bioartificial constructs, or for tympanic regeneration by using different scaffold materials, bioactive molecules and cells. Finally, it considers the aspects regarding the design of scaffolds, release of biomolecules and use of cells that must be taken into account in the tissue engineering of the eardrum. The possibility of developing new biomaterials, as well as constructs commercially available, makes tissue engineering a discipline with great potential, capable of overcoming the drawbacks of current surgical procedures. PMID:26557361

  7. Dentin Matrix Proteins in Bone Tissue Engineering.

    PubMed

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering.

  8. Cell–scaffold interaction within engineered tissue

    SciTech Connect

    Chen, Haiping; Liu, Yuanyuan Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  9. Chitosan-based scaffolds for bone tissue engineering

    PubMed Central

    Levengood, Sheeny Lan; Zhang, Miqin

    2014-01-01

    Bone defects requiring grafts to promote healing are frequently occurring and costly problems in health care. Chitosan, a biodegradable, naturally occurring polymer, has drawn considerable attention in recent years as scaffolding material in tissue engineering and regenerative medicine. Chitosan is especially attractive as a bone scaffold material because it supports the attachment and proliferation of osteoblast cells as well as formation of mineralized bone matrix. In this review, we discuss the fundamentals of bone tissue engineering and the unique properties of chitosan as a scaffolding material to treat bone defects for hard tissue regeneration. We present the common methods for fabrication and characterization of chitosan scaffolds, and discuss the influence of material preparation and addition of polymeric or ceramic components or biomolecules on chitosan scaffold properties such as mechanical strength, structural integrity, and functional bone regeneration. Finally, we highlight recent advances in development of chitosan-based scaffolds with enhanced bone regeneration capability. PMID:24999429

  10. Injectable Biomaterials for Adipose Tissue Engineering

    PubMed Central

    Young, D. Adam; Christman, Karen L.

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect, and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers, but also promote in vivo adipogenesis is beginning to be realized. This review will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers, and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. PMID:22456805

  11. Vascularization in bone tissue engineering constructs

    PubMed Central

    Mercado-Pagán, Ángel E.; Stahl, Alexander M.; Shanjani, Yaser; Yang, Yunzhi

    2016-01-01

    Vascularization of large bone grafts is one of the main challenges of bone tissue engineering (BTE), and has held back the clinical translation of engineered bone constructs for two decades so far. The ultimate goal of vascularized BTE constructs is to provide a bone environment rich in functional vascular networks to achieve efficient osseointegration and accelerate restoration of function after implantation. To attain both structural and vascular integration of the grafts, a large number of biomaterials, cells, and biological cues have been evaluated. This review will present biological considerations for bone function restoration, contemporary approaches for clinical salvage of large bone defects and their limitations, state-of-the-art research on the development of vascularized bone constructs, and perspectives on evaluating and implementing novel BTE grafts in clinical practice. Success will depend on achieving full graft integration at multiple hierarchical levels, both between the individual graft components as well as between the implanted constructs and their surrounding host tissues. The paradigm of vascularized tissue constructs could not only revolutionize the progress of bone tissue engineering, but could also be readily applied to other fields in regenerative medicine for the development of new innovative vascularized tissue designs. PMID:25616591

  12. Tailored carbon nanotubes for tissue engineering applications.

    PubMed

    Veetil, Jithesh V; Ye, Kaiming

    2009-01-01

    A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT-based tissue engineering applications. This review focuses on the recent developments of CNT-based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT's biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenicity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials.

  13. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  14. [Stem cells and tissue engineering techniques].

    PubMed

    Sica, Gigliola

    2013-01-01

    The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.

  15. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  16. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  17. Ocular tissue engineering: current and future directions.

    PubMed

    Karamichos, D

    2015-01-01

    Tissue engineering (TE) is a concept that was first emerged in the early 1990s to provide solutions to severe injured tissues and/or organs [1]. The dream was to be able to restore and replace the damaged tissue with an engineered version which would ultimately help overcome problems such as donor shortages, graft rejections, and inflammatory responses following transplantation. While an incredible amount of progress has been made, suggesting that TE concept is viable, we are still not able to overcome major obstacles. In TE, there are two main strategies that researchers have adopted: (1) cell-based, where cells are been manipulated to create their own environment before transplanted to the host, and (2) scaffold-based, where an extracellular matrix is created to mimic in vivo structures. TE approaches for ocular tissues are available and have indeed come a long way, over the last decades; however more clinically relevant ocular tissue substitutes are needed. Figure 1 highlights the importance of TE in ocular applications and indicates the avenues available based on each tissue.[...]. PMID:25695336

  18. Advances in engineering science, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Proceedings from a conference on engineering advances are presented, including materials science, fracture mechanics, and impact and vibration testing. The tensile strength and moisture transport of laminates are also discussed.

  19. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  20. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time. PMID:17817782

  1. Engineered whole organs and complex tissues.

    PubMed

    Badylak, Stephen F; Weiss, Daniel J; Caplan, Arthur; Macchiarini, Paolo

    2012-03-10

    End-stage organ failure is a key challenge for the medical community because of the ageing population and the severe shortage of suitable donor organs available. Equally, injuries to or congenital absence of complex tissues such as the trachea, oesophagus, or skeletal muscle have few therapeutic options. A new approach to treatment involves the use of three-dimensional biological scaffolds made of allogeneic or xenogeneic extracellular matrix derived from non-autologous sources. These scaffolds can act as an inductive template for functional tissue and organ reconstruction after recellularisation with autologous stem cells or differentiated cells. Such an approach has been used successfully for the repair and reconstruction of several complex tissues such as trachea, oesophagus, and skeletal muscle in animal models and human beings, and, guided by appropriate scientific and ethical oversight, could serve as a platform for the engineering of whole organs and other tissues.

  2. 3D printing of functional biomaterials for tissue engineering.

    PubMed

    Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen

    2016-08-01

    3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed. PMID:27043763

  3. Hydroxyapatite-reinforced collagen tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Kane, Robert J.

    Scaffolds have been fabricated from a wide variety of materials and most have showed some success, either as bone graft substitutes or as tissue engineering scaffolds. However, all current scaffold compositions and architectures suffer from one or more flaws including poor mechanical properties, lack of biological response, nondegradability, or a scaffold architecture not conducive to osteointegration. Biomimetic approaches to scaffold design using the two main components of bone tissue, collagen and hydroxyapatite, resulted in scaffolds with superior biological properties but relatively poor mechanical properties and scaffold architecture. It was hypothesized that by optimizing scaffold composition and architecture, HA-collagen bone tissue engineering scaffolds could provide both an excellent biological response along with improved structural properties. The mechanical properties of freeze-dried HA-collagen scaffolds, the most common type of porous HA-collagen material, were first shown to be increased by the addition of HA reinforcements, but scaffold stiffness still fell far short of the desired range. Based on limitations inherent in the freeze-dried process, a new type of leached-porogen scaffold fabrication process was developed. Proof-of-concept scaffolds demonstrated the feasibility of producing leached-porogen HA-collagen materials, and the scaffold architecture was optimized though careful selection of porogen particle size and shape along with an improved crosslinking technique. The final scaffolds exhibited substantially increased compressive modulus compared to previous types HA-collagen scaffolds, while the porosity, pore size, and scaffold permeability were tailored to be suitable for bone tissue ingrowth. An in vitro study demonstrated the capacity of the leached-porogen scaffolds to serve as a substrate for the differentiation of osteoblasts and subsequent production of new bone tissue. The new leached-porogen scaffold HA-collagen scaffolds were

  4. Advanced space engine preliminary design

    NASA Technical Reports Server (NTRS)

    Cuffe, J. P. B.; Bradie, R. E.

    1973-01-01

    A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.

  5. Imaging challenges in biomaterials and tissue engineering

    PubMed Central

    Appel, Alyssa A.; Anastasio, Mark A.; Larson, Jeffery C.; Brey, Eric M.

    2013-01-01

    Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development. PMID:23768903

  6. Multimodal evaluation of tissue-engineered cartilage

    PubMed Central

    Mansour, Joseph M.; Welter, Jean F.

    2012-01-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  7. Angiogenesis, cell differentiation and cell survival in tissue engineering and cancer research

    PubMed Central

    Tilkorn, Daniel Johannes

    2015-01-01

    Recent medical advances lead to a growing demand for tissue engineering and regenerative medicine in the future. Tissue engineering and regenerative medicine aim to create substitute tissue or restore lost or impaired tissue by combining biological science with engineering techniques, whereas cancer research faces the challenge to identify and hinder aberrant and uncontrolled cell growth. These two seemingly opposing fields of research share fundamental communalities. This review focuses on the shared underlying biological processes. Exploring these mechanisms of tissue growth and homeostasis from different angles will allow for creative novel approaches for both areas of research. PMID:26504737

  8. Tubular heart valves from decellularized engineered tissue.

    PubMed

    Syedain, Zeeshan H; Meier, Lee A; Reimer, Jay M; Tranquillo, Robert T

    2013-12-01

    A novel tissue-engineered heart valve (TEHV) was fabricated from a decellularized tissue tube mounted on a frame with three struts, which upon back-pressure cause the tube to collapse into three coapting "leaflets." The tissue was completely biological, fabricated from ovine fibroblasts dispersed within a fibrin gel, compacted into a circumferentially aligned tube on a mandrel, and matured using a bioreactor system that applied cyclic distension. Following decellularization, the resulting tissue possessed tensile mechanical properties, mechanical anisotropy, and collagen content that were comparable to native pulmonary valve leaflets. When mounted on a custom frame and tested within a pulse duplicator system, the tubular TEHV displayed excellent function under both aortic and pulmonary conditions, with minimal regurgitant fractions and transvalvular pressure gradients at peak systole, as well as well as effective orifice areas exceeding those of current commercially available valve replacements. Short-term fatigue testing of one million cycles with pulmonary pressure gradients was conducted without significant change in mechanical properties and no observable macroscopic tissue deterioration. This study presents an attractive potential alternative to current tissue valve replacements due to its avoidance of chemical fixation and utilization of a tissue conducive to recellularization by host cell infiltration.

  9. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  10. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering. PMID:26545741

  11. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications.

  12. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  13. Vascular tissue engineering: the next generation.

    PubMed

    Cleary, Muriel A; Geiger, Erik; Grady, Conor; Best, Cameron; Naito, Yuji; Breuer, Christopher

    2012-07-01

    It is the ultimate goal of tissue engineering: an autologous tissue engineered vascular graft (TEVG) that is immunologically compatible, nonthrombogenic, and can grow and remodel. Currently, native vessels are the preferred vascular conduit for procedures such as coronary artery bypass (CABG) or peripheral bypass surgery. However, in many cases these are damaged, have already been harvested, or are simply unusable. The use of synthetic conduits is severely limited in smaller diameter vessels due to increased incidence of thrombosis, infection, and graft failure. Current research has therefore energetically pursued the development of a TEVG that can incorporate into a patient's circulatory system, mimic the vasoreactivity and biomechanics of the native vasculature, and maintain long-term patency. PMID:22695236

  14. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  15. Electrospun Nanofibers for Neural and Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Xia, Younan

    2009-03-01

    Electrospinning has been exploited for almost one century to process polymers and other materials into nanofibers with controllable compositions, diameters, porosities, and porous structures for a variety of applications. Owing to its small size, high porosity, and large surface area, a nonwoven mat of electrospun nanofibers can serve as an ideal scaffold to mimic the extra cellular matrix for cell attachment and nutrient transportation. The nanofiber itself can also be functionalized through encapsulation or attachment of bioactive species such as extracellular matrix proteins, enzymes, and growth factors. In addition, the nanofibers can be further assembled into a variety of arrays or architectures by manipulating their alignment, stacking, or folding. All these attributes make electrospinning a powerful tool for generating nanostructured materials for a range of biomedical applications that include controlled release, drug delivery, and tissue engineering. This talk will focus on the use of electrospun nanofibers as scaffolds for neural and bone tissue engineering.

  16. Metallic Nanomaterials for Bone Tissue Engineering.

    PubMed

    Dhivya, S; Ajita, J; Selvamurugan, N

    2015-10-01

    Conventional grafting techniques for bone regeneration are currently being replaced by tissue engineering approaches of using 3D biomimetic materials. Of these biomaterials, metals have the highest mechanical strength; moreover, they play a major role in accelerating bone formation and promoting bone regeneration. They act as cofactors for enzymes, serving as a structural component of bone forming enzymes and proteins, stimulating angiogenesis, increasing extra-cellular matrix synthesis, promoting bone formation, and inhibiting bone resorption. Metals have the inherent ability to promote osseointegration and osteoconductivity and possess antimicrobial activity. The current developments in bone tissue engineering focus on metal surface modifications by physical and chemical treatments to improve their bioactivity. Based on the recent literature available, this review aims at discussing the biological role of metals, namely Zn, Ti, Zr, B, Sr, Mg, Ag, and Cu along with their surface modifications for significantly enhanced bone regeneration.

  17. Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Cui, Xiaofeng; Boland, Thomas; D’Lima, Darryl D.; Lotz, Martin K.

    2013-01-01

    With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting living systems and the bioprinting in tissue engineering field. PMID:22436025

  18. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  19. Novel detergent for whole organ tissue engineering.

    PubMed

    Kawasaki, Takanori; Kirita, Yuhei; Kami, Daisuke; Kitani, Tomoya; Ozaki, Chisa; Itakura, Yoko; Toyoda, Masashi; Gojo, Satoshi

    2015-10-01

    Whole organ tissue engineering for various organs, including the heart, lung, liver, and kidney, has demonstrated promising results for end-stage organ failure. However, the sodium dodecyl sulfate (SDS)-based protocol for standard decellularization has drawbacks such as clot formation in vascularized transplantation and poor cell engraftment in recellularization procedures. Preservation of the surface milieu of extracellular matrices (ECMs) might be crucial for organ generation based on decellularization/recellularization engineering. We examined a novel detergent, sodium lauryl ether sulfate (SLES), to determine whether it could overcome the drawbacks associated with SDS using rat heart and kidney. Both organs were perfused in an antegrade fashion with either SLES or SDS. Although immunohistochemistry for collagen I, IV, laminin, and fibronectin showed similar preservation in both detergents, morphological analysis using scanning electron microscopy and an assay of glycosaminoglycan content on ECMs showed that SLES-treated tissues had better-preserved ECMs than SDS-treated tissues. Mesenteric transplantation revealed SLES did not induce significant inflammation, as opposed to SDS. Platelet adhesion to decellularized tissues was significantly reduced with SLES. Overall, SLES could replace older detergents such as SDS in the decellularization process for generation of transplantable recellularized organs.

  20. Oxygen Delivering Biomaterials for Tissue Engineering

    PubMed Central

    Farris, Ashley L.; Rindone, Alexandra N.; Grayson, Warren L.

    2016-01-01

    Tissue engineering (TE) has provided promising strategies for regenerating tissue defects, but few TE approaches have been translated for clinical applications. One major barrier in TE is providing adequate oxygen supply to implanted tissue scaffolds, since oxygen diffusion from surrounding vasculature in vivo is limited to the periphery of the scaffolds. Moreover, oxygen is also an important signaling molecule for controlling stem cell differentiation within TE scaffolds. Various technologies have been developed to increase oxygen delivery in vivo and enhance the effectiveness of TE strategies. Such technologies include hyperbaric oxygen therapy, perfluorocarbon- and hemoglobin-based oxygen carriers, and oxygen-generating, peroxide-based materials. Here, we provide an overview of the underlying mechanisms and how these technologies have been utilized for in vivo TE applications. Emerging technologies and future prospects for oxygen delivery in TE are also discussed to evaluate the progress of this field towards clinical translation. PMID:27453782

  1. Scaffold-free tissue engineering: organization of the tissue cytoskeleton and its effects on tissue shape.

    PubMed

    Czajka, Caitlin A; Mehesz, Agnes Nagy; Trusk, Thomas C; Yost, Michael J; Drake, Christopher J

    2014-05-01

    Work described herein characterizes tissues formed using scaffold-free, non-adherent systems and investigates their utility in modular approaches to tissue engineering. Immunofluorescence analysis revealed that all tissues formed using scaffold-free, non-adherent systems organize tissue cortical cytoskeletons that appear to be under tension. Tension in these tissues was also evident when modules (spheroids) were used to generate larger tissues. Real-time analysis of spheroid fusion in unconstrained systems illustrated modular motion that is compatible with alterations in tensions, due to the process of disassembly/reassembly of the cortical cytoskeletons required for module fusion. Additionally, tissues generated from modules placed within constrained linear molds, which restrict modular motion, deformed upon release from molds. That tissue deformation is due in full or in part to imbalanced cortical actin cytoskeleton tensions resulting from the constraints imposed by mold systems is suggested from our finding that treatment of forming tissues with Y-27632, a selective inhibitor of ROCK phosphorylation, reduced tissue deformation. Our studies suggest that the deformation of scaffold-free tissues due to tensions mediated via the tissue cortical cytoskeleton represents a major and underappreciated challenge to modular tissue engineering.

  2. Micro and nanotechnologies in heart valve tissue engineering.

    PubMed

    Hasan, Anwarul; Saliba, John; Pezeshgi Modarres, Hassan; Bakhaty, Ahmed; Nasajpour, Amir; Mofrad, Mohammad R K; Sanati-Nezhad, Amir

    2016-10-01

    Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs.

  3. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    PubMed

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation.

  4. The Application of Tissue Engineering Procedures to Repair the Larynx

    ERIC Educational Resources Information Center

    Ringel, Robert L.; Kahane, Joel C.; Hillsamer, Peter J.; Lee, Annie S.; Badylak, Stephen F.

    2006-01-01

    The field of tissue engineering/regenerative medicine combines the quantitative principles of engineering with the principles of the life sciences toward the goal of reconstituting structurally and functionally normal tissues and organs. There has been relatively little application of tissue engineering efforts toward the organs of speech, voice,…

  5. PROTEIN TEMPLATES IN HARD TISSUE ENGINEERING

    PubMed Central

    George, Anne; Ravindran, Sriram

    2010-01-01

    Biomineralization processes such as formation of bones and teeth require controlled mineral deposition and self-assembly into hierarchical biocomposites with unique mechanical properties. Ideal biomaterials for regeneration and repair of hard tissues must be biocompatible, possess micro and macroporosity for vascular invasion, provide surface chemistry and texture that facilitate cell attachment, proliferation, differentiation of lineage specific progenitor cells, and induce deposition of calcium phosphate mineral. To expect in-vivo like cellular response several investigators have used extracellular matrix proteins as templates to recreate in-vivo microenvironment for regeneration of hard tissues. Recently, several novel methods of designing tissue repair and restoration materials using bioinspired strategies are currently being formulated. Nanoscale structured materials can be fabricated via the spontaneous organization of self-assembling proteins to construct hierarchically organized nanomaterials. The advantage of such a method is that polypeptides can be specifically designed as building blocks incorporated with molecular recognition features and spatially distributed bioactive ligands that would provide a physiological environment for cells in-vitro and in-vivo. This is a rapidly evolving area and provides a promising platform for future development of nanostructured templates for hard tissue engineering. In this review we try to highlight the importance of proteins as templates for regeneration and repair of hard tissues as well as the potential of peptide based nanomaterials for regenerative therapies. PMID:20802848

  6. Biomaterial systems for orthopedic tissue engineering

    NASA Astrophysics Data System (ADS)

    Spoerke, Erik David

    2003-06-01

    The World Health Organization has estimated that one out of seven Americans suffers from a musculoskeletal impairment, annually incurring 28.6 million musculoskeletal injuries---more than half of all injuries. Bone tissue engineering has evolved rapidly to address this continued health concern. In the last decade, the focus of orthopedic biomaterials design has shifted from the use of common engineering metals and plastics to smart materials designed to mimic nature and elicit favorable bioresponse. Working within this new paradigm, this thesis explores unique chemical and materials systems for orthopedic tissue engineering. Improving on current titanium implant technologies, porous titanium scaffolds were utilized to better approximate the mechanical and structural properties of natural bone. These foam scaffolds were enhanced with bioactive coatings, designed to enhance osteoblastic implant colonization. The biopolymer poly(L-lysine) was incorporated into both hydroxypatite and octacalcium phosphate mineral phases to create modified organoapatite and pLys-CP coatings respectively. These coatings were synthesized and characterized on titanium surfaces, including porous structures such as titanium mesh and titanium foam. In addition, in vitro osteoblastic cell culture experiments probed the biological influences of these coatings. Organoapatite (OA) accelerated preosteoblastic colonization of titanium mesh and improved cellular ingrowth into titanium foam. Alternatively, the thin, uniform pLys-CP coating demonstrated significant potential as a substrate for chemically binding biological molecules and supramolecular assemblies. Biologically, pLys-CP demonstrated enhanced cellular attachment over titanium and inorganic calcium phosphate controls. Supramolecular self-assembled nanofiber assemblies were also explored both as stand-alone tissue engineering gels and as titanium coatings. Self-supporting nanofiber gels induced accelerated, biomimetic mineralization

  7. Tissue engineering and regenerative medicine in musculoskeletal oncology.

    PubMed

    Holzapfel, Boris Michael; Wagner, Ferdinand; Martine, Laure Christine; Reppenhagen, Stephan; Rudert, Maximilian; Schuetz, Michael; Denham, Jim; Schantz, Jan-Thorsten; Hutmacher, Dietmar Werner

    2016-09-01

    Currently used surgical techniques to reconstruct tissue defects after resection of musculoskeletal tumours are associated with high complication rates. This drives a strong demand for innovative therapeutic concepts that are able to improve the clinical outcomes of patients suffering from bone and soft tissue tumours. Tissue engineering and regenerative medicine (TE&RM) provides a technology platform based on biochemical, molecular, cellular and biomaterials modules to selectively direct tissue healing processes for improved defect regeneration. At the same time, precautionary measures have to be taken when these instruments are used in cancer patients to prevent any promotion of tumour growth or metastatic spread. On the other hand, several innovative TE&RM tools are being developed such as multi-functionalized biomaterials, drug-delivering nanomaterials or genetically engineered stem cells that per se have the potential to mediate anti-cancer effects, act synergistically with currently used chemotherapeutics and/or radiotherapy regimens and reduce their side effects. Recently, scientists became conscious that TE&RM strategies may not only be utilized to advance contemporary tissue reconstruction techniques but also to develop personalized diagnostic tools and clinically relevant disease models for cancer patients. Eventually, prospective randomized clinical trials combined with comparative outcome analyses are a conditio sine qua non to shape the benefits of personalized regenerative therapies for the standardized management of patients with musculoskeletal tumours. PMID:27566370

  8. Matrices and Scaffolds for DNA Delivery in Tissue Engineering

    PubMed Central

    De Laporte, Laura; Shea, Lonnie D.

    2007-01-01

    Regenerative medicine aims to create functional tissue replacements, typically through creating a controlled environment that promotes and directs the differentiation of stem or progenitor cells, either endogenous or transplanted. Scaffolds serve a central role in many strategies by providing the means to control the local environment. Gene delivery from the scaffold represents a versatile approach to manipulating the local environment for directing cell function. Research at the interface of biomaterials, gene therapy, and drug delivery has identified several design parameters for the vector and the biomaterial scaffold that must be satisfied. Progress has been made towards achieving gene delivery within a tissue engineering scaffold, though the design principles for the materials and vectors that produce efficient delivery require further development. Nevertheless, these advances in obtaining transgene expression with the scaffold have created opportunities to develop greater control of either delivery or expression and to identify the best practices for promoting tissue formation. Strategies to achieve controlled localized expression within the tissue engineering scaffold will have broad application to the regeneration of many tissues, with great promise for clinical therapies. PMID:17512630

  9. Tissue engineering and regenerative medicine in musculoskeletal oncology.

    PubMed

    Holzapfel, Boris Michael; Wagner, Ferdinand; Martine, Laure Christine; Reppenhagen, Stephan; Rudert, Maximilian; Schuetz, Michael; Denham, Jim; Schantz, Jan-Thorsten; Hutmacher, Dietmar Werner

    2016-09-01

    Currently used surgical techniques to reconstruct tissue defects after resection of musculoskeletal tumours are associated with high complication rates. This drives a strong demand for innovative therapeutic concepts that are able to improve the clinical outcomes of patients suffering from bone and soft tissue tumours. Tissue engineering and regenerative medicine (TE&RM) provides a technology platform based on biochemical, molecular, cellular and biomaterials modules to selectively direct tissue healing processes for improved defect regeneration. At the same time, precautionary measures have to be taken when these instruments are used in cancer patients to prevent any promotion of tumour growth or metastatic spread. On the other hand, several innovative TE&RM tools are being developed such as multi-functionalized biomaterials, drug-delivering nanomaterials or genetically engineered stem cells that per se have the potential to mediate anti-cancer effects, act synergistically with currently used chemotherapeutics and/or radiotherapy regimens and reduce their side effects. Recently, scientists became conscious that TE&RM strategies may not only be utilized to advance contemporary tissue reconstruction techniques but also to develop personalized diagnostic tools and clinically relevant disease models for cancer patients. Eventually, prospective randomized clinical trials combined with comparative outcome analyses are a conditio sine qua non to shape the benefits of personalized regenerative therapies for the standardized management of patients with musculoskeletal tumours.

  10. Craniofacial Tissue Engineering by Stem Cells

    PubMed Central

    Mao, J.J.; Giannobile, W.V.; Helms, J.A.; Hollister, S.J.; Krebsbach, P.H.; Longaker, M.T.; Shi, S.

    2008-01-01

    Craniofacial tissue engineering promises the regeneration or de novo formation of dental, oral, and craniofacial structures lost to congenital anomalies, trauma, and diseases. Virtually all craniofacial structures are derivatives of mesenchymal cells. Mesenchymal stem cells are the offspring of mesenchymal cells following asymmetrical division, and reside in various craniofacial structures in the adult. Cells with characteristics of adult stem cells have been isolated from the dental pulp, the deciduous tooth, and the periodontium. Several craniofacial structures—such as the mandibular condyle, calvarial bone, cranial suture, and subcutaneous adipose tissue—have been engineered from mesenchymal stem cells, growth factor, and/or gene therapy approaches. As a departure from the reliance of current clinical practice on durable materials such as amalgam, composites, and metallic alloys, biological therapies utilize mesenchymal stem cells, delivered or internally recruited, to generate craniofacial structures in temporary scaffolding biomaterials. Craniofacial tissue engineering is likely to be realized in the foreseeable future, and represents an opportunity that dentistry cannot afford to miss. PMID:17062735

  11. Shear stress facilitates tissue-engineered odontogenesis.

    PubMed

    Honda, M J; Shinohara, Y; Sumita, Y; Tonomura, A; Kagami, H; Ueda, M

    2006-07-01

    Numerous studies have demonstrated the effect of shear stress on osteoblasts, but its effect on odontogenic cells has never been reported. In this study, we focused on the effect of shear stress on facilitating tissue-engineered odontogenesis by dissociated single cells. Cells were harvested from the porcine third molar tooth at the early stage of crown formation, and the isolated heterogeneous cells were seeded on a biodegradable polyglycolic acid fiber mesh. Then, cell-polymer constructs with and without exposure to shear stress were evaluated by in vitro and in vivo studies. In in vitro studies, the expression of both epithelial and mesenchymal odontogenic-related mRNAs was significantly enhanced by shear stress for 2 h. At 12 h after exposure to shear stress, the expression of amelogenin, bone sialoprotein and vimentin protein was significantly enhanced compared with that of control. Moreover, after 7 days, alkaline phosphatase activity exhibited a significant increase without any significant effect on cell proliferation in vitro. In vivo, enamel and dentin tissues formed after 15 weeks of in vivo implantation in constructs exposure to in vitro shear stress for 12 h. Such was not the case in controls. We concluded that shear stress facilitates odontogenic cell differentiation in vitro as well as the process of tooth tissue engineering in vivo.

  12. New perspectives for advanced automobile diesel engines

    NASA Technical Reports Server (NTRS)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  13. Cells and biomaterials in cartilage tissue engineering.

    PubMed

    Stoddart, Martin J; Grad, Sibylle; Eglin, David; Alini, Mauro

    2009-01-01

    Cartilage defects are notoriously difficult to repair and owing to the long-term prognosis of osteoarthritis, and a rapidly aging population, a need for new therapies is pressing. Cell-based therapies for cartilage regeneration were introduced into patients in the early 1990s. Since that time the technology has developed from a simple cell suspension to more complex 3D structures. Cells, both chondrocytes and stem cells, have been incorporated into scaffold material with the aim to better recreate the natural environment of the cell, while providing more structural support to withstand the large forces applied on the de novo tissue. This review aims to provide an overview of potential cell sources and different scaffold materials, which are in development for cartilage tissue engineering.

  14. Tissue Engineering Organs for Space Biology Research

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  15. Piezoelectric polymers as biomaterials for tissue engineering applications.

    PubMed

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.

  16. Myocardial tissue engineering using electrospun nanofiber composites

    PubMed Central

    Kim, Pyung-Hwan; Cho, Je-Yoel

    2016-01-01

    Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36] PMID:26497579

  17. Imaging Approaches in Functional Assessment of Implantable Myogenic Biomaterials and Engineered Muscle Tissue

    PubMed Central

    Gargiulo, Paolo

    2015-01-01

    The fields of tissue engineering and regenerative medicine utilize implantable biomaterials and engineered tissues to regenerate damaged cells or replace lost tissues. There are distinct challenges in all facets of this research, but functional assessments and monitoring of such complex environments as muscle tissues present the current strategic priority. Many extant methods for addressing these questions result in the destruction or alteration of tissues or cell populations under investigation. Modern advances in non-invasive imaging modalities present opportunities to rethink some of the anachronistic methods, however, their standard employment may not be optimal when considering advancements in myology. New image analysis protocols and/or combinations of established modalities need to be addressed. This review focuses on efficacies and limitations of available imaging modalities to the functional assessment of implantable myogenic biomaterials and engineered muscle tissues. PMID:26913149

  18. Statistical characterization of engineered tissues using confocal mosaic technology

    NASA Astrophysics Data System (ADS)

    Levitz, David; Ardeshiri, Ardalan; Ahmed, Jabeer; Gareau, Daniel S.; Jacques, Steven L.

    2010-02-01

    Characterization of engineered tissues using optical methods often involves tradeoff between the fraction of total volume that is imaged and the spatial resolution. The limitation is not technological but rather practical, having more to do with effective probe designs and computer memory storage for large datasets. In this paper, we propose using confocal mosaicing, a technique used to characterize large volumes of excisioned biopsies from Mohs surgeries, to characterizing collagen gels. This technique stitches together high-resolution 3D images of a series adjacent millimeter sized regions that collectively make up areas that are ~cm2. Image acquisition time is approximately 5 min. The resulting high-resolution images closely resemble hematoxylin and eosin histological sections, only obtained without the time-consuming embedding and sectioning steps. Disk-shaped collagen gels that are 1 ml volume and ~1.5 cm diameter were prepared with smooth muscle cells and imaged at days 1 and 5. Using the digital staining technique, we were able to survey the spatial distribution of cells in the hydrogel and assess spatial heterogeneity in 3D from the fluorescence data. The reflectance data provided information on collagen fibril structure and matrix remodeling by the cells. Digital staining presented the data in a way that is easily interpreted by tissue engineers. Altogether, we believe confocal mosaicing and digital staining represents an important technological novelty that significantly advances nondestructive optical evaluation of engineered tissues.

  19. Remodeling of tissue-engineered bone structures in vivo.

    PubMed

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L; Merkle, Hans P; Meinel, Lorenz

    2013-09-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  20. Directed assembly of cell-laden hydrogels for engineering functional tissues

    PubMed Central

    Kachouie, Nezamoddin N; Du, Yanan; Bae, Hojae; Khabiry, Masoud; Ahari, Amirhossein F; Zamanian, Behnam; Fukuda, Junji

    2010-01-01

    Tissue engineering aims to develop functionalized tissues for organ replacement or restoration. Biodegradable scaffolds have been used in tissue engineering to support cell growth and maintain mechanical and biological properties of tissue constructs. Ideally cells on these scaffolds adhere, proliferate and deposit matrix at a rate that is consistent with scaffold degradation. However, the cellular rearrangement within these scaffolds often does not recapitulate the architecture of the native tissues. Directed assembly of tissue-like structures is an attractive alternative to scaffold-based approach for tissue engineering which potentially can build tissue constructs with biomimetic architecture and function. In directed assembly, shape-controlled microstructures are fabricated in which organized structures of different cell types can be used as tissue building blocks. To fabricate tissue building blocks, hydrogels are commonly used as biomaterials for cell encapsulation to mimic the matrix in vivo. The hydrogel-based tissue building blocks can be arranged in pre-defined architectures by various directed tissue assembly techniques. In this paper, recent advances in directed assembly-based tissue engineering are summarized as an emerging alternative to meet challenges associated with scaffold-based tissue engineering and future directions are addressed. PMID:21220962

  1. Advancements in engineering turbulence modeling

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  2. Electrospun nanostructured scaffolds for bone tissue engineering.

    PubMed

    Prabhakaran, Molamma P; Venugopal, J; Ramakrishna, S

    2009-10-01

    The current challenge in bone tissue engineering is to fabricate a bioartificial bone graft mimicking the extracellular matrix (ECM) with effective bone mineralization, resulting in the regeneration of fractured or diseased bones. Biocomposite polymeric nanofibers containing nanohydroxyapatite (HA) fabricated by electrospinning could be promising scaffolds for bone tissue engineering. Nanofibrous scaffolds of poly-l-lactide (PLLA, 860+/-110 nm), PLLA/HA (845+/-140 nm) and PLLA/collagen/HA (310+/-125 nm) were fabricated, and the morphology, chemical and mechanical characterization of the nanofibers were evaluated using scanning electron microscopy, Fourier transform infrared spectroscopy and tensile testing, respectively. The in vitro biocompatibility of different nanofibrous scaffolds was also assessed by growing human fetal osteoblasts (hFOB), and investigating the proliferation, alkaline phosphatase activity (ALP) and mineralization of cells on different nanofibrous scaffolds. Osteoblasts were found to adhere and grow actively on PLLA/collagen/HA nanofibers with enhanced mineral deposition of 57% higher than the PLLA/HA nanofibers. The synergistic effect of the presence of an ECM protein, collagen and HA in PLLA/collagen/HA nanofibers provided cell recognition sites together with apatite for cell proliferation and osteoconduction necessary for mineralization and bone formation. The results of our study showed that the biocomposite PLLA/collagen/HA nanofibrous scaffold could be a potential substrate for the proliferation and mineralization of osteoblasts, enhancing bone regeneration. PMID:19447211

  3. Silk: A Potential Medium for Tissue Engineering

    PubMed Central

    Sobajo, Cassandra; Behzad, Farhad; Yuan, Xue-Feng; Bayat, Ardeshir

    2008-01-01

    Objective: Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional properties of native skin. To date, there are very few single application tissue-engineered dermal constructs fulfilling this criterion. Silk produced by the domestic silkworm, Bombyx mori, has a long history of use in medicine. It has recently been increasingly investigated as a promising biomaterial for dermal constructs. Silk contains 2 fibrous proteins, sericin and fibroin. Each one exhibits unique mechanical and biological properties. Methods: Comprehensive review of randomized-controlled trials investigating current dermal constructs and the structures and properties of silk-based constructs on wound healing. Results: This review revealed that silk-fibroin is regarded as the most promising biomaterial, providing options for the construction of tissue-engineered skin. Conclusion: The research available indicates that silk fibroin is a suitable biomaterial scaffold for the provision of adequate dermal constructs. PMID:18997857

  4. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1980-01-01

    Preliminary identification and evaluation of promising liquid oxygen/ hydrocarbon (LO2/HC) rocket engine cycles is reported. A consistent and reliable data base for vehicle optimization and design studies, to demonstrate the significance of propulsion system improvements, and to select the critical technology areas necessary to realize such advances is presented.

  5. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation.

    PubMed

    O'Connell, Grace D; Leach, J Kent; Klineberg, Eric O

    2015-01-01

    The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine. PMID:26634189

  6. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation

    PubMed Central

    O'Connell, Grace D.; Leach, J. Kent; Klineberg, Eric O.

    2015-01-01

    Abstract The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine. PMID:26634189

  7. An overview of recent patents on musculoskeletal interface tissue engineering.

    PubMed

    Rao, Rohit T; Browe, Daniel P; Lowe, Christopher J; Freeman, Joseph W

    2016-01-01

    Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues, e.g., between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article, we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose.

  8. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  9. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    A cooperative government-industry effort, the Energy Efficient Engine Project, to develop the advanced technology base for future commercial development of a new generation of more fuel conservative turbofan engines for airline use is described. Engine configurations that are dependent upon technology advances in each major engine component are defined and current design and development of the advanced components are included.

  10. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

    PubMed

    Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-01-01

    Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.

  11. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  12. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  13. Silk film biomaterials for cornea tissue engineering

    PubMed Central

    Lawrence, Brian D.; Marchant, Jeffrey K.; Pindrus, Mariya; Omenetto, Fiorenzo; Kaplan, David L.

    2009-01-01

    Biomaterials for corneal tissue engineering must demonstrate several critical features for potential utility in vivo, including transparency, mechanical integrity, biocompatibility and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. Silk protein films were used in a biomimetic approach to replicate corneal stromal tissue architecture. The films were 2 μm thick to emulate corneal collagen lamellae dimensions, and were surface patterned to guide cell alignment. To enhance trans-lamellar diffusion of nutrients and to promote cell-cell interaction, pores with 0.5 to 5.0 μm diameters were introduced into the silk films. Human and rabbit corneal fibroblast proliferation, alignment and corneal extracellular matrix expression on these films in both 2D and 3D cultures was demonstrated. The mechanical properties, optical clarity and surface patterned features of these films, combined with their ability to support corneal cell functions suggest this new biomaterial system offers important potential benefits for corneal tissue regeneration. PMID:19059642

  14. [Study progress of dental pulp stem cells in tissue engineering].

    PubMed

    Shiyu, Shi; Jiamin, Xie

    2015-12-01

    In recent years, modern tissue engineering is becoming emerging and developing rapidly, and the acquisition, cultivation and differentiation of seed cells is the premise and foundation of the construction of tissue engineering, so more and more scholars pay attention to stem cells as seed cells for tissue engineering construction. Dental pulp stem cells (DPSCs) is a kind of adult stem cells derived from dental pulp, and as a new kind of seed cells of tissue engineering, the study of DPSCs presents important significance in tissue and organ regeneration. In this review, we introduced the progress of studies on dental pulp stem cells and discussed their clinical application prospects. PMID:27051964

  15. A tissue-engineered jellyfish with biomimetic propulsion

    PubMed Central

    Nawroth, Janna C; Lee, Hyungsuk; Feinberg, Adam W; Ripplinger, Crystal M; McCain, Megan L; Grosberg, Anna; Dabiri, John O; Parker, Kevin Kit

    2014-01-01

    Reverse engineering of biological form and function requires hierarchical design over several orders of space and time. Recent advances in the mechanistic understanding of biosynthetic compound materials1–3, computer-aided design approaches in molecular synthetic biology4,5 and traditional soft robotics6,7, and increasing aptitude in generating structural and chemical microenvironments that promote cellular self-organization8–10 have enhanced the ability to recapitulate such hierarchical architecture in engineered biological systems. Here we combined these capabilities in a systematic design strategy to reverse engineer a muscular pump. We report the construction of a freely swimming jellyfish from chemically dissociated rat tissue and silicone polymer as a proof of concept. The constructs, termed ‘medusoids’, were designed with computer simulations and experiments to match key determinants of jellyfish propulsion and feeding performance by quantitatively mimicking structural design, stroke kinematics and animal-fluid interactions. The combination of the engineering design algorithm with quantitative benchmarks of physiological performance suggests that our strategy is broadly applicable to reverse engineering of muscular organs or simple life forms that pump to survive. PMID:22820316

  16. Natural and Genetically Engineered Proteins for Tissue Engineering

    PubMed Central

    Gomes, Sílvia; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.

    2011-01-01

    To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent, synthetic materials, there is the need to develop a new generation of scaffolds with adequate mechanical and structural support, control of cell attachment, migration, proliferation and differentiation and with bio-resorbable features. This suite of properties would allow the body to heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level of control of biomaterial systems. The possibility of expressing biological components in nature and to modify or bioengineer them further, offers a path towards multifunctional biomaterial systems. This includes opportunities to generate new protein sequences, new self-assembling peptides or fusions of different bioactive domains or protein motifs. New protein sequences with tunable properties can be generated that can be used as new biomaterials. In this review we address some of the most frequently used proteins for tissue engineering and biomedical applications and describe the techniques most commonly used to functionalize protein-based biomaterials by combining them with bioactive molecules to enhance biological performance. We also highlight the use of genetic engineering, for protein heterologous expression and the synthesis of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers when compared with their counterparts extracted directly from nature and modified by techniques such as physical adsorption or chemical modification. PMID:22058578

  17. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents.

  18. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  19. Multilayered electrospun scaffolds for tendon tissue engineering.

    PubMed

    Chainani, Abby; Hippensteel, Kirk J; Kishan, Alysha; Garrigues, N William; Ruch, David S; Guilak, Farshid; Little, Dianne

    2013-12-01

    Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain

  20. Advanced nuclear rocket engine mission analysis

    SciTech Connect

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  1. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  2. Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology

    PubMed Central

    Leach, Jennie B.; Achyuta, Anil Kumar H.; Murthy, Shashi K.

    2009-01-01

    Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device–nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance. PMID:20161810

  3. Tissue engineering and regenerative medicine: a year in review.

    PubMed

    Harrison, Rachael H; St-Pierre, Jean-Philippe; Stevens, Molly M

    2014-02-01

    It is an exciting time to be involved in tissue engineering and regenerative medicine (TERM) research. Despite its relative youth, the field is expanding fast and breaking new ground in both the laboratory and clinically. In this "Year in Review," we highlight some of the high-impact advances in the field. Building upon last year's article, we have identified the recent "hot topics" and the key publications pertaining to these themes as well as ideas that have high potential to direct the field. Based on a modified methodology grounded on last year's approach, we have identified and summarized some of the most impactful publications in five main themes: (1) pluripotent stem cells: efforts and hurdles to translation, (2) tissue engineering: complex scaffolds and advanced materials, (3) directing the cell phenotype: growth factor and biomolecule presentation, (4) characterization: imaging and beyond, and (5) translation: preclinical to clinical. We have complemented our review of the research directions highlighted within these trend-setting studies with a discussion of additional articles along the same themes that have recently been published and have yet to surface in citation analyses. We conclude with a discussion of some really interesting studies that provide a glimpse of the high potential for innovation of TERM research.

  4. Tissue Engineering-Current Challenges and Expanding Opportunities

    NASA Astrophysics Data System (ADS)

    Griffith, Linda G.; Naughton, Gail

    2002-02-01

    Tissue engineering can be used to restore, maintain, or enhance tissues and organs. The potential impact of this field, however, is far broader-in the future, engineered tissues could reduce the need for organ replacement, and could greatly accelerate the development of new drugs that may cure patients, eliminating the need for organ transplants altogether.

  5. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering.

    PubMed

    Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S

    2016-01-28

    Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.

  6. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Ewen, R. L.

    1981-01-01

    This study identifies and evaluates promising LO2/HC rocket engine cycles, produces a consistent and reliable data base for vehicle optimization and design studies, demonstrates the significance of propulsion system improvements, and selects the critical technology areas necessary to realize an improved surface to orbit transportation system. Parametric LO2/HC engine data were generated over a range of thrust levels from 890 to 6672 kN (200K to 1.5M 1bF) and chamber pressures from 6890 to 34500 kN (1000 to 5000 psia). Engine coolants included RP-1, refined RP-1, LCH4, LC3H8, LO2, and LH2. LO2/RP-1 G.G. cycles were found to be not acceptable for advanced engines. The highest performing LO2/RP-1 staged combustion engine cycle utilizes LO2 as the coolant and incorporates an oxidizer rich preburner. The highest performing cycle for LO2/LCH4 and LO2/LC3H8 utilizes fuel cooling and incorporates both fuel and oxidizer rich preburners. LO2/HC engine cycles permitting the use of a third fluid LH2 coolant and an LH2 rich gas generator provide higher performance at significantly lower pump discharge pressures. The LO2/HC dual throat engine, because of its high altitude performance, delivers the highest payload for the vehicle configuration that was investigated.

  7. Development of Advanced Small Hydrogen Engines

    SciTech Connect

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  8. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    PubMed

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  9. Ethical aspects of tissue engineering: a review.

    PubMed

    de Vries, Rob B M; Oerlemans, Anke; Trommelmans, Leen; Dierickx, Kris; Gordijn, Bert

    2008-12-01

    Tissue engineering (TE) is a promising new field of medical technology. However, like other new technologies, it is not free of ethical challenges. Identifying these ethical questions at an early stage is not only part of science's responsibility toward society, but also in the interest of the field itself. In this review, we map which ethical issues related to TE have already been documented in the scientific literature. The issues that turn out to dominate the debate are the use of human embryonic stem cells and therapeutic cloning. Nevertheless, a variety of other ethical aspects are mentioned, which relate to different phases in the development of the field. In addition, we discuss a number of ethical issues that have not yet been raised in the literature.

  10. Scaffolds for central nervous system tissue engineering

    NASA Astrophysics Data System (ADS)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  11. Library of Advanced Materials for Engineering : LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-08-01

    Constitutive modeling is an important aspect of computational solid mechanics. Sandia National Laboratories has always had a considerable effort in the development of constitutive models for complex material behavior. However, for this development to be of use the models need to be implemented in our solid mechanics application codes. In support of this important role, the Library of Advanced Materials for Engineering (LAME) has been developed in Engineering Sciences. The library allows for simple implementation of constitutive models by model developers and access to these models by application codes. The library is written in C++ and has a very simple object oriented programming structure. This report summarizes the current status of LAME.

  12. Neural tissue engineering for neuroregeneration and biohybridized interface microsystems in vivo (Part 2).

    PubMed

    Cullen, D Kacy; Wolf, John A; Smith, Douglas H; Pfister, Bryan J

    2011-01-01

    Neural tissue engineering offers tremendous promise to combat the effects of disease, aging, or injury in the nervous system. Here we review neural tissue engineering with respect to the design of living tissue to directly replace damaged or diseased neural tissue, or to augment the capacity for nervous system regeneration and restore lost function. This article specifically addresses the development and implementation of tissue engineered three-dimensional (3-D) neural constructs and biohybridized neural-electrical microsystems. Living 3-D neural constructs may be "pre-engineered" in vitro with controlled neuroanatomical and functional characteristics for neuroregeneration, to recapitulate lost neuroanatomy, or to serve as a nervous tissue interface to a device. One application being investigated is developing constructs of axonal tracts that, upon transplantation, may facilitate nervous system repair by directly restoring lost connections or by serving as a targeted scaffold to promote host regeneration by exploiting axon-mediated axonal regeneration. In another application, living nervous tissue engineered constructs are being investigated to biohybridize neural-electrical interface microsystems for functional integration with the nervous system. With this design, in vivo neuritic ingrowth and synaptic integration may occur with the living component, potentially exploiting a more natural integration with the nonorganic interface. Overall, the use of tissue engineered 3-D neural constructs may significantly advance regeneration or device-based deficit mitigation in the nervous system that has not been achieved by non-tissue engineering approaches.

  13. Orbital transfer rocket engine technology: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.

    1992-01-01

    An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.

  14. Ignition angle advancer for internal combustion engine

    SciTech Connect

    Yamazaki, T.

    1986-08-19

    This patent describes a throttle and spark advance control system for an internal combustion engine having a spark advance mechanism and a throttle valve comprising an operator controlled element, a throttle control lever supported for pivotal movement about an axis and directly connected to the operator controlled element for rotation under operator control. It also includes means for positively connecting the throttle control lever to the throttle valve for positioning the throttle valve in response to movement of the throttle control lever. A spark advance control lever supported for pivotal movement about an axis is included as well as motion transmitting means for operatively connecting the spark advance control lever to the throttle control lever for pivotal movement of the spark advance control lever about its axis in response to pivotal movement of the throttle control lever about its axis and the spark control lever to the spark advance mechanism for controlling the position of the spark advance mechanism in response to the position of the throttle control lever.

  15. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  16. Tissue engineered constructs: perspectives on clinical translation.

    PubMed

    Lu, Lichun; Arbit, Harvey M; Herrick, James L; Segovis, Suzanne Glass; Maran, Avudaiappan; Yaszemski, Michael J

    2015-03-01

    In this article, a "bedside to bench and back" approach for developing tissue engineered medical products (TEMPs) for clinical applications is reviewed. The driving force behind this approach is unmet clinical needs. Preclinical research, both in vitro and in vivo using small and large animal models, will help find solutions to key research questions. In clinical research, ethical issues regarding the use of cells and tissues, their sources, donor consent, as well as clinical trials are important considerations. Regulatory issues, at both institutional and government levels, must be addressed prior to the translation of TEMPs to clinical practice. TEMPs are regulated as drugs, biologics, devices, or combination products by the U.S. Food and Drug Administration (FDA). Depending on the mode of regulation, applications for TEMP introduction must be filed with the FDA to demonstrate safety and effectiveness in premarket clinical studies, followed by 510(k) premarket clearance or premarket approval (for medical devices), biologics license application approval (for biologics), or new drug application approval (for drugs). A case study on nerve cuffs is presented to illustrate the regulatory process. Finally, perspectives on commercialization such as finding a company partner and funding issues, as well as physician culture change, are presented. PMID:25711151

  17. Tissue Engineered Constructs: Perspectives on Clinical Translation

    PubMed Central

    Lu, Lichun; Arbit, Harvey M.; Herrick, James L.; Segovis, Suzanne Glass; Maran, Avudaiappan; Yaszemski, Michael J.

    2015-01-01

    In this article, a “bedside to bench and back” approach for developing tissue engineered medical products (TEMPs) for clinical applications is reviewed. The driving force behind this approach is unmet clinical needs. Preclinical research, both in vitro and in vivo using small and large animal models, will help find solutions to key research questions. In clinical research, ethical issues regarding the use of cells and tissues, their sources, donor consent, as well as clinical trials are important considerations. Regulatory issues, at both institutional and government levels, must be addressed prior to the translation of TEMPs to clinical practice. TEMPs are regulated as drugs, biologics, devices, or combination products by the US Food and Drug Administration (FDA). Depending on the mode of regulation, applications for TEMP introduction must be filed with the FDA to demonstrate safety and effectiveness in premarket clinical studies, followed by 510(k) premarket clearance or premarket approval (for medical devices), biologics license application approval (for biologics), or New Drug Application approval (for drugs). A case study on nerve cuffs is presented to illustrate the regulatory process. Finally, perspectives on commercialization such as finding a company partner and funding issues, as well as physician culture change, are presented. PMID:25711151

  18. Aqueous biphasic microprinting approach to tissue engineering

    PubMed Central

    Tavana, Hossein; Takayama, Shuichi

    2011-01-01

    We summarize a recently developed microtechnology for printing biomaterials on biological surfaces. The technique is based on the use of immiscible aqueous solutions of two biopolymers and allows spatially defined placement of cells and biomolecules suspended in the denser aqueous phase on existing cell layers and extracellular matrix hydrogel surfaces maintained in the second phase. Printing takes place due to an extremely small interfacial tension and density difference between the two aqueous phases. The contact-free printing process ensures that both printed cells and the underlying cell monolayer maintain full viability and functionality. The technique accommodates both arbitrarily shaped patterns and microarrays of cells and bioreagents. The capability to print cells and small molecules on existing cell layers enables unique interrogations of the effects of cell-cell and cell-material interaction on cell fate and function. Furthermore, the very gentle conditions and the ability to directly pattern nongel embedded cells over cells make this technology appealing to tissue engineering applications where patterned multicellar organization with minimal scaffolding materials is needed, such as in dense tissues of the skeletal muscle and liver. PMID:21522494

  19. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair

    PubMed Central

    Jackman, Christopher P.; Shadrin, Ilya Y.; Carlson, Aaron L.; Bursac, Nenad

    2014-01-01

    Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications. PMID:25599018

  20. Functional tissue engineering of ligament healing

    PubMed Central

    2010-01-01

    Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE) approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally. PMID:20492676

  1. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering

    PubMed Central

    Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali

    2010-01-01

    Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414

  2. Optimization of electrical stimulation parameters for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2011-06-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43 and the best-developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering.

  3. Ultrasound Technologies for the Spatial Patterning of Cells and Extracellular Matrix Proteins and the Vascularization of Engineered Tissue

    NASA Astrophysics Data System (ADS)

    Garvin, Kelley A.

    Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.

  4. Technology readiness for advanced ducted engines

    SciTech Connect

    Eckardt, D.; Brines, G.L.

    1989-01-01

    The Advanced Ducted Engines (ADEs) currently undergoing development for next-generation passenger aircraft typically possess bypass ratios of the order of 12-25 and specific fuel consumption figures 12-17 percent lower than current advanced turbofans. An extensive technology-readiness program has been mounted on behalf of ADE design definition over the last two years, encompassing among its concerns aircraft/engine-installation interference, low pressure-ratio fan aerodynamics, fan/nacelle interactions (including windmilling and thrust-reversal), acoustic characteristics, transonic-drive turbines, and slender nacelle aerodynamic and mechanical design. Both turbine-driven and geared ADE fans, which may be of single-rotating or contrarotating type, are discussed. 5 refs.

  5. Bioreactors for Tissue Engineering of Cartilage

    NASA Astrophysics Data System (ADS)

    Concaro, S.; Gustavson, F.; Gatenholm, P.

    The cartilage regenerative medicine field has evolved during the last decades. The first-generation technology, autologous chondrocyte transplantation (ACT) involved the transplantation of in vitro expanded chondrocytes to cartilage defects. The second generation involves the seeding of chondrocytes in a three-dimensional scaffold. The technique has several potential advantages such as the ability of arthroscopic implantation, in vitro pre-differentiation of cells and implant stability among others (Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L, N Engl J Med 331(14):889-895, 1994; Henderson I, Francisco R, Oakes B, Cameron J, Knee 12(3):209-216, 2005; Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A, Clin Orthop (374):212-234, 2000; Nagel-Heyer S, Goepfert C, Feyerabend F, Petersen JP, Adamietz P, Meenen NM, et al. Bioprocess Biosyst Eng 27(4):273-280, 2005; Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, J Biosci Bioeng 100(3):235-245, 2005; Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, Portner R, J Biotechnol 121(4):486-497, 2006; Heyland J, Wiegandt K, Goepfert C, Nagel-Heyer S, Ilinich E, Schumacher U, et al. Biotechnol Lett 28(20):1641-1648, 2006). The nutritional requirements of cells that are synthesizing extra-cellular matrix increase along the differentiation process. The mass transfer must be increased according to the tissue properties. Bioreactors represent an attractive tool to accelerate the biochemical and mechanical properties of the engineered tissues providing adequate mass transfer and physical stimuli. Different reactor systems have been [5] developed during the last decades based on different physical stimulation concepts. Static and dynamic compression, confined and nonconfined compression-based reactors have been described in this review. Perfusion systems represent an attractive way of culturing constructs under dynamic conditions. Several groups showed increased matrix

  6. Biomimetic nanoclay scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  7. [Applications of Porous Scaffolds in Muscle Tissue Engineering].

    PubMed

    Sun, Yan; Zou, Ling; Liu, Jun

    2015-12-01

    Scaffold is one of the key elements required for tissue engineering. Porous scaffolds have several special advantages for muscle tissue engineering, and they are beneficial to cell survival, myogenic differentiation, and vascular ingrowth. The performance of porous scaffolds is closely related to the property of the biomaterials used. Additionally, the pore size and porosity may affect cell adhesion, proliferation, and differentiation. This review focuses on the application of porous scaffolds in muscle tissue engineering, including their categories, application, and advantages.

  8. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  9. A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering

    PubMed Central

    Webber, Matthew J.; Khan, Omar F.; Sydlik, Stefanie A.; Tang, Benjamin C.; Langer, Robert

    2016-01-01

    Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine. PMID:25201605

  10. Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering

    PubMed Central

    Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2010-01-01

    The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546

  11. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  12. Advanced general aviation engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Zmroczek, L. A.

    1982-01-01

    A comparison of the in-airframe performance and efficiency of the advanced engine concepts is presented. The results indicate that the proposed advanced engines can significantly improve the performance and economy of general aviation airplanes. The engine found to be most promising is the highly advanced version of a rotary combustion (Wankel) engine. The low weight and fuel consumption of this engine, as well as its small size, make it suited for aircraft use.

  13. Tissue Engineering Strategies for the Regeneration of Orthopaedic Interfaces

    PubMed Central

    Lu, Helen H.; Subramony, Siddarth D.; Boushell, Margaret K.; Zhang, Xinzhi

    2013-01-01

    A major focus in the field of orthopaedic tissue engineering is the development of tissue engineered bone and soft tissue grafts with biomimetic functionality to allow for their translation to the clinical setting. One of the most significant challenges of this endeavor is promoting the biological fixation of these grafts with each other as well as the implant site. Such fixation requires strategic biomimicry to be incorporated into the scaffold design in order to re-establish the critical structure-function relationship of the native soft tissue-to-bone interface. The integration of distinct tissue types (e.g. bone and soft tissues such as cartilage, ligaments, or tendons), requires a multi-phased or stratified scaffold with distinct yet continuous tissue regions accompanied by a gradient of mechanical properties that mimics that of the multi-tissue transition between bone and soft tissues. This review discusses tissue engineering strategies for regenerating common tissue-to-tissue interfaces (ligament-to-bone, tendon-to-bone or cartilage-to-bone), and the strategic biomimicry implemented in stratified scaffold design for multi-tissue regeneration. Potential challenges and future directions in this emerging field will also be presented. It is anticipated that interface tissue engineering will enable integrative soft tissue repair, and will be instrumental for the development of complex musculoskeletal tissue systems with biomimetic complexity and functionality. PMID:20422291

  14. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    PubMed

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-06-01

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs. PMID:27187017

  15. Regeneration of tissues of the oral complex: current clinical trends and research advances.

    PubMed

    Nguyen, Thomas T; Mui, Brennan; Mehrabzadeh, Mahsa; Chea, Yannie; Chaudhry, Zoya; Chaudhry, Kamran; Tran, Simon D

    2013-01-01

    Regenerative therapy in oral health care is limited by both the body's natural capacity for regeneration and the materials and methods currently available. Research on various aspects of regenerative therapy, such as tissue engineering and stem cell and gene therapy, has produced promising results. Compelling advances, ranging from the discovery and characterization of stem cell populations in oral tissue to the engineering and transplantation of whole tooth structures, could result in exciting new treatment methods for clinicians in the near future. In this review, we discuss the limitations of natural healing and regeneration of various tissues of the oral complex, including teeth, periodontium and salivary glands, and summarize current treatment methods for tissue damage as well as research advances in oral tissue regeneration.

  16. Expediting the transition from replacement medicine to tissue engineering.

    PubMed

    Coury, Arthur J

    2016-06-01

    In this article, an expansive interpretation of "Tissue Engineering" is proposed which is in congruence with classical and recent published definitions. I further simplify the definition of tissue engineering as: "Exerting systematic control of the body's cells, matrices and fluids." As a consequence, many medical therapies not commonly considered tissue engineering are placed in this category because of their effect on the body's responses. While the progress of tissue engineering strategies is inexorable and generally positive, it has been subject to setbacks as have many important medical therapies. Medical practice is currently undergoing a transition on several fronts (academics, start-up companies, going concerns) from the era of "replacement medicine" where body parts and functions are replaced by mechanical, electrical or chemical therapies to the era of tissue engineering where health is restored by regeneration generation or limitation of the body's tissues and functions by exploiting our expanding knowledge of the body's biological processes to produce natural, healthy outcomes.

  17. [Progress on strategies to promote vascularization in bone tissue engineering].

    PubMed

    Chen, Kai; Zhang, Chao; Wang, Lu; Mao, Yu-Yan; Lu, Jian-Xi; Chen, Lei

    2015-04-01

    With the continuous development of bone tissue engineering, a variety of emerging bone graft materials provided various methods for repairing bone defects. Early and rapid accomplishment of revascularization of materials interior after implantation of bone transplantation materials is a difficulty faced to bone tissue engineering. Blood vessels ingrowth provides the requisite netritional support for the regeneration reconstruction of bone tissue, for this reason, vascularization plays a significant role in bone tissue engineering. However,there is not a golden standard strategy of vascularization at present. Scaffold materials, cells and growth factors still are three indispensable elements in tissue engineering, and are cardinal points of the promoting vascularization strategies. Multiple growth factors or multiple cells combined with scaffolds, which are hot spots, have obtained excellent vascularization. This review focused on the comprehensive strategies for promoting the successful vascularization of tissue engineered scaffolds.

  18. Hydrogel scaffolds for tissue engineering: Progress and challenges

    PubMed Central

    El-Sherbiny, Ibrahim M.; Yacoub, Magdi H.

    2013-01-01

    Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described. PMID:24689032

  19. Scaffolding in tissue engineering: general approaches and tissue-specific considerations

    PubMed Central

    Leong, K. W.

    2008-01-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example. PMID:19005702

  20. Optimization of nanoparticles for cardiovascular tissue engineering

    NASA Astrophysics Data System (ADS)

    Izadifar, Mohammad; Kelly, Michael E.; Haddadi, Azita; Chen, Xiongbiao

    2015-06-01

    Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner. This raises a great need to optimize fabrication process variables to ensure the desired nanoparticle characteristics. This paper presents a comprehensive experimental study on this matter, along with a novel method, the so-called Geno-Neural approach, to analyze, predict and optimize fabrication variables for desired nanoparticle characteristics. Specifically, ovalbumin was used as a protein model of growth factors used in cardiovascular tissue regeneration, and six fabrication variables were examined with regard to their influence on the characteristics of nanoparticles made from high molecular weight poly(lactide-co-glycolide). The six-factor five-level central composite rotatable design was applied to the conduction of experiments, and based on the experimental results, a geno-neural model was developed to determine the optimum fabrication conditions. For desired particle sizes of 150, 200, 250 and 300 nm, respectively, the optimum conditions to achieve the low polydispersity index, higher negative zeta potential and higher loading capacity were identified based on the developed geno-neural model and then evaluated experimentally. The experimental results revealed that the polymer and the external aqueous phase concentrations and their interactions with other fabrication variables were the most significant variables to affect the size, polydispersity index, zeta potential, loading capacity and initial burst release of the nanoparticles, while the electron microscopy images of the nanoparticles showed their spherical geometries with no sign of large pores or cracks on their surfaces. The release study revealed

  1. Optimization of nanoparticles for cardiovascular tissue engineering.

    PubMed

    Izadifar, Mohammad; Kelly, Michael E; Haddadi, Azita; Chen, Xiongbiao

    2015-06-12

    Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner. This raises a great need to optimize fabrication process variables to ensure the desired nanoparticle characteristics. This paper presents a comprehensive experimental study on this matter, along with a novel method, the so-called Geno-Neural approach, to analyze, predict and optimize fabrication variables for desired nanoparticle characteristics. Specifically, ovalbumin was used as a protein model of growth factors used in cardiovascular tissue regeneration, and six fabrication variables were examined with regard to their influence on the characteristics of nanoparticles made from high molecular weight poly(lactide-co-glycolide). The six-factor five-level central composite rotatable design was applied to the conduction of experiments, and based on the experimental results, a geno-neural model was developed to determine the optimum fabrication conditions. For desired particle sizes of 150, 200, 250 and 300 nm, respectively, the optimum conditions to achieve the low polydispersity index, higher negative zeta potential and higher loading capacity were identified based on the developed geno-neural model and then evaluated experimentally. The experimental results revealed that the polymer and the external aqueous phase concentrations and their interactions with other fabrication variables were the most significant variables to affect the size, polydispersity index, zeta potential, loading capacity and initial burst release of the nanoparticles, while the electron microscopy images of the nanoparticles showed their spherical geometries with no sign of large pores or cracks on their surfaces. The release study revealed

  2. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  3. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  4. Imaging tissue engineered blood vessel mimics with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bonnema, Garret Thomas

    suggest that OCT endoscopic systems may be a valuable tool for assessing and optimizing the development of tissue engineered constructs. Conversely, the BVMs modeled the arterial response to deployed stents allowing the development of automated OCT analysis software. These results suggest that blood vessel mimics may be used to advance OCT technology and techniques.

  5. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  6. Tissue engineering strategies for the regeneration of orthopedic interfaces.

    PubMed

    Lu, Helen H; Subramony, Siddarth D; Boushell, Margaret K; Zhang, Xinzhi

    2010-06-01

    A major focus in the field of orthopedic tissue engineering is the development of tissue engineered bone and soft tissue grafts with biomimetic functionality to allow for their translation to the clinical setting. One of the most significant challenges of this endeavor is promoting the biological fixation of these grafts with each other as well as the implant site. Such fixation requires strategic biomimicry to be incorporated into the scaffold design in order to re-establish the critical structure-function relationship of the native soft tissue-to-bone interface. The integration of distinct tissue types (e.g. bone and soft tissues such as cartilage, ligaments, or tendons), necessitates a multi-phased or stratified scaffold with distinct yet continuous tissue regions accompanied by a gradient of mechanical properties. This review discusses tissue engineering strategies for regenerating common tissue-to-tissue interfaces (ligament-to-bone, tendon-to-bone, or cartilage-to-bone), and the strategic biomimicry implemented in stratified scaffold design for multi-tissue regeneration. Potential challenges and future directions in this emerging field will also be presented. It is anticipated that interface tissue engineering will enable integrative soft tissue repair, and will be instrumental for the development of complex musculoskeletal tissue systems with biomimetic complexity and functionality.

  7. Recent progress in interfacial tissue engineering approaches for osteochondral defects.

    PubMed

    Castro, Nathan J; Hacking, S Adam; Zhang, Lijie Grace

    2012-08-01

    This review provides a brief synopsis of the anatomy and physiology of the osteochondral interface, scaffold-based and non-scaffold based approaches for engineering both tissues independently as well as recent developments in the manufacture of gradient constructs. Novel manufacturing techniques and nanotechnology will be discussed with potential application in osteochondral interfacial tissue engineering. PMID:22677924

  8. Tissue engineering in periodontal regeneration: A brief review.

    PubMed

    Dabra, Sarita; Chhina, Kamalpreet; Soni, Nitin; Bhatnagar, Rakhi

    2012-11-01

    Periodontal disease is a major public health issue and the development of effective therapies to treat the disease and regenerate periodontal tissue is an important goal of today's medicine. Regeneration of periodontal tissue is perhaps one of the most complex process to occur in the body. Langer and colleagues proposed tissue engineering as a possible technique for regenerating the lost periodontal tissues. Tissue engineering is a multidisciplinary field, which involves the application of the principles and methods of engineering and life sciences to help in the development of biological substitutes to restore, maintain or improve the function of damaged tissues and organs. A Google/Medline search was conducted and relevant literature evaluating the potential role of the tissue engineering in periodontal regeneration, which included histological studies and controlled clinical trials, was reviewed. A comprehensive search was designed. The articles were independently screened for eligibility. Articles with authentic controls and proper randomization and pertaining specifically to their role in periodontal regeneration were included. The available literature was analyzed and compiled. The analysis indicate tissue engineering to be a promising, as well as an effective novel approach to reconstruct and engineer the periodontal apparatus. Here, we represent several articles, as well as recent texts that make up a special and an in-depth review on the subject. The purpose behind writing this brief review has been to integrate the evidence of research related to tissue engineering so as to implement them in our daily practice. PMID:23559940

  9. Challenges in engineering osteochondral tissue grafts with hierarchical structures Ivana Gadjanski, Gordana Vunjak Novakovic

    PubMed Central

    Gadjanski, Ivana; Vunjak-Novakovic, Gordana

    2015-01-01

    Introduction A major hurdle in treating osteochondral (OC) defects are the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct-engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. Areas covered This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. Expert opinion A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens, and harnessing of inflammatory responses of the host will likely drive the further progress. PMID:26195329

  10. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed.

  11. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. PMID:27086202

  12. Applications of carbon nanomaterials in bone tissue engineering.

    PubMed

    Venkatesan, Jayachandran; Pallela, Ramjee; Kim, Se-Kwon

    2014-10-01

    In the biomedical field, remarkable advancements have been made in artificial biomaterials for treating bone loss or defects. A variety of synthetic polymers, natural polymers and bioceramics are being used to develop artificial bones. Many natural and synthetic biomaterials, which are being investigated for their physiochemical role in vivo, are currently in the clinical trial stage. Carbon-based prostheses are promising materials that mimic the natural function of bone, e.g., mechanical strength. Recently, carbon-based bone materials, such as carbon nanotubes and graphene, have been widely investigated as potential solutions to several biomedical problems. This review summarizes the biophysicochemical and biomedical properties of carbon nanomaterials composed of polymer and ceramic structures and discusses their functionality in bone tissue engineering.

  13. Cardiac tissue engineering and regeneration using cell-based therapy

    PubMed Central

    Alrefai, Mohammad T; Murali, Divya; Paul, Arghya; Ridwan, Khalid M; Connell, John M; Shum-Tim, Dominique

    2015-01-01

    Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. PMID:25999743

  14. Barriers to the clinical translation of orthopedic tissue engineering.

    PubMed

    Evans, Christopher H

    2011-12-01

    Tissue engineering and regenerative medicine have been the subject of increasingly intensive research for over 20 years, and there is concern in some quarters over the lack of clinically useful products despite the large sums of money invested. This review provides one perspective on orthopedic applications from a biologist working in academia. It is suggested that the delay in clinical application is not atypical of new, biologically based technologies. Some barriers to progress are acknowledged and discussed, but it is also noted that preclinical studies have identified several promising types of cells, scaffolds, and morphogenetic signals, which, although not optimal, are worth advancing toward human trials to establish a bridgehead in the clinic. Although this transitional technology will be replaced by more sophisticated, subsequent systems, it will perform valuable pioneering functions and facilitate the clinical development of the field. Some strategies for achieving this are suggested. PMID:21682607

  15. Recent Advances in Engineering Polyvalent Biological Interactions

    PubMed Central

    2015-01-01

    Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein–ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors. PMID:25426695

  16. Advanced Engineering Technology for Measuring Performance.

    PubMed

    Rutherford, Drew N; D'Angelo, Anne-Lise D; Law, Katherine E; Pugh, Carla M

    2015-08-01

    The demand for competency-based assessments in surgical training is growing. Use of advanced engineering technology for clinical skills assessment allows for objective measures of hands-on performance. Clinical performance can be assessed in several ways via quantification of an assessee's hand movements (motion tracking), direction of visual attention (eye tracking), levels of stress (physiologic marker measurements), and location and pressure of palpation (force measurements). Innovations in video recording technology and qualitative analysis tools allow for a combination of observer- and technology-based assessments. Overall the goal is to create better assessments of surgical performance with robust validity evidence.

  17. Advanced concurrent-engineering environment. Final report

    SciTech Connect

    Jortner, J.N.; Friesen, J.A.

    1997-07-01

    Sandia demonstrated large-scale visualization in a conference room environment. Project focused in the installation of hardware for visualization and display, and the integration of software tools for design and animation of 3-dimensional parts. Using a high-end visualization server, 3-dimensional modeling and animation software, and leading edge World Wide Web technology, an advanced concurrent engineering environment was simulated where a design team was able to work collectively, rather than as solely disjoint individual efforts. Finally, a successful animation of a Sandia part was demonstrated, and a computer video generated. This video is now accessible on a Sandia internal web server.

  18. Advanced concurrent engineering environment final report

    SciTech Connect

    Jortner, J.N.; Friesen, J.A.; Schwegel, J.

    1997-08-01

    Sandia demonstrated large-scale visualization in a conference room environment. Project focused on the installation of hardware for visualization and display, and the integration of software tools for design and animation of 3-dimensional parts. Using a high-end visualization server, 3-dimensional modeling and animation software, and leading edge World Wide Web technology, and advanced concurrent engineering environment was simulated where a design team was able to work collectively, rather than as solely disjoint individual efforts. Finally, a successful animation of a Sandia part was demonstrated, and a computer video generated. This video is now accessible on a Sandia internal web server.

  19. Current progress in 3D printing for cardiovascular tissue engineering.

    PubMed

    Mosadegh, Bobak; Xiong, Guanglei; Dunham, Simon; Min, James K

    2015-03-16

    3D printing is a technology that allows the fabrication of structures with arbitrary geometries and heterogeneous material properties. The application of this technology to biological structures that match the complexity of native tissue is of great interest to researchers. This mini-review highlights the current progress of 3D printing for fabricating artificial tissues of the cardiovascular system, specifically the myocardium, heart valves, and coronary arteries. In addition, how 3D printed sensors and actuators can play a role in tissue engineering is discussed. To date, all the work with building 3D cardiac tissues have been proof-of-principle demonstrations, and in most cases, yielded products less effective than other traditional tissue engineering strategies. However, this technology is in its infancy and therefore there is much promise that through collaboration between biologists, engineers and material scientists, 3D bioprinting can make a significant impact on the field of cardiovascular tissue engineering.

  20. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  1. The Use of Scaffolds in Musculoskeletal Tissue Engineering

    PubMed Central

    Henson, Frances; Getgood, Alan

    2011-01-01

    The use of bioengineering scaffolds remains an integral part of the tissue engineering concept. A significant amount of basic science and clinical research has been focused on the regeneration of musculoskeletal tissues including bone, articular cartilage, meniscus, ligament and tendon. This review aims to provide the reader with a summary of the principals of using material scaffolds in musculoskeletal tissue engineering applications and how these materials may eventually come to be incorporated in clinical practice. PMID:21886690

  2. [Autologous tissue engineering by means of distraction osteogenesis: Biomechanical considerations].

    PubMed

    Schouman, T; Raoul, G; Dubois, G

    2011-09-01

    Tissue engineering consists in producing functional replacement tissue. Distraction osteogenesis is a tissue engineering technique that uses the mechanical environment of cells to induce tissue regeneration, without need for exogenous biochemical factors. A better understanding of the optimal mechanical conditions of distraction callus stretching may reduce the duration, discomfort, and even social impact of distraction protocols, and complications and failures. We present the current state of knowledge in this field by addressing the fundamentals of elongating bone tissue biomechanics, the influence of rhythm and rate of distraction, and that of vectors and stability. Finally, we present the innovations currently studied, which may modify our clinical protocol in the short term.

  3. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  4. Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering.

    PubMed

    Lowenthal, Justin; Gerecht, Sharon

    2016-05-01

    Proper blood vessel networks are necessary for constructing and re-constructing tissues, promoting wound healing, and delivering metabolic necessities throughout the body. Conversely, an understanding of vascular dysfunction has provided insight into the pathogenesis and progression of diseases both common and rare. Recent advances in stem cell-based regenerative medicine - including advances in stem cell technologies and related progress in bioscaffold design and complex tissue engineering - have allowed rapid advances in the field of vascular biology, leading in turn to more advanced modeling of vascular pathophysiology and improved engineering of vascularized tissue constructs. In this review we examine recent advances in the field of stem cell-derived vasculature, providing an overview of stem cell technologies as a source for vascular cell types and then focusing on their use in three primary areas: studies of vascular development and angiogenesis, improved disease modeling, and the engineering of vascularized constructs for tissue-level modeling and cell-based therapies.

  5. Modular Assembly Approach to Engineer Geometrically Precise Cardiovascular Tissue.

    PubMed

    Lee, Benjamin W; Liu, Bohao; Pluchinsky, Adam; Kim, Nathan; Eng, George; Vunjak-Novakovic, Gordana

    2016-04-20

    This modular assembly approach to microfabricate functional cardiovascular tissue composites enables quantitative assessment of the effects of microarchitecture on cellular function. Cardiac and endothelial modules are micromolded separately, designed to direct cardiomyocyte alignment and anisotropic contraction or vascular network formation. Assembled cardiovascular tissue composites contract synchronously, facilitating the use of this tissue-engineering platform to study structure-function relationships in the heart.

  6. Tendon Reconstruction with Tissue Engineering Approach--A Review.

    PubMed

    Verdiyeva, Gunay; Koshy, Kiron; Glibbery, Natalia; Mann, Haroon; Seifalian, Alexander M

    2015-09-01

    Tendon injuries are a common and rising occurrence, associated with significant impairment to quality of life and financial burden to the healthcare system. Clinically, they represent an unresolved problem, due to poor natural tendon healing and the inability of current treatment strategies to restore the tendon to its native state. Tissue engineering offers a promising alternative, with the incorporation of scaffolds, cells and growth factors to support the complete regeneration of the tendon. The materials used in tendon engineering to date have provided significant advances in structural integrity and biological compatibility and in many cases the results obtained are superior to those observed in natural healing. However, grafts fail to reproduce the qualities of the pre-injured tendon and each has weaknesses subject to its constituent parts. Furthermore, many materials and cell types are being investigated concurrently, with seemingly little association or comparison between research results. In this review the properties of the most-investigated and effective components have been appraised in light of the surrounding literature, with research from early in-vitro experiments to clinical trials being discussed. Extensive comparisons have been made between scaffolds, cell types and growth factors used, listing strengths and weaknesses to provide a stable platform for future research. Promising future endeavours are also described in the field of nanocomposite material science, stem cell sources and growth factors, which may bypass weaknesses found in individual elements. The future of tendon engineering looks bright, with growing understanding in material technology, cell and growth factor application and encouraging recent advances bringing us ever closer to regenerating the native tendon. PMID:26485923

  7. Tendon Reconstruction with Tissue Engineering Approach--A Review.

    PubMed

    Verdiyeva, Gunay; Koshy, Kiron; Glibbery, Natalia; Mann, Haroon; Seifalian, Alexander M

    2015-09-01

    Tendon injuries are a common and rising occurrence, associated with significant impairment to quality of life and financial burden to the healthcare system. Clinically, they represent an unresolved problem, due to poor natural tendon healing and the inability of current treatment strategies to restore the tendon to its native state. Tissue engineering offers a promising alternative, with the incorporation of scaffolds, cells and growth factors to support the complete regeneration of the tendon. The materials used in tendon engineering to date have provided significant advances in structural integrity and biological compatibility and in many cases the results obtained are superior to those observed in natural healing. However, grafts fail to reproduce the qualities of the pre-injured tendon and each has weaknesses subject to its constituent parts. Furthermore, many materials and cell types are being investigated concurrently, with seemingly little association or comparison between research results. In this review the properties of the most-investigated and effective components have been appraised in light of the surrounding literature, with research from early in-vitro experiments to clinical trials being discussed. Extensive comparisons have been made between scaffolds, cell types and growth factors used, listing strengths and weaknesses to provide a stable platform for future research. Promising future endeavours are also described in the field of nanocomposite material science, stem cell sources and growth factors, which may bypass weaknesses found in individual elements. The future of tendon engineering looks bright, with growing understanding in material technology, cell and growth factor application and encouraging recent advances bringing us ever closer to regenerating the native tendon.

  8. Design of a biaxial mechanical loading bioreactor for tissue engineering.

    PubMed

    Bilgen, Bahar; Chu, Danielle; Stefani, Robert; Aaron, Roy K

    2013-01-01

    We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0

  9. Design of a biaxial mechanical loading bioreactor for tissue engineering.

    PubMed

    Bilgen, Bahar; Chu, Danielle; Stefani, Robert; Aaron, Roy K

    2013-04-25

    We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0

  10. Neural tissue engineering options for peripheral nerve regeneration.

    PubMed

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system.

  11. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1988-01-01

    This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.

  12. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  13. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    PubMed

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.

  14. Conference scene. A bright future for tissue engineering and regenerative medicine in the Asia Pacific region.

    PubMed

    Frith, Jessica E; Hudson, James E; Cooper-White, Justin J

    2011-03-01

    The Tissue Engineering and Regenerative Medicine International Society-Asia Pacific (TERMIS-AP) annual meeting was held in Sydney, Australia from 15-17 September 2010 and highlighted the latest developments in tissue engineering and regenerative medicine in the Asia-Pacific region. Several of the plenary lectures focused on the vascularization of tissue engineering constructs, an issue that is critical for the success of larger tissue engineered constructs and was central to the meeting overall. In addition, a wide range of research also presented developments in tissue engineering for a range of body tissues (including cardiac, neural, bone, cartilage, tendon, skeletal muscle and skin), as well as advances in technologies (high-throughput screening and microfluidics). Looking more broadly, the meeting incorporated developments covering the spectrum of fundamental research through to clinical studies, with discussions on how best to direct the scientific advances being made into realistic therapies that could be made widely available in the future. Overall, the meeting highlighted the promise of early strategies, which are now showing promising results in clinical trials, and the development of a strong foundation of research from which future therapies will no doubt be developed. PMID:21391850

  15. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  16. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    PubMed

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  17. Perspectives of gene therapy in stem cell tissue engineering.

    PubMed

    Goessler, Ulrich Reinhart; Riedel, Katrin; Hormann, Karl; Riedel, Frank

    2006-01-01

    Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain or improve tissue function. It is hoped that forming tissue de novo will overcome many problems in plastic surgery associated with such areas as wound healing and the immunogenicity of transplanted tissue that lead to dysfunctional repair. Gene therapy is the science of the transfer of genetic material into individuals for therapeutic purposes by altering cellular function or structure at the molecular level. Recently, tissue engineering has been used in conjunction with gene therapy as a hybrid approach. This combination of stem-cell-based tissue engineering with gene therapy has the potential to provide regenerative tissue cells within an environment of optimal regulatory protein expression and would have many benefits in various areas such as the transplantation of skin, cartilage or bone. The aim of this review is to outline tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery.

  18. Scaffold Sheet Design Strategy for Soft Tissue Engineering

    PubMed Central

    Tran, Richard T.; Thevenot, Paul; Zhang, Yi; Gyawali, Dipendra; Tang, Liping; Yang, Jian

    2010-01-01

    Creating heterogeneous tissue constructs with an even cell distribution and robust mechanical strength remain important challenges to the success of in vivo tissue engineering. To address these issues, we are developing a scaffold sheet tissue engineering strategy consisting of thin (∼200 μm), strong, elastic, and porous crosslinked urethane-doped polyester (CUPE) scaffold sheets that are bonded together chemically or through cell culture. Suture retention of the tissue constructs (four sheets) fabricated by the scaffold sheet tissue engineering strategy is close to the surgical requirement (1.8 N) rendering their potential for immediate implantation without a need for long cell culture times. Cell culture results using 3T3 fibroblasts show that the scaffold sheets are bonded into a tissue construct via the extracellular matrix produced by the cells after 2 weeks of in vitro cell culture. PMID:21113339

  19. Development of Hydrogels and Biomimetic Regulators as Tissue Engineering Scaffolds

    PubMed Central

    Shi, Junbin; Xing, Malcolm M. Q.; Zhong, Wen

    2012-01-01

    This paper reviews major research and development issues relating to hydrogels as scaffolds for tissue engineering, the article starts with a brief introduction of tissue engineering and hydrogels as extracellular matrix mimics, followed by a description of the various types of hydrogels and preparation methods, before a discussion of the physical and chemical properties that are important to their application. There follows a short comment on the trends of future research and development. Throughout the discussion there is an emphasis on the genetic understanding of bone tissue engineering application. PMID:24957963

  20. Progress and opportunities for tissue-engineered skin

    NASA Astrophysics Data System (ADS)

    MacNeil, Sheila

    2007-02-01

    Tissue-engineered skin is now a reality. For patients with extensive full-thickness burns, laboratory expansion of skin cells to achieve barrier function can make the difference between life and death, and it was this acute need that drove the initiation of tissue engineering in the 1980s. A much larger group of patients have ulcers resistant to conventional healing, and treatments using cultured skin cells have been devised to restart the wound-healing process. In the laboratory, the use of tissue-engineered skin provides insight into the behaviour of skin cells in healthy skin and in diseases such as vitiligo, melanoma, psoriasis and blistering disorders.

  1. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks.

    PubMed

    Rouwkema, Jeroen; Khademhosseini, Ali

    2016-09-01

    Engineered tissues need a vascular network to supply cells with nutrients and oxygen after implantation. A network that can connect to the vasculature of the patient after implantation can be included during in vitro culture. For optimal integration, this network needs to be highly organized, including venules, capillaries, and arterioles, to supply all of the cells with sufficient nutrients. Owing to the importance of vascularization for the clinical applicability of tissue engineering, many approaches have been investigated to include an organized vascular network in tissue constructs. This review will give an overview of recent efforts, and will propose future perspectives to engineer the optimal, functional vascular network. PMID:27032730

  2. Combined Technologies for Microfabricating Elastomeric Cardiac Tissue Engineering Scaffolds

    PubMed Central

    Guillemette, Maxime D.; Park, Hyoungshin; Hsiao, James C.; Jain, Saloni R.; Larson, Benjamin L.; Langer, Robert; Freed, Lisa E.

    2012-01-01

    Polymer scaffolds that direct elongation and orientation of cultured cells can enable tissue engineered muscle to act as a mechanically functional unit. We combined micromolding and microablation technologies to create muscle tissue engineering scaffolds from the biodegradable elastomer poly(glycerol sebacate). These scaffolds exhibited well defined surface patterns and pores and robust elastomeric tensile mechanical properties. Cultured C2C12 muscle cells penetrated the pores to form spatially controlled engineered tissues. Scanning electron and confocal microscopy revealed muscle cell orientation in a preferential direction, parallel to micromolded gratings and long axes of microablated anisotropic pores, with significant individual and interactive effects of gratings and pore design. PMID:20718054

  3. Tissue-engineering-based Strategies for Regenerative Endodontics

    PubMed Central

    Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C.

    2014-01-01

    Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on

  4. Operating RegenMed: development of better in-theater strategies for handling tissue-engineered organs and tissues.

    PubMed

    Fishman, Jonathan M; Wormald, Justin C R; Lowdell, Mark W; Coppi, Paolo D E; Birchall, Martin A

    2014-01-01

    Tissue engineering ex vivo and direct cellular application with bioscaffolds in vivo has allowed surgeons to restore and establish function throughout the human body. The evidence for regenerative surgery is growing, and consequently there is a need for the development of more advanced regenerative surgery facilities. Regenerative medicine in the surgical field is changing rapidly and this must be reflected in the design of any future operating suite. The theater environment needs to be highly adaptable to account for future significant advances within the field. Development of purpose built, combined operating suites and tissue-engineering laboratories will provide the facility for modern surgeons to treat patients with organ deficits, using bespoke, regenerated constructs without the need for immunosuppression.

  5. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    PubMed

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  6. Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates.

    PubMed

    Takahashi, Hironobu; Okano, Teruo

    2015-11-18

    In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering.

  7. Multiscale assembly for tissue engineering and regenerative medicine

    PubMed Central

    Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan

    2015-01-01

    Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bio-engineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. PMID:25796488

  8. Control of scaffold degradation in tissue engineering: a review.

    PubMed

    Zhang, Hongbo; Zhou, Li; Zhang, Wenjun

    2014-10-01

    Tissue engineering has shown a great promise as a solution to the high demand for tissue and organ transplantations. Biomaterial scaffolds serve to house and direct cells to grow, exposing them to an adequate perfusion of nutrients, oxygen, metabolic products, and appropriate growth factors to enhance their differentiation and function. The degradation of biomaterial scaffolds is a key factor to successful tissue regeneration. In this article, the existing degradation control approaches in the context of scaffold tissue engineering were reviewed and a new paradigm of thinking called active control of scaffold degradation, proposed elsewhere by us, was also revisited and discussed in light of its benefit and requirement of this new technology.

  9. Toward clinical application of tissue-engineered cartilage.

    PubMed

    Fulco, Ilario; Largo, René Denis; Miot, Sylvie; Wixmerten, Anke; Martin, Ivan; Schaefer, Dirk J; Haug, Martin Dieter

    2013-04-01

    Since the late 1960s, surgeons and scientists envisioned use of tissue engineering to provide an alternative treatment for tissue and organ damage by combining biological and synthetic components in such a way that a long-lasting repair was established. In addition to the treatment, the patient would also benefit from reduced donor site morbidity and operation time as compared with the standard procedures. Tremendous efforts in basic research have been done since the late 1960s to better understand chondrocyte biology and cartilage maturation and to fulfill the growing need for tissue-engineered cartilage in reconstructive, trauma, and orthopedic surgery. Starting from the first successful generation of engineered cartilaginous tissue, scientists strived to improve the properties of the cartilaginous constructs by characterizing different cell sources, modifying the environmental factors influencing cell expansion and differentiation and applying physical stimuli to modulate the mechanical properties of the construct. All these efforts have finally led to a clinical phase I trial to show the safety and feasibility of using tissue-engineered cartilage in reconstructive facial surgery. However, to bring tissue engineering into routine clinical applications and commercialize tissue-engineered grafts, further research is necessary to achieve a cost-effective, standardized, safe, and regulatory compliant process.

  10. Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct

    NASA Astrophysics Data System (ADS)

    Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza

    2014-06-01

    Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.

  11. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.

    PubMed

    Feric, Nicole T; Radisic, Milica

    2016-01-15

    Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies.

  12. Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy

    PubMed Central

    Hipp, Jason; Atala, Anthony

    2004-01-01

    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15588286

  13. Using Simulated Debates to Teach History of Engineering Advances

    ERIC Educational Resources Information Center

    Reynolds, Terry S.

    1976-01-01

    Described is a technique for utilizing debates of past engineering controversies in the classroom as a means of teaching the history of engineering advances. Included is a bibliography for three debate topics relating to important controversies. (SL)

  14. Various advanced design projects promoting engineering education

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  15. Ceramic technology for advanced heat engines project

    SciTech Connect

    Not Available

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  16. Recent insights on applications of pullulan in tissue engineering.

    PubMed

    Singh, Ram Sarup; Kaur, Navpreet; Rana, Vikas; Kennedy, John F

    2016-11-20

    Tissue engineering is a recently emerging line of act which assists the regeneration of damaged tissues, unable to self-repair themselves and in turn, enhances the natural healing potential of patients. The repair of injured tissue can be induced with the help of some artificially created polymer scaffolds for successful tissue regeneration. The pullulan composite scaffolds can be used to enhance the proliferation and differentiation of cells for tissue regeneration. The unique pattern of pullulan with α-(1→4) and α-(1→6) linkages along with the presence of nine hydroxyl groups on its surface, endows the polymer with distinctive physical features required for tissue engineering. Pullulan can be used for vascular engineering, bone repair and skin tissue engineering. Pullulan composite scaffolds can also be used for treatment of injured femoral condyle bone, skull bone and full thickness skin wound of murine models, transversal mandibular and tibial osteotomy in goat, etc. This review article highlights the latest developments on applications of pullulan and its derivatives in tissue engineering. PMID:27561517

  17. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  18. Repair and tissue engineering techniques for articular cartilage

    PubMed Central

    Makris, Eleftherios A.; Gomoll, Andreas H.; Malizos, Konstantinos N.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2015-01-01

    Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of regenerative biological products that over the next decade could revolutionize joint care by functionally healing articular cartilage. These products include cell-based and cell-free materials such as autologous and allogeneic cell-based approaches and multipotent and pluripotent stem-cell-based techniques. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed. PMID:25247412

  19. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering.

    PubMed

    Mota, Carlos; Danti, Serena; D'Alessandro, Delfo; Trombi, Luisa; Ricci, Claudio; Puppi, Dario; Dinucci, Dinuccio; Milazzo, Mario; Stefanini, Cesare; Chiellini, Federica; Moroni, Lorenzo; Berrettini, Stefano

    2015-06-01

    The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE. PMID:25947357

  20. Hollow fiber bioreactor technology for tissue engineering applications.

    PubMed

    Eghbali, Hadis; Nava, Michele M; Mohebbi-Kalhori, Davod; Raimondi, Manuela T

    2016-01-01

    Hollow fiber bioreactors are the focus of scientific research aiming to mimic physiological vascular networks and engineer organs and tissues in vitro. The reason for this lies in the interesting features of this bioreactor type, including excellent mass transport properties. Indeed, hollow fiber bioreactors allow limitations to be overcome in nutrient transport by diffusion, which is often an obstacle to engineer sizable constructs in vitro. This work reviews the existing literature relevant to hollow fiber bioreactors in organ and tissue engineering applications. To this purpose, we first classify the hollow fiber bioreactors into 2 categories: cylindrical and rectangular. For each category, we summarize their main applications both at the tissue and at the organ level, focusing on experimental models and computational studies as predictive tools for designing innovative, dynamic culture systems. Finally, we discuss future perspectives on hollow fiber bioreactors as in vitro models for tissue and organ engineering applications.

  1. The role of tissue engineering and biomaterials in cardiac regenerative medicine

    PubMed Central

    Zhao, Yimu; Feric, Nicole T.; Thavandiran, Nimalan; Nunes, Sara S.; Radisic, Milica

    2014-01-01

    In recent years, the development of three-dimensional engineered heart tissue (EHT) has made large strides forward due to advances in stem cell biology, materials science, pre-vascularization strategies and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multi-faceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function following cardiac injury. However, EHTs may also serve as surrogate human cardiac tissue for drug-related toxicity screening. Cardiotoxicity remains a major cause of drug withdrawal in the pharmaceutical industry. Unsafe drugs reach the market because pre-clinical evaluation is insufficient to weed out cardiotoxic drugs in all their forms. Bioengineering methods could provide functional and mature human myocardial tissues, i.e. physiologically relevant platforms, for screening the cardiotoxic effects of pharmaceutical agents and facilitate the discovery of new therapeutic agents. Finally, advances in induced pluripotent stem cells have made patient-specific EHTs possible, which opens up the possibility of personalized medicine. Herein, we give an overview of the present state of the art in cardiac tissue engineering, the challenges to the field and future perspectives. PMID:25442432

  2. The role of tissue engineering and biomaterials in cardiac regenerative medicine.

    PubMed

    Zhao, Yimu; Feric, Nicole T; Thavandiran, Nimalan; Nunes, Sara S; Radisic, Milica

    2014-11-01

    In recent years, the development of 3-dimensional engineered heart tissue (EHT) has made large strides forward because of advances in stem cell biology, materials science, prevascularization strategies, and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multifaceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function after cardiac injury. However, EHTs may also serve as surrogate human cardiac tissue for drug-related toxicity screening. Cardiotoxicity remains a major cause of drug withdrawal in the pharmaceutical industry. Unsafe drugs reach the market because preclinical evaluation is insufficient to weed out cardiotoxic drugs in all their forms. Bioengineering methods could provide functional and mature human myocardial tissues, ie, physiologically relevant platforms, for screening the cardiotoxic effects of pharmaceutical agents and facilitate the discovery of new therapeutic agents. Finally, advances in induced pluripotent stem cells have made patient-specific EHTs possible, which opens up the possibility of personalized medicine. Herein, we give an overview of the present state of the art in cardiac tissue engineering, the challenges to the field, and future perspectives. PMID:25442432

  3. Low-intensity pulsed ultrasound in dentofacial tissue engineering.

    PubMed

    Tanaka, Eiji; Kuroda, Shingo; Horiuchi, Shinya; Tabata, Akira; El-Bialy, Tarek

    2015-04-01

    Oral and maxillofacial diseases affect millions of people worldwide and hence tissue engineering can be considered an interesting and clinically relevant approach to regenerate orofacial tissues after being affected by different diseases. Among several innovations for tissue regeneration, low-intensity pulsed ultrasound (LIPUS) has been used extensively in medicine as a therapeutic, operative, and diagnostic tool. LIPUS is accepted to promote bone fracture repair and regeneration. Furthermore, the effect of LIPUS on soft tissues regeneration has been paid much attention, and many studies have performed to evaluate the potential use of LIPUS to tissue engineering soft tissues. The present article provides an overview about the status of LIPUS stimulation as a tool to be used to enhance regeneration/tissue engineering. This review consists of five parts. Part 1 is a brief introduction of the acoustic description of LIPUS and mechanical action. In Part 2, biological problems in dentofacial tissue engineering are proposed. Part 3 explores biologic mechanisms of LIPUS to cells and tissues in living body. In Part 4, the effectiveness of LIPUS on cell metabolism and tissue regeneration in dentistry are summarized. Finally, Part 5 relates the possibility of clinical application of LIPUS in orthodontics. The present review brings out better understanding of the bioeffect of LIPUS therapy on orofacial tissues which is essential to the successful integration of management remedies for tissue regeneration/engineering. To develop an evidence-based approach to clinical management and treatment of orofacial degenerative diseases using LIPUS, we would like to be in full pursuit of LIPUS biotherapy. Still, there are many challenges for this relatively new strategy, but the up to date achievements using it promises to go far beyond the present possibilities.

  4. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  5. SAPLE: Sandia Advanced Personnel Locator Engine.

    SciTech Connect

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  6. Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities

    PubMed Central

    Tamayol, Ali; Akbari, Mohsen; Annabi, Nasim; Paul, Arghya; Khademhosseini, Ali; Juncker, David

    2013-01-01

    Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the above mentioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice. PMID:23195284

  7. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    PubMed Central

    Barzegari, Abolfazl; Saei, Amir Ata

    2012-01-01

    Introduction The severe need for constructing replacement tissues in organ transplanta-tion has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV) bioreactors initially developed by NASA. Methods In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results Research is now focused on assembly of 3 dimensional (3D) tissue fragments from various cell types in human body such as chon-drocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of vari-ous cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion Tissue engineering in (simulated) microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth. PMID:23678438

  8. Recent advances in acellular regenerative tissue scaffolds.

    PubMed

    Protzman, Nicole M; Brigido, Stephen A

    2015-01-01

    The management of chronic wounds is a considerable challenge for foot and ankle surgeons. The well-established tenets of adequate vascular supply, debridement with eradication of infection, and offloading must be employed in the management of all extremity wounds. Regenerative scaffolds are a viable means of reestablishing a favorable wound environment. The matrix facilitates cell migration, chemoattraction, angiogenesis, wound bed granulation, and expedited wound closure. Although studies have demonstrated success with acellular matrices, a multimodal approach should always be employed to improve healing success. Negative pressure wound therapy, compression, offloading, and antibiotics are advocated to improve outcomes. Acellular graft selection requires a multifactorial analysis, taking into consideration the specific patient and wound characteristics as well as the differences between acellular matrices. Patient age, comorbidities, activity level, and ability to comply with protocol as well as wound etiology, duration, depth, surface area, exudate, bacterial burden, location, vascular status, ischemic status, and presentation are all critical components. To effectively choose a matrix, the clinician must have a comprehensive understanding of the products available and the data validating their use. The mechanisms by which the acellular matrix accelerates wound healing and increases the likelihood of wound healing continue to be investigated. However, it is clear that these acellular biologic tissue scaffolds are incorporating into the host tissue, with resultant revascularization and cellular repopulation. Moving forward, additional investigations examining the effectiveness of acellular biologic tissue scaffolds to improve healing in complex, nondiabetic wounds are warranted.

  9. Nano-Fibrous Tissue Engineering Scaffolds Capable of Growth Factor Delivery

    PubMed Central

    Hu, Jiang

    2011-01-01

    Tissue engineering aims at constructing biological substitutes to repair damaged tissues. Three-dimensional (3D) porous scaffolds are commonly utilized to define the 3D geometry of tissue engineering constructs and provide adequate pore space and surface to support cell attachment, migration, proliferation, differentiation and neo tissue genesis. Biomimetic 3D scaffolds provide synthetic microenvironments that mimic the natural regeneration microenvironments and promote tissue regeneration process. While nano-fibrous (NF) scaffolds are constructed to mimic the architecture of NF extracellular matrix, controlled-release growth factors are incorporated to modulate the regeneration process. The present article summarizes current advances in methods to fabricate NF polymer scaffolds and the technologies to incorporate controlled growth factor delivery systems into 3D scaffolds, followed by examples of accelerated regeneration when the scaffolds with growth factor releasing capacity are applied in animal models. PMID:21234657

  10. Stem Cell Sources for Vascular Tissue Engineering and Regeneration

    PubMed Central

    Bajpai, Vivek K.

    2012-01-01

    This review focuses on the stem cell sources with the potential to be used in vascular tissue engineering and to promote vascular regeneration. The first clinical studies using tissue-engineered vascular grafts are already under way, supporting the potential of this technology in the treatment of cardiovascular and other diseases. Despite progress in engineering biomaterials with the appropriate mechanical properties and biological cues as well as bioreactors for generating the correct tissue microenvironment, the source of cells that make up the vascular tissues remains a major challenge for tissue engineers and physicians. Mature cells from the tissue of origin may be difficult to obtain and suffer from limited proliferative capacity, which may further decline as a function of donor age. On the other hand, multipotent and pluripotent stem cells have great potential to provide large numbers of autologous cells with a great differentiation capacity. Here, we discuss the adult multipotent as well as embryonic and induced pluripotent stem cells, their differentiation potential toward vascular lineages, and their use in engineering functional and implantable vascular tissues. We also discuss the associated challenges that need to be addressed in order to facilitate the transition of this technology from the bench to the bedside. PMID:22571595

  11. Application of the cell sheet technique in tissue engineering

    PubMed Central

    CHEN, GUANGNAN; QI, YIYING; NIU, LIE; DI, TUOYU; ZHONG, JINWEI; FANG, TINGTING; YAN, WEIQI

    2015-01-01

    The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering. PMID:26623011

  12. Stratified scaffold design for engineering composite tissues.

    PubMed

    Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H

    2015-08-01

    A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers.

  13. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1977-01-01

    The ideal cycle, its application to a practical machine, and the specific advantages of high efficiency, low emissions, multi-fuel capability, and low noise of the stirling engine are discussed. Certain portions of the Stirling engine must operate continuously at high temperature. Ceramics offer the potential of cost reduction and efficiency improvement for advanced engine applications. Potential applications for ceramics in Stirling engines, and some of the special problems pertinent to using ceramics in the Stirling engine are described. The research and technology program in ceramics which is planned to support the development of advanced Stirling engines is outlined.

  14. Challenges and opportunities for tissue-engineering polarized epithelium.

    PubMed

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  15. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  16. [Tissue engineering and construction of human skin in vitro].

    PubMed

    Arvelo, Francisco

    2007-09-01

    Tissue engineering is the new science that has come to make possible the growth of new organ tissue from small fragments of healthy tissue, thus partially or totally restoring the lost functions of ill tissues or organs, as shown by the achievements made with the culture of skin, cornea or cartilage. Thus far, this new science is able to ensure the recovery of lost functions and, doubtlessly, in a near future will be capable of developing tissues and organs not unlike natural ones. In our laboratory we have began the development of tissue engineering techniques for the successful construction of in vitro skin with the aim at mid term of producing cornea and cartilage. In a first clinical trial, these techniques were applied in the treatment of chronic skin lesions and the advantages and reach of these new tools were demonstrated for the effective solution of problems with would otherwise not be easily solved through the use of conventional treatments.

  17. [Tissue engineering and construction of human skin in vitro].

    PubMed

    Arvelo, Francisco

    2007-09-01

    Tissue engineering is the new science that has come to make possible the growth of new organ tissue from small fragments of healthy tissue, thus partially or totally restoring the lost functions of ill tissues or organs, as shown by the achievements made with the culture of skin, cornea or cartilage. Thus far, this new science is able to ensure the recovery of lost functions and, doubtlessly, in a near future will be capable of developing tissues and organs not unlike natural ones. In our laboratory we have began the development of tissue engineering techniques for the successful construction of in vitro skin with the aim at mid term of producing cornea and cartilage. In a first clinical trial, these techniques were applied in the treatment of chronic skin lesions and the advantages and reach of these new tools were demonstrated for the effective solution of problems with would otherwise not be easily solved through the use of conventional treatments. PMID:17853796

  18. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Salkeld, R.

    1980-01-01

    The advantages and disadvantages, system performance and operating limits, engine parametric data, and technology requirements for candidate high pressure LO2/Hydrocarbon engine systems are summarized. These summaries of parametric analysis and design provide a consistent engine system data base. Power balance data were generated for the eleven engine cycles. Engine cycle rating parameters were established and the desired condition and the effect of the parameter on the engine and/or vehicle are described.

  19. Modular Assembly Approach to Engineer Geometrically Precise Cardiovascular Tissue.

    PubMed

    Lee, Benjamin W; Liu, Bohao; Pluchinsky, Adam; Kim, Nathan; Eng, George; Vunjak-Novakovic, Gordana

    2016-04-20

    This modular assembly approach to microfabricate functional cardiovascular tissue composites enables quantitative assessment of the effects of microarchitecture on cellular function. Cardiac and endothelial modules are micromolded separately, designed to direct cardiomyocyte alignment and anisotropic contraction or vascular network formation. Assembled cardiovascular tissue composites contract synchronously, facilitating the use of this tissue-engineering platform to study structure-function relationships in the heart. PMID:26865105

  20. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  1. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering

    PubMed Central

    Green, Jordan D.; Tollemar, Viktor; Dougherty, Mark; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Collier, Zachary; Mohammed, Maryam K.; Haydon, Rex C.; Luu, Hue H.; Kang, Richard; Lee, Michael J.; Ho, Sherwin H.; He, Tong-Chuan; Shi, Lewis L.; Athiviraham, Aravind

    2015-01-01

    Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering. PMID:26835506

  2. Tissue engineering and ureter regeneration: is it possible?

    PubMed

    Kloskowski, Tomasz; Kowalczyk, Tomasz; Nowacki, Maciej; Drewa, Tomasz

    2013-06-25

    Large ureter damages are difficult to reconstruct. Current techniques are complicated, difficult to perform, and often associated with failures. The ureter has never been regenerated thus far. Therefore the use of tissue engineering techniques for ureter reconstruction and regeneration seems to be a promising way to resolve these problems. For proper ureter regeneration the following problems must be considered: the physiological aspects of the tissue, the type and shape of the scaffold, the type of cells, and the specific environment (urine). 
This review presents tissue engineering achievements in the field of ureter regeneration focusing on the scaffold, the cells, and ureter healing.

  3. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering.

    PubMed

    Li, Jianhua; Baker, Bryan A; Mou, Xiaoning; Ren, Na; Qiu, Jichuan; Boughton, Robert I; Liu, Hong

    2014-04-01

    With nearly 30 years of progress, tissue engineering has shown promise in developing solutions for tissue repair and regeneration. Scaffolds, together with cells and growth factors, are key components of this development. Recently, an increasing number of studies have reported on the design and fabrication of scaffolding materials. In particular, inspired by the nature of bone, polymer/ceramic composite scaffolds have been studied extensively. The purpose of this paper is to review the recent progress of the naturally derived biopolymers and the methods applied to generate biomimetic biopolymer/calcium phosphate composites as well as their biomedical applications in bone tissue engineering.

  4. Photo Cleavable Polymers for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Apostol, Monica

    We have found that P4VP and PMMA thin films can be etched with UVA radiation. Furthermore, we also found that dermal fibroblasts could be cultured successfully on the P4VP polymer, with a doubling time comparable to tissue culture Petri dish standards. Consequently we were able to grow tissue on P4VP substrates which could easily be lifted using UVA radiation. The cells that were removed were then re-plated at a lower density and a series of assays was performed at 3 and 6 days. While only a small amount of damage was discernable at day 3 nearly complete recovery was observed at day 6. The technique was also used to pattern areas within the tissue, where other types of cells could be inserted. In order to demonstrate the technique, a hybrid tissue layer was produced, where the dermal fibroblasts in a circular area at the center of the sample were removed via exposure through a mask. A keratinocyte layer was inserted which adhere to the fibroblast layer forming a tissue with integrated layers of two distinct cell types. We also investigated the effects of coated TiO2 particles on cells exposed to UVC. We found that as expected, cells were adversely affected by exposure to UVC and died even after exposure to as little as 3.5 J/cm 2. Addition of 0.4mg/ml TiO2 particles that were uncoated did not provide protection, and the cells died at the same rate. Addition of 4mg/ml of coated TiO2 on the other hand, did not affect cell viability in the absence of UV light and increased the viability after exposure to UVC radiation. In fact the cells containing the coated particles were indistinguishable for the unexposed control samples even after exposure to as much as 7.1J/cm 2 of UVC.

  5. Vascularization strategies of engineered tissues and their application in cardiac regeneration.

    PubMed

    Sun, Xuetao; Altalhi, Wafa; Nunes, Sara S

    2016-01-15

    The primary function of vascular networks is to transport blood and deliver oxygen and nutrients to tissues, which occurs at the interface of the microvasculature. Therefore, the formation of the vessels at the microcirculatory level, or angiogenesis, is critical for tissue regeneration and repair. Current strategies for vascularization of engineered tissues have incorporated multi-disciplinary approaches including engineered biomaterials, cells and angiogenic factors. Pre-vascularization of scaffolds composed of native matrix, synthetic polymers, or other biological materials can be achieved through the use of single cells in mono or co-culture, in combination or not with angiogenic factors or by the use of isolated vessels. The advance of these methods, together with a growing understanding of the biology behind vascularization, has facilitated the development of vascularization strategies for engineered tissues with therapeutic potential for tissue regeneration and repair. Here, we review the different cell-based strategies utilized to pre-vascularize engineered tissues and in making more complex vascularized cardiac tissues for regenerative medicine applications.

  6. Robust T-Tubulation and Maturation of Cardiomyocytes Using Tissue-Engineered Epicardial Mimetics

    PubMed Central

    Bian, Weining; Badie, Nima; Himel, Herman D.; Bursac, Nenad

    2014-01-01

    Complex three-dimensional (3-D) heart structure is an important determinant of cardiac electrical and mechanical function. In this study, we set to develop a versatile tissue-engineered system that can promote important aspects of cardiac functional maturation and reproduce variations in myofiber directions present in native ventricular epicardium. We cultured neonatal rat cardiomyocytes within a 3-D hydrogel environment using microfabricated elastomeric molds with hexagonal posts. By varying individual post orientations along the directions derived from diffusion tensor magnetic resonance imaging (DTMRI) maps of human ventricle, we created large (2.5 × 2.5 cm2) 3-D cardiac tissue patches with cardiomyocyte alignment that replicated human epicardial fiber orientations. After 3 weeks of culture, the advanced structural and functional maturation of the engineered 3-D cardiac tissues compared to age-matched 2-D monolayers was evident from: 1) the presence of dense, aligned and electromechanically-coupled cardiomyocytes, quiescent fibroblasts, and interspersed capillary-like structures, 2) action potential propagation with near-adult conduction velocity and directional dependence on local cardiomyocyte orientation, and 3) robust formation of T-tubules aligned with Z-disks, co-localization of L-type Ca2+ channels and ryanodine receptors, and accelerated Ca2+ transient kinetics. This biomimetic tissue-engineered platform can enable systematic in vitro studies of cardiac structure-function relationships and promote the development of advanced tissue engineering strategies for cardiac repair and regeneration. PMID:24508078

  7. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  8. Biomaterial based cardiac tissue engineering and its applications

    PubMed Central

    Huyer, Locke Davenport; Montgomery, Miles; Zhao, Yimu; Xiao, Yun; Conant, Genevieve; Korolj, Anastasia; Radisic, Milica

    2015-01-01

    Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling. PMID:25989939

  9. Characterization of electrical stimulation electrodes for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Cannizzaro, Chris; Figallo, Elisa; Voldman, Joel; Vunjak-Novakovic, Gordana

    2006-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. The goal of this study was to assess the conditions of electrical stimulation with respect to the electrode geometry, material properties and charge-transfer characteristics at the electrode-electrolyte interface. We compared various biocompatible materials, including nanoporous carbon, stainless steel, titanium and titanium nitride, for use in cardiac tissue engineering bioreactors. The faradaic and non-faradaic charge transfer mechanisms were assessed by electrochemical impedance spectroscopy (EIS), studying current injection characteristics, and examining surface properties of electrodes with scanning electron microscopy. Carbon electrodes were found to have the best current injection characteristics. However, these electrodes require careful handling because of their limited mechanical strength. The efficacy of various electrodes for use in 2-D and 3-D cardiac tissue engineering systems with neonatal rat cardiomyocytes is being determined by assessing cell viability, amplitude of contractions, excitation thresholds, maximum capture rate, and tissue morphology.

  10. The Application of Sheet Technology in Cartilage Tissue Engineering.

    PubMed

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions. PMID:26414455

  11. Novel strategies to engineering biological tissue in vitro.

    PubMed

    Urciuolo, Francesco; Imparato, Giorgia; Guaccio, Angela; Mele, Benedetto; Netti, Paolo A

    2012-01-01

    Tissue engineering creates biological tissues that aim to improve the function of diseased or damaged tissues. In this chapter, we examine the promise and shortcomings of "top-down" and "bottom-up" approaches for creating engineered biological tissues. In top-down approaches, the cells are expected to populate the scaffold and create the appropriate extracellular matrix and microarchitecture often with the aid of a bioreactor that furnish the set of stimuli required for an optimal cellular viability. Specifically, we survey the role of cell material interaction on oxygen metabolism in three-dimensional (3D) in vitro cultures as well as the time and space evolution of the transport and biophysical properties during the development of de novo synthesized tissue-engineered constructs. We show how to monitor and control the evolution of these parameters that is of crucial importance to process biohybrid constructs in vitro as well as to elaborate reliable mathematical model to forecast tissue growth under specific culture conditions. Furthermore, novel strategies such as bottom-up approaches to build tissue constructs in vitro are examined. In this fashion, tissue building blocks with specific microarchitectural features are used as modular units to engineer biological tissues from the bottom up. In particular, the attention will be focused on the use of cell seeded microbeads as functional building blocks to realize 3D complex tissue. Finally, a challenge will be the potential integration of bottom-up techniques with more traditional top-down approaches to create more complex tissues than are currently achievable using either technique alone by optimizing the advantages of each technique.

  12. Smooth Muscle Strips for Intestinal Tissue Engineering

    PubMed Central

    Walthers, Christopher M.; Lee, Min; Wu, Benjamin M.; Dunn, James C. Y.

    2014-01-01

    Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle. PMID:25486279

  13. The General Electric Advanced Course in Engineering.

    ERIC Educational Resources Information Center

    Mack, Donald R.

    A three-year, in-house engineering course offered to selected General Electric Company engineers is discussed. It is designed to develop the ability to identify and solve real engineering problems. The course may be taken concurrently with college courses in a cooperative program that can result in a graduate degree in engineering. (MLH)

  14. Tissue engineering - nanomaterials in the musculoskeletal system.

    PubMed

    Egli, Rainer J; Luginbuehl, Reto

    2012-01-01

    The musculoskeletal tissues bone, cartilage and ligament/tendon are highly structured nanocomposites consisting of nanofibres embedded in a matrix of different composition. Thus, it was a logical step that during the hype of nano in the last decade, nanotechnology and nanomaterials became a hot topic in the field of musculoskeletal repair. Especially the fact that using nanomaterials would encompass a biomimetic approach, thus copying nature, was promising. However, it became evident that using nanomaterials in the repair of musculoskeletal tissues had a longer history than initially thought and its way was paved with failures, which are important to remember when applying current ideas. This current opinion paper summarises some fundamental aspects of nanomaterials to be used for musculoskeletal application and discusses where this field might move to in the near future.

  15. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review.

    PubMed

    Sarkar, Sandip; Schmitz-Rixen, Thomas; Hamilton, George; Seifalian, Alexander M

    2007-04-01

    The multiple demands placed on small calibre cardiovascular bypass grafts have meant that a synthetic prosthesis with good long-term patency has not been developed. A tissue-engineered graft could fulfil the ideal characteristics present in an artery. However, the great disadvantage of such a conduit is the time necessary for maturation leading to unacceptable delays once the decision to intervene surgically has been made. This maturation process is essential to produce a graft which can withstand haemodynamic stress. Once implanted, the tissue-engineered graft can contract in response to immediate haemodynamic conditions and remodel in the long term. We review the latest tissue engineering approaches used to give the favourable properties of mechanical strength, arterial compliance, low thrombogenicity, long-term resistance towards biodegradation as well as technological advances which shorten the time required for production of an implantable graft.

  16. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering

    PubMed Central

    Nau, Thomas; Teuschl, Andreas

    2015-01-01

    Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon. PMID:25621217

  17. Microfabrication of Cell-Laden Hydrogels for Engineering Mineralized and Load Bearing Tissues.

    PubMed

    Li, Chia-Cheng; Kharaziha, Mahshid; Min, Christine; Maas, Richard; Nikkhah, Mehdi

    2015-01-01

    Microengineering technologies and advanced biomaterials have extensive applications in the field of regenerative medicine. In this chapter, we review the integration of microfabrication techniques and hydrogel-based biomaterials in the field of dental, bone, and cartilage tissue engineering. We primarily discuss the major features that make hydrogels attractive candidates to mimic extracellular matrix (ECM), and we consider the benefits of three-dimensional (3D) culture systems for tissue engineering applications. We then focus on the fundamental principles of microfabrication techniques including photolithography, soft lithography and bioprinting approaches. Lastly, we summarize recent research on microengineering cell-laden hydrogel constructs for dental, bone and cartilage regeneration, and discuss future applications of microfabrication techniques for load-bearing tissue engineering.

  18. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  19. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.

    PubMed

    Brugmans, Marieke M C P; Soekhradj-Soechit, R Sarita; van Geemen, Daphne; Cox, Martijn; Bouten, Carlijn V C; Baaijens, Frank P T; Driessen-Mol, Anita

    2016-01-01

    Synthetic polymers are widely used to fabricate porous scaffolds for the regeneration of cardiovascular tissues. To ensure mechanical integrity, a balance between the rate of scaffold absorption and tissue formation is of high importance. A higher rate of tissue formation is expected in fast-degrading materials than in slow-degrading materials. This could be a result of synthetic cells, which aim to compensate for the fast loss of mechanical integrity of the scaffold by deposition of collagen fibers. Here, we studied the effect of fast-degrading polyglycolic acid scaffolds coated with poly-4-hydroxybutyrate (PGA-P4HB) and slow-degrading poly-ɛ-caprolactone (PCL) scaffolds on amount of tissue, composition, and mechanical characteristics in time, and compared these engineered values with values for native human heart valves. Electrospun PGA-P4HB and PCL scaffolds were either kept unseeded in culture or were seeded with human vascular-derived cells. Tissue formation, extracellular matrix (ECM) composition, remaining scaffold weight, tissue-to-scaffold weight ratio, and mechanical properties were analyzed every week up to 6 weeks. Mass of unseeded PCL scaffolds remained stable during culture, whereas PGA-P4HB scaffolds degraded rapidly. When seeded with cells, both scaffold types demonstrated increasing amounts of tissue with time, which was more pronounced for PGA-P4HB-based tissues during the first 2 weeks; however, PCL-based tissues resulted in the highest amount of tissue after 6 weeks. This study is the first to provide insight into the tissue-to-scaffold weight ratio, therewith allowing for a fair comparison between engineered tissues cultured on scaffolds as well as between native heart valve tissues. Although the absolute amount of ECM components differed between the engineered tissues, the ratio between ECM components was similar after 6 weeks. PCL-based tissues maintained their shape, whereas the PGA-P4HB-based tissues deformed during culture. After 6 weeks

  20. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Hun C.; Fang, Ho T.

    1987-01-01

    The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).

  1. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  2. Scaffolds for hand tissue engineering: the importance of surface topography.

    PubMed

    Kloczko, E; Nikkhah, D; Yildirimer, L

    2015-11-01

    Tissue engineering is believed to have great potential for the reconstruction of the hand after trauma, congenital absence and tumours. Due to the presence of multiple distinct tissue types, which together function in a precisely orchestrated fashion, the hand counts among the most complex structures to regenerate. As yet the achievements have been limited. More recently, the focus has shifted towards scaffolds, which provide a three-dimensional framework to mimic the natural extracellular environment for specific cell types. In particular their surface structures (or topographies) have become a key research focus to enhance tissue-specific cell attachment and growth into fully functioning units. This article reviews the current understanding in hand tissue engineering before focusing on the potential for scaffold topographical features on micro- and nanometre scales to achieve better functional regeneration of individual and composite tissues.

  3. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  4. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    PubMed

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  5. Skeletal muscle tissue engineering: strategies for volumetric constructs

    PubMed Central

    Cittadella Vigodarzere, Giorgio; Mantero, Sara

    2014-01-01

    Skeletal muscle tissue is characterized by high metabolic requirements, defined structure and high regenerative potential. As such, it constitutes an appealing platform for tissue engineering to address volumetric defects, as proven by recent works in this field. Several issues common to all engineered constructs constrain the variety of tissues that can be realized in vitro, principal among them the lack of a vascular system and the absence of reliable cell sources; as it is, the only successful tissue engineering constructs are not characterized by active function, present limited cellular survival at implantation and possess low metabolic requirements. Recently, functionally competent constructs have been engineered, with vascular structures supporting their metabolic requirements. In addition to the use of biochemical cues, physical means, mechanical stimulation and the application of electric tension have proven effective in stimulating the differentiation of cells and the maturation of the constructs; while the use of co-cultures provided fine control of cellular developments through paracrine activity. This review will provide a brief analysis of some of the most promising improvements in the field, with particular attention to the techniques that could prove easily transferable to other branches of tissue engineering. PMID:25295011

  6. Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing.

    PubMed

    Yu, Hongfei; Peng, Jinliang; Xu, Yuhong; Chang, Jiang; Li, Haiyan

    2016-01-13

    Wound healing is a complicated process, and fibroblast is a major cell type that participates in the process. Recent studies have shown that bioglass (BG) can stimulate fibroblasts to secrete a multitude of growth factors that are critical for wound healing. Therefore, we hypothesize that BG can stimulate fibroblasts to have a higher bioactivity by secreting more bioactive growth factors and proteins as compared to untreated fibroblasts, and we aim to construct a bioactive skin tissue engineering graft for wound healing by using BG activated fibroblast sheet. Thus, the effects of BG on fibroblast behaviors were studied, and the bioactive skin tissue engineering grafts containing BG activated fibroblasts were applied to repair the full skin lesions on nude mouse. Results showed that BG stimulated fibroblasts to express some critical growth factors and important proteins including vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, collagen I, and fibronectin. In vivo results revealed that fibroblasts in the bioactive skin tissue engineering grafts migrated into wound bed, and the migration ability of fibroblasts was stimulated by BG. In addition, the bioactive BG activated fibroblast skin tissue engineering grafts could largely increase the blood vessel formation, enhance the production of collagen I, and stimulate the differentiation of fibroblasts into myofibroblasts in the wound site, which would finally accelerate wound healing. This study demonstrates that the BG activated skin tissue engineering grafts contain more critical growth factors and extracellular matrix proteins that are beneficial for wound healing as compared to untreated fibroblast cell sheets.

  7. Microcomputed Tomography Characterization of Neovascularization in Bone Tissue Engineering Applications

    PubMed Central

    Young, Simon; Kretlow, James D.; Nguyen, Charles; Bashoura, Alex G.; Baggett, L. Scott; Jansen, John A.; Wong, Mark

    2008-01-01

    Abstract Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs. PMID:18657028

  8. Tissue engineering a surrogate niche for metastatic cancer cells.

    PubMed

    Seib, F Philipp; Berry, Janice E; Shiozawa, Yusuke; Taichman, Russell S; Kaplan, David L

    2015-05-01

    In breast and prostate cancer patients, the bone marrow is a preferred site of metastasis. We hypothesized that we could use tissue-engineering strategies to lure metastasizing cancer cells to tissue-engineered bone marrow. First, we generated highly porous 3D silk scaffolds that were biocompatible and amenable to bone morphogenetic protein 2 functionalization. Control and functionalized silk scaffolds were subcutaneously implanted in mice and bone marrow development was followed. Only functionalized scaffolds developed cancellous bone and red bone marrow, which appeared as early as two weeks post-implantation and further developed over the 16-week study period. This tissue-engineered bone marrow microenvironment could be readily manipulated in situ to understand the biology of bone metastasis. To test the ability of functionalized scaffolds to serve as a surrogate niche for metastasis, human breast cancer cells were injected into the mammary fat pads of mice. The treatment of animals with scaffolds had no significant effect on primary tumor growth. However, extensive metastasis was observed in functionalized scaffolds, and the highest levels for scaffolds that were in situ manipulated with receptor activator of nuclear factor kappa-B ligand (RANKL). We also applied this tissue-engineered bone marrow model in a prostate cancer and experimental metastasis setting. In summary, we were able to use tissue-engineered bone marrow to serve as a target or "trap" for metastasizing cancer cells.

  9. Multiscale assembly for tissue engineering and regenerative medicine.

    PubMed

    Guven, Sinan; Chen, Pu; Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan

    2015-05-01

    Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bioengineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures.

  10. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  11. Bioactive scaffold for bone tissue engineering: An in vivo study

    NASA Astrophysics Data System (ADS)

    Livingston, Treena Lynne

    Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment

  12. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    PubMed

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  13. Perspectives on the Role of Nanotechnology in Bone Tissue Engineering

    PubMed Central

    Saiz, Eduardo; Zimmermann, Elizabeth A.; Lee, Janice S.; Wegst, Ulrike G.K.; Tomsia, Antoni P.

    2013-01-01

    Objective This review surveys new developments in bone tissue engineering, specifically focusing on the promising role of nanotechnology and describes future avenues of research. Methods The review first reinforces the need to fabricate scaffolds with multi-dimensional hierarchies for improved mechanical integrity. Next, new advances to promote bioactivity by manipulating the nano-level internal surfaces of scaffolds are examined followed by an evaluation of techniques to using scaffolds as a vehicle for local drug delivery to promote bone regeneration/integration and methods of seeding cells into the scaffold. Results Through a review of the state of the field, critical questions are posed to guide future research towards producing materials and therapies to bring state-of-the-art technology to clinical settings. Significance The development of scaffolds for bone regeneration requires a material able to promote rapid bone formation while possessing sufficient strength to prevent fracture under physiological loads. Success in simultaneously achieving mechanical integrity and sufficient bioactivity with a single material has been limited. However, the use of new tools to manipulate and characterize matter down to the nano-scale may enable a new generation of bone scaffolds that will surpass the performance of autologous bone implants. PMID:22901861

  14. Manufacturing road map for tissue engineering and regenerative medicine technologies.

    PubMed

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James; Atala, Anthony

    2015-02-01

    The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM.

  15. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James