Science.gov

Sample records for advanced tokamak concepts

  1. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  2. Advanced limiter test (ALT-1) in the TEXTOR tokamak: concept and experimental design

    SciTech Connect

    Conn, R.W.; Grontz, S.P.; Prinja, A.K.; Gauster, W.B.; Malinowski, H.E.; Pontau, A.E.; Blewer, R.S.; Whitley, J.B.; Dippel, K.H.; Fuchs, G.

    1983-01-01

    The concept and experimental design of a pump-limiter for the TEXTOR tokamak is described. The module is constructed of stainless steel with a compound curvature head designed to limit the maximum heat flux to 300 W/cm/sup 2/. The head is made of TiC-coated graphite containing a variable-aperture slot to admit plasma to a deflector plate for ballistic pumping action. The assembly is actively pumped using Zr-Al getters with an estimated hydrogen pumping speed of 3 x 10/sup 4/ 1/s. The aspect ratio of the pump duct and the length of the plasma channel are both variable to permit study of plasma plugging, ballistic scattering, and enhanced gas-conduction effects. The module can be moved radially by 10 cm to permit its operation either as the primary or secondary limiter. Major diagnostics include Langmuir and solid state probes, bolometers, infrared thermography, thermocouples, ion gauges, manometers, and a gas mass analyzer.

  3. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  4. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  5. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  6. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  7. EBT: an alternate concept to tokamaks and mirrors

    SciTech Connect

    Glowienka, J.C.

    1980-01-01

    The ELMO Bumpy Torus (EBT) is a hybrid magnetic trap formed by a series of toroidally connected simple mirrors. It differs from a tokamak, the present main-line approach, in that plasma stability and heating are obtained in a current-free geometry by the application of steady-state, high power, electron cyclotron resonance heating (ECH) producing a steady-state plasma. The primary motivation for EBT confinement research is the potential for a steady-state, highly accessible reactor with high ..beta... In the present EBT-I/S device, electron confinement has been observed to agree with the predictions of theory. The major emphasis of the experimental program is on the further scaling of plasma parameters in the EBT-I/S machine with ECH frequency (10.6, 18, and 28 GHz), resonant magnetic field (0.3, 0.6, and 1 T), and heating power (30, 60, and 200 kW). In addition, substantial efforts are under way or planned in the areas of ion cyclotron heating, neutral beam heating, plasma-wall interactions, impurity control, synchrotron radiation, and divertors. Recently, EBT has been selected as the first alternative concept to be advanced to the proof-of-principle stage; this entails a major device scale-up to allow a reasonable extrapolation to a DT-burning facility. The status and future plans of the EBT program, in particular the proof-of-principle experiment (EBT-P), are discussed.

  8. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  9. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  10. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  11. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  12. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  13. The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2014-03-05

    Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

  14. The ARIES Advanced and Conservative Tokamak Power Plant Study

    SciTech Connect

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; EL-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Rader, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.

  15. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE PAGES

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; et al

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, anmore » n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less

  16. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  17. A need for non-tokamak approaches to magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Focusing exclusively on conventional tokamak physics in the quest for commercial fusion power is premature, and the options for both advanced-tokamak and non-tokamak concepts need continued investigation. The basis for this claim is developed, and promising advanced-tokamak and non-tokamak options are suggested.

  18. DIII-D Advanced Tokamak Research Overview

    SciTech Connect

    V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler

    1999-12-01

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously {beta}{sub N}H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues.

  19. Shape Optimization for DIII-D Advanced Tokamak Plasmas

    SciTech Connect

    C.E. Kesse; J.R. Ferron; C.M. Greenfield; J.E. Menard; T.S. Taylor

    2003-07-30

    The advanced tokamak program on DIII-D is targeting the full integration of high-beta and high-bootstrap/noninductive current fraction for long-pulse lengths and the high confinement consistent with these features. Central to achieving these simultaneously is access to the highest ideal beta limits possible to maximize the headroom for experimental operation with RWM control. A study of the ideal-MHD stability is done for plasmas modeled after DIII-D advanced tokamak plasmas, varying the plasma elongation, triangularity, and outboard squareness. The highest beta(sub)N limits reach 6-7 for the n=1 kink mode for all elongation, outer squareness values, and plasma triangularity equals 0.8.

  20. Profile control of advanced tokamak plasmas in view of continuous operation

    NASA Astrophysics Data System (ADS)

    Mazon, D.

    2015-07-01

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  1. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  2. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  3. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  4. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.

  5. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  6. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  7. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Park, Jinhyung; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-01

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 1019 m-3 when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  8. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    SciTech Connect

    Seo, Seong-Heon; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Park, Jinhyung; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-15

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  9. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  10. Advanced ramjet concepts program

    NASA Technical Reports Server (NTRS)

    Leingang, J. L.

    1992-01-01

    Uniquely advantageous features, on both the performance and weight sides of the ledger, can be achieved through synergistic design integration of airbreathing and rocket technologies in the development of advanced orbital space transport propulsion systems of the combined cycle type. In the context of well understood advanced airbreathing and liquid rocket propulsion principles and practices, this precept of synergism is advanced mainly through six rather specific examples. These range from the detailed component level to the overall vehicle system level as follows: using jet compression; achieving a high area ratio rocket nozzle; ameliorating gas generator cycle rocket system deficiencies; using the in-duct special rocket thrust chamber assembly as the principal scramjet fuel injection operation; using the unstowed, covered fan as a duct closure for effecting high area ratio rocket mode operation; and creating a unique airbreathing rocket system via the onboard, cryogenic hydrogen induced air liquefaction process.

  11. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839

  12. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  13. Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Barbato, E.; Bécoulet, A.; Doyle, E. J.; Fujita, T.; Gohil, P.; Imbeaux, F.; Sauter, O.; Sips, G.; ITPA Group on Transport; Internal ITB Physics; Connor, J. W.; Doyle, E. J.; Esipchuk, Yu; Fujita, T.; Fukuda, T.; Gohil, P.; Kinsey, J.; Kirneva, N.; Lebedev, S.; Litaudon, X.; Mukhovatov, V.; Rice, J.; Synakowski, E.; Toi, K.; Unterberg, B.; Vershkov, V.; Wakatani, M.; International ITB Database Working Group; Aniel, T.; Baranov, Yu F.; Barbato, E.; Bécoulet, A.; Behn, R.; Bourdelle, C.; Bracco, G.; Budny, R. V.; Buratti, P.; Doyle, E. J.; Esipchuk, Yu; Esposito, B.; Ide, S.; Field, A. R.; Fujita, T.; Fukuda, T.; Gohil, P.; Gormezano, C.; Greenfield, C.; Greenwald, M.; Hahm, T. S.; Hoang, G. T.; Hobirk, J.; Hogeweij, D.; Ide, S.; Isayama, A.; Imbeaux, F.; Joffrin, E.; Kamada, Y.; Kinsey, J.; Kirneva, N.; Litaudon, X.; Luce, T. C.; Murakami, M.; Parail, V.; Peng, Y.-K. M.; Ryter, F.; Sakamoto, Y.; Shirai, H.; Sips, G.; Suzuki, T.; Synakowski, E.; Takenaga, H.; Takizuka, T.; Tala, T.; Wade, M. R.; Weiland, J.

    2004-05-01

    Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H\\times \\beta _{\\rm N}/q^{2}_{95} , is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters. A preliminary version of this study was presented in the 29th EPS Conf. on Plasma Phys. and Control. Fusion (Montreux, Switzerland, 17 21 June 2002) [1].

  14. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Gao, W.; Chen, Y. J.; Wu, C. R.; Zhang, L.; Huang, J.; Chang, J. F.; Yao, X. J.; Gao, W.; Zhang, P. F.; Jin, Z.; Hou, Y. M.; Guo, H. Y.

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  15. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  16. Advanced ICRF antenna design for R-TOKAMAK

    NASA Astrophysics Data System (ADS)

    Kako, E.; Ando, R.; Ichimura, M.; Ogawa, Y.; Amano, T.; Watari, T.

    1986-01-01

    The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For high power heating, a new type antenna called Panel heater antenna is proposed. It has a wide radiation area and is able to select a parallel wave number k. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma.

  17. Design of vibration compensation interferometer for Experimental Advanced Superconducting Tokamak.

    PubMed

    Yang, Y; Li, G S; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Zhu, X; Wang, Z X; Zeng, L; Zou, Z Y; Wei, X C; Lan, T

    2014-11-01

    A vibration compensation interferometer (wavelength at 0.532 μm) has been designed and tested for Experimental Advanced Superconducting Tokamak (EAST). It is designed as a sub-system for EAST far-infrared (wavelength at 432.5 μm) poloarimeter/interferometer system. Two Acoustic Optical Modulators have been applied to produce the 1 MHz intermediate frequency. The path length drift of the system is lower than 2 wavelengths within 10 min test, showing the system stability. The system sensitivity has been tested by applying a periodic vibration source on one mirror in the system. The vibration is measured and the result matches the source period. The system is expected to be installed on EAST by the end of 2014.

  18. Advanced Concepts. Chapter 21

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Mulqueen, Jack

    2013-01-01

    Before there is a funded space mission, there must be a present need for the mission. Space science and exploration are expensive, and without a well-defined and justifiable need, no one is going to commit significant funding for any space endeavor. However, as discussed in Chapter 1, applications of space technology and many and broad, hence there are many ways to determine and establish a mission need. Robotic science missions are justified by their science return. To be selected for flight, questions like these must be addressed: What is the science question that needs answering, and will the proposed mission be the most cost-effective way to answer it? Why does answering the question require an expensive space flight, instead of some ground-based alternative? If the question can only be answered by flying in space, then why is this approach better than other potential approaches? How much will it cost? And is the technology required to answer the question in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? There are also many ways to justify human exploration missions, including science return, technology advancement, as well as intangible reasons, such as national pride. Nonetheless, many of the questions that need answering, are similar to those for robotic science missions: Where are the people going, why, and will the proposed mission be the most cost-effective way to get there? What is the safest method to achieve the goal? How much will it cost? And is the technology required to get there and keep the crew alive in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? Another reason for some groups sending spacecraft into space is for profit. Telecommunications, geospatial imaging, and tourism are examples of proven, market-driven space missions and applications. For this specific set of users, the

  19. Advanced sulfur control concepts

    SciTech Connect

    Gangwal, S.K.; Turk, B.S.; Gupta, R.P.

    1995-11-01

    Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur without coal gas or with limited use. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) sulfur dioxide (SO{sub 2}) regeneration, (2) substoichiometric (partial) oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Preliminary assessment of these approaches indicated that developing SO{sub 2} regeneration faced the fewest technical and economic problems among the four process options. Elemental sulfur is the only likely product of SO{sub 2} regeneration and the SO{sub 2} required for the regeneration can be obtained by burning a portion of the sulfur produced. Experimental efforts have thus been concentrated on SO{sub 2}-based regeneration processes. Results from laboratory investigations are presented and discussed.

  20. Advanced Turbulence Modeling Concepts

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    2005-01-01

    The ZCET program developed at NASA Glenn Research Center is to study hydrogen/air injection concepts for aircraft gas turbine engines that meet conventional gas turbine performance levels and provide low levels of harmful NOx emissions. A CFD study for ZCET program has been successfully carried out. It uses the most recently enhanced National combustion code (NCC) to perform CFD simulations for two configurations of hydrogen fuel injectors (GRC- and Sandia-injector). The results can be used to assist experimental studies to provide quick mixing, low emission and high performance fuel injector designs. The work started with the configuration of the single-hole injector. The computational models were taken from the experimental designs. For example, the GRC single-hole injector consists of one air tube (0.78 inches long and 0.265 inches in diameter) and two hydrogen tubes (0.3 inches long and 0.0226 inches in diameter opposed at 180 degree). The hydrogen tubes are located 0.3 inches upstream from the exit of the air element (the inlet location for the combustor). To do the simulation, the single-hole injector is connected to a combustor model (8.16 inches long and 0.5 inches in diameter). The inlet conditions for air and hydrogen elements are defined according to actual experimental designs. Two crossing jets of hydrogen/air are simulated in detail in the injector. The cold flow, reacting flow, flame temperature, combustor pressure and possible flashback phenomena are studied. Two grid resolutions of the numerical model have been adopted. The first computational grid contains 0.52 million elements, the second one contains over 1.3 million elements. The CFD results have shown only about 5% difference between the two grid resolutions. Therefore, the CFD result obtained from the model of 1.3-million grid resolution can be considered as a grid independent numerical solution. Turbulence models built in NCC are consolidated and well tested. They can handle both coarse and

  1. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    SciTech Connect

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-07-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.

  2. Tooling concepts for ITER tokamak assembly and remote disassembly

    SciTech Connect

    Oikawa, A.; Puhn, F.; Helary, J.L.; Shaw, R.; Friend, M.; Piec, Z.; Tachikawa, N.; Acks, M.; Basile, A.

    1995-12-31

    Since ITER has many of the characteristics of a full-scale tokamak reactor, its provisions for assembly and replaceability are relevant to a future fusion power plant. The performance of ITER is dependent on tight tolerances, mainly for the magnets and plasma facing components. The magnetic field must be highly uniform in the toroidal direction to ensure good plasma energy and particle confinement. Alignment of the plasma facing surface of the first wall and divertor target plates is required to avoid large local heat loads on the plasma facing components and, as a consequence, their erosion and contamination of the plasma with impurities. Because of the large and heavy components the major challenge of the ITER tokamak assembly is to hold such tight tolerances using guide tools, adjustable interfaces, accurate measuring tools, and specific procedures to compensate for deformation and fabrication tolerances. The assembly tooling plan also includes verification of the essential remote handling operations.

  3. Maintenance concept development for the Compact Ignition Tokamak

    SciTech Connect

    Macdonald, D.

    1988-01-01

    The Compact Ignition Tokamak (CIT), located at the Princeton Plasma Physics Laboratory, will be the next major experimental machine in the US Fusion Program. Its use of deuterium-tritium (D-T) fuel requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist of removing and repairing such components as diagnostic equipment modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the vacuum vessel includes both bridge-mounted and floor-mounted manipulator systems. Additionally, decontamination (decon) equipment, hot cell repair facilities, and equipment for handling and packaging solid radioactive waste (rad-waste) are being developed. Recent design activities have focused on establishing maintenance system interfaces with the facility design, developing manipulator system requirements, and using mock-ups to support the tokamak configuration design. 3 refs., 8 figs.

  4. Problems with the concept of plasma equilibrium in tokamaks

    SciTech Connect

    Carreras, B.A.

    1992-06-01

    The equilibrium condition for a magnetically confined plasma in normally formulated in terms of macroscopic equations. In these equations, the plasma pressure is assumed to be a function of the magnetic flux with continuous derivatives. However, in three- dimensional systems this is not necessarily the case. Here, we look at the case of an intrinsically three-dimensional realistic tokamak, and we discuss the possible interconnection between the equilibrium and anomalous transport.

  5. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  6. Magnetic confinement experiment -- 1: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1994-12-31

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization.

  7. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  8. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.

  9. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-01

    An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.

  10. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak.

    PubMed

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-01

    An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.

  11. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  12. Electron ripple injection concept for tokamak transport control

    SciTech Connect

    Choe, W.; Ono, M.; Chang, C.S.

    1996-02-01

    A non-intrusive method for inducing a radial electric field ({ital E}{sub {ital r}}) based on electron ripple injection (ERI) is under development by the Princeton CDX-U group. Since {ital E}{sub {ital r}} is known to play an important role in the L-H and H-VH mode transition, it is therefore important to develop a non-intrusive tool to control the {ital E}{sub {ital r}} profile in tokamak plasmas. The present technique utilizes externally-applied local magnetic ripple fields to trap electrons at the edge, allowing them to penetrate towards the plasma center via {nabla}{ital B} and curvature drifts, causing the flux surfaces to charge up negatively. Electron cyclotron resonance heating (ECRH) is utilized to increase the trapped population and the electron drift velocity by raising the perpendicular energy of trapped electrons. The temperature anisotropy of resonant electrons in a tokamak plasma is calculated in order to investigate effects of ECRH on electrons. Simulations using a guiding-center orbit model have been performed to understand the behavior of suprathermal electrons in the presence of ripple fields. Examples for CDX-U and ITER are given. {copyright} {ital 1996 American Institute of Physics.}

  13. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  14. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  15. NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Cassanova, Robert A.

    1999-01-01

    The purpose of NASA Institute for Advanced Concepts (NIAC) is to provide an independent, open forum for the external analysis and definition of space and aeronautics advanced concepts to complement the advanced concepts activities conducted within the NASA Enterprises. The NIAC will issue Calls for Proposals during each year of operation and will select revolutionary advanced concepts for grant or contract awards through a peer review process. Final selection of awards will be with the concurrence of NASA's Chief Technologist. The operation of the NIAC is reviewed biannually by the NIAC Science, Exploration and Technology Council (NSETC) whose members are drawn from the senior levels of industry and universities. The process of defining the technical scope of the initial Call for Proposals was begun with the NIAC "Grand Challenges" workshop conducted on May 21-22, 1998 in Columbia, Maryland. These "Grand Challenges" resulting from this workshop became the essence of the technical scope for the first Phase I Call for Proposals which was released on June 19, 1998 with a due date of July 31, 1998. The first Phase I Call for Proposals attracted 119 proposals. After a thorough peer review, prioritization by NIAC and technical concurrence by NASA, sixteen subgrants were awarded. The second Phase I Call for Proposals was released on November 23, 1998 with a due date of January 31, 1999. Sixty-three (63) proposals were received in response to this Call. On December 2-3, 1998, the NSETC met to review the progress and future plans of the NIAC. The next NSETC meeting is scheduled for August 5-6, 1999. The first Phase II Call for Proposals was released to the current Phase I grantees on February 3,1999 with a due date of May 31, 1999. Plans for the second year of the contract include a continuation of the sequence of Phase I and Phase II Calls for Proposals and hosting the first NIAC Annual Meeting and USRA/NIAC Technical Symposium in NASA HQ.

  16. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  17. Remote maintenance concepts for the Compact Ignition Tokamak

    SciTech Connect

    Davis, F.C.; Hager, E.R.

    1988-01-01

    Because deuterium-tritium fuel will be used in the Compact Ignition Tokamak (CIT), remote handling technology is needed to carry out some maintenance operations on the machine. In keeping with the compact, low-cost nature of CIT, remote maintenance is provided only for systems with the highest probability of failure. Remote operations include removing, repairing (if feasible), and replacing such components as thermal protection tiles on the first wall, radio-frequency (rf) heating modules, and diagnostic modules. For maintenance inside the vacuum vessel, major pieces of equipment under development include an articulated boom manipulator with servomanipulators, an inspection manipulator, and special tooling. For maintenance outside the cryostat, remote equipment includes a bridge-mounted manipulator system, equipment for decontamination and hot cell activities, and for handling and packaging solid radioactive waste. The conceptual design phase of the CIT project is nearing completion; research and development activities in support of the project include demonstrations of remote maintenance operations on full-size partial mock-ups. 9 figs.

  18. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  19. Development on JET of advanced tokamak operations for ITER

    NASA Astrophysics Data System (ADS)

    Tuccillo, A. A.; Crisanti, F.; Litaudon, X.; Baranov, Yu. F.; Becoulet, A.; Becoulet, M.; Bertalot, L.; Castaldo, C.; Challis, C. D.; Cesario, R.; DeBaar, M. R.; de Vries, P. C.; Esposito, B.; Frigione, D.; Garzotti, L.; Giovannozzi, E.; Giroud, C.; Gorini, G.; Gormezano, C.; Hawkes, N. C.; Hobirk, J.; Imbeaux, F.; Joffrin, E.; Lomas, P. J.; Mailloux, J.; Mantica, P.; Mantsinen, M. J.; Mazon, D.; Moreau, D.; Murari, A.; Pericoli-Ridolfini, V.; Rimini, F.; Sips, A. C. C.; Sozzi, C.; Tudisco, O.; Van Eester, D.; Zastrow, K.-D.; work-programme contributors, JET-EFDA

    2006-02-01

    Recent research on advanced tokamak in JET has focused on scenarios with both monotonic and reversed shear q-profiles having plasma parameters as relevant as possible for extrapolation to ITER. Wide internal transport barriers (ITBs), r/a ~ 0.7, are formed at ITER relevant triangularity δ ~ 0.45 and moderate plasma current, IP = 1.5-2.5 MA, with ne/nG ~ 60% when ELMs are moderated by Ne injection. At higher current (IP <= 3.5 MA, δ ~ 0.25) wide ITBs sitting at r/a >= 0.5, in the positive shear region, have been developed. Generally MHD events terminate these barriers otherwise limited in strength by power availability. ITBs with core density close to Greenwald value, Te ~ Ti and low toroidal rotation (4 times lower than standard ITBs) are obtained in plasma target preformed by opportune timing of lower hybrid current drive (LHCD), pellet injection and a small amount of NBI power. Wide ITBs, r/a ~ 0.6, of moderate strength, can be sustained without impurities accumulation for a time close to neoclassical resistive time in 3 T/1.8 MA discharges that exhibit reversed magnetic shear profiles and type-III ELMy edge. These discharges have been extended to the maximum duration allowed by JET subsystems (20 s) bringing to the record of injected energy in a JET discharge: E ~ 330 MJ. Portability of ITB physics has been addressed through dedicated similarity experiments. The ITB is identified as a layer of reduced diffusivity studying the propagation of the heat wave generated by modulating the ICRF mode conversion (MC) electron heating. Impressive results, QDT ~ 0.25, are obtained in these deuterium discharges with 3He minority when the MC layer is located in the core. The ion behaviour has been investigated in pure LHCD electron ITBs optimizing the 3He minority concentration for direct ion heating. Preliminary results of particle transport, studied via injection of a trace of tritium and an Ar-Ne mixture, will be presented.

  20. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    SciTech Connect

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-15

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  1. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  2. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  3. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028

  4. Advances in Dust Detection and Removal for Tokamaks

    NASA Astrophysics Data System (ADS)

    Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.

    2008-11-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.

  5. Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan

    2014-05-15

    Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.

  6. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect

    Campos, A.; Skinner, C.H.

    2009-01-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  7. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,KH

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  8. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    SciTech Connect

    Hoffman, M.A.; Campbell, R.; Logan, B.G.; Lawrence Livermore National Lab., CA )

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  9. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

  10. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  11. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  12. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  13. Advanced Pointing Imaging Camera (APIC) Concept

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Bills, B. G.; Jorgensen, J.; Jun, I.; Maki, J. N.; McEwen, A. S.; Riedel, E.; Walch, M.; Watkins, M. M.

    2016-10-01

    The Advanced Pointing Imaging Camera (APIC) concept is envisioned as an integrated system, with optical bench and flight-proven components, designed for deep-space planetary missions with 2-DOF control capability.

  14. Advanced concepts in knee arthrodesis

    PubMed Central

    Wood, Jennifer H; Conway, Janet D

    2015-01-01

    The aim is to describe advanced strategies that can be used to diagnose and treat complications after knee arthrodesis and to describe temporary knee arthrodesis to treat infected knee arthroplasty. Potential difficult complications include nonunited knee arthrodesis, limb length discrepancy after knee arthrodesis, and united but infected knee arthrodesis. If a nonunited knee arthrodesis shows evidence of implant loosening or failure, then bone grafting the nonunion site as well as exchange intramedullary nailing and/or supplemental plate fixation are recommended. If symptomatic limb length discrepancy cannot be satisfactorily treated with a shoe lift, then the patient should undergo tibial lengthening over nail with a monolateral fixator or exchange nailing with a femoral internal lengthening device. If a united knee arthrodesis is infected, the nail must be removed. Then the surgeon has the option of replacing it with a long, antibiotic cement-coated nail. The authors also describe temporary knee arthrodesis for infected knee arthroplasty in patients who have the potential to undergo insertion of a new implant. The procedure has two goals: eradication of infection and stabilization of the knee. A temporary knee fusion can be accomplished by inserting both an antibiotic cement-coated knee fusion nail and a static antibiotic cement-coated spacer. These advanced techniques can be helpful when treating difficult complications after knee arthrodesis and treating cases of infected knee arthroplasty. PMID:25793160

  15. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    SciTech Connect

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  16. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Nam, Y. U.; Chung, J.

    2010-10-15

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  17. Advanced Accelerator Concepts Final Report

    SciTech Connect

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the

  18. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,HK

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  19. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  20. Optical system design for the charge exchange spectroscopy of the Korea superconducting tokamak advanced research device

    NASA Astrophysics Data System (ADS)

    Oh, Seungtae; Ko, Won-Ha

    2011-04-01

    The collective optical design is described for the charge exchange spectroscopy (CES) of the Korea superconducting tokamak advanced research (KSTAR) device. The CES diagnostic measures the ion temperature of carbon and other impurities, in conjunction with the neutral heating beam in KSTAR. The visible light from the plasma is concentrated via collection optics and imaged onto quartz fibers. The collection optics in the system is the key component for the CES system. The final design is derived through four steps and its performance is examined in a simulation step. In this paper, the design details of the collective optical system for the KSTAR CES are discussed.

  1. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  2. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Huang, J.; Heidbrink, W. W.; Wan, B.; von Hellermann, M. G.; Zhu, Y.; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Shi, Y.; Ye, M.; Hu, L.; Hu, C.

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  3. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak.

    PubMed

    Huang, J; Heidbrink, W W; Wan, B; von Hellermann, M G; Zhu, Y; Gao, W; Wu, C; Li, Y; Fu, J; Lyu, B; Yu, Y; Shi, Y; Ye, M; Hu, L; Hu, C

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  4. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  5. Proposed research on advanced accelerator concepts

    SciTech Connect

    Davidson, R.C.; Wurtele, J.S.

    1991-09-01

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

  6. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  7. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  8. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    SciTech Connect

    Zhu, Y. B. Liu, D.; Heidbrink, W. W.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Wan, B. N.; Li, J. G.

    2014-11-15

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  9. First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, J. Z.; Zhu, Y. B.; Zhao, J. L.; Wan, B. N.; Li, J. G.; Heidbrink, W. W.

    2016-11-01

    Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

  10. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Liu, D.; Heidbrink, W. W.; Wan, B. N.; Li, J. G.

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  11. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak.

    PubMed

    Zhu, Y B; Zhang, J Z; Qi, M Z; Xia, S B; Liu, D; Heidbrink, W W; Wan, B N; Li, J G

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  12. Plasma Shape and Current Density Profile Control in Advanced Tokamak Operating Scenarios

    NASA Astrophysics Data System (ADS)

    Shi, Wenyu

    The need for new sources of energy is expected to become a critical problem within the next few decades. Nuclear fusion has sufficient energy density to potentially supply the world population with its increasing energy demands. The tokamak is a magnetic confinement device used to achieve controlled fusion reactions. Experimental fusion technology has now reached a level where tokamaks are able to produce about as much energy as is expended in heating the fusion fuel. The next step towards the realization of a nuclear fusion tokamak power plant is ITER, which will be capable of exploring advanced tokamak (AT) modes, characterized by a high fusion gain and plasma stability. The extreme requirements of the advanced modes motivates researchers to improve the modeling of the plasma response as well as the design of feedback controllers. This dissertation focuses on several magnetic and kinetic control problems, including the plasma current, position and shape control, and data-driven and first-principles-driven modeling and control of plasma current density profile and the normalized plasma pressure ratio betaN. The plasma is confined within the vacuum vessel by an external electromagnetic field, produced primarily by toroidal and poloidal field coils. The outermost closed plasma surface or plasma boundary is referred to as the shape of the plasma. A central characteristic of AT plasma regimes is an extreme elongated shape. The equilibrium among the electromagnetic forces acting on an elongated plasma is unstable. Moreover, the tokamak performance is improved if the plasma is located in close proximity to the torus wall, which guarantees an efficient use of available volume. As a consequence, feedback control of the plasma position and shape is necessary. In this dissertation, an Hinfinity-based, multi-input-multi-output (MIMO) controller for the National Spherical Torus Experiment (NSTX) is developed, which is used to control the plasma position, shape, and X

  13. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377

  14. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    SciTech Connect

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun E-mail: lqhu@ipp.cas.cn; Hu, Liqun E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  15. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.; Xu, G. S.; Guo, H. Y.; Cao, B.; Wang, H. Q.; Wang, L.; Yan, N.; Xia, S. B.; Zhang, W.; Chen, R.; Chen, L.; Ding, S. Y.; Xiong, H.; Zhao, Y.; Wan, B. N.; Gong, X. Z.; Gao, X.

    2012-12-01

    Gas puff imaging (GPI) offers a direct and effective diagnostic to measure the edge turbulence structure and velocity in the edge plasma, which closely relates to edge transport and instability in tokamaks. A dual GPI diagnostic system has been installed on the low field side on experimental advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6°. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130×130 mm (radial versus poloidal) objective plane. A fast camera is used to capture the light emission from the image plane with a speed up to 390 804 frames/s with 64×64 pixels and an exposure time of 2.156 μs. The spatial resolution of the system is 2 mm at the objective plane. A total amount of 200 Pa.L helium gas is puffed into the plasma edge for each GPI viewing region for about 250 ms. The new GPI diagnostic has been applied on EAST for the first time during the recent experimental campaign under various plasma conditions, including ohmic, L-mode, and type-I, and type-III ELMy H-modes. Some of these initial experimental results are also presented.

  16. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun; Hu, Liqun; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-01

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey-predator model was found to reproduce the fishbone nonlinear process well.

  17. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lampert, M.; Anda, G.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Réfy, D.; Nam, Y. U.; Zoletnik, S.

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  18. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lampert, M.; Anda, G.; Réfy, D.; Zoletnik, S.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Nam, Y. U.

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  19. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  20. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q. E-mail: guohuizhang@pku.edu.cn; Zhang, G. H. E-mail: guohuizhang@pku.edu.cn; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  1. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  2. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-12-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  3. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-10-18

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  4. Application of visible bremsstrahlung to Z{sub eff} measurement on the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu

    2015-02-15

    The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Z{sub eff} as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Z{sub eff} can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Z{sub eff} with electron density and the relations between Z{sub eff} and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters.

  5. Application of visible bremsstrahlung to Z(eff) measurement on the Experimental Advanced Superconducting Tokamak.

    PubMed

    Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu

    2015-02-01

    The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Zeff as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Zeff can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Zeff with electron density and the relations between Zeff and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters.

  6. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak.

    PubMed

    Liu, D M; Wan, B N; Zhao, W Z; Shen, B; He, Y G; Chen, B; Huang, J; Liu, H Q

    2014-11-01

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  7. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak

    SciTech Connect

    Liu, D. M. Zhao, W. Z.; He, Y. G.; Chen, B.; Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q.

    2014-11-15

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  8. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  9. Next Generation NASA GA Advanced Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2006-01-01

    Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.

  10. Advanced Gasifier Pilot Plant Concept Definition

    SciTech Connect

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  11. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  12. Advanced bioreactor concepts for coal processing

    SciTech Connect

    Scott, C.D.

    1988-01-01

    The development of advanced bioreactor systems for the processing of coal should follow some basic principles. Continuous operation is preferred, with maximum bioreagent concentrations and enhanced mass transfer. Although conventional stirred-tank bioreactors will be more appropriate for some processing concepts, columnar reactors with retained bioreagents could be the system of choice for most of the applications. Serious consideration must now be given to process development of some biological coal processing concepts. Process biology and biochemistry will continue to be very important, but efficient bioreactor systems will be necessary for economic feasibility. Conventional bioreactor concepts will be useful for some applications, but columnar systems represent an innovative approach to the design of continuous bioreactors with high productivity and good operational control. Fluidized and packed beds are the most promising configurations, especially where three-phase operation is required and where interphase mass transport is a likely controlling mechanism. Although the biocatalyst must be immobilized into or onto particles to be retained in the bioreactors, this also results in a very high biocatalyst concentration without washout and a significant enhancement in bioconversion rates. The multistage nature of these types of bioreactors also contributes to higher efficiencies for many types of biocatalytic processes. 25 refs.

  13. Development of advanced superconducting coil technologies for the National Centralized Tokamak

    NASA Astrophysics Data System (ADS)

    Kizu, K.; Miura, Y. M.; Tsuchiya, K.; Ando, T.; Koizumi, N.; Matsui, K.; Sakasai, A.; Tamai, H.; Matsukawa, M.; Ishida, S.; Okuno, K.

    2005-11-01

    Advanced technologies for fabrication of superconducting coils have been developed for the National Centralized Tokamak which is based on modification of JT-60. One of the technologies developed is the application of the react-and-wind (R&W) method of fabrication of a Nb3Al D-shaped coil. The bending strain of 0.4% due to the R&W method did not affect the critical current characteristics. This finding indicates the possibilities that the manufacturing cost of large size coils can be reduced further by downsizing the heat treatment furnace, and large complicated shape coils can be manufactured by using the Nb3Al conductor. Another technology is an advanced winding technique for the reduction of the ac losses of Nb3Sn coils by loading bending strain on the conductor. It was found that 0.2% bending strain is enough to reduce the ac losses to one-fifth at the virgin state. The newly developed NbTi conductor attained both (i) low ac loss of 116 ms in coupling time constant and (ii) low cost owing to the stainless steel wrap of the sub-cables and Ni plated NbTi strands with 11 µm filaments.

  14. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  15. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  16. Experimental assessment of advanced Stirling component concepts

    NASA Technical Reports Server (NTRS)

    Ziph, B.

    1985-01-01

    The results of an experimental assessment of some advanced Stirling engine component concepts are presented. High performance piston rings, reciprocating oil scrapers and heat pipes with getters and with mechanical couplings were tested. The tests yielded the following results: (1) Bonded, split, pumping piston rings, in preliminary testing, proved a promising concept, exhibiting low leakage and friction losses. Solid piston rings proved impractical in view of their sensitivity to the operating temperature; (2) A babbit oil scraper in a compliant housing performed well in atmospheric endurance testing. In pressurized tests the scraper did not perform well as a containment seal. The latter tests suggest modifications which may adapt Ti successfully to that application; and (3) Heat pipe endurance tests indicated the adequacy of simple, inexpensive fabrication and filling procedures. Getters were provided to increase the tolerance of the heat pipes to the presence of air and commercially available couplings were demonstrated to be suitable for heat pipe application. In addition to the above tests, the program also included a design effort for a split shaft applicable to a swashplate driven engine with a pressurized crank-case. The design is aimed, and does accomplish, an increase in component life to more than 10,000 hours.

  17. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  18. Investigation of relativistic runaway electrons in electron cyclotron resonance heating discharges on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Kang, C. S.; Lee, S. G.

    2014-07-15

    The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].

  19. Progress toward long-pulse high-performance Advanced Tokamak discharges on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Wade, M. R.; Luce, T. C.; Politzer, P. A.; Ferron, J. R.; Allen, S. L.; Austin, M. E.; Baker, D. R.; Bray, B.; Brennen, D. P.; Burrell, K. H.; Casper, T. A.; Chu, M. S.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gohil, P.; Gorelov, I. A.; Greenfield, C. M.; Groebner, R. J.; Heidbrink, W. W.; Hsieh, C.-L.; Hyatt, A. W.; Jayakumar, R.; Kinsey, J. E.; La Haye, R. J.; Lao, L. L.; Lasnier, C. J.; Lazarus, E. A.; Leonard, A. W.; Lin-Liu, Y. R.; Lohr, J.; Mahdavi, M. A.; Makowski, M. A.; Murakami, M.; Petty, C. C.; Pinsker, R. I.; Prater, R.; Rettig, C. L.; Rhodes, T. L.; Rice, B. W.; Strait, E. J.; Taylor, T. S.; Thomas, D. M.; Turnbull, A. D.; Watkins, J. G.; West, W. P.; Wong, K.-L.

    2001-05-01

    Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ˜10 has been sustained for >5 τE with qmin>1.5. These edge localized modes (ELMing) H-mode discharges have β˜5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated in long-pulse high-performance ELMing H-mode discharges with βNH89˜7 for up to 6.3 s. In plasma shapes compatible with good density control in the present divertor configuration, the achieved βN is somewhat less than that in the high βNH89=10 discharges.

  20. The generalized Balescu-Lenard collision operator: A unifying concept for tokamak transport

    SciTech Connect

    Mynick, H.E.

    1987-08-01

    The generalization of the Balescu-Lenard collision operator to its fully electromagnetic counterpart in Kaufman's action-angle formalism is derived and its properties investigated. The general form may be specialized to any particular geometry where the unperturbed particle motion is integrable, and thus includes cylindrical plasmas, inhomogeneous slabs with nonuniform magnetic fields, tokamaks, and the particularly simple geometry of the standard operator as special cases. The general form points to the commonality between axisymmetric, turbulent, and ripple transport, and implies properties (e.g., intrinsic ambipolarity) which should be shared by them, under appropriate conditions. Along with a turbulent ''anomalous diffusion coefficient'' calculated for tokamaks in previous work, an ''anomalous pinch'' term of closely related structure and scaling is also implied by the generalized operator. 20 refs. (LSP)

  1. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  2. The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

    1997-01-01

    Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

  3. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  4. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Yu Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Hong, Suk-Ho; Yoon, Si-Woo; Zhuang Huidong; Chen Zhongyong

    2012-12-15

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is {approx}3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D{sub 2} MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  5. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  6. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  7. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  8. Analysis of pedestal gradient characteristic on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Teng Fei; Han, Xiao Feng; Zang, Qing; Xiao, Shu Mei; Tian, Bao Gang; Hu, Ai Lan; Zhao, Jun Yu

    2016-05-01

    A pedestal database was built based on type I edge localized mode H-modes in the Experimental Advanced Superconducting Tokamak. The most common functional form hyperbolic tangent function (tanh) method is used to analyze pedestal characteristics. The pedestal gradient scales linearly with its pedestal top and the normalized pedestal pressure gradient α shows a strong correlation with electron collisionality. The connection among pedestal top value, gradient, and width is established with the normalized pedestal pressure gradient. In the core region of the plasma, the nature of the electron temperature stiffness reflects a proportionality between core and pedestal temperature while the increase proportion is lower than that expected in the high temperature region. However, temperature profile stiffness is limited or even disappears at the edge of the plasma, while the gradient length ratio ( ηe ) on the pedestal is important. The range of ηe is from 0.5 to 2, varying with the plasma parameters. The pedestal temperature brings a more significant impact on ηe than pedestal density.

  9. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Yu, Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Zhuang, Huidong; Chen, Zhongyong; Hong, Suk-Ho; Yoon, Si-Woo

    2012-12-01

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is ˜3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D2 MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  10. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  11. Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Qu, H.; Zhang, T.; Han, X.; Xiang, H. M.; Wen, F.; Geng, K. N.; Wang, Y. M.; Kong, D. F.; Cai, J. Q.; Huang, C. B.; Gao, Y.; Gao, X.; Zhang, S.

    2016-11-01

    A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.

  12. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-01

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  13. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  14. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Yu, Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Zhuang, Huidong; Chen, Zhongyong; Hong, Suk-Ho; Yoon, Si-Woo

    2012-12-01

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is ~3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D(2) MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  15. Advanced-ignition-concept exploration on OMEGA

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Anderson, K. S.; Betti, R.; Craxton, R. S.; Delettrez, J. A.; Frenje, J. A.; Glebov, V. Yu; Gotchev, O. V.; Kelly, J. H.; Li, C. K.; Mackinnon, A. J.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Myatt, J. F.; Norreys, P. A.; Nilson, P. M.; Patel, P. K.; Petrasso, R. D.; Radha, P. B.; Ren, C.; Sangster, T. C.; Seka, W.; Smalyuk, V. A.; Solodov, A. A.; Stephens, R. B.; Stoeckl, C.; Yaakobi, B.

    2009-12-01

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40 µm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1 × 1016 W cm-2) for shock generation.

  16. Advanced-Ignition-Concept Exploration on OMEGA

    SciTech Connect

    Theobald, W; Anderson, K S; Betti, R; Craxton, R S; Delettrez, J A; Frenje, J A; Glebov, V Yu; Gotchev, O V; Kelly, J H; Li, C K; Mackinnon, A J; Marshall, F J; McCrory, R L; Meyerhofer, D D; Myatt, J F; Norreys, P A; Nilson, P M; Patel, P K; Petrasso, R D; Radha, P B; Ren, C; Sangster, T C; Seka, W; Smalyuk, V A; Solodov, A A; Stephens, R B; Stoeckl, C; Yaakobi, B

    2009-11-24

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40μm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1×1016 Wcm-2) for shock generation.

  17. Advanced-Ignition-Concept Exploration on OMEGA

    SciTech Connect

    Theobald, W; Anderson, K S; Betti, R; Craxton, R S; Delettrez, J A; Frenje, J A; Glebov, V Yu; Gotchev, O V; Kelly, J H; Li, C K; Mackinnon, A J; Marshall, F J; McCrory, R L; Meyerhofer, D D; Myatt, J F; Norreys, P A; Nilson, P M; Patel, P K; Petrasso, R D; Radha, P B; Ren, C; Sangster, T C; Seka, W; Smalyuk, V A; Solodov, A A; Stephens, R B; Stoeckl, C; Yaakobi, B

    2009-11-24

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40μm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1×1016 Wcm^-2) for shock generation.

  18. Concept of a demonstrational hybrid reactor—a tokamak with molten-salt blanket for 233U fuel production: 1. Concept of a stationary Tokamak as a neutron source

    NASA Astrophysics Data System (ADS)

    Azizov, E. A.; Gladush, G. G.; Dokuka, V. N.; Khayrutdinov, R. R.

    2015-12-01

    On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of 233U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.

  19. Concept of a demonstrational hybrid reactor—a tokamak with molten-salt blanket for {sup 233}U fuel production: 1. Concept of a stationary Tokamak as a neutron source

    SciTech Connect

    Azizov, E. A.; Gladush, G. G. Dokuka, V. N.; Khayrutdinov, R. R.

    2015-12-15

    On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of {sup 233}U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.

  20. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.

  1. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    SciTech Connect

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  2. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  3. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    SciTech Connect

    S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.

  4. Technical and economic evaluation of advanced air cargo system concepts

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  5. Advanced sunflower antenna concept development. [stowable reflectors

    NASA Technical Reports Server (NTRS)

    Archer, J. S.

    1980-01-01

    The feasibility of stowing large solid antenna reflectors in the shuttle was demonstrated for applications with 40 foot apertures at frequencies of 100 GHz. Concepts allowing extension of the basic concept to 80-foot apertures operable at 60 GHz were identified.

  6. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  7. The Advance Organizer Concept: Some Methodological Questions.

    ERIC Educational Resources Information Center

    Salmon, Robert; And Others

    The effect of an advance organizer on post test performance was studied in a 2 X 2 X 2 factorial design with the effects of the organizer, pretest and mathematics learning passage controlled. An advance organizer of approximately 500 words and a learning passage of approximately 1,000 words were developed. A 41-item multiple choice test based on…

  8. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect

    Chi, Yuan; Hu, Chundong; Zhuang, Ge

    2014-02-15

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  9. Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

  10. Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1997-01-01

    Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts, which include high power plasma thrusters such as lithuim-fueled Lorentz-Force-Accelerators, MEMS-scale propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

  11. Advanced Interval Management (IM) Concepts of Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Ahmad, Nash'at N.; Underwood, Matthew C.

    2014-01-01

    This document provides a high-level description of several advanced IM operations that NASA is considering for future research and development. It covers two versions of IM-CSPO and IM with Wake Mitigation. These are preliminary descriptions to support an initial benefits analysis

  12. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  13. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  14. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  15. Workshop II: Nanotechnology and Advanced Cell Concepts

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.

  16. Advanced General Aviation Turbine Engine (GATE) concepts

    NASA Technical Reports Server (NTRS)

    Lays, E. J.; Murray, G. L.

    1979-01-01

    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.

  17. Advanced propulsion concepts for orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1982-01-01

    Studies of the United States Space Transportation System show that in the mid-to-late 1990s expanded capabilities for Orbital Transfer Vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possible men to geosynchronous orbit. NASA is conducting a technology program in support of an advanced propulsion system for future OTVs. This program is briefly described with results to date of the first program element, the Conceptual Design and Technology Definition studies.

  18. Investigating the Scope of an Advance Organizer for Compiler Concepts.

    ERIC Educational Resources Information Center

    Levine, Lawrence H.; Loerinc, Beatrice M.

    1985-01-01

    Investigates effectiveness of advance organizers for teaching functioning and use of compilers to undergraduate students in computer science courses. Two experimental groups used the advance organizer while two control groups did not. Findings indicate that an explicitly concept-directed organizer is effective in providing a framework for…

  19. Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Walker, M. L.; Ferron, J. R.; Liu, F.; Schuster, E.; Barton, J. E.; Boyer, M. D.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Holcomb, C. T.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Park, J. M.; Penaflor, B. G.; Shi, W.; Turco, F.; Wehner, W.; the ITPA-IOS Group members; experts

    2013-06-01

    The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, Ψ(x), (b) the poloidal flux profile together with the normalized pressure parameter, βN, and (c) the inverse of the safety factor profile, \\bar{\\iota}(x)=1/q(x) , are described.

  20. Magnetic confinement experiment. I: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.

  1. Advanced Concepts for Underwater Acoustic Channel Modeling

    NASA Astrophysics Data System (ADS)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  2. Brush seal numerical simulation: Concepts and advances

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-01-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  3. Brush seal numerical simulation: Concepts and advances

    NASA Astrophysics Data System (ADS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-07-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  4. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  5. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  6. Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.; Sinsay, Jeffrey D.

    2006-01-01

    The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.

  7. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak.

    PubMed

    Zou, Z Y; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Wang, Z X; Shen, J S; An, Z H; Yang, Y; Zeng, L; Wei, X C; Li, G S; Zhu, X; Lan, T

    2014-11-01

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  8. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zou, Z. Y.; Liu, H. Q. Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X.; Ding, W. X.; Brower, D. L.; Lan, T.

    2014-11-15

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  9. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  10. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, H. Y.; Hahn, S. H.; Ghim, Y.-C.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho

    2015-12-01

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2-3 and the ELM size, which was estimated from the Dα amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34-0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  11. First results obtained from the soft x-ray pulse height analyzer on experimental advanced superconducting tokamak

    SciTech Connect

    Xu, P.; Lin, S. Y.; Hu, L. Q.; Duan, Y. M.; Zhang, J. Z.; Chen, K. Y.; Zhong, G. Q.

    2010-06-15

    An assembly of soft x-ray pulse height analyzer system, based on silicon drift detector (SDD), has been successfully established on the experimental advanced superconducting tokamak (EAST) to measure the spectrum of soft x-ray emission (E=1-20 keV). The system, including one 15-channel SDD linear array, is installed on EAST horizontal port C. The time-resolved radial profiles of electron temperature and K{sub {alpha}} intensities of metallic impurities have been obtained with a spatial resolution of around 7 cm during a single discharge. It was found that the electron temperatures derived from the system are in good agreement with the values from Thomson scattering measurements. The system can also be applied to the measurement of the long pulse discharge for EAST. The diagnostic system is introduced and some typical experimental results obtained from the system are also presented.

  12. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang

    2016-04-01

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.

  13. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, W.; Park, H. K.; Lee, D. J.; Nam, Y. U.; Leem, J.; Kim, T. K.

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm-1. The upper limit corresponds to the normalized wavenumber kθρe of ˜0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  14. Effect of gas puffing from different side on lower hybrid wave-plasma coupling in experimental advanced superconductive tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Kong, E. H.; Zhang, T.; Ekedahl, A.; Li, M. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wu, J. H.; Xu, G. S.; Zhao, H. L.; Wang, M.; Gong, X. Z.; Shan, J. F.; Liu, F. K.; EAST Team

    2013-10-01

    Effect of gas puffing from electron-side and ion-side on lower hybrid wave (LHW)-plasma is investigated in experimental advanced superconductive tokamak for the first time. Experimental results with different gas flow rates show that electron density at the grill is higher in the case of gas puffing from electron-side; consequently, a lower reflection coefficient is observed, suggesting better effect of puffing from electron-side on LHW-plasma. The difference in edge density between electron- and ion-side cases suggests that local ionization of puffed gas plays a dominant role in affecting the density at the grill due to different movement direction of ionized electrons and that part of gas has been locally ionized near the gas pipe before diffusing into the grill region. Such difference could be enlarged and important in ITER due to the improvement of plasma parameters and LHW power.

  15. Observation of pedestal turbulence in edge localized mode-free H-mode on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Han, X.; Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.

    2014-10-01

    Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power PICRF/Ptotal exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = -3. Whereas when PICRF/Ptotal is less than 0.7, harmonic mode with frequency f = 40-300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.

  16. ELMy H-mode linear simulation with 3-field model on experimental advanced superconducting tokamak using BOUT++

    SciTech Connect

    Liu, Z. X.; Gao, X.; Liu, S. C.; Ding, S. Y.; Li, J. G.; Xia, T. Y.; Xu, X. Q.; Hughes, J. W.

    2012-10-15

    H-mode plasmas with ELM (edge localized mode) have been realized on experimental advanced superconducting tokamak (EAST) with 2.45 GHz low hybrid wave at P{sub LHW}{approx}1 MW in 2010. Data from EAST experiments including magnetic geometry, measured pressure profiles, and calculated current profiles are used to investigate the physics of ELM utilizing the BOUT++ code. Results from linear simulations show that the ELMs in EAST are dominated by resistive ballooning modes. When the Lundquist number (dimensionless ratio of the resistive diffusion time to the Alfven time) is equal to or less than 10{sup 7}, the resistive ballooning modes are found to become unstable in the ELMy H-mode plasma. For a fixed pedestal pressure profile, increasing plasma current generates more activities of low-n ELMs.

  17. Observation of pedestal turbulence in edge localized mode-free H-mode on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X. Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.

    2014-10-15

    Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power P{sub ICRF}/P{sub total} exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = −3. Whereas when P{sub ICRF}/P{sub total} is less than 0.7, harmonic mode with frequency f = 40–300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.

  18. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  19. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhuang, H D; Zhang, X D

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.

  20. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  1. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  2. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  3. A Novel superconducting toroidal field magnet concept using advanced materials

    NASA Astrophysics Data System (ADS)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  4. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    SciTech Connect

    Weiland, Jan

    2014-12-15

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α{sub d} diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.

  5. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Weiland, Jan

    2014-12-01

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, "Recent experiments in the EAST and HT-7 superconducting tokamaks," Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α - αd diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.

  6. A rotor technology assessment of the advancing blade concept

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A.

    1983-01-01

    A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

  7. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  8. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    NASA Astrophysics Data System (ADS)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  9. Advancing Your Career: Concepts of Professional Nursing. Second Edition.

    ERIC Educational Resources Information Center

    Kearney, Rose

    This textbook, intended for registered nurses (RN's) returning to school, is designed to provide practicing RN's with professional concepts to advance their careers. The book contains 22 chapters organized in five sections. Each chapter includes chapter objectives, key terms, key points, chapter exercises, references, and a bibliography. Section I…

  10. SIRIUS : An Advanced Concept For Photo-Interpretation

    NASA Astrophysics Data System (ADS)

    Petit, Jean L.

    1984-01-01

    With the renovation of its fleet of reconnaissance aircraft, typified by the adoption of a special version of the MIRAGE Fl tactical support aircraft, the French Air Force wanted to rethink all the received reconnaissance concepts by completely renewing its: - sensors, - interpretation equipment, and by adopting advanced systems for : - mission preparation and planning, - stand-off reconnaissance, and - accelerated data access.

  11. Advanced pressurized water reactor for improved resource utilization, part II - composite advanced PWR concept

    SciTech Connect

    Turner, S.E.; Gurley, M.K.; Kirby, K.D.; Mitchell, W III

    1981-09-15

    This report evaluates the enhanced resource utilization in an advanced pressurized water reactor (PWR) concept using a composite of selected improvements identified in a companion study. The selected improvements were in the areas of reduced loss of neutrons to control poisons, reduced loss of neutrons in leakage from the core, and improved blanket/reflector concepts. These improvements were incorporated into a single composite advanced PWR. A preliminary assessment of resource requirements and costs and impact on safety are presented.

  12. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    SciTech Connect

    Ogando, F.; Heikkinen, J. A.; Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S.

    2006-11-30

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.

  13. Advanced laser sensing receiver concepts based on FPA technology.

    SciTech Connect

    Jacobson, P. L.; Petrin, R. R.; Jolin, J. L.; Foy, B. R.; Lowrance, J. L.; Renda, G.

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  14. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  15. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  16. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  17. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  18. THE 13TH ADVANCED ACCELERATOR CONCEPTS WORKSHOP (AAC'8)

    SciTech Connect

    Leemans, Wim; Schroder, Carl B.; Esarey, Eric

    2008-07-15

    The Thirteenth Workshop on Advanced Accelerator Concepts (AAC) was held from July 27 to August 2, 2008 at the Chaminade Conference Center in Santa Cruz, California, USA, organized by the Lawrence Berkeley National Laboratory and the University of California at Berkeley. There were unprecedented levels of interest in the 2008 AAC Workshop, and participation was by invitation, with 215 workshop attendees, including 58 students. Reflecting the world-wide growth of the advanced accelerator community, there was significant international participation, with participants from twelve countries attending.

  19. NASA advanced turboprop research and concept validation program

    NASA Technical Reports Server (NTRS)

    Whitlow, John B., Jr.; Sievers, G. Keith

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  20. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  1. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  2. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  3. Current Status and Future Technical Challenges for Tokamak Magnets

    SciTech Connect

    Martovetsky, N; Minervini, J; Okuno, K; Salpiero, E; Filatov, O

    2002-11-11

    Magnet technology for fusion in the last decade has been focusing mostly on the development of magnets for tokamaks--the most advanced fusion concept at the moment. The largest and the most complex tokamak under development is ITER. To demonstrate adequate design approaches to large magnets for ITER and to develop industrial capabilities, two large model coils and three insert coils, all using full-scale conductor, were built and tested by the international collaboration during 1994-2002. The status of the magnet technology and directions of future developments are discussed in this paper.

  4. Fluid-particle hybrid simulation on the transports of plasma, recycling neutrals, and carbon impurities in the Korea Superconducting Tokamak Advanced Research divertor region

    NASA Astrophysics Data System (ADS)

    Kim, Deok-Kyu; Hong, Sang Hee

    2005-06-01

    A two-dimensional simulation modeling that has been performed in a self-consistent way for analysis on the fully coupled transports of plasma, recycling neutrals, and intrinsic carbon impurities in the divertor domain of tokamaks is presented. The numerical model coupling the three major species transports in the tokamak edge is based on a fluid-particle hybrid approach where the plasma is described as a single magnetohydrodynamic fluid while the neutrals and impurities are treated as kinetic particles using the Monte Carlo technique. This simulation code is applied to the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak [G. S. Lee, J. Kim, S. M. Hwang et al., Nucl. Fusion 40, 575 (2000)] to calculate the peak heat flux on the divertor plate and to explore the divertor plasma behavior depending on the upstream conditions in its base line operation mode for various values of input heating power and separatrix plasma density. The numerical modeling for the KSTAR tokamak shows that its full-powered operation is subject to the peak heat loads on the divertor plate exceeding an engineering limit, and reveals that the recycling zone is formed in front of the divertor by increasing plasma density and by reducing power flow into the scrape-off layer. Compared with other researchers' work, the present hybrid simulation more rigorously reproduces severe electron pressure losses along field lines by the presence of recycling zone accounting for the transitions between the sheath limited and the detached divertor regimes. The substantial profile changes in carbon impurity population and ionic composition also represent the key features of this divertor regime transition.

  5. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  6. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  7. Study on lower hybrid current drive efficiency at high density towards long-pulse regimes in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Ding, B. J.; Zhang, J. Z.; Gan, K. F.; Wang, H. Q.; Peysson, Y.; Decker, J.; Zhang, L.; Wei, W.; Li, Y. C.; Wu, Z. G.; Ma, W. D.; Jia, H.; Chen, M.; Yang, Y.; Feng, J. Q.; Wang, M.; Xu, H. D.; Shan, J. F.; Liu, F. K.

    2014-06-01

    Significant progress on both L- and H-mode long-pulse discharges has been made recently in Experimental Advanced Superconducting Tokamak (EAST) with lower hybrid current drive (LHCD) [J. Li et al., Nature Phys. 9, 817 (2013) And B. N. Wan et al., Nucl. Fusion 53, 104006 (2013).]. In this paper, LHCD experiments at high density in L-mode plasmas have been investigated in order to explore possible methods of improving current drive (CD) efficiency, thus to extend the operational space in long-pulse and high performance plasma regime. It is observed that the normalized bremsstrahlung emission falls much more steeply than 1/ne_av (line-averaged density) above ne_av = 2.2 × 1019 m-3 indicating anomalous loss of CD efficiency. A large broadening of the operating line frequency (f = 2.45 GHz), measured by a radio frequency (RF) probe located outside the EAST vacuum vessel, is generally observed during high density cases, which is found to be one of the physical mechanisms resulting in the unfavorable CD efficiency. Collisional absorption of lower hybrid wave in the scrape off layer (SOL) may be another cause, but this assertion needs more experimental evidence and numerical analysis. It is found that plasmas with strong lithiation can improve CD efficiency largely, which should be benefited from the changes of edge parameters. In addition, several possible methods are proposed to recover good efficiency in future experiments for EAST.

  8. Experimental investigation of density behaviors in front of the lower hybrid launcher in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J.; Li, M. H.; Kong, E. H.; Wei, W.; Liu, F. K.; Shan, J. F.; Wu, Z. G.; Zhu, L.; Ma, W. D.; Tong, Y. Y.; Li, Y. C.; Wang, M.; Zhao, L. M.; Hu, H. C.; Liu, L.; Collaboration: EAST Team

    2013-06-15

    A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup −2} to 10.3 MWm{sup −2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup −3} for 2.45 GHz lower hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.

  9. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  10. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  11. Dynamically stable, self-similarly evolving, and self-organized states of high beta tokamak and reversed pinch plasmas and advanced active control

    SciTech Connect

    Kondoh, Yoshiomi; Fukasawa, Toshinobu

    2009-11-15

    Generalized simultaneous eigenvalue equations derived from a generalized theory of self-organization are applied to a set of simultaneous equations for two-fluid model plasmas. An advanced active control by using theoretical time constants is proposed by predicting quantities to be controlled. Typical high beta numerical configurations are presented for the ultra low q tokamak plasmas and the reversed-field pinch (RFP) ones in cylindrical geometry by solving the set of simultaneous eigenvalue equations. Improved confinement with no detectable saw-teeth oscillations in tokamak experiments is reasonably explained by the shortest time constant of ion flow. The shortest time constant of poloidal ion flow is shown to be a reasonable mechanism for suppression of magnetic fluctuations by pulsed poloidal current drives in RFP experiments. The bifurcation from basic eigenmodes to mixed ones deduced from stability conditions for eigenvalues is shown to be a good candidate for the experimental bifurcation from standard RFP plasmas to their improved confinement regimes.

  12. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Q. Q.; Xu, G. S.; Zhong, F. C.; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Jia, M. N.; Li, Y. L.; Liu, J. B.

    2015-06-01

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E × B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E × B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  13. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Bruhwiler, David L.; Cary, John R.; Cowan, Benjamin M.; Paul, Kevin; Mullowney, Paul J.; Messmer, Peter; Geddes, Cameron G. R.; Esarey, Eric; Cormier-Michel, Estelle; Leemans, Wim; Vay, Jean-Luc

    2009-01-22

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating >10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of {approx}2,000 as compared to standard particle-in-cell.

  14. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  15. Advanced launch vehicle system concepts: An historical overview

    NASA Astrophysics Data System (ADS)

    Ehrlich, Carl F.

    1997-01-01

    Many studies leading to advanced launch vehicle system concepts have been undertaken during the years leading to the Space Shuttle development and since it was started. All of these have focused on nebulous and wide-ranging mission requirements. As a result, many launch system concepts have been defined, each addressing a different mission, yielding a wide range of points of departure once the "real" mission, or missions, have been identified. Future studies have this database available from which to depart once the "real" next generation mission is defined. This paper discusses some of the main issues surrounding the development of future systems. This subject really addresses the three principal requirements needed to be resolved for these systems to come into being: system architecture—what does the system look like and what is its makeup?, technologies—what are the technologies required to make the new system a successful venture and meet the requirements set forth in the mission statement?, and finally, the mission—what do we need to do and when?. The principal focus here will be on the past studies reviewing past concepts which address particular aspects of potential mission requirements with technology development and concepts discussed as we go along.

  16. Advanced launch vehicle system concepts: An historical overview

    SciTech Connect

    Ehrlich, C.F. Jr.

    1997-01-01

    Many studies leading to advanced launch vehicle system concepts have been undertaken during the years leading to the Space Shuttle development and since it was started. All of these have focused on nebulous and wide-ranging mission requirements. As a result, many launch system concepts have been defined, each addressing a different mission, yielding a wide range of points of departure once the {open_quotes}real{close_quotes} mission, or missions, have been identified. Future studies have this database available from which to depart once the {open_quotes}real{close_quotes} next generation mission is defined. This paper discusses some of the main issues surrounding the development of future systems. This subject really addresses the three principal requirements needed to be resolved for these systems to come into being: system architecture{emdash}what does the system look like and what is its makeup?, technologies{emdash}what are the technologies required to make the new system a successful venture and meet the requirements set forth in the mission statement?, and finally, the mission{emdash}what do we need to do and when?. The principal focus here will be on the past studies reviewing past concepts which address particular aspects of potential mission requirements with technology development and concepts discussed as we go along. {copyright} {ital 1997 American Institute of Physics.}

  17. Advanced remotely maintainable force-reflecting servomanipulator concept

    SciTech Connect

    Kuban, D.P.; Martin, H.L.

    1984-01-01

    A remotely maintainable force-reflecting servomanipulator concept is being developed at the Oak Ridge National Laboratory as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world. 10 references, 4 figures, 1 table.

  18. Post Landsat-D advanced concept evaluation /PLACE/

    NASA Technical Reports Server (NTRS)

    Alexander, L. D.; Alvarado, U. R.; Flatow, F. S.

    1979-01-01

    The aim of the Post Landsat-D Advanced Concept Evaluation (PLACE) program was to identify the key technology requirements of earth resources satellite systems for the 1985-2000 period. The program involved four efforts: (1) examination of future needs in the earth resources area, (2) creation of a space systems technology model capable of satisfying these needs, (3) identification of key technology requirements posed by this model, and (4) development of a methodology (PRISM) to assist in the priority structuring of the resulting technologies.

  19. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Massimiliano, Fratoni; Greenberg, Harris; Howard, Rob L

    2011-01-01

    The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated

  20. Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Ekedahl, A.; Peysson, Y.; Decker, J.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST

    2011-08-01

    Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (Ip) ˜ 250 kA and central line averaged density (ne) ˜ 1.0-1.3 × 1019 m-3 recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N//peak=2.1, where N//peak is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with ˜0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

  1. Progress in physics and control of the resistive wall mode in advanced tokamaks

    SciTech Connect

    Liu Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C.; Reimerdes, H.; Villone, F.; Ambrosino, G.; Pironti, A.; Portone, A.

    2009-05-15

    Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K[Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures.

  2. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  3. Candidate advanced energy storage concepts for multimegawatt burst power systems

    NASA Astrophysics Data System (ADS)

    Boretz, John E.; Sollo, Charles

    Three candidate advanced energy storage systems are reviewed and compared with the Thermionic Operating Reactor (THOR) concept. The three systems considered are the flywheel generator, the lithium-metal sulfide battery and the alkaline fuel cell. From a minimum mass viewpoint, only the regenerative fuel cell (RFC) can result in a lighter system than THOR. Because of its lower operating temperature, as compared to THOR, a considerable reduction in materials problems is to be expected when compared to the extremely high operating temperatures of the THOR system. Frozen heat pipes and their impact on response time as well as the complexity of the required retraction/extension mechanism of the THOR system would tend to place the RFC system in a much lower category of development risk. Finally, if spot shielding of sensitive electronic and power conditioning equipment becomes necessary for the reactor radiation environment of the THOR system, the weight advantage of the RFC system may become even greater.

  4. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; Reynolds, Tom; Waitz, Ian; Hileman, James; Arunachalam, Sarav; Hedrick, Matt; Vempati, Lakshmi; Laroza, Ryan; denBraven, Wim; Henderson, Jeff

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  5. Advanced direct liquefaction concepts for PETC generic units

    SciTech Connect

    Not Available

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  6. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  7. Defense Acquisitions: Factors Affecting Outcomes of Advanced Concept Technology Demonstrations

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Since the ACTD (Advanced Concept Technology Demonstrations) program was started in 1994, a wide range of products have been tested by technology experts and military operators in realistic settings-from unmanned aerial vehicles, to friend-or-foe detection systems, to biological agent detection systems, to advanced simulation technology designed to enhance joint training. Many of these have successfully delivered new technologies to users. Though the majority of the projects that were examined, transitioned technologies to users, there are factors that hamper the ACTD process. For example: Technology has been too immature to be tested in a realistic setting, leading to cancellation of the demonstration. Military services and defense agencies have been reluctant to fund acquisition of ACTD-proven technologies, especially those focusing on joint requirements, because of competing priorities. ACTD's military utility may not have been assessed consistently. Some of the barriers identified can be addressed through efforts DOD (Department of Defense) now has underway, including an evaluation of how the ACTD process can be improved; adoption of criteria to be used to ensure technology is sufficiently mature; and placing of more attention on the end phase of the ACTD process. Other barriers, however, will be much more difficult to address in view of cultural resistance to joint initiatives and the requirements of DOD's planning and funding process.

  8. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm2 and pixel numbers of 1024 × 255 (26 × 26 μm2/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  9. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification. PMID:26724029

  10. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang; Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi; Dong, Chunfeng; and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  11. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  12. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    SciTech Connect

    Shuets, G.

    2004-05-21

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

  13. The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  14. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  15. Advanced 3D imaging lidar concepts for long range sensing

    NASA Astrophysics Data System (ADS)

    Gordon, K. J.; Hiskett, P. A.; Lamb, R. A.

    2014-06-01

    Recent developments in 3D imaging lidar are presented. Long range 3D imaging using photon counting is now a possibility, offering a low-cost approach to integrated remote sensing with step changing advantages in size, weight and power compared to conventional analogue active imaging technology. We report results using a Geiger-mode array for time-of-flight, single photon counting lidar for depth profiling and determination of the shape and size of tree canopies and distributed surface reflections at a range of 9km, with 4μJ pulses with a frame rate of 100kHz using a low-cost fibre laser operating at a wavelength of λ=1.5 μm. The range resolution is less than 4cm providing very high depth resolution for target identification. This specification opens up several additional functionalities for advanced lidar, for example: absolute rangefinding and depth profiling for long range identification, optical communications, turbulence sensing and time-of-flight spectroscopy. Future concepts for 3D time-of-flight polarimetric and multispectral imaging lidar, with optical communications in a single integrated system are also proposed.

  16. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.

    2015-12-01

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  17. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Technical Reports Server (NTRS)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  18. A review of accelerator concepts for the Advanced Hydrotest Facility

    SciTech Connect

    Toepfer, A.J.

    1998-08-01

    The Advanced Hydrotest Facility (AHF) is a facility under consideration by the Department of Energy (DOE) for conducting explosively-driven hydrodynamic experiments. The major diagnostic tool at AHF will be a radiography accelerator having radiation output capable of penetrating very dense dynamic objects on multiple viewing axes with multiple pulses on each axis, each pulse having a time resolution capable of freezing object motion ({approx}50-ns) and achieving a spatial resolution {approx}1 mm at the object. Three accelerator technologies are being considered for AHF by the DOE national laboratories at Los Alamos (LANL), Livermore (LLNL), and Sandia (SNL). Two of these are electron accelerators that will produce intense x-ray pulses from a converter target yielding a dose {approx}1,000--2,000 Rads {at} 1 meter. LLNL has proposed a 16--20 MeV, 3--6 kA linear induction accelerator (LIA) driven by FET-switched modulators driving metglas loaded cavities. SNL has proposed a 12-MeV, 40-kA Inductive Voltage Adder (IVA) accelerator based on HERMES III pulsed power technology. The third option is a 25--50-GeV proton accelerator capable of {approx}10{sup 13} protons/pulse proposed by LANL. This paper will review the current status of the three accelerator concepts for AHF.

  19. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  20. Transport of Dust Particles in Tokamak Devices

    SciTech Connect

    Pigarov, A Y; Smirnov, R D; Krasheninnikov, S I; Rognlien, T D; Rozenberg, M

    2006-06-06

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  1. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    , Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

  2. High-pressure propulsion - advanced concepts for cooling

    NASA Astrophysics Data System (ADS)

    Schoerman, Leonard

    The state-of-the-art liquid propellant cooled combustion chambers utilized in the space shuttle are third-generation designs which have evolved from a continuing demand for higher operating pressure and aircraft-type reusability. History has shown that major advances in cooling occur in approximately ten-year cycles, with each cycle providing a nominal 400% increase in operating pressure and/or a higher degree of reusability. The previous technologies include the first-generation double-wall steel jackets used in the 220 psi V-2 and Aerobee, and the second generation wire-wrapped double tapered tubular assemblies typical of the 800 psi Titan I, II, and III, and 1000 psi F-1 engines. The third-generation designs utilize milled slot, high thermal conductivity liners and electrodeposited nickel closures. The space shuttle main engine operating at 3200 psia is adequate for individual flights; however, the desired goal of 55 service-free missions has yet to be realized. Future single-stage-to-orbit propulsion concepts can benefit from a further increase in operating pressures to 6000 to 10,000 psi combined with engine reuse capabilities in excess of the 55 flight goals of the space shuttle. A fourth-generation approach will be required to attain these more ambitious goals. These new designs will require a combination of cooling processes, including regenerative and transpiration, combined with improved high-temperature materials and new fabrication techniques. The limitations of the third-generation designs, the impact of propellant/coolant selection, and the approaches for the coming fourth-generation cooling technologies are discussed.

  3. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  4. ECH tokamak

    SciTech Connect

    Firestone, M.A.; Mau, T.K.; Conn, R.W.

    1985-04-01

    A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.

  5. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Du, T. F.; Chen, Z. J.; Peng, X. Y.; Yuan, X.; Zhang, X.; Hu, Z. M.; Cui, Z. Q.; Xie, X. F.; Ge, L. J.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometer at EAST are studied for future data interpretation.

  6. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Du, T F; Chen, Z J; Peng, X Y; Yuan, X; Zhang, X; Gorini, G; Nocente, M; Tardocchi, M; Hu, Z M; Cui, Z Q; Xie, X F; Ge, L J; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometer at EAST are studied for future data interpretation.

  7. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall

    SciTech Connect

    Hu, Z. M.; Xie, X. F.; Chen, Z. J.; Peng, X. Y.; Du, T. F.; Cui, Z. Q.; Ge, L. J.; Li, T.; Yuan, X.; Zhang, X.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Gorini, G.

    2014-11-15

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 {sup 3}He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated “experimental” result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the “experimental” measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device.

  8. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall.

    PubMed

    Hu, Z M; Xie, X F; Chen, Z J; Peng, X Y; Du, T F; Cui, Z Q; Ge, L J; Li, T; Yuan, X; Zhang, X; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Gorini, G; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 (3)He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated "experimental" result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the "experimental" measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device.

  9. Advanced-power-reactor design concepts and performance characteristics

    NASA Technical Reports Server (NTRS)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  10. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  11. Lacking a Formal Concept of Limit: Advanced Non-Mathematics Students' Personal Concept Definitions

    ERIC Educational Resources Information Center

    Beynon, Kenneth A.; Zollman, Alan

    2015-01-01

    This mixed-methods study examines the conceptual understanding of limit among 22 undergraduate engineering students from two different sections of the same introductory differential equations course. The participants' concepts of limit (concept images and personal concept definitions) were examined using written tasks followed by one-on-one…

  12. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  13. Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Mondt, J. F.

    1974-01-01

    Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.

  14. Reference Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect

    Hugo, Jacques Victor; Farris, Ronald Keith

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  15. Fabrication and Characterization of Samples for a Material Migration Experiment on the Experimental Advanced Superconducting Tokamak (EAST).

    SciTech Connect

    Wampler, William R.; Van Deusen, Stuart B.

    2015-12-01

    This report documents work done for the ITER International Fusion Energy Organization (Sponsor) under a Funds-In Agreement FI 011140916 with Sandia National Laboratories. The work consists of preparing and analyzing samples for an experiment to measure material erosion and deposition in the EAST Tokamak. Sample preparation consisted of depositing thin films of carbon and aluminum onto molybdenum tiles. Analysis consists of measuring the thickness of films before and after exposure to helium plasma in EAST. From these measurements the net erosion and deposition of material will be quantified. Film thickness measurements are made at the Sandia Ion Beam Laboratory using Rutherford backscattering spectrometry and nuclear reaction analysis, as described in this report. This report describes the film deposition and pre-exposure analysis. Results from analysis after plasma exposure will be given in a subsequent report.

  16. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  17. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  18. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability. PMID:27587120

  19. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  20. Advanced Numerical-Algebraic Thinking: Constructing the Concept of Covariation as a Prelude to the Concept of Function

    ERIC Educational Resources Information Center

    Hitt, Fernando; Morasse, Christian

    2009-01-01

    Introduction: In this document we stress the importance of developing in children a structure for advanced numerical-algebraic thinking that can provide an element of control when solving mathematical situations. We analyze pupils' conceptions that induce errors in algebra due to a lack of control in connection with their numerical thinking. We…

  1. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  2. Advanced transportation concept for round-trip space travel

    NASA Technical Reports Server (NTRS)

    Yen, Chen-Wan L.

    1988-01-01

    A departure from the conventional concept of round-trip space travel is introduced. It is shown that a substantial reduction in the initial load required of the Shuttle or other launch vehicle can be achieved by staging the ascent orbit and leaving fuel for the return trip at each stage of the orbit. Examples of round trips from a low-inclination LEO to a high-inclination LEO and from an LEO to a GEO are used to show the merits of the new concept. Potential problem areas and research needed for the development of an efficient space transportation network are discussed.

  3. [Advance Directives: theoretical concept and practical significance in the USA].

    PubMed

    Vollmann, J; Pfaff, M

    2003-07-01

    The article examines on the basic of empirical data the discrepancy between the theoretical demand and the practical role of advance directives. Often advance directives have no influence on medical decision-making in clinical care of critically ill patients. The vague language of the widely used standard living wills and the lack of physician-patient communication in the process of delivering an advance directives are contributing factors. However, many physicians even disregard patients' preferences in concrete and meaningful living wills at the end of life. Besides the lack of information many even seriously ill patients do not deliver an advance because they misjudge their medical prognosis and life expectancy. Often the communication between patients and doctors are blocked because they expect from the each other the first step to talk about end of life decisions and advance directives. In this context physicians claim lack of time, training in communication skills and their discomfort in talking about death and dying with their patients.

  4. Parachute systems technology: Fundamentals, concepts, and applications: Advanced parachute design

    SciTech Connect

    Peterson, C.W.; Johnson, D.W.

    1987-01-01

    Advances in high-performance parachute systems and the technologies needed to design them are presented in this paper. New parachute design and performance prediction codes are being developed to assist the designer in meeting parachute system performance requirements after a minimum number of flight tests. The status of advanced design codes under development at Sandia National Laboratories is summarized. An integral part of parachute performance prediction is the rational use of existing test data. The development of a data base for parachute design has been initiated to illustrate the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. Examples of advancements in parachute materials are presented, and recent problems with Mil-Spec broadgoods are reviewed. Finally, recent parachute systems tested at Sandia are summarized to illustrate new uses of old parachutes, new parachute configurations, and underwater recovery of payloads.

  5. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    PubMed

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  6. Superconducting magnet system for the TPX Tokamak

    SciTech Connect

    Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.

    1993-09-15

    The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.

  7. Advanced Level Physics Students' Conceptions of Quantum Physics.

    ERIC Educational Resources Information Center

    Mashhadi, Azam

    This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…

  8. Ultra-Efficient Engine Technology (UEET), Proof of Concept Compressor, Advanced Compressor Casing T

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ultra-Efficient Engine Technology (UEET), Proof of Concept Compressor, Advanced Compressor Casing Treatment testing; close up - throttle valve -wide open; oil and air lines plus instrumentation between collector and gearbox.

  9. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  10. Fostering Visions for the Future: A Review of the NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  11. An advanced concept that promises ecological and economic viability

    NASA Technical Reports Server (NTRS)

    Wright, B. R.; Sedgwick, T. A.; Urie, D. M.

    1976-01-01

    The actuality of supersonic commercial service being provided by Concorde is demonstrating to the world the advantages offered by supersonic travel for both business and recreation. Public acceptance will gradually and persistently stimulate interest to proceed with a second generation design that meets updated economic and ecological standards. It is estimated that this concept could operate profitably on world-wide routes with a revenue structure based upon economy fares. Airplanes will meet all present day ecological requirements regarding noise and emissions.

  12. Evaluation of ADAM/1 model for advanced coal extraction concepts

    NASA Technical Reports Server (NTRS)

    Deshpande, G. K.; Gangal, M. D.

    1982-01-01

    Several existing computer programs for estimating life cycle cost of mining systems were evaluated. A commercially available program, ADAM/1 was found to be satisfactory in relation to the needs of the advanced coal extraction project. Two test cases were run to confirm the ability of the program to handle nonconventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs.

  13. Advanced supersonic technology concept study: Hydrogen fueled configuration

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1974-01-01

    Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration which was then studied in greater detail. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.

  14. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-08-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period April 1, 2001 to June 30 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  15. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2000-03-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 is reported for the period April 1, 1998 to June 30, 1998. This contract is with the University of kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Researc, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  16. Advanced supersonic technology concept study: Hydrogen fueled configuration, summary report

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.

  17. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    SciTech Connect

    1997-02-01

    Reported here are the results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC9104O during the period October 1, 1996 to December 31, 1996. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOI+ Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work invoives the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  18. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-11-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period July 1, 2001 to September 30 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  19. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-04-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period January 1, 2001 to March 31 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  20. Commercial space opportunities - Advanced concepts and technology overview

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  1. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  2. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-01-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  3. Proof-of-concept and advancement of the CellFlux concept

    NASA Astrophysics Data System (ADS)

    Odenthal, Christian; Steinmann, Wolf-Dieter

    2016-05-01

    The CellFlux storage system is a new concept for reducing the costs of medium to high temperature thermal energy storage. Initially designed for solar thermal power plants, the concept is suitable for industrial processes and power to heat applications as well. This paper gives first results of a new pilot scale plant set up at DLR in Stuttgart as a proof of concept. Experimental results are used for the validation of a simplified model. The model is apllied to calculate pareto optimal storage configurations in terms of necessary storage mass and exergetic efficiency, suitable for two types of solar thermal power plants. Particularly for applications having larger temperature differences, high exergetic efficiencies at low costs for the storage material can be achieved.

  4. Engine Concept Study for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  5. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2000-02-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 is reported for the period July 1, 1998 to September 30, 1998. This contract is with the University of kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Researc, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using liquefaction based technologies.

  6. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2000-01-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 is reported for the period October 1, 1999 to December 31, 1999. This contract is with the University of kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Researc, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using liquefaction based technologies.

  7. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS - PHASE II

    SciTech Connect

    Unknown

    2000-07-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period January 1, 1999 to March 31, 2000. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  8. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  9. Preliminary investigation of the effects of lower hybrid power on asymmetric behaviors in the scrape-off layer in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J. Li, M. H.; Liu, F. K.; Shan, J. F.; Wei, W.; Li, Y. C.; Yang, J. H.; Wu, Z. G.; Liu, L.; Wang, M.; Zhao, L. M.; Ma, W. D.; Xiu, H. D.; Wang, X. J.; Jia, H.; Yang, Y.; Cheng, M.; Wu, D. J.; Xu, L.; and others

    2014-02-15

    The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of the density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.

  10. Effects of heating power on divertor in-out asymmetry and scrape-off layer flow in reversed field on Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Liu, S. C. Wang, H. Q.; Gan, K. F.; Xia, T. Y.; Xu, G. S.; Liu, Z. X.; Chen, L.; Zhang, W.; Chen, R.; Shao, L. M.; Ding, S.; Hu, G. H.; Liu, Y. L.; Zhao, N.; Li, Y. L.; Gong, X. Z.; Gao, X.; Guo, H. Y.; Wang, L.; Xu, X. Q.; and others

    2014-12-15

    The dependence of divertor asymmetry and scrape-off layer (SOL) flow on heating power has been investigated in the Experimental Advanced Superconducting Tokamak (EAST). Divertor plasma exhibits an outboard-enhanced in-out asymmetry in heat flux in lower single null configuration for in reversed (ion ∇B drift direction toward the upper X-point) field directions. Upper single null exhibits an inboard-favored asymmetry in low heating power condition, while exhibits an outboard-favored asymmetry when increasing the heating power. Double null has the strongest in-out asymmetry in heat flux, favoring the outer divertor. The in-out asymmetry ratios of q{sub t,out}/q{sub t,in} and P{sub out}/P{sub total} increase with the power across the separatrix P{sub loss}, which is probably induced by the enhanced radial particle transport due to a large pressure gradient. The characteristics of the measured SOL parallel flow under various discharge conditions are consistent with the Pfirsch-Schlüter (PS) flow with the parallel Mach number M{sub ∥} decreasing with the line averaged density but increasing with P{sub loss}, in the same direction as the PS flow. The contributions of both poloidal E×B drift and parallel flow on poloidal particle transport in SOL on EAST are also assessed.

  11. Physics and control of ELMing H-mode negative-central-shear advanced tokamak ITER scenario based on experimental profiles from DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Chan, V. S.; Chu, M. S.; Evans, T.; Humphreys, D. A.; Leuer, J. A.; Mahdavi, M. A.; Petrie, T. W.; Snyder, P. B.; St. John, H. E.; Staebler, G. M.; Stambaugh, R. D.; Taylor, T. S.; Turnbull, A. D.; West, W. P.; Brennan, D. P.

    2003-10-01

    Key DIII-D advanced tokamak (AT) experimental and modelling results are applied to examine the physics and control issues for ITER to operate in a negative central shear (NCS) AT scenario. The effects of a finite edge pressure pedestal and current density are included based on the DIII-D experimental profiles. Ideal and resistive stability analyses demonstrate that feedback control of resistive wall modes by rotational drive or flux conserving intelligent coils is crucial for these AT configurations to operate at attractive bgrN values in the range 3.0-3.5. Vertical stability and halo current analyses show that reliable disruption mitigation is essential and mitigation control using an impurity gas can significantly reduce the local mechanical stress to an acceptable level. Core transport and turbulence analyses indicate that control of the rotational shear profile is essential to reduce the pedestal temperature required for high bgr. Consideration of edge stability and core transport suggests that a sufficiently wide pedestal is necessary for the projected fusion performance. Heat flux analyses indicate that, with core-only radiation enhancement, the outboard peak divertor heat load is near the design limit of 10 MW m-2. Detached operation may be necessary to reduce the heat flux to a more manageable level. Evaluation of the ITER pulse length using a local step response approach indicates that the 3000 s ITER long-pulse scenario is probably both necessary and sufficient for demonstration of local current profile control.

  12. Mode Conversion of High-Field-Side-Launched Fast Waves at the Second Harmonic of Minority Hydrogen in Advanced Tokamak Reactors

    NASA Astrophysics Data System (ADS)

    Sund, R.; Scharer, J.

    2003-12-01

    Under advanced tokamak reactor conditions, the Ion-Bernstein wave (IBW) can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side on the second harmonic resonance of a minority hydrogen component, with near 100% efficiency. IBWs have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. The relatively high frequency (around 200 MHz) minimizes parasitic electron absorption and permits the converted IBW to approach the 5th tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. The scheme is applicable to reactors with aspect ratios < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Large machine size and adequate separation of the mode conversion layer from the magnetic axis minimize poloidal field effects in the conversion zone and permit a 1-D full-wave analysis. 2-D ray tracing of the IBW indicates a slightly bean-shaped equilibrium allows access to the tritium resonance.

  13. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  14. An Advanced Design Concept of a Direct Vessel Injection

    SciTech Connect

    Tae-Soon Kwon; Chul-Hwa Song; Won-Pil Baek

    2006-07-01

    The ECC direct bypass fraction during a late reflood phase of a LBLOCA is strongly dependent on the cross flow in the downcomer of a pressurized light water reactor. An ECC flow channel, which is separated or isolated from such a high-speed cross flow, is a considerable design feature to mitigate the ECC bypass fraction. The dual core barrel cylinder is located between the reactor vessel and the core barrel outer wall in the downcomer annulus. The new narrow gap between the core barrel and the additional dual core barrel plays a role of a downward ECC flow channel. The flow zone around a broken cold leg in the downcomer has the role of a high ECC direct bypass due to strong suction force while the wake zone of a hot leg has the role of an ECC penetration. Thus, the relative azimuthal angle of the DVI nozzle from the broken cold leg is a considerable parameter. The azimuthal angle reallocation to shift the DVI nozzle from a cold leg to a hot leg is a considerable design concept to avoid a high suction flow zone when the ECC water is injected. The other enhancing mechanism of an ECC penetration is a grooved core barrel which has small rectangular-shaped grooves vertically arranged on the core barrel wall of the reactor vessel downcomer. These grooves have the role of a generation of a vortex induced by a high-speed lateral flow. Since the vortex is stagnant and rotational, the pulling force of an ECC drop or film to flow out through a broken cold leg is minimized. The open channel of grooves generates a stagnant vortex, while the closed channel of grooves creates an isolated ECC downward flow channel from the high-speed lateral flow. The grooved channels allow the ECC flow downward to the lower downcomer due to gravity. This causes a reduced direct ECC bypass fraction. In this study, new design concepts of a dual core barrel cylinder, grooved core barrel, and a reallocation of the DVI azimuthal angle are proposed and tested by using an air-water 1/5 scaled air

  15. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  16. Advanced Nuclear Power Concepts for Human Exploration Missions

    SciTech Connect

    Robert L. Cataldo; Lee S. Mason

    2000-06-04

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over {approx}2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters.

  17. Salivary gland lesions: recent advances and evolving concepts.

    PubMed

    Gupta, Ruta; Balasubramanian, Deepak; Clark, Jonathan R

    2015-06-01

    Recently, there have been significant developments in our understanding of salivary gland pathology, and new entities, such as mammary analogue secretory carcinoma, have been described. Attempts are being made to identify effective therapeutic agents for salivary duct carcinomas by using molecular diagnostic techniques. Concepts such as high-grade transformation have been described, which not only influence macroscopic and microscopic evaluation of a specimen but, given the high incidence of metastases and morbidity, also carry significant treatment implications. Specific chromosomal translocations, which can be detected by fluorescent in situ hybridization, can augment diagnostic accuracy and carry prognostic implications. The landscape of benign salivary gland lesions is changing with better understanding of chronic sclerosing sialadenitis related to IgG4. This multiorgan inflammatory condition may primarily present as a salivary gland lesion and clinically and radiologically mimic a salivary gland malignancy. Histology and immunohistochemistry play a critical role in its accurate diagnosis. The purpose of this article is to review these changes, with an emphasis on their effect on patient management. Given their diagnostic, prognostic, and therapeutic implications, it is critical that surgeons, oncologists, pathologists, and those involved in caring for patients with salivary gland tumors are aware of these changes while considering management options.

  18. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  19. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  20. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  1. Composite Fan Blade Design for Advanced Engine Concepts

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  2. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  3. Advanced direct coal liquefaction concepts. Final report, Volume 2

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1994-07-01

    Integration of innovative steps into new advanced processes have the potential to reduce costs for producing liquid fuels. In this program, objective is to develop a new approach to liquefaction that generates an all distillate product slate at a reduced cost of about US$25/barrel of crude oil equivalent. A Counterflow Reactor was developed in cooperation with GfK mbH, Germany. Advantages are low hydrogen recycle rates and low feed preheating requirements. Coal/heavy oil slurry is injected into the top of the reactor while the recycle gas and make up hydrogen is introduced into the bottom; hydrogenation products are withdrawn from the top. PU study resulted in distillable oil yields up to 74 wt % on feed (dry ash free) from coprocessing feed slurries containing 40 wt % Vesta subbituminous coal and 60 wt % Cold Lake heavy vacuum tower bottoms. Technologies developed separately by CED and ARC were combined. A 1-kg/hr integrated continuous flow bench scale unit was constructed at the ARC site in Devon, Alberta, based on modifications to a unit at Nisku, Alberta (the modified unit was used in the preliminary economic evaluation).

  4. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2001-01-01

    An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number

  5. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    SciTech Connect

    1997-09-01

    Reported here are the results of Laboratory and Bench- Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE- AC22- 91PC91040 during the period April 1, 1997 to June 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which includes dispersed lower- cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This report includes a data analysis of the ALC- 2 run which was the second continuous run in which Wyodak Black Thunder coal was fed to a two kg/ h bench- scale unit. One of the objectives of that run was to determine the relative activity of several Mo- based coal impregnated catalyst precursors. The precursors included ammonium heptamolybdate (100 mg Mo/ kg dry coal), which was used alone as well as in combination with ferrous sulfate (1% Fe/ dry coal) and nickel sulfate (50 mg Ni/ kg dry coal). The fourth precursor that was tested was phosphomolybdic acid which was used at a level of 100 mg Mo/ kg dry coal. Because of difficulties in effectively separating solids from the product stream, considerable variation in the feed stream occurred. Although the coal feed rate was nearly constant, the amount of recycle solvent varied which resulted in wide variations of resid, unconverted coal and mineral matter in the feed stream. Unfortunately, steady state was not achieved in any of the four conditions that were run. Earlier it was reported that Ni- Mo catalyst appeared to give the best results based upon speculative steady- state yields that were developed.

  6. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  7. Advanced materials and concepts for energy storage devices

    NASA Astrophysics Data System (ADS)

    Teng, Shiang Jen

    Over the last decade, technological progress and advances in the miniaturization of electronic devices have increased demands for light-weight, high-efficiency, and carbon-free energy storage devices. These energy storage devices are expected to play important roles in automobiles, the military, power plants, and consumer electronics. Two main types of electrical energy storage systems studied in this research are Li ion batteries and supercapacitors. Several promising solid state electrolytes and supercapacitor electrode materials are investigated in this research. The first section of this dissertation is focused on the novel results on pulsed laser annealing of Li7La3Zr2O12 (LLZO). LLZO powders with a tetragonal structure were prepared by a sol-gel technique, then a pulsed laser annealing process was employed to convert the tetragonal powders to cubic LLZO without any loss of lithium. The second section of the dissertation reports on how Li5La 3Nb2O12 (LLNO) was successfully synthesized via a novel molten salt synthesis (MSS) method at the relatively low temperature of 900°C. The low sintering temperature prevented the loss of lithium that commonly occurs during synthesis using conventional solid state or wet chemical reactions. The second type of energy storage device studied is supercapacitors. Currently, research on supercapacitors is focused on increasing their energy densities and lowering their overall production costs by finding suitable electrode materials. The third section of this dissertation details how carbonized woods electrodes were used as supercapacitor electrode materials. A high energy density of 45.6 Wh/kg and a high power density of 2000 W/kg were obtained from the supercapacitor made from carbonized wood electrodes. The high performance of the supercapacitor was discovered to originate from the hierarchical porous structures of the carbonized wood. Finally, the fourth section of this dissertation is on the electrochemical effects of

  8. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  9. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    NASA Technical Reports Server (NTRS)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  10. An advanced bioprocessing concept for the conversion of wastepaper to ethanol

    SciTech Connect

    Scott, C.D.; Davison, B.H.; Scott, T.C.; Woodward, J.; Dees, C.; Rothrock, D.S.

    1993-06-01

    Wastepaper is a plentiful and low-cost lignocellulosic feed material that may represent the most direct way to penetrate the market with an advanced bioprocessing system. Innovative bioprocessing concepts integrated into such a system for the production of ethanol should be economically viable. Several of the proposed processing advances for such a system have only been studied on a laboratory scale, so a more thorough process development and scale-up effort will be required.

  11. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    This viewgraph presentation reviews study into exploration of Titan. Including a possible Titan Rover that would use the advanced radioisotope power system (RPS). The goal of the study is to demonstrate a simple, credible and affordable rover mission concept for Titan in-situ exploration, enabled by an Advanced RPS. The presentation reviews the possible launch vehicle, and trajectory options; desired instrumentation that would be aboard the rover; and considerations for the design of the rover.

  12. Economic analyses of alpha channeling in tokamak power plants.

    SciTech Connect

    Ehst, D.A.

    1998-09-17

    The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T{sub i} somewhat larger than the electron temperature T{sub e}, which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small.

  13. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  14. An Exploration of Learners' Conceptions of Language, Culture, and Learning in Advanced-Level Spanish Courses

    ERIC Educational Resources Information Center

    Drewelow, Isabelle; Mitchell, Claire

    2015-01-01

    This article reports on an exploratory study, which examines learners' rating of culture in relation to other concepts in advanced Spanish courses and their justification of the ratings attributed. Open-ended responses, elicited from a questionnaire completed by 179 respondents, were analysed line by line using an interpretive approach. Data…

  15. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    ERIC Educational Resources Information Center

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  16. The Effect of Background Experience and an Advance Organizer on the Attainment of Certain Science Concepts.

    ERIC Educational Resources Information Center

    McAdaragh, Mary Kathleen

    This study examined the effects of an advance organizer and background experience in science on the attainment of science concepts. Ninth-grade earth science students (N=90) were given the Dubbins Earth Science Test (DEST) and a Science Background Experience Inventory (SBEI) developed by the author. They were then placed into high, medium, and low…

  17. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  18. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    SciTech Connect

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial new technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.

  19. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  20. Reactor applications of the Compact Fusion Advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Hoffman, H. A.; Logan, B. G.; Campbell, R. B.

    1988-03-01

    A preliminary design of a D-T fusion reactor blanket and MHD power conversion system is made based on the CFAR concept, and it was found that performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boiling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection temperatures, and only a relatively small natural-draft heat exchanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although a cost analysis has not yet been performed, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity.

  1. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    NASA Technical Reports Server (NTRS)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  2. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  3. Learning Through Doing: Teaching Advanced Physics Concepts Through Freshmen Research Immersion

    NASA Astrophysics Data System (ADS)

    Wahila, Matthew; Piper, Louis; Amey, Jennifer; Jones, Wayne; Fegley, Megan; Stamp, Nancy

    Often undergraduates have difficulty grasping advanced concepts in physics due to the seemingly abstract and foreign nature of the time and length scales involved. The ``Smart Energy'' Freshmen Research Immersion (FRI) program at Binghamton University was created as a way to address this issue and, in turn, improve undergraduate performance and retention in physics and chemistry. Using real-world research problems as a wider context to frame their understanding, we have developed a course sequence providing a more intuitive and comprehensive understanding of core physics and chemistry concepts over the course of the program. Advanced condensed matter topics, such as optical band gaps, crystal and electronic structure, and electron/hole conduction are introduced to students through hands-on, authentic research activities incorporating materials for real-world device applications. I will discuss how employing p-n junctions as a model device can allow for a natural and intuitive progression from basic to advanced physics and chemistry concepts. This approach illustrates how shifting exotic concepts into a more relatable form through the use of analogy is important for fostering a more intuitive understanding of physical phenomena.

  4. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  5. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  6. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    SciTech Connect

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  7. An ABC status report. [Advancing Blade Concept for XH-59A rotors

    NASA Technical Reports Server (NTRS)

    Linden, A. W.; Ruddell, A. J.

    1981-01-01

    The Advancing Blade Concept (ABC) uses two rigid counterrotating rotors in a coaxial arrangement to provide advancing blades on both sides of the aircraft. This makes use of the high dynamic pressure on the advancing side of the rotors at high forward speed, virtually ignoring the low dynamic pressure on the retreating side, while still keeping the rotor system in roll trim. Theoretically such a rotor system will maintain its lift potential as speed increases. The XH-59A was designed to investigate this theory. A description is provided of the flight test program from May, 1980 to January, 1981. A summary is presented of the knowledge gained throughout the entire program, and current pitfalls are reviewed. It is concluded that the ABC has been verified, with the XH-59A envelope of blade lift coefficient as a function of advance ratio greatly exceeding that of conventional helicopter rotor systems.

  8. Quality Nursing Care for Hospitalized Patients with Advanced Illness: Concept Development

    PubMed Central

    Izumi, Shigeko; Baggs, Judith G.; Knafl, Kathleen A.

    2011-01-01

    The quality of nursing care as perceived by hospitalized patients with advanced illness has not been examined. A concept of quality nursing care for this population was developed by integrating the literature on constructs defining quality nursing care with empirical findings from interviews of 16 patients with advanced illness. Quality nursing care was characterized as competence and personal caring supported by professionalism and delivered with an appropriate demeanor. Although the attributes of competence, caring, professionalism, and demeanor were identified as common components of quality care across various patient populations, the caring domain increased in importance when patients with advanced illness perceived themselves as vulnerable. Assessment of quality nursing care for patients with advanced illness needs to include measures of patient perceptions of vulnerability. PMID:20572095

  9. Advanced crew station concepts, displays, and input/output technology for civil aircraft of the future

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Robertson, J. B.; Batson, V. M.

    1979-01-01

    Current efforts on a new Cockpit Avionics Research program are described. The major thrusts of the program presented include: a comparative analysis of advanced display media and development of promising selected media, development of flight display generation techniques, and identification and development of promising I/O technology. In addition, the advanced integrated display concepts described include a 'tunnel in the sky' display and a traffic situation display with associated keyboard. Finally, the Cockpit Avionics Research program is summarized, future research plans are presented, and the need for an expanded program is discussed.

  10. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  11. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Astrophysics Data System (ADS)

    Duffy, James B.

    1993-12-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  12. SPECIAL TOPIC: A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Mazon, D.; Ariola, M.; DeTommasi, G.; Laborde, L.; Piccolo, F.; Sartori, F.; Tala, T.; Zabeo, L.; Boboc, A.; Bouvier, E.; Brix, M.; Brzozowski, J.; Challis, C. D.; Cocilovo, V.; Cordoliani, V.; Crisanti, F.; DeLa Luna, E.; Felton, R.; Hawkes, N.; King, R.; Litaudon, X.; Loarer, T.; Mailloux, J.; Mayoral, M.; Nunes, I.; Surrey, E.; Zimmerman, O.; EFDA Contributors, JET

    2008-10-01

    Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters is being investigated on JET, in view of developing integrated control of advanced tokamak scenarios. This paper describes the new model-based profile controller which has been implemented during the 2006-2007 experimental campaigns. The controller aims to use the combination of heating and current drive (H&CD) systems—and optionally the poloidal field (PF) system—in an optimal way to regulate the evolution of plasma parameter profiles such as the safety factor, q(x), and gyro-normalized temperature gradient, \\rho _Te^*(x) . In the first part of the paper, a technique for the experimental identification of a minimal dynamic plasma model is described, taking into account the physical structure and couplings of the transport equations, but making no quantitative assumptions on the transport coefficients or on their dependences. To cope with the high dimensionality of the state space and the large ratio between the time scales involved, the model identification procedure and the controller design both make use of the theory of singularly perturbed systems by means of a two-time-scale approximation. The second part of the paper provides the theoretical basis for the controller design. The profile controller is articulated around two composite feedback loops operating on the magnetic and kinetic time scales, respectively, and supplemented by a feedforward compensation of density variations. For any chosen set of target profiles, the closest self-consistent state achievable with the available actuators is uniquely defined. It is reached, with no steady state offset, through a near-optimal proportional-integral control algorithm. Conventional optimal control is recovered in the limiting case where the ratio of the plasma confinement time to the resistive diffusion time tends to zero. Closed-loop simulations of the controller response have been performed in

  13. Yttrium-90 Radioembolization of Hepatocellular Carcinoma-Performance, Technical Advances, and Future Concepts.

    PubMed

    Molvar, Christopher; Lewandowski, Robert

    2015-12-01

    Hepatocellular carcinoma (HCC) is a lethal tumor, claiming over half a million lives per year. Treatment of HCC is commonly performed without curative intent, and palliative options dominate, including catheter-based therapies, namely, transarterial chemoembolization and yttrium-90 ((90)Y) radioembolization. This review will showcase the performance of (90)Y radioembolization for the treatment of HCC, focusing on recent seminal data and technical advances. In particular, novel radioembolization treatment concepts are discussed and compared with conventional HCC therapy.

  14. Helicity content and tokamak applications of helicity

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities.

  15. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  16. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  17. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  18. Titan exploration with advanced systems. A study of future mission concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The requirements, capabilities, and programmatic issues associated with science-intensive mission concepts for the advanced exploration of Saturn's largest satellite are assessed. The key questions to be answered by a Titan exploratory mission are: (1) the atmospheric composition; (2) the atmospheric structure; (3) the nature of the surface; and (4) the nature of the interior of Titan. Five selected mission concepts are described in terms of their design requirements. Mission hardware concepts include balloons and/or blimps which will allow both atmospheric and surface observations for a long period of time. Key aspects of performance analysis are presented. Mission profiles and cost summaries are given. Candidate payloads are identified for imaging and nonimaging orbiters, a buoyant station, a haze probe, and a penetrator.

  19. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  20. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  1. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  2. Noise and economic characteristics of an advanced blended supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.

    1982-01-01

    Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.

  3. SMAHTR - A Concept for a Small, Modular Advanced High Temperaure Reactor

    SciTech Connect

    Gehin, Jess C; Greene, Sherrell R; Holcomb, David Eugene; Carbajo, Juan J; Cisneros, Anselmo T; Corwin, William R; Ilas, Dan; Wilson, Dane F; Varma, Venugopal Koikal; Bradley, Eric Craig; Yoder, III, Graydon L

    2010-01-01

    Several new high temperature reactor concepts, referred to as Fluoride Salt Cooled High Temperature Reactors (FHRs), have been developed over the past decade. These FHRs use a liquid salt coolant combined with high temperature gas-cooled reactor fuels (TRISO) and graphite structural materials to provide a reactor that operates at very high temperatures and is scalable to large sizes perhaps exceeding 2400 MWt. This paper presents a new small FHR the Small Modular Advanced High Temperature Reactor or SmAHTR . SmAHTR is targeted at applications that require compact, high temperature heat sources either for high efficiency electricity production or process heat applications. A preliminary SmAHTR concept has been developed that delivers 125 MWt of energy in an integral primary system design that places all primary and decay heat removal heat exchangers inside the reactor vessel. The current reactor baseline concept utilizes a prismatic fuel block core, but multiple removable fuel assembly concepts are under evaluation as well. The reactor vessel size is such that it can be transported on a standard tractor-trailer to support simplified deployment. This paper will provide a summary of the current SmAHTR system concept and on-going technology and system architecture trades studies.

  4. Evaluation of Four Advanced Nozzle Concepts for Short Takeoff and Landing Performance

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Kemmerly, Guy T.; Paulson, John W., Jr.

    1993-01-01

    Four advanced nozzle concepts were tested on a canard-wing fighter in the Langley 14- by 22-Foot Subsonic Tunnel. The four vectoring-nozzle concepts were as follows: (1) an axisymmetric nozzle (AXI); (2) an asymmetric, load balanced exhaust nozzle (ALBEN); (3) a low aspect ratio, single expansion ramp nozzle (LASERN); and (4) a high aspect ratio, single expansion ramp nozzle (HASERN). The investigation was conducted to determine the most suitable nozzle concept for short takeoff and landing (STOL) performance. The criterion for the best STOL performance was a takeoff ground roll of less than 1000 ft. At approach, the criteria were high lift and sufficient drag to maintain a glide slope of -3 to -6 deg with enough pitching-moment control from the canards. The test was performed at a dynamic pressure of 45 lb/sq ft and an angle-of-attack range of 0 to 20 deg. The nozzle pressure ratio was varied from 1.0 to 4.3 at both dry power and after burning nozzle configurations with nozzle vectoring to 60 deg. In addition, the model was tested in and out of ground effects. The ALBEN concept was the best of the four nozzle concepts tested for STOL performance.

  5. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  6. Tokamak power systems studies, FY 1985

    SciTech Connect

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  7. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  8. Investigation of trailing-edge-flap, spanwise-blowing concepts on an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.; Quinto, P. F.; Banks, D. W.

    1984-01-01

    The aerodynamic effects of spanwise blowing on the trailing edge flap of an advanced fighter aircraft configuration were determined in the 4 by 7 Meter Tunnel. A series of tests were conducted with variations in spanwise-blowing vector angle, nozzle exit area, nozzle location, thrust coefficient, and flap deflection in order to determine a superior configuration for both an underwing cascade concept and an overwing port concept. This screening phase of the testing was conducted at a nominal approach angle of attack from 12 deg to 16 deg; and then the superior configurations were tested over a more complete angle of attack range from 0 deg to 20 deg at tunnel free stream dynamic pressures from 20 to 40 lbf/sq ft at thrust coefficients from 0 to 2.

  9. 'Booster Recovery Module' - A reusability concept for the advanced launch system

    NASA Astrophysics Data System (ADS)

    Sedillo, Mark J.

    1990-07-01

    The aerospace industry is looking at different approaches to achieve a recurring cost goal of 300 $/lb to low earth orbit for the Advanced Launch System. A booster recovery module concept has been defined that takes advantage of a partial propulsion system reusability approach. An overview of a cost-effective, low risk propulsion system concept is presented. Booster engine recovery and reuse have been shown to be a viable option to reduce the engine system costs that result from both vehicle performance and operational requirements. A flight experiment is outlined to conduct a subscale booster recovery demonstration. This Atlas E flight experiment will also serve to determine cost-effective main engine options, such as: modularity, sea water effects/isolation, environmental limitations, assessment of existing margins and factors of safety, and selection of material.

  10. Optimization of an Advanced Hybrid Wing Body Concept Using HCDstruct Version 1.2

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Hybrid Wing Body (HWB) aircraft concepts continue to be promising candidates for achieving the simultaneous fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project. In order to evaluate the projected benefits, improvements in structural analysis at the conceptual design level were necessary; thus, NASA researchers developed the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) tool to perform aeroservoelastic structural optimizations of advanced HWB concepts. In this paper, the authors present substantial updates to the HCDstruct tool and related analysis, including: the addition of four inboard and eight outboard control surfaces and two all-movable tail/rudder assemblies, providing a full aeroservoelastic analysis capability; the implementation of asymmetric load cases for structural sizing applications; and a methodology for minimizing control surface actuation power using NASTRAN SOL 200 and HCDstruct's aeroservoelastic finite-element model (FEM).

  11. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    SciTech Connect

    Hugo, Jacques

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  12. Development and proof-testing of advanced absorption refrigeration cycle concepts

    SciTech Connect

    Modahl, R.J.; Hayes, F.C. . Applied Unitary/Refrigeration Systems Div.)

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  13. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    SciTech Connect

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  14. Impact of advanced onboard processing concepts on end-to-end data system

    NASA Technical Reports Server (NTRS)

    Sos, J. Y.

    1978-01-01

    An investigation is conducted of the impact of advanced onboard data handling concepts on the total system in general and on ground processing operations, such as those being performed in the central data processing facility of the NASA Goddard Space Flight Center. In one of these concepts, known as the instrument telemetry packet (ITP) system, telemetry data from a single instrument is encoded into a packet, along with other ancillary data, and transmitted in this form to the ground. Another concept deals with onboard temporal registration of image data from such sensors as the thematic mapper, to be carried onboard the Landsat-D spacecraft in 1981. It is found that the implementation of the considered concepts will result in substantial simplification of the ground processing element of the system. With the projected tenfold increase in the data volume expected in the next decade, the introduction of ITP should keep the cost of the ground data processing function within reasonable bounds and significantly contribute to a more timely delivery of data/information to the end user.

  15. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    NASA Astrophysics Data System (ADS)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  16. BASIC PRINCIPLES AND CONCEPTS UNDERLYING RECENT ADVANCES IN MRI OF THE DEVELOPING BRAIN

    PubMed Central

    Panigrahy, Ashok; Borzage, Matthew; Blüml, Stefan

    2010-01-01

    Over the last decade, magnetic resonance imaging has become an essential tool in the evaluation of both in vivo human brain development and perinatal brain injury. Recent technology including MR compatible neonatal incubators, neonatal head coils, advanced MR pulse sequences and 3T field strength magnets allow high quality MR imaging studies to be performed on sick neonates. This article will review basic principles and concepts underlying recent advances in MR spectroscopy, diffusion, perfusion and volumetric MR imaging. These techniques provide quantitative assessment and novel insight of both brain development and brain injury in the immature brain. Knowledge of normal developmental changes in quantitative MR values is also essential to interpret pathologic cases. PMID:20109968

  17. Basic principles and concepts underlying recent advances in magnetic resonance imaging of the developing brain.

    PubMed

    Panigrahy, Ashok; Borzage, Matthew; Blüml, Stefan

    2010-02-01

    Over the last decade, magnetic resonance (MR) imaging has become an essential tool in the evaluation of both in vivo human brain development and perinatal brain injury. Recent technology including MR-compatible neonatal incubators, neonatal head coils, advanced MR pulse sequences, and 3-T field strength magnets allow high-quality MR imaging studies to be performed on sick neonates. This article will review basic principles and concepts underlying recent advances in MR spectroscopy, diffusion, perfusion, and volumetric MR imaging. These techniques provide quantitative assessment and novel insight of both brain development and brain injury in the immature brain. Knowledge of normal developmental changes in quantitative MR values is also essential to interpret pathologic cases.

  18. Research directions and progress in the SERI advanced high efficiency concept program

    SciTech Connect

    Cole, L A; Benner, J P

    1984-06-01

    The inherent electro-optical properties of gallium arsenide (GaAs) and related III-V compounds make this class of semiconductors an optimum choice for use in very high efficiency solar cells. The ability to alloy GaAs with other column III and V elements while maintaining the single crystal zincblende structure allows the photovoltaic properties to be tailored to specific needs. The current understanding and control of the properties of these materials is more advanced than for any other semiconductor except single crystal silicon. For these reasons, the Advanced High Efficiency Concepts Program supports materials research to improve the properties of III-V semiconductors needed to achieve the maximum attainable photovoltaic conversion efficiencies.

  19. Research directions and progress in the SERI Advanced High Efficiency Concept Program

    SciTech Connect

    Cole, L.A.; Benner, J.P.; US

    1984-05-01

    The inherent electro-optical properties of gallium arsenide (GaAs) and related III-V compounds make this class of semiconductors an optimum choice for use in very high efficiency solar cells. The ability to alloy GaAs with other column III and V elements while maintaining the single crystal zincblende structure allows the photovoltaic properties to be tailored to specific needs. The current understanding and control of the properties of these materials is more advanced than for any other semiconductor except single crystal silicon. For these reasons, the Advanced High Efficiency Concepts Program supports materials research to improve the properties of III-V semiconductors needed to achieve the maximum attainable photovoltaic conversion efficiencies.

  20. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-08-01

    This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

  1. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    SciTech Connect

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  2. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  3. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  4. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  5. Work Domain Analysis and Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect

    Jacques Hugo

    2001-02-01

    The nuclear industry is currently designing and building a new generation of reactors that will differ in important respects from the older generation. Differences in new plants will include different structural, functional, and environmental aspects, all of which are likely to have a significant impact on the way these plants are operated. In order to meet economic and safety objectives, these new reactors will all use advanced technologies to some extent, including new materials and advanced digital instrumentation and control systems. Examples of these advances include distribution of load-following demand among multiple units, different product streams (steam, process heat, or electricity), increased use of passive safety systems, high levels of automation with humans in supervisory roles, integration of computerized procedures for control room and field work, and remote surveillance and on-line monitoring. New technologies will affect not only operational strategies, but will also require a new approach to how functions are allocated to humans or machines to ensure optimal performance. There is still much uncertainty about the effect of large scale changes in plant design on operations and human tasks, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. This uncertainty will remain until sound technical bases are developed for new operational concepts and strategies. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. Up-to-date models and guidance are required for the development of operational concepts for complex socio-technical systems. Designers need to be able to identify and evaluate specific human factors challenges related to non

  6. Electron cyclotron emission diagnostics on KSTAR tokamak.

    PubMed

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  7. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  8. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    SciTech Connect

    Berkan, R.C.; Upadhyaya, B.R.; Bywater, R.L. . Dept. of Nuclear Engineering); Kisner, R.A. )

    1991-08-01

    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs.

  9. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  10. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    SciTech Connect

    Xu, G. S.; Wang, H. Q.; Wan, B. N.; Guo, H. Y.; Zhang, W.; Chang, J. F.; Wang, L.; Chen, R.; Liu, S. C.; Ding, S. Y.; Shao, L. M.; Xiong, H.; Naulin, V.; Diamond, P. H.; Tynan, G. R.; Xu, M.; Yan, N.; Zhao, H. L.

    2012-12-15

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1 MHz) turbulence was observed in the steep-gradient region leading to intermittent transport events across the edge transport barrier. Good confinement (H{sub 98y,2} {approx} 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows reproduced this state well.

  11. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the

  12. Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future

    SciTech Connect

    Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.

    1997-12-31

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

  13. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-04-01

    This report presents preliminary research results from the investigation in to the development of new models and guidance for concepts of operations (ConOps) in advanced small modular reactor (aSMR) designs. In support of this objective, three important research areas were included: operating principles of multi-modular plants, functional allocation models and strategies that would affect the development of new, non-traditional concept of operations, and the requiremetns for human performance, based upon work domain analysis and current regulatory requirements. As part of the approach for this report, we outline potential functions, including the theoretical and operational foundations for the development of a new functional allocation model and the identification of specific regulatory requirements that will influence the development of future concept of operations. The report also highlights changes in research strategy prompted by confirmationof the importance of applying the work domain analysis methodology to a reference aSMR design. It is described how this methodology will enrich the findings from this phase of the project in the subsequent phases and help in identification of metrics and focused studies for the determination of human performance criteria that can be used to support the design process.

  14. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Fratoni, Massimiliano; Greenberg, Harris; Sutton, Mark; Howard, Robert

    2012-07-01

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  15. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  16. Advanced payload concepts and system architecture for emerging services in Indian National Satellite Systems

    NASA Astrophysics Data System (ADS)

    Balasubramanian, E. P.; Rao, N. Prahlad; Sarkar, S.; Singh, D. K.

    2008-07-01

    Over the past two decades Indian Space Research Organization (ISRO) has developed and operationalized satellites to generate a large capacity of transponders for telecommunication service use in INSAT system. More powerful on-board transmitters are built to usher-in direct-to-home broadcast services. These have transformed the Satcom application scenario in the country. With the proliferation of satellite technology, a shift in the Indian market is witnessed today in terms of demand for new services like Broadband Internet, Interactive Multimedia, etc. While it is imperative to pay attention to market trends, ISRO is also committed towards taking the benefits of technological advancement to all round growth of our population, 70% of which dwell in rural areas. The initiatives already taken in space application related to telemedicine, tele-education and Village Resource Centres are required to be taken to a greater height of efficiency. These targets pose technological challenges to build a large capacity and cost-effective satellite system. This paper addresses advanced payload concepts and system architecture along with the trade-off analysis on design parameters in proposing a new generation satellite system capable of extending the reach of the Indian broadband structure to individual users, educational and medical institutions and enterprises for interactive services. This will be a strategic step in the evolution of INSAT system to employ advanced technology to touch every human face of our population.

  17. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  18. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  19. Improvement of tokamak performance by injection of electrons

    SciTech Connect

    Ono, Masayuki.

    1992-12-01

    Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas.

  20. Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts

    NASA Technical Reports Server (NTRS)

    Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

    2011-01-01

    Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which

  1. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  2. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  3. Development of a VOR/DME model for an advanced concepts simulator

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  4. AICD: Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program

    NASA Astrophysics Data System (ADS)

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, and a listing of program output including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  5. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  6. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, January--March 1992

    SciTech Connect

    Not Available

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  7. Development of advanced concepts for DIR-MCFC cogeneration applications in the European Market

    SciTech Connect

    Kortbeek, P.J.; Ottervanger, R.G.; Dicks, A.L.

    1996-12-31

    Early 1996 a three year (1996 - 1998) joint European project was launched under the name {open_quote}Advanced DIR-MCFC Development{close_quote}, aiming at the development of Direct Internal Reforming (DIR) Molten Carbonate Fuel Cell (MCFC) systems for cogeneration applications for the European market. In this project participate: Brandstofcel Nederland BV (BCN), British Gas pic (BG), Gaz de France (GDF), Netherlands Energy Research foundation (ECN), Stork, Royal Schelde and Sydkraft AB. The European Fuel Cell User Group (EFCUG) supports the project as an advisory board. Whereas the US and Japanese programmes are aimed at large-scale demonstrations of the MCFC technology, this project focusses on the development of concepts and technology, required for MCFC systems that will be competative on the cogeneration market. The project partners provide the essential expertise: from end-user, system engineering, stack development up to fundamental material research.

  8. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  9. Composite transport wing technology development: Design development tests and advanced structural concepts

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  10. Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Newhouse, M.; Guffin, O. T.

    1994-01-01

    Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.

  11. Tradespace Exploration of Distributed Propulsors for Advanced On-Demand Mobility Concepts

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Moore, Mark D.; Turnbull, Andrew R.

    2014-01-01

    Combustion-based sources of shaft power tend to significantly penalize distributed propulsion concepts, but electric motors represent an opportunity to advance the use of integrated distributed propulsion on an aircraft. This enables use of propellers in nontraditional, non-thrust-centric applications, including wing lift augmentation, through propeller slipstream acceleration from distributed leading edge propellers, as well as wingtip cruise propulsors. Developing propellers for these applications challenges long-held constraints within propeller design, such as the notion of optimizing for maximum propulsive efficiency, or the use of constant-speed propellers for high-performance aircraft. This paper explores the design space of fixed-pitch propellers for use as (1) lift augmentation when distributed about a wing's leading edge, and (2) as fixed-pitch cruise propellers with significant thrust at reduced tip speeds for takeoff. A methodology is developed for evaluating the high-level trades for these types of propellers and is applied to the exploration of a NASA Distributed Electric Propulsion concept. The results show that the leading edge propellers have very high solidity and pitch well outside of the empirical database, and that the cruise propellers can be operated over a wide RPM range to ensure that thrust can still be produced at takeoff without the need for a pitch change mechanism. To minimize noise exposure to observers on the ground, both the leading edge and cruise propellers are designed for low tip-speed operation during takeoff, climb, and approach.

  12. Design, simulation and evaluation of advanced display concepts for the F-16 control configured vehicle

    NASA Technical Reports Server (NTRS)

    Klein, R. W.; Hollister, W. M.

    1982-01-01

    Advanced display concepts to augment the tracking ability of the F-16 Control Configured Vehicle (CCV) were designed, simulated, and evaluated. A fixed-base simulator was modified to represent the F-16 CCV. An isometric sidearm control stick and two-axis CCV thumb button were installed in the cockpit. The forward cockpit CRT was programmed to present an external scene (numbered runway, horizon) and the designed Heads Up Display. The cockpit interior was modified to represent a fighter and the F-16 CCV dynamics and direct lift and side force modes were programmed. Compensatory displays were designed from man-machine considerations. Pilots evaluated the Heads up Display and compensatory displays during simulated descents in the presence of several levels of filtered, zero-mean winds gusts. During a descent from 2500 feet to the runway, the pilots tracked a point on the runway utilizing the basic F-16, F-16 CCV, and F-16 CCV with advanced displays. Substantial tracking improvements resulted utilizing the CCV modes, and the displays were found to even further enhance the tracking ability of the F-16 CCV.

  13. A 100 MWe advanced sodium-cooled fast reactor core concept

    SciTech Connect

    Kim, T. K.; Grandy, C.; Hill, R. N.

    2012-07-01

    An Advanced sodium-cooled Fast Reactor core concept (AFR-100) was developed targeting a small electrical grid to be transportable to the plant site and operable for a long time without frequent refueling. The reactor power rating was strategically decided to be 100 MWe, and the core barrel diameter was limited to 3.0 m for transportability. The design parameters were determined by relaxing the peak fast fluence limit and bulk coolant outlet temperature to beyond irradiation experience assuming that advanced cladding and structural materials developed under US-DOE programs would be available when the AFR-100 is deployed. With a de-rated power density and U-Zr binary metallic fuel, the AFR-100 can maintain criticality for 30 years without refueling. The average discharge burnup of 101 MWd/kg is comparable to conventional design values, but the peak discharge fast fluence of {approx}6x10{sup 23} neutrons/cm{sup 2} is beyond the current irradiation experiences with HT-9 cladding. The evaluated reactivity coefficients provide sufficient negative feedbacks and the reactivity control systems provide sufficient shutdown margins. The integral reactivity parameters obtained from quasi-static reactivity balance analysis indicate that the AFR-100 meets the sufficient conditions for acceptable asymptotic core outlet temperature following postulated unprotected accidents. Additionally, the AFR-100 has sufficient thermal margins by grouping the fuel assemblies into eight orifice zones. (authors)

  14. Ideal MHD stability of a spherical tokamak power plant and a component test facility.

    SciTech Connect

    Hole, M. J.; Wilson, H. R.; Abeysuriya, R.; Larson, J. W.

    2010-12-01

    We have investigated ideal MHD stability of two advanced spherical tokamak confinement concepts: the spherical tokamak power plant (STPP), a 3 GW concept fusion power plasma producing 1 GW of electric power, and the component test facility (CTF), a concept designed for in situ materials testing for ITER and beyond. Detailed stability studies for toroidal mode number n = 1, 2, 3 displacements are presented as a function of conformal wall radius R{sub w} and on-axis safety factor q{sub 0}. For the STPP marginal stability scans held the current profile fixed, but varied the total plasma current. For the CTF we have extended and parallelized earlier marginal stability scans to scan over both the plasma beta and q{sub 0} by varying the current profile to preserve the total plasma current. These confirm that both concepts are stable provided that the wall is sufficiently close and q{sub 0} sufficiently large (q{sub 0} > 2.8 for the power plant and q{sub 0} > 2.1 for the CTF). Both power plant and CTF configurations are found to be ballooning stable.

  15. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame

  16. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time

  17. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    NASA Astrophysics Data System (ADS)

    Azizov, E. A.

    2012-02-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.

  18. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    NASA Astrophysics Data System (ADS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.

    2009-05-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  19. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  20. Tokamak foundation in USSR/Russia 1950-1990

    NASA Astrophysics Data System (ADS)

    Smirnov, V. P.

    2010-01-01

    In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER.

  1. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  2. Advanced concept proof-of-principle demonstration: Switchable radioactive neutron source

    SciTech Connect

    Rhodes, E.A.; Bowers, D.L.; Boyar, R.E.; Dickerman, C.E.

    1995-10-01

    An advanced concept proof-of-principle demonstration was successfully performed to show the feasibility of a practical switchable radioactive neutron source (SRNS) that can be switched on and off like an accelerator, but without requiring accelerator equipment such as high voltage supply, control unit, etc. This source concept would provide a highly portable neutron source for field radiation measurement applications. Such a source would require minimal, if any, shielding when not in use. The SRNS, previously patented by Argonne staff, provides a means of constructing the alpha-emitting and light-element components of a radioactive neutron source, in such a fashion that these two components can brought together to turn the source ``on`` and then be separated to turn the source ``off``. An SRNS could be used for such field applications as active neutron interrogation of objects to detect fissile materials or to measure their concentration; and to excite gamma-ray emission for detection of specific elements that indicate toxic chemicals, drugs, explosives, etc. The demonstration was performed using Pu-238 as the alpha emitter and Be as the light element, in an air-atmosphere glovebox having no atmosphere purification capability. A stable, thin film of Pu-238 oxide was deposited on a stainless steel planchet. The ``on`` output of the demonstration Pu-238 film was measured to be 2.5 {times} 10{sup 6} neutrons/sec-gram of Pu-238. The measured ``off`` neutron rate was satisfactory, only about 5% of the ``on`` output, after two weeks of exposure to the glovebox atmosphere. After several weeks additional exposure, the ``off`` rate had increased to about 15%. This work demonstrates the feasibility of constructing practical, highly portable SRNS units with very low gamma-ray dose in the ``off`` position.

  3. Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by Stanford University

    SciTech Connect

    Huang, Zhirong; Hogan, Mark

    2015-09-30

    Essentially all we know today and will learn in the future about the fundamental nature of matter is derived from probing it with directed beams of particles such as electrons, protons, neutrons, heavy ions, and photons. The resulting ability to “see” the building blocks of matter has had an immense impact on society and our standard of living. Over the last century, particle accelerators have changed the way we look at nature and the universe we live in and have become an integral part of the Nation’s technical infrastructure. Today, particle accelerators are essential tools of modern science and technology. The cost and capabilities of accelerators would be greatly enhanced by breakthroughs in acceleration methods and technology. For the last 32 years, the Advanced Accelerator Concepts (AAC) Workshop has acted as the focal point for discussion and development of the most promising acceleration physics and technology. It is a particularly effective forum where the discussion is leveraged and promoted by the unique and demanding feature of the AAC Workshop: the working group structure, in which participants are asked to consider their contributions in terms of even larger problems to be solved. The 16th Advanced Accelerator Concepts (AAC2014) Workshop was organized by Stanford University from July 13 - 18, 2014 at the Dolce Hays Mansion in San Jose, California. The conference had a record 282 attendees including 62 students. Attendees came from 11 countries representing 66 different institutions. The workshop format consisted of plenary sessions in the morning with topical leaders from around the world presenting the latest breakthroughs to the entire workshop. In the late morning and afternoons attendees broke out into eight different working groups for more detailed presentations and discussions that were summarized on the final day of the workshop. In addition, there were student tutorial presentations on two afternoons to provide in depth education and

  4. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  5. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    NASA Astrophysics Data System (ADS)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of

  6. Completely bootstrapped tokamak

    SciTech Connect

    Weening, R.H. ); Boozer, A.H. )

    1992-01-01

    Numerical simulations of the evolution of large-scale magnetic fields have been developed using a mean-field Ohm's law. The Ohm's law is coupled to a {Delta}{prime} stabilty analysis and a magnetic island growth equation in order to simulate the behavior of tokamak plasmas that are subject to tearing modes. In one set of calculations, the magnetohydrodynamic (MHD)-stable regime of the tokamak is examined via the construction of an {ital l}{sub {ital i}} -{ital q}{sub {ital a}} diagram. The results confirm previous calculations that show that tearing modes introduce a stability boundary into the {ital l}{sub {ital i}} -{ital q}{sub {ital a}} space. In another series of simulations, the interaction between tearing modes and the bootstrap current is investigated. The results indicate that a completely bootstrapped tokamak may be possible, even in the absence of any externally applied loop voltage or current drive.

  7. Texas Experimental Tokamak

    SciTech Connect

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  8. Innovative concept for an advanced hadron facility based on a 2 GeV H/sup -/ linac

    SciTech Connect

    Thiessen, H.A.

    1987-01-01

    This report presents parameters for an innovative new concept for the design of an advanced hadron facility. We propose combining a cold neutron source with a kaon factory. We also discuss the possibility of a shared target for neutron and neutrino experiments. An initial cost estimate is presented.

  9. Advanced concepts for electromagnetic launcher power supplies incorporating magnetic flux compression

    NASA Astrophysics Data System (ADS)

    Driga, M. D.; Fair, H. D.

    1991-01-01

    Advanced concepts of high-energy power supplies for coil launchers are designed to produce high inductive compression ratios and large current and magnetic field multiplication ratios in the range of megaamperes of current and gigawatts of active power. As a consequence of the flexibility of multiwinding rotating generators, such designs provide an extensive range of output pulse shaping in single or multiple pulses, enabling optimum operation of the coil launcher. The interaction of different stationary and rotating electrical windings in strong magnetic fields with feedback generated amplification and nonuniform compensation of the armature reaction is the key to providing a large and flexible spectrum of tailored output pulses, eliminating the need for switching and other large external electromagnetic pulse-forming components. Dynamic interactions between the internal impedance of these generators and the induced electromotive forces in various windings, as well as the role of the external passive circuit components introduced in the launcher circuit (such as capacitors and inductors), are discussed and numerically evaluated. Finally, an adaptive finite-element method numerical code is given which takes into account the relative motion and is designed to evaluate machines incorporating flux compression.

  10. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  11. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  12. Advancing the expectancy concept via the interplay between theory and research.

    PubMed

    Del Boca, Frances K; Darkes, Jack; Goldman, Mark S; Smith, Gregory T

    2002-06-01

    Four papers from a 2001 Research Society on Alcoholism symposium on expectancy theory and research are summarized. The symposium contributors describe recent advances in expectancy theory and discuss their implications for assessment and for understanding the processes of development and change in the behavioral domain of alcohol use. First, findings are integrated across the diverse domains in which the expectancy concept has been applied. Second, the implications of expectancy theory for the measurement of expectancy structure and process are examined. Third, research and theory regarding alcohol expectancy development and change are presented, with an emphasis on the role of expectancies as mediators of known antecedents of drinking. Finally, an experimental procedure for investigating the causal role of expectancies is described, together with its implications for theory testing and prevention or intervention programming. Collectively, the symposium contributions demonstrate the utility of an integrated expectancy theory for the generation of innovative research operations and new insights regarding behavior development and change. Consistent with the notion of consilience, expectancy theory has demonstrated a convergence of findings across different levels of analysis, as well as across different operations, methods, and research designs.

  13. Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.

    SciTech Connect

    Baldwin, T.; Gasper, W.; Lacher, L.; Newsom, D.; Yantosik, G.

    1999-07-06

    The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) the adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.

  14. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage.

    PubMed

    Ji, Cheng

    2015-01-01

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries. PMID:26047032

  15. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    PubMed Central

    Ji, Cheng

    2015-01-01

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries. PMID:26047032

  16. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    SciTech Connect

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-07-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% {delta}k. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% {delta}k. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  17. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage.

    PubMed

    Ji, Cheng

    2015-06-03

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  18. ARIES tokamak reactor study

    SciTech Connect

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein.

  19. Predicted reliability of aerospace electronics: Application of two advanced probabilistic concepts

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    Two advanced probabilistic design-for-reliability (PDfR) concepts are addressed and discussed in application to the prediction, quantification and assurance of the aerospace electronics reliability: 1) Boltzmann-Arrhenius-Zhurkov (BAZ) model, which is an extension of the currently widely used Arrhenius model and, in combination with the exponential law of reliability, enables one to obtain a simple, easy-to-use and physically meaningful formula for the evaluation of the probability of failure (PoF) of a material or a device after the given time in operation at the given temperature and under the given stress (not necessarily mechanical), and 2) Extreme Value Distribution (EVD) technique that can be used to assess the number of repetitive loadings that result in the material/device degradation and eventually lead to its failure by closing, in a step-wise fashion, the gap between the bearing capacity (stress-free activation energy) of the material or the device and the demand (loading). It is shown that the material degradation (aging, damage accumulation, flaw propagation, etc.) can be viewed, when BAZ model is considered, as a Markovian process, and that the BAZ model can be obtained as the ultimate steady-state solution to the well-known Fokker-Planck equation in the theory of Markovian processes. It is shown also that the BAZ model addresses the worst, but a reasonably conservative, situation. It is suggested therefore that the transient period preceding the condition addressed by the steady-state BAZ model need not be accounted for in engineering evaluations. However, when there is an interest in understanding the transient degradation process, the obtained solution to the Fokker-Planck equation can be used for this purpose. As to the EVD concept, it attributes the degradation process to the accumulation of damages caused by a train of repetitive high-level loadings, while loadings of levels that are considerably lower than their extreme values do not contribute

  20. A System Concept for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    1998-01-01

    ultimate goal. The Precipitation Radar (PR) aboard the TRMM satellite is the first ever spaceborne radar dedicated to three-dimensional, global precipitation measurements over the tropics and the subtropics, as well as the detailed synopsis of a wide range of tropical rain storm systems. In only twelve months since launch, the PR, together with other science instruments abroad the satellite have already provided unprecedented insights into the rainfall systems. It is anticipated the a lot more exciting and important rain observations would be made by TRMM throughout its mission duration. While TRMM has provided invaluable data to the user community, it is only the first step towards advancing our knowledge on rain processes and its contributions to climate variability. It is envisioned that a TRMM follow-on mission is needed in such a way to capitalize on the pioneering information provided by TRMM, and its instrument capability must be extended beyond TRMM in such a way to fully address the key science questions from microphysical to climatic time scale. In fact, a number of new and innovative mission concepts have recently put forth for this purpose. Almost all of these new concepts have suggested the utility of a more advanced, high-resolution, Doppler-enabled, vertical profiling radar that can provide multi-parameter observations of precipitation. In this paper, a system concept for a second- gene ration precipitation radar (PR-2) which addresses the above requirements will be described.

  1. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    SciTech Connect

    Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar; Kumar, Ajai

    2015-12-15

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  2. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    NASA Astrophysics Data System (ADS)

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh Kumar

    2015-12-01

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as "back collection method" to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  3. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak.

    PubMed

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh Kumar

    2015-12-01

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as "back collection method" to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  4. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    NASA Astrophysics Data System (ADS)

    Vdovin, V.

    2014-02-01

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20-40) IC frequency harmonics) at frequencies of 500-1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure βN > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D - Kurchatov Institute experiment on helicons CD [1].

  5. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    SciTech Connect

    Vdovin, V.

    2014-02-12

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20–40) IC frequency harmonics) at frequencies of 500–1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β{sub N} > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D – Kurchatov Institute experiment on helicons CD [1].

  6. Tearing Modes in Tokamaks

    SciTech Connect

    White, R. B.

    2008-05-14

    This lecture gives a basic introduction to magnetic pound elds, magnetic surface destruction, toroidal equilibrium and tearing modes in a tokamak, including the linear and nonlinear development of these modes and their modi pound cation by current drive and bootstrap current, and sawtooth oscillations and disruptions.

  7. A low aspect ratio tokamak transmutation system

    NASA Astrophysics Data System (ADS)

    Qiu, L. J.; Wu, Y. C.; Xiao, B. J.; Xu, Q.; Huang, Q. Y.; Wu, B.; Chen, Y. X.; Xu, W. N.; Chen, Y. P.; Liu, X. P.

    2000-03-01

    A low aspect ratio tokamak transmutation system is proposed as an alternative application of fusion energy on the basis of a review of previous studies. This system includes: (1) a low aspect ratio tokamak as fusion neutron driver, (2) a radioactivity-clean nuclear power system as blanket, and (3) a novel concept of liquid metal centre conductor post as part of the toroidal field coils. In the conceptual design, a driver of 100 MW fusion power under 1 MW/m2 neutron wall loading can transmute the amount of high level waste (including minor actinides and fission products) produced by ten standard pressurized water reactors of 1 GW electrical power output. Meanwhile, the system can produce tritium on a self-sustaining basis and an output of about 2 GW of electrical energy. After 30 years of operation, the biological hazard potential level of the whole system will decrease by two orders of magnitude.

  8. High Beta Tokamaks

    SciTech Connect

    Cowley, S.

    1998-11-14

    Perhaps the ideal tokamak would have high {beta} ({beta} {approx}> 1) and classical confinement. Such a tokamak has not been found, and we do not know if one does exist. We have searched for such a possibility, so far without success. In 1990, we obtained analytic equilibrium solutions for large aspect ratio tokamaks at {beta} {approx} {Omicron}(1) [1]. These solutions and the extension at high {beta} poloidal to finite aspect ratio [2] provided a basis for the study of high {beta} tokamaks. We have shown that these configurations can be stable to short scale MHD modes [3], and that they have reduced neoclassical transport [4]. Microinstabilities (such as the {del}T{sub i} mode) seem to be stabilized at high {beta} [5] - this is due to the large local shear [3] and the magnetic well. We have some concerns about modes associated with the compressional branch which may appear at high {beta}. Bill Dorland and Mike Kotschenreuther have studied this issue and our concerns may be unfounded. It is certainly tantalizing, especially given the lowered neoclassical transport values, that these configurations could have no microinstabilities and, one could assume, no anomalous transport. Unfortunately, while this work is encouraging, the key question for high {beta} tokamaks is the stability to large scale kink modes. The MHD {beta} limit (Troyon limit) for kink modes at large aspect ratio is problematically low. There is ample evidence from computations that the limit exists. However, it is not known if stable equilibria exist at much higher {beta}--none have been found. We have explored this question in the asymptotic high {beta} poloidal limit. Unfortunately, we are unable to find stable equilibrium and also unable to show that they don't exist. The results of these calculations will be published when a more definitive answer is found.

  9. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    SciTech Connect

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  10. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    NASA Astrophysics Data System (ADS)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-03-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from intact classes. A researcher-constructed Biology Cognitive Skills Test was used to collect the quantitative data. Qualitative data were collected through interviews and students' personal documents. The data showed that the participants utilized concept mapping in various ways and they described positive experiences while being engaged in its use. The main challenge cited by teachers was the limited time available for more consistent use. The results showed that the use of concept mapping in advanced level biology can lead to learning gains that exceed those achieved in classes where mainly traditional methods are used. The students in the concept mapping experimental groups performed significantly better than their peers in the control group on both the lower-order (F(1) = 21.508; p < .001) and higher-order (F(1) = 42.842, p < .001) cognitive items of the biology test. A mean effect size of .56 was calculated representing the contribution of treatment to the students' performance on the test items.

  11. First Engineering Commissioning of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Wan, Yuanxi; Li, Jiangang; Weng, Peide; EAST Team

    2006-05-01

    Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak. The first commissioning started on Feb. 1st of 2006 and finished on March 30th of 2006 at the Institute of Plasma Physics, Chinese Academy of Sciences. It consists of leakage testing at both room temperature and low temperature, pumping down, cooling down all coils, current leads, bus bar and the thermal shielding, exciting all the coils, measuring magnetic configuration and warming up the magnets. The electromagnetic, thermal hydraulic and mechanical performance of EAST Toroidal Field (TF) and Poloidal Field (PF) magnets have also been tested. All sub-systems, including pumping system, cryogenic system, PF& TF power supply systems, magnet instrumentation system, quench detection and protection system, water cooling system, data acquisition system, main control system, plasma control system (PCS), interlock and safety system have been successfully tested.

  12. Tokamak plasma modelling and atomic processes

    NASA Astrophysics Data System (ADS)

    Kawamura, T.

    1986-06-01

    Topics addressed include: particle control in a tokomak device; ionizing and recombining plasmas; effects of data accuracy on tokamak impurity transport modeling; plasma modeling of tokamaks; and ultraviolet and X-ray spectroscopy of tokamak plasmas.

  13. Resistive edge mode instability in stellarator and tokamak geometries

    NASA Astrophysics Data System (ADS)

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-01

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  14. Resistive edge mode instability in stellarator and tokamak geometries

    SciTech Connect

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-15

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  15. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  16. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  17. Advanced Information Processing System (AIPS) proof-of-concept system functional design I/O network system services

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The function design of the Input/Output (I/O) services for the Advanced Information Processing System (AIPS) proof of concept system is described. The data flow diagrams, which show the functional processes in I/O services and the data that flows among them, are contained. A complete list of the data identified on the data flow diagrams and in the process descriptions are provided.

  18. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Matthew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design can have a profound impact on life-cycle cost (LCC). Widely accepted that nearly 80% of LCC is committed. Decisions made during early design must be well informed. Advanced Concepts Office (ACO) at Marshall Space Flight Center aids in decision making for launch vehicles. Provides rapid turnaround pre-phase A and phase A studies. Provides customer with preliminary vehicle sizing information, vehicle feasibility, and expected performance.

  19. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    SciTech Connect

    Unal, Cetin; Williams, Brian; Mc Clure, Patrick; Nelson, Ralph A

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  20. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  1. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  2. Power supplies and quench protection for the Tokamak Physics Experiment

    SciTech Connect

    Neumeyer, C.L.

    1994-07-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.

  3. TPX tokamak construction management

    SciTech Connect

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-12-31

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly.

  4. Tokamak divertor maps

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Verma, Arun; Boozer, Allen

    1994-08-01

    A mapping method is developed to investigate the problem of determination and control of heat-deposition patterns on the plates of a tokamak divertor. The deposition pattern is largely determined by the magnetic field lines, which are mathematically equivalent to the trajectories of a single-degree-of-freedom time-dependent Hamiltonian system. Maps are natural tools to study the generic features of such systems. The general theory of maps is presented, and methods for incorporating various features of the magnetic field and particle motion in divertor tokamaks are given. Features of the magnetic field include the profile of the rotational transform, single- versus double-null divertor, reverse map, the effects of naturally occurring low M and N, and externally imposed high-M, high-N perturbations. Particle motion includes radial diffusion, pitch angle and energy scattering, and the electric sheath at the plate. The method is illustrated by calculating the stochastic broadening in a single- null divertor tokamak. Maps provide an efficient, economic and elegant method to study the problem of motion of plasma particles in the stochastic scrape-off layer.

  5. Impurity transport in Tokamaks

    NASA Astrophysics Data System (ADS)

    Amano, T.

    1983-12-01

    Theoretical and experimental efforts directed towards gaining an understanding of impurity behavior in Tokamaks are reviewed. In the Alcator Tokamak experiments, a laser blow-off technique was used to introduce trace amounts of impurities into ohmically heated plasmas. After a series of experiments in which they injected Si, Al, Fe, Mo impurities, an equation representing empirical impurity confinement time was derived. The scaling of this equation was compared with the results of impurity injection experiments on other Tokamaks, FT-I, PDX, TFR, ISX-B. Impurity confinement times in all these cases agree remarkably well, except for the TFR confinement times, which were about a factor of two larger than predicted. In the presence of intense neutral beam injection impurity ions behave differently. Specifically, in the ISX-B experiments, a marked accumulation of impurity ions toward the center of the plasma was observed in the case of counter neutral beam injection. This was interpreted semi-quantitatively by the neoclassical effect of the rotation of the plasma driven by the neutral beam.

  6. The Use of Visual Advance Organizers for Learning Earth Science Concepts.

    ERIC Educational Resources Information Center

    Weisberg, Joseph S.

    This study was designed to determine whether advance organizers in the form of visual aids might serve the same function as Ausubel's verbal advance organizers. The basic design of the study consisted of a 4 X 3 X 2 ANOVA factorial design. Ninety-six eighth-grade students were involved in the study. One group was exposed to a physiographic diagram…

  7. Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010

    SciTech Connect

    DOE, EERE

    2010-12-01

    This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  8. SOL Width Scaling in the MAST Tokamak

    NASA Astrophysics Data System (ADS)

    Ahn, Joon-Wook; Counsell, Glenn; Connor, Jack; Kirk, Andrew

    2002-11-01

    Target heat loads are determined in large part by the upstream SOL heat flux width, Δ_h. Considerable effort has been made in the past to develop analytical and empirical scalings for Δh to allow reliable estimates to be made for the next-step device. The development of scalings for a large spherical tokamak (ST) such as MAST is particularly important both for development of the ST concept and for improving the robustness of scalings derived for conventional tokamaks. A first such scaling has been developed in MAST DND plasmas. The scaling was developed by flux-mapping data from the target Langmuir probe arrays to the mid-plane and fitting to key upstream parameters such as P_SOL, bar ne and q_95. In order to minimise the effects of co-linearity, dedicated campaigns were undertaken to explore the widest possible range of each parameter while keeping the remainder as fixed as possible. Initial results indicate a weak inverse dependence on P_SOL and approximately linear dependence on bar n_e. Scalings derived from consideration of theoretical edge transport models and integration with data from conventional devices is under way. The established scaling laws could be used for the extrapolations to the future machine such as Spherical Tokamak Power Plant (STPP). This work is jointly funded by Euratom and UK Department of Trade and Industry. J-W. Ahn would like to recognise the support of a grant from the British Foreign & Commonwealth Office.

  9. Tokamak pump limiters

    NASA Astrophysics Data System (ADS)

    Conn, Robert W.

    1984-12-01

    Experiments with pump limiters on several operating tokamaks have established them as efficient collectors of particles. The gas pressure rise within the chamber behind the limiters has been as high as 50 mTorr when there is no internal chamber pumping. Observations of the plasma power distribution over the front face of these limiter modules yield estimates for the scale length of radial power decay consistent with predictions of relatively simple theory. Interaction of the in-flowing plasma with recycling neutral gas near the limiter deflector plate is predicted to become important when the effective ionization mean free path is comparable to or less than the neutral atom mean path length within the throat structure of the limiter. Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased

  10. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  11. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  12. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report, April--June 1994

    SciTech Connect

    Harrison, D.P.

    1994-07-01

    The primary objective of this research project is the direct production of elemental sulfur during the regeneration of known high temperature desulfurization sorbents. The contract was awarded to LSU on April 12, 1994, and this quarterly report covers accomplishments during the first 2 1/2 months of the project. Effort during the initial 2 1/2 month period has been limited to Tasks 1 and 2, and involves a search of the literature to identify concepts for producing elemental sulfur during regeneration of known metal oxide sorbents and a thermodynamic evaluation of these concepts. While searching and evaluating the literature is a continuing process, concentrated effort on that phase is now complete and a detailed summary is included in this report. Three possible concepts for the direct production of elemental sulfur were identified in the LSU proposal, and the literature search has not uncovered any additional concepts. Thus, the three concepts being investigated involve: (1) regeneration with SO{sub 2}, (2) regeneration with mixtures Of 02 and H{sub 2}O, and (3) regeneration with H{sub 2}O. While concept (3) directly produces H{sub 2}S instead of elemental sulfur, the concept is included because the possibility exists for converting H{sub 2}S to elemental sulfur using the Claus process. Each of the concepts will ultimately be compared to the Direct Sulfur Recovery Process (DSRP) under development by RTI. DSRP involves initial sorbent regeneration to SO{sub 2}, and the inclusion of additional processing steps to reduce the SO{sub 2} to elemental sulfur.

  13. Using Adult Learning Concepts To Assist Patients in Completing Advance Directives.

    ERIC Educational Resources Information Center

    Meyer, Rose Mary

    2000-01-01

    Advance directives that enable individuals to control their health care are underused due to lack of patient knowledge. Nurses can teach patients about them using adult learning principles, transformation theory, and skills for learning how to learn. (SK)

  14. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  15. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  16. African Cultural Concept of Death and the Idea of Advance Care Directives

    PubMed Central

    Ekore, Rabi Ilemona; Lanre-Abass, Bolatito

    2016-01-01

    An advance care directive is a person's oral or written instructions about his or her future medical care, if he or she becomes unable to communicate. It may be in written or oral form. Africans ordinarily do not encourage the contemplation of death or any discussion about their own or their loved ones’ death. According to the African belief system, life does not end with death, but continues in another realm. Becoming an ancestor after death is a desirable goal of every individual, a feat which cannot be achieved if an individual asks for an unnatural death by attempting to utilize advance care directives. Advance care directives are considered to be too individualistic for communitarian societies such as Africa. Coupled with the communitarian nature of African societies are issues such as lack of awareness of advance directives, fear of death and grief, and the African cultural belief system, which are potential barriers to the utilization of advance care directives in the African setting. Hence, the need for culture sensitivity which makes it imperative that patient's family and loved ones are carried along as far as possible, without compromising the autonomy of the patient in question when utilizing advance care directives. PMID:27803556

  17. Preliminary design concepts for an advanced gas distribution system. Task report, August 1989-August 1990

    SciTech Connect

    Lipinsky, E.S.; Hattery, G.R.; Newaz, G.

    1991-01-01

    Studies that were conducted in 1989 (GRI-89/0107.2) showed that the major problems that face the industry are third-party damage, locatability, and pipe supportability. These needs were translated into performance criteria for materials and designs of gas distribution system components. In Phase 2 to date, the performance criteria were refined and used as the basis for generation of concepts for materials and designs for enhancement of the gas distribution system. The screening criteria include long service life, damage tolerance, installation, and manufacturability. A scoring model that allows the criteria to have variable weights was applied to attain normalized scores and rankings for the concepts. The leading concepts include puncture-resistant polyethylene pipe via wrapping with an ultrahigh molecular weight polyethylene fabric or fiber, toughened thermoplastics (especially polyamides or acetal resin or polyester), thermoplastic fiber-reinforced thermoplastic resins, fiberglass-reinforced hose designs, and honeycomb-reinforced thermoplastic elastomer designs. Tentative research and development plans were developed for the leading concepts in which simple tests of manufacturability, impact resistance, and joinability are to be used to determine which concepts should be pursued further and which appear to have serious flaws.

  18. Adaptive grid finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Kuprat, A.P.; Glasser, A.H.

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  19. Design and Analysis of the Thermal Shield of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Xie, Han; Liao, Ziying

    2008-04-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  20. Simulation of EAST vertical displacement events by tokamak simulation code

    NASA Astrophysics Data System (ADS)

    Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.

    2016-10-01

    Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.

  1. Evaluating the Effects of Dimensionality in Advanced Avionic Display Concepts for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2007-01-01

    Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.

  2. Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae

    SciTech Connect

    Vdovin, V. L.

    2013-02-15

    The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) {>=} 2 and q(a) {>=} 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure {beta}{sub N} > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

  3. Development of Proof-of-Concept Units for the Advanced Medium-Sized Mobile Power Sources (AMMPS) Program

    SciTech Connect

    Andriulli, JB

    2002-04-03

    The purpose of this report is to document the development of the proof-of-concept units within the Advanced Medium-sized Mobile Power Sources (AMMPS) program. The design used a small, lightweight diesel engine, a permanent magnet alternator, power electronics and digital controls as outlined in the philosophy detailed previously. One small proof-of-concept unit was completed and delivered to the military. The unit functioned well but was not optimized at the time of delivery to the military. A tremendous amount of experience was gained during this phase that can be used in the development of any follow-on AMMPS production systems. Lessons learned and recommendations for follow-on specifications are provided. The unit demonstrated that significant benefits are possible with the new design philosophy. Trade-offs will have to be made but many of the advantages appear to be within the technical grasp of the market.

  4. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  5. Development and proof-testing of advanced absorption refrigeration cycle concepts. Report on Phases 1 and 1A

    SciTech Connect

    Modahl, R.J.; Hayes, F.C.

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  6. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  7. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified.

  8. Preliminary definition and evaluation of advanced space concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    A study was made to develop the characteristics, cost, and performance of a few of the more attractive application concepts, and to compare them against leading terrestrial alternatives, in order to determine their potential, identify those deserving further NASA attention and possible inclusion into the formal development planning sequence, and serve to initiate a dialogue with the using community and agencies.

  9. Study of an advanced transport airplane design concept known as Flatbed

    NASA Technical Reports Server (NTRS)

    Smethers, R. G.; Caldwell, E. W.; Warnock, W. E.; Wilson, J. M., Jr.

    1980-01-01

    The design concept and configuration of the Flatbed transport aircraft are presented. The Flatbed configuration combines into one frame, the ability to haul cargo, virtually unrestrained by cross sectional dimensions of the fuselage. The feasibility and capability of the Flatbed is discussed in depth.

  10. Fractal structure of films deposited in a tokamak

    NASA Astrophysics Data System (ADS)

    Budaev, V. P.; Khimchenko, L. N.

    2007-04-01

    The surface of amorphous films deposited in the T-10 tokamak was studied in a scanning tunnel microscope. The surface relief on a scale from 10 nm to 100 μm showed a stochastic surface topography and revealed a hierarchy of grains. The observed variety of irregular structures of the films was studied within the framework of the concept of scale invariance using the methods of fractal geometry and statistical physics. The experimental probability density distribution functions of the surface height variations are close in shape to the Cauchy distribution. The stochastic surface topography of the films is characterized by a Hurst parameter of H = 0.68-0.85, which is evidence of a nontrivial self-similarity of the film structure. The fractal character and porous structure of deposited irregular films must be considered as an important issue related to the accumulation of tritium in the ITER project. The process of film growth on the surface of tokamak components exposed to plasma has been treated within the framework of the general concept of inhomogeneous surface growth. A strong turbulence of the edge plasma in tokamaks can give rise to fluctuations in the incident flux of particles, which leads to the growth of fractal films with grain dimensions ranging from nano-to micrometer scale. The shape of the surface of some films found in the T-10 tokamak has been interpreted using a model of diffusion-limited aggregation (DLA). The growth of films according to the discrete DLA model was simulated using statistics of fluctuations observed in a turbulent edge plasma of the T-10 tokamak. The modified DLA model reproduces well the main features of the surface of some films deposited in tokamaks.

  11. Advanced concepts in coal liquefaction: Optimization of reactor configuration in coal liquefaction. Final report

    SciTech Connect

    Pradhan, V.R.; Comolli, A.G.; Lee, L.K.

    1994-11-01

    The overall objective of this Project was to find the ways to effectively reduce the cost of coal liquids to about dollar 25 per barrel of crude oil equivalent. The work described herein is primarily concerned with the testing at the laboratory scale of three reactor configuration concepts, namely (1) a fixed-bed plug-flow reactor as a ``finishing reactor`` in coal liquefaction, (2) three-stage well-mixed reactors in series, and (3) interstage stream concentration/product separation. The three reactor configurations listed above were tested during this project using a 20 cc tubing microreactor, a fixed-bed plug flow reactor, and a two-stage modified Robinson-Mahoney reactor system. The reactor schemes were first evaluated based on theoretical modelling studies, then experimentally evaluated at the microautoclave level and laboratory scale continuous operations. The fixed-bed ``finishing reactor`` concept was evaluated in both the upflow and the downflow modes of operation using a partially converted coal-solvent slurry as feed. For most of the testing of concepts at the microautoclave level, simulated coal, recycle oil, and slurry feedstocks were either specially prepared (to represent a specific state of coal/resid conversion) and/or obtained from HRI`s other ongoing bench-scale and PDU scale coal liquefaction experiments. The three-stage continuous stirred tank reactors (CSTR) and interstage product stream separation/concentration concepts were tested using a simulated three-stage CSTR system by employing a laboratory-scale ebullated-bed system and a modified version of the HRI`s existing Robinson-Mahoney fixed catalyst basket reactor system. This testing was conducted as a fourteen day long continuous run, divided into four Conditions to allow for a comparison of the new three-stage CSTR and interstage product concentration concepts with a two-stage CSTR baseline configuration.

  12. Teaching Pediatric Nursing Concepts to Non-Pediatric Nurses Using an Advance Organizer

    ERIC Educational Resources Information Center

    Bell, Julie Ann

    2013-01-01

    Non-pediatric nurses in rural areas often care for children in adult units, emergency departments, and procedural areas. A half-day program about pediatric nursing using constructivist teaching strategies including an advance organizer, case studies, and simulation was offered at a community hospital in Western North Carolina. Nurses reported a…

  13. Application of advanced on-board processing concepts to future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.

    1979-01-01

    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.

  14. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    ERIC Educational Resources Information Center

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  15. Advanced Technologies as Educational Tools in Science: Concepts, Applications, and Issues. Monograph Series Number 8.

    ERIC Educational Resources Information Center

    Kumar, David D.; And Others

    Systems incorporating two advanced technologies, hypermedia systems and intelligent tutors, are examined with respect to their potential impact on science education. The conceptual framework underlying these systems is discussed first. Applications of systems are then presented with examples of each in operation within the context of science…

  16. Variable stream control engine concept for advanced supersonic aircraft: Features and benefits

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1976-01-01

    The Variable Stream Control Engine is studied for advanced supersonic cruise aircraft. Significant environmental and performance improvements relative to first generation supersonic turbojet engines are cited. Two separate flow streams, each with independent burner and nozzle systems are incorporated within the engine. By unique control of the exhaust temperatures and velocities in two coannular streams, significant reduction in jet noise is obtained.

  17. Applications of advanced V/STOL aircraft concepts to civil utility missions. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The linear performance definition curves for the lift fan aircraft, tilt rotor aircraft, and advanced helicopter are given. The computer program written to perform the mission analysis for this study is also documented, and examples of its use are shown. Methods used to derive the performance coefficients for use in the mission analysis of the lift fan aircraft are described.

  18. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  19. Sawtooth oscillation in tokamaks

    SciTech Connect

    Park, W.; Monticello, D.A.

    1989-03-01

    A three-dimensional nonlinear toroidal full MHD code, MH3D, has been used to study sawtooth oscillations in tokamaks. The profile evolution during the sawtooth crash phase compares well with experiment, but only if neoclassical resistivity is used in the rise phase. (Classical resistivity has been used in most of the previous theoretical sawtooth studies.) With neoclassical resistivity, the q value at the axis drops from 1 to about 0.8 before the crash phase, and then resets to 1 through a Kadomtsev-type complete reconnection process. This ..delta..q/sub 0/ approx. = 0.2 is much larger than ..delta..q/sub o/ approx. = 0.01, which is obtained if classical resistivity is used. The current profile is strongly peaked at the axis with a flat region around the singular surface, and is similar to the Textor profile. To understand this behavior, approximate formulas for the time behavior of current and q values are derived. A functional dependence of sawtooth period scaling is also derived. A semi-empirical scaling is found which fits the experimental data from various tokamaks. Some evidence is presented which indicates that the fast crash time is due to enhanced effective resistivity inside the singular current sheet, generated by, e.g., microinstability and electron parallel viscosity with stochastic fields at the x-point. 16 refs., 5 figs.

  20. Advanced atomization concept for CWF burning in small combustors, Phase 2. Final technical report

    SciTech Connect

    McHale, E.T.; Heaton, H.L.

    1991-12-01

    The program describes a concept referred to as opposed-jet atomization, which is particularly applicable to coal-water fuel (CWF). In the present atomizer design, two opposed jets of CWF are directed at each other and externally encounter a perpendicular blast of air at the collision point to create a spray of much finer droplets. The present Phase 2 program involved further evaluation of the opposed-jet atomizer performance and related tasks.

  1. Advanced atomization concept for CWF burning in small combustors, Phase 2

    SciTech Connect

    McHale, E.T.; Heaton, H.L.

    1991-12-01

    The program describes a concept referred to as opposed-jet atomization, which is particularly applicable to coal-water fuel (CWF). In the present atomizer design, two opposed jets of CWF are directed at each other and externally encounter a perpendicular blast of air at the collision point to create a spray of much finer droplets. The present Phase 2 program involved further evaluation of the opposed-jet atomizer performance and related tasks.

  2. Artist concept computer graphic of Lockheed Martin X-33 Advance Technology Demonstrator vehicle in f

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An artist's conception of the X-33 in flight, with the aerospike engine firing. The X-33 demonstrator was designed to test a wide range of new technologies (including the aerospike engine), that would be used in a future single-stage-to-orbit reusable launch vehicle called the VentureStar. Due to technical problems with the liquid hydrogen tank, however, the X-33 program was cancelled in February 2001.

  3. Structural evaluation of concepts for a solar energy concentrator for Space Station advanced development program

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Rhodes, Marvin D.

    1994-01-01

    Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.

  4. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    ERIC Educational Resources Information Center

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers…

  5. Self-Concept, School Satisfaction, and Other Selected Correlates of Subjective Well-Being for Advanced High School Learners Enrolled in Two Challenging Academic Settings

    ERIC Educational Resources Information Center

    Robertson, Janice C.

    2013-01-01

    Global self-concept, freedom from anxiety, happiness, popularity, and school satisfaction were examined for 224 partial-day Governor's School students attending public Governor's Schools as well as classes in their home high schools, and 56 students taking advanced classes in regular high schools. On average, self-concept appeared…

  6. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    SciTech Connect

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.

  7. Experimental evaluation of an advanced Space Shuttle Main Engine hot-gas manifold design concept

    NASA Technical Reports Server (NTRS)

    Pelaccio, D. G.; Lepore, F. F.; Oconnor, G. M.; Rao, G. V. R.; Ratekin, G. H.; Vogt, S. T.

    1984-01-01

    The Space Shuttle Main Engine's hot gas manifold (HGM) has been the subject of an experimental study aimed at the establishment of an aerodynamic data base to support the development of an advanced, three-dimensional, fluid dynamic analysis computer model. The advanced HGM design used in the study demonstrated improved flow uniformity in the fuel-side turbine exit and transfer duct exit regions. Major modifications were incorporated in the HGM flow test article model, using two large transfer ducts on the fuel turbine side in place of the three small transfer ducts of the present design. The HGM flow field data were found to be essentially independent of Reynolds number over the range examined.

  8. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  9. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 3

    NASA Technical Reports Server (NTRS)

    Levak, Daniel

    1993-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.

  10. Experimental evaluation of an advanced Space Shuttle main engine hot-gas manifold design concept

    NASA Technical Reports Server (NTRS)

    Pelaccio, D. G.; Lepore, F. F.; Oconnor, G. M.; Rao, G. V. R.; Ratekin, G. H.; Vogt, S. T.

    1985-01-01

    This study, using an extensively modified, full-scale space shuttle main engine (SSME) hot-gas manifold (HGM), established a detailed aerodynamic data base to support development of an advanced, three-dimensional, fluid-dynamic analysis computer model. In addition, the advanced SSME hot-gas manifold design used in this study demonstrated improved flow environment (uniformity) in the fuel side turbine exit and transfer duct exit regions. Major modifications were incorporated in the full-scale HGM flow test article model using two large transfer ducts on the fuel turbine side of the HGM in place of the three small transfer ducts in the present design. Other model features included an increases in the flow areas downstream of the 180-degree turn and in the fishbowl regions.

  11. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  12. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  13. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Astrophysics Data System (ADS)

    Weber, Gary A.

    1991-04-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  14. Evaluation of ADAM/1 model for advanced coal-extraction concepts

    SciTech Connect

    Deshpande, G. K.; Gangal, M. D.

    1982-01-15

    The Advanced Coal Extraction Project is sponsored by the Department of Energy at the Jet Propulsion Laboratory to define and develop advanced underground coal extraction systems which: (1) are suitable for significant remaining resources after the year 2000, and (2) promise a significant improvement in production cost and miner safety, with no degradation in miner health, environmental quality and resource recovery. System requirements in the five performance areas have been defined by Goldsmith and Lavin (1980). Several existing computer programs for estimating life-cycle cost of mining systems have been evaluated. A commercially available program ADAM/1 was found to be satisfactory in relation to the needs of the Advanced Coal Extraction Project. Two test cases were run to confirm the ability of the program to handle non-conventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs. Since the model is commercially available, data preparation instructions are not reproduced in this document; instead the reader is referred to the original documents for this information.

  15. Basic Physics of Tokamak Transport Final Technical Report.

    SciTech Connect

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to

  16. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  17. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  18. NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK

    SciTech Connect

    WALKER, ML; FERRON, JR; HUMPHREYS, DA; JOHNSON, RD; LEUER, JA; PENAFLOR, BG; PIGLOWSKI, DA; ARIOLA, M; PIRONTI, A; SCHUSTER, E

    2002-10-01

    OAK A271 NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK. The advanced tokamak (AT) operating mode which is the principal focus of the DIII-D tokamak requires highly integrated and complex plasma control. Simultaneous high performance regulation of the plasma boundary and internal profiles requires multivariable control techniques to account for the highly coupled influences of equilibrium shape, profile, and stability control. This paper describes progress towards the DIII-D At mission goal through both significantly improved real-time computational hardware and control algorithm capability.

  19. Compilation of energy efficient concepts in advanced aircraft design and operations. Volume 2: abstract data base. Interim; Final Report, 10 March - 5 November 1980

    SciTech Connect

    Clyman, M.; Einhorn, S.J.; Schultz, R.S.

    1980-11-01

    The technologies necessary to support next generation (I 1990+) air vehicle design and operation concepts that will reduce the requirements for natural petroleum derived energy are considered in the Advanced Concepts Data Base which consists of 599 abstracts listed as 948 entries. The data base abstracts are arranged into 11 areas of R D effort as follows: synthetic fuels, liquid hydrogen fuels, other fuels gas turbines, nuclear propulsion, advanced propulsion aerodynamics structures and materials flight performance management advanced and unconventional systems and energy efficient operation.

  20. Electric vehicle traction motors - The development of an advanced motor concept

    NASA Technical Reports Server (NTRS)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.