Science.gov

Sample records for advanced tokamak physics

  1. System studies for quasi-steady-state advanced physics tokamak

    SciTech Connect

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated.

  2. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  3. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; ...

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  4. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    SciTech Connect

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  5. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.

  6. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    SciTech Connect

    S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.

  7. Advanced tokamak operating modes in TPX and ITER

    SciTech Connect

    Nevins, W.M.

    1994-12-31

    A program is described to develop the advanced tokamak physics required for an economic steady-state fusion reactor on existing (short-pulse) tokamak experiments; to extend these operating modes to long-pulse on TPX; and finally to demonstrate them in a long-pulse D-T plasma on ITER.

  8. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  9. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  10. Tokamak Physics Experiment divertor design

    SciTech Connect

    Anderson, P.M.

    1995-12-31

    The Tokamak Physics Experiment (TPX) tokamak requires a symmetric up/down double-null divertor capable of operation with steady-state heat flux as high as 7.5 MW/m{sup 2}. The divertor is designed to operate in the radiative mode and employs a deep slot configuration with gas puffing lines to enhance radiative divertor operation. Pumping is provided by cryopumps that pump through eight vertical ports in the floor and ceiling of the vessel. The plasma facing surface is made of carbon-carbon composite blocks (macroblocks) bonded to multiple parallel copper tubes oriented vertically. Water flowing at 6 m/s is used, with the critical heat flux (CHF) margin improved by the use of enhanced heat transfer surfaces. In order to extend the operating period where hands on maintenance is allowed and to also reduce dismantling and disposal costs, the TPX design emphasizes the use of low activation materials. The primary materials used in the divertor are titanium, copper, and carbon-carbon composite. The low activation material selection and the planned physics operation will allow personnel access into the vacuum vessel for the first 2 years of operation. The remote handling system requires that all plasma facing components (PFCs) are configured as modular components of restricted dimensions with special provisions for lifting, alignment, mounting, attachment, and connection of cooling lines, and instrumentation and diagnostics services.

  11. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  12. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    SciTech Connect

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-07-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.

  13. Plasma Physics Regimes in Tokamaks with Li Walls

    SciTech Connect

    L.E. Zakharo; N.N. Gorelenkov; R.B. White; S.I. Krasheninnikov; G.V. Pereverzev

    2003-08-21

    Low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak reactors. These regimes could make ignition feasible in compact tokamaks. Ignited Spherical Tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary step for development of the physics and technology of power reactors.

  14. Summary discussion: An integrated advanced tokamak reactor

    SciTech Connect

    Sauthoff, N.R.

    1994-12-31

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ``figures of merit`` for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept.

  15. Tokamak physics experiment: Diagnostic windows study

    SciTech Connect

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

  16. Bibliography of fusion product physics in tokamaks

    SciTech Connect

    Hively, L. M.; Sigmar, D. J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category.

  17. Advanced tokamak scenario developments for the next step

    NASA Astrophysics Data System (ADS)

    Joffrin, E.

    2007-12-01

    The objective of advanced tokamak scenario research is to provide a candidate plasma scenario for continuous operation in a fusion power plant. The optimization of the self-generated non-inductive current by the bootstrap mechanism up to a level of 50% and above using high plasma pressure and improved confinement are the necessary conditions to achieve this goal. The two main candidate scenarios for continuous operation, the steady state scenario and long duration (up to 3000 s) high neutron fluency scenario (the hybrid scenario), both face physics challenges in terms of confinement, stability, power exhaust and plasma control. Resistive wall modes and Alfvénic fast ion driven instabilities are the main limitations for operating the steady state scenario at high pressure and low magnetic shear. In addition, this scenario demands a high degree of control over the plasma current and pressure profile and the steady state heat load on in-vessel plasma facing components. Understanding the confinement properties of hybrid scenario is still an outstanding issue as well as its modelling for ITER in particular with regard to the H-mode pedestal parameters. This scenario will also require active current profile control, although, less demanding than for the steady state scenario. To operate advanced tokamak scenario, broad current and pressure profile control appears as a necessary requirement on ITER actuators, in addition to the tools required for instability control such as error field coils or electron cyclotron current drive.

  18. Development of a free-boundary tokamak equilibrium solver for advanced study of tokamak equilibria

    NASA Astrophysics Data System (ADS)

    Jeon, Young Mu

    2015-09-01

    A free-boundary Tokamak equilibrium solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered in all equilibrium calculations with a freeboundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence of variations in the computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by using a direct comparison with an analytic equilibrium known as a generalized Solov'ev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As an application of an advanced equilibrium study, a snow-flake divertor configuration that requires a second-order zero of the poloidal magnetic flux is discussed in the circumstance of the Korea superconducting tokamak advanced research (KSTAR) coil system.

  19. Dust in tokamaks: An overview of the physical model of the dust in tokamaks code

    NASA Astrophysics Data System (ADS)

    Bacharis, Minas; Coppins, Michael; Allen, John E.

    2010-04-01

    The dynamical behavior of dust produced in tokamaks is an important issue for fusion. In this work, the current status of the dust in tokamaks (DTOKS) [J. D. Martin et al., Europhys Lett. 83, 65001 (2008)] dust transport code will be presented. A detailed description of the various elements of its underlying physical model will be given together with representative simulation results for the mega amp spherical tokamak (MAST) [A. Sykes et al., Nucl. Fusion 41, 1423 (2001)]. Furthermore, a brief description of the various components of the dust transport (DUSTT) [R. D. Smirnov et al., Plasma Phys. Controlled Fusion 49, 347 (2007)] code will also be presented in comparison with DTOKS.

  20. Designing a tokamak fusion reactor—How does plasma physics fit in?

    NASA Astrophysics Data System (ADS)

    Freidberg, J. P.; Mangiarotti, F. J.; Minervini, J.

    2015-07-01

    This paper attempts to bridge the gap between tokamak reactor design and plasma physics. The analysis demonstrates that the overall design of a tokamak fusion reactor is determined almost entirely by the constraints imposed by nuclear physics and fusion engineering. Virtually, no plasma physics is required to determine the main design parameters of a reactor: a , R 0 , B 0 , T i , T e , p , n , τ E , I . The one exception is the value of the toroidal current I , which depends upon a combination of engineering and plasma physics. This exception, however, ultimately has a major impact on the feasibility of an attractive tokamak reactor. The analysis shows that the engineering/nuclear physics design makes demands on the plasma physics that must be satisfied in order to generate power. These demands are substituted into the well-known operational constraints arising in tokamak physics: the Troyon limit, Greenwald limit, kink stability limit, and bootstrap fraction limit. Unfortunately, a tokamak reactor designed on the basis of standard engineering and nuclear physics constraints does not scale to a reactor. Too much current is required to achieve the necessary confinement time for ignition. The combination of achievable bootstrap current plus current drive is not sufficient to generate the current demanded by the engineering design. Several possible solutions are discussed in detail involving advances in plasma physics or engineering. The main contribution of the present work is to demonstrate that the basic reactor design and its plasma physics consequences can be determined simply and analytically. The analysis thus provides a crisp, compact, logical framework that will hopefully lead to improved physical intuition for connecting plasma physic to tokamak reactor design.

  1. Physics aspects of the Compact Ignition Tokamak

    SciTech Connect

    Post, D.; Bateman, G.; Houlberg, W.; Bromberg, L.; Cohn, D.; Colestock, P.; Hughes, M.; Ignat, D.; Izzo, R.; Jardin, S.

    1986-11-01

    The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha-particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve the condition of ntau/sub E/ approx. 2 x 10/sup 20/ sec m/sup -3/ required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which improves the energy confinement, and provides a high level of ohmic heating. The present CIT design also has a gigh degree of elongation (k approx. 1.8) to aid in producing the large plasma current. A double null poloidal divertor and a pellet injector are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Since auxiliary heating is expected to be necessary to achieve ignition, 10 to 20 MW of Ion Cyclotron Radio Frequency (ICRF) is to be provided.

  2. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  3. Saturated internal instabilities in advanced-tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Hua, M.-D.; Chapman, I. T.; Pinches, S. D.; Hastie, R. J.; MAST Team

    2010-06-01

    "Advanced tokamak" (AT) scenarios were developed with the aim of reaching steady-state operation in future potential tokamak fusion power plants. AT scenarios exhibit non-monotonic to flat safety factor profiles (q, a measure of the magnetic field line pitch), with the minimum q (qmin) slightly above an integer value (qs). However, it has been predicted that these q profiles are unstable to ideal magnetohydrodynamic instabilities as qmin approaches qs. These ideal instabilities, observed and diagnosed as such for the first time in MAST plasmas with AT-like q profiles, have far-reaching consequences like confinement degradation, flattening of the toroidal core rotation or enhanced fast ion losses. These observations motivate the stability analysis of advanced-tokamak plasmas, with a view to provide guidance for stability thresholds in AT scenarios. Additionally, the measured rotation damping is compared to the self-consistently calculated predictions from neoclassical toroidal viscosity theory.

  4. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE PAGES

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; ...

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, anmore » n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less

  5. The ARIES Advanced and Conservative Tokamak Power Plant Study

    SciTech Connect

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; EL-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Rader, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.

  6. The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2014-03-05

    Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

  7. Resistive wall mode stabilization by plasma rotation in advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Eriksson, G.

    1996-03-01

    By combining previous results of Betti and Freidberg [Phys. Rev. Lett. 74, 2949 (1995)] and Eriksson [Phys. Plasmas 2, 3095 (1995)], a fully analytical description is obtained for the stabilizing effect of toroidal plasma rotation in a large aspect ratio tokamak surrounded by a resistive wall. As in advanced tokamak configurations with a large fraction of bootstrap current, it is assumed that the current gradient near the plasma edge is large. This assumption enables an analytical analysis of external kink modes with low poloidal mode numbers. An expression is obtained, showing explicitly how the window of stable wall distances depends on the current profile.

  8. The role of spherical torus in clarifying tokamak physics

    SciTech Connect

    Morris, A. W.; Peng, Yueng Kay Martin

    1999-01-01

    The spherical tokamak (ST) provides a unique environment in which to perform complementary and exacting tests of the tokamak physics required for a burning plasma experiment of any aspect ratio, while also having the potential for long-term fusion applications in its own right. New experiments are coming on-line in the UK (MAST), USA (NSTX, Pegasus), Russia (Globus-M), Brazil (ETE) and elsewhere, and the status of these devices will be reported, along with newly-analysed data from START. Those physics issues where the ST provides an opportunity to remove degeneracy in the databases or clarify one s understanding will be emphasized.

  9. Plasma Physics Lab and the Tokamak Fusion Test Reactor, 1989

    ScienceCinema

    None

    2016-07-12

    From the Princeton University Archives: Promotional video about the Plasma Physics Lab and the new Tokamak Fusion Test Reactor (TFTR), with footage of the interior, machines, and scientists at work. This film is discussed in the audiovisual blog of the Seeley G. Mudd Manuscript Library, which holds the archives of Princeton University.

  10. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  11. LONG PULSE ADVANCED TOKAMAK DISCHARGES IN THE DIII-D TOKAMAK

    SciTech Connect

    P.I. PETERSEN

    2002-06-01

    One of the main goals for the DIII-D research program is to establish an advanced tokamak plasma with high bootstrap current fraction that can be sustained in-principle steady-state. Substantial progress has been made in several areas during the last year. The resistive wall mode stabilization has been done with spinning plasmas in which the plasma pressure has been extended well above the no-wall beta limit. The 3/2 neoclassical tearing mode has been stabilized by the injection of ECH into the magnetic islands, which drives current to substitute the missing bootstrap current. In these experiments either the plasma was moved or the toroidal field was changed to overlap the ECCD resonance with the location of the NTMs. Effective disruption mitigation has been obtained by massive noble gas injection into shots where disruptions were deliberately triggered. The massive gas puff causes a fast and clean current quench with essentially all the plasma energy radiated fairly uniformly to the vessel walls. The run-away electrons that are normally seen accompanying disruptions are suppressed by the large density of electrons still bound on the impurity nuclei. Major elements required to establish integrated, long-pulse, advanced tokamak operations have been achieved in DIII-D: {beta}{sub T} = 4.2%, {beta}{sub p} = 2, f{sub BS} = 65%, and {beta}{sub N}H{sub 89} = 10 for 600 ms ({approx} 4{tau}{sub E}). The next challenge is to integrate the different elements, which will be the goal for the next five years when additional control will be available. Twelve resistive wall mode coils are scheduled to be installed in DIII-D during the summer of 2003. The future plans include upgrading the tokamak pulse length capability and increasing the ECH power, to control the current profile evolution.

  12. Magnetic confinement experiment -- 1: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1994-12-31

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization.

  13. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    SciTech Connect

    Not Available

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

  14. Halo current diagnostic system of experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  15. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  16. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  17. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Park, Jinhyung; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-01

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 1019 m-3 when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  18. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak.

    PubMed

    Seo, Seong-Heon; Park, Jinhyung; Wi, H M; Lee, W R; Kim, H S; Lee, T G; Kim, Y S; Kang, Jin-Seob; Bog, M G; Yokota, Y; Mase, A

    2013-08-01

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 10(19) m(-3) when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  19. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  20. Design of vibration compensation interferometer for Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Li, G. S.; Liu, H. Q.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zhu, X.; Wang, Z. X.; Zeng, L.; Zou, Z. Y.; Wei, X. C.; Lan, T.

    2014-11-01

    A vibration compensation interferometer (wavelength at 0.532 μm) has been designed and tested for Experimental Advanced Superconducting Tokamak (EAST). It is designed as a sub-system for EAST far-infrared (wavelength at 432.5 μm) poloarimeter/interferometer system. Two Acoustic Optical Modulators have been applied to produce the 1 MHz intermediate frequency. The path length drift of the system is lower than 2 wavelengths within 10 min test, showing the system stability. The system sensitivity has been tested by applying a periodic vibration source on one mirror in the system. The vibration is measured and the result matches the source period. The system is expected to be installed on EAST by the end of 2014.

  1. Microwave Doppler reflectometer system in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhou, C; Liu, A D; Zhang, X H; Hu, J Q; Wang, M Y; Li, H; Lan, T; Xie, J L; Sun, X; Ding, W X; Liu, W D; Yu, C X

    2013-10-01

    A Doppler reflectometer system has recently been installed in the Experimental Advanced Superconducting (EAST) Tokamak. It includes two separated systems, one for Q-band (33-50 GHz) and the other for V-band (50-75 GHz). The optical system consists of a flat mirror and a parabolic mirror which are optimized to improve the spectral resolution. A synthesizer is used as the source and a 20 MHz single band frequency modulator is used to get a differential frequency for heterodyne detection. Ray tracing simulations are used to calculate the scattering location and the perpendicular wave number. In EAST last experimental campaign, the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated.

  2. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  3. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  4. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST).

    PubMed

    Xu, Z; Wu, Z W; Gao, W; Chen, Y J; Wu, C R; Zhang, L; Huang, J; Chang, J F; Yao, X J; Gao, W; Zhang, P F; Jin, Z; Hou, Y M; Guo, H Y

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  5. Status of neutron diagnostics on the experimental advanced superconducting tokamak.

    PubMed

    Zhong, G Q; Hu, L Q; Pu, N; Zhou, R J; Xiao, M; Cao, H R; Zhu, Y B; Li, K; Fan, T S; Peng, X Y; Du, T F; Ge, L J; Huang, J; Xu, G S; Wan, B N

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using (252)Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  6. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,HK

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  7. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.

  8. Diamagnetic loop measurement in Korea Superconducting Tokamak Advanced Research machine.

    PubMed

    Bak, J G; Lee, S G; Kim, H S

    2011-06-01

    Diamagnetic loop (DL), which consists of two poloidal loops inside the vacuum vessel, is used to measure the diamagnetic flux during a plasma discharge in the Korea Superconducting Tokamak Advanced Research (KSTAR) machine. The vacuum fluxes in the DL signal can be compensated up to 0.1 mWb by using the coefficients, which are obtained from experimental investigations, in the vacuum flux measurements during vacuum shots under same operational conditions of magnetic coils for plasma experiment in the KSTAR machine. The maximum error in the diamagnetic flux measurement due to the errors of the coefficients was estimated as ∼0.22 mWb. From the diamagnetic flux measurements for the ohmically heated circular plasmas in the KSTAR machine, the stored energy agrees well with the estimated kinetic energy within the discrepancy of 25%. When the electron cyclotron heating, the neutral beam injection, and the ion cyclotron resonance heating are added to the ohmically heated limiter plasmas, the additional heating effects can be clearly observed from the increase of the stored energy evaluated in the DL measurement.

  9. Diamagnetic loop measurement in Korea Superconducting Tokamak Advanced Research machine

    SciTech Connect

    Bak, J. G.; Lee, S. G.; Kim, H. S.

    2011-06-15

    Diamagnetic loop (DL), which consists of two poloidal loops inside the vacuum vessel, is used to measure the diamagnetic flux during a plasma discharge in the Korea Superconducting Tokamak Advanced Research (KSTAR) machine. The vacuum fluxes in the DL signal can be compensated up to 0.1 mWb by using the coefficients, which are obtained from experimental investigations, in the vacuum flux measurements during vacuum shots under same operational conditions of magnetic coils for plasma experiment in the KSTAR machine. The maximum error in the diamagnetic flux measurement due to the errors of the coefficients was estimated as {approx}0.22 mWb. From the diamagnetic flux measurements for the ohmically heated circular plasmas in the KSTAR machine, the stored energy agrees well with the estimated kinetic energy within the discrepancy of 25%. When the electron cyclotron heating, the neutral beam injection, and the ion cyclotron resonance heating are added to the ohmically heated limiter plasmas, the additional heating effects can be clearly observed from the increase of the stored energy evaluated in the DL measurement.

  10. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak.

    PubMed

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-01

    An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.

  11. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

  12. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  13. The superconducting magnet system for the Tokamak Physics Experiment

    SciTech Connect

    Lang, D.D.; Bulmer, R.J.; Chaplin, M.R.

    1994-06-18

    The superconducting magnet system for the Tokamak Physics experiment (TPX) will be the first all superconducting magnet system for a Tokamak, where the poloidal field coils, in addition to the toroidal field coils are superconducting. The magnet system is designed to operate in a steady state mode, and to initiate the plasma discharge ohmically. The toroidal field system provides a peak field of 4.0 Tesla on the plasma axis at a plasma major radius of 2.25 m. The peak field on the niobium 3-tin, cable-in-conduit (CIC) conductor is 8.4 Tesla for the 16 toroidal field coils. The toroidal field coils must absorb approximately 5 kW due to nuclear heating, eddy currents, and other sources. The poloidal field system provides a total of 18 volt seconds to initiate the plasma and drive a plasma current up to 2 MA. The poloidal field system consists of 14 individual coils which are arranged symmetrically above and below the horizontal mid plane. Four pairs of coils make up the central solenoid, and three paris of poloidal ring coils complete the system. The poloidal field coils all use a cable-in-conduit conductor, using either niobium 3-tin (NB{sub 3}Sn) or niobium titanium (NbTi) superconducting strands depending on the operating conditions for that coil. All of the coils are cooled by flowing supercritical helium, with inlet and outlet connections made on each double pancake. The superconducting magnet system has gone through a conceptual design review, and is in preliminary design started by the LLNL/MIT/PPPL collaboration. A number of changes have been made in the design since the conceptual design review, and are described in this paper.

  14. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Zakharov, L. E.; Xie, H.; Chen, Z. X.

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  15. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  16. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  17. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-12-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  18. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-10-18

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  19. Impact of physics and technology innovations on compact tokamak fusion pilot plants

    NASA Astrophysics Data System (ADS)

    Menard, Jonathan

    2016-10-01

    For magnetic fusion to be economically attractive and have near-term impact on the world energy scene it is important to focus on key physics and technology innovations that could enable net electricity production at reduced size and cost. The tokamak is presently closest to achieving the fusion conditions necessary for net electricity at acceptable device size, although sustaining high-performance scenarios free of disruptions remains a significant challenge for the tokamak approach. Previous pilot plant studies have shown that electricity gain is proportional to the product of the fusion gain, blanket thermal conversion efficiency, and auxiliary heating wall-plug efficiency. In this work, the impact of several innovations is assessed with respect to maximizing fusion gain. At fixed bootstrap current fraction, fusion gain varies approximately as the square of the confinement multiplier, normalized beta, and major radius, and varies as the toroidal field and elongation both to the third power. For example, REBCO high-temperature superconductors (HTS) offer the potential to operate at much higher toroidal field than present fusion magnets, but HTS cables are also beginning to access winding pack current densities up to an order of magnitude higher than present technology, and smaller HTS TF magnet sizes make low-aspect-ratio HTS tokamaks potentially attractive by leveraging naturally higher normalized beta and elongation. Further, advances in kinetic stabilization and feedback control of resistive wall modes could also enable significant increases in normalized beta and fusion gain. Significant reductions in pilot plant size will also likely require increased plasma energy confinement, and control of turbulence and/or low edge recycling (for example using lithium walls) would have major impact on fusion gain. Reduced device size could also exacerbate divertor heat loads, and the impact of novel divertor solutions on pilot plant configurations is addressed. For

  20. Lower hybrid system design for the Tokamak physics experiment

    SciTech Connect

    Goranson, P.L.; Conner, D.L.; Swain, D.W.; Yugo, J.J.; Bernabei, S.; Greenough, N.

    1995-12-31

    The lower hybrid (LH) launcher configuration has been redesigned to integrate the functions of the vertical four-way power splitter and the front waveguide array (front array). This permits 256 waveguide channels to be fed by only 64 waveguides at the vacuum window interface. The resulting configuration is a more compact coupler, which incorporates the simplicity of a multijunction coupler while preserving the spectral flexibility of a conventional lower hybrid launcher. Other spin-offs of the redesign are reduction in thermal incompatibility between the front array and vacuum windows, improved maintainability, in situ vacuum window replacement, a reduced number of radio frequency (rf) connections, and a weight reduction of 7300 kg. There should be a significant cost reduction as well. Issues associated with the launcher design and fabrication have been addressed by a research and development program that includes brazing of the front array and testing of the power splitter configuration to confirm that phase errors due to reflections in the shorted splitter legs will not significantly impact the rf spectrum. The Conceptual Design Review requires that radiation levels at the torus radial port mounting flange and outer surface of the toroidal field coils should be sufficiently low to permit hands-on maintenance. Low activation materials and neutron shielding are incorporated in the launcher design to meet these requirements. The launcher is configured to couple 3 MW of steady state LH heating/LH current drive power at 3.7 GHz to the Tokamak Physics Experiment plasma.

  1. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    SciTech Connect

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-15

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  2. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  3. Tokamak physics studies using x-ray diagnostic methods

    SciTech Connect

    Hill, K.W.; Bitter, M.; von Goeler, S.; Beiersdorfer, P.; Fredrickson, E.; Hsuan, H.; McGuire, K.; Sauthoff, N.R.; Sesnic, S.; Stevens, J.E.

    1987-03-01

    X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10/sup 5/ m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments.

  4. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  5. Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan

    2014-05-15

    Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.

  6. ATOMIC PHYSICS PROCESSES IMPORTANT TO THE UNDERSTANDING OF THE SCRAPE-OFF LAYER OF TOKAMAKS

    SciTech Connect

    WEST, W.P.; GOLDSMITH,; B. EVANS,T.E.; OLSON, R.J.

    2002-05-01

    The region between the well-confined plasma and the vessel walls of a magnetic confinement fusion research device, the scrape-off layer (SOL), is typically rich in atomic and molecular physics processes. The most advanced magnetic confinement device, the magnetically diverted tokamak, uses a magnetic separatrix to isolate the confinement zone (closed flux surfaces) from the edge plasma (open field lines). Over most of their length the open field lines run parallel to the separatrix, forming a thin magnetic barrier with the nearby vessel walls. In a poloidally-localized region, the open field lines are directed away from the separatrix and into the divertor, a region spatially separated from the separatrix where intense plasma wall interaction can occur relatively safely. Recent data from several tokamaks indicate that particle transport across the field lines of the SOL can be somewhat faster than previously thought. In these cases, the rate at which particles reach the vessel wall is comparable to the rate to the divertor from parallel transport. The SOL can be thin enough that the recycling neutrals and sputtered impurities from the wall may refuel or contaminate the confinement zone more efficiently than divertor plasma wall interaction. Just inside the SOL is a confinement barrier that produces a sharp pedestal in plasma density and temperature. Understanding neutral transport through the SOL and into the pedestal is key to understanding particle balance and particle and impurity exhaust. The SOL plasma is sufficiently hot and dense to excite and ionize neutrals. Ion and neutral temperatures are high enough that charge exchange between the neutrals and fuel and impurity ions is fast. Excitation of neutrals can be fast enough to lead to nonlinear behavior in charge exchange and ionization processes. In this paper the detailed atomic physics important to the understanding of the neutral transport through the SOL will be discussed.

  7. Review Committee report on the conceptual design of the Tokamak Physics Experiment

    SciTech Connect

    Not Available

    1993-04-01

    This report discusses the following topics on the conceptual design of the Tokamak Physics Experiment: Role and mission of TPX; overview of design; physics design assessment; engineering design assessment; evaluation of cost, schedule, and management plans; and, environment safety and health.

  8. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect

    Campos, A.; Skinner, C.H.

    2009-01-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  9. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,KH

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  10. The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  11. Conceptual design of the tokamak radiation shielding for the Tokamak Physics Experiment (TPX)

    SciTech Connect

    Cole, M.J.; Nelson, B.E.; Jones, G.H.; Goranson, P.L.; Gohar, Y.; Liew, S.L.

    1993-11-01

    The tokamak radiation shielding includes the neutron and gamma shielding around the torus and penetrations required to (1) limit activation of components outside the shield to levels that permit hands-on maintenance and (2) limit the nuclear heating of the superconducting coils and cold structure. The primary design drivers are space, the 350{degree}C bakeout temperature, and cost; therefore, different shield materials were used for different shield components and locations. The shielding is divided into three areas: (1) torus shielding around the vacuum vessel, (2) duct shielding around the vacuum pumping ducts and vertical diagnostic ducts, and (3) penetration shielding in and around the radial ports. The major shield components include water between the walls of the vacuum vessel, lead monosilicate/boron carbide tiles that are attached to the exterior of the vacuum vessel, shield plugs that rill the openings of the large radial ports, and polyethylene/lead/boron shield blocks for duct shielding. A description of the shielding configuration and the performance and operational requirements will be discussed.

  12. Conceptual design of the tokamak radiation shielding for the Tokamak Physics Experiment (TPX)

    NASA Astrophysics Data System (ADS)

    Cole, M. J.; Nelson, B. E.; Jones, G. H.; Goranson, P. L.; Gohar, Y.; Liew, S. L.

    The tokamak radiation shielding includes the neutron and gamma shielding around the torus and penetrations required to (1) limit activation of components outside the shield to levels that permit hands-on maintenance, and (2) limit the nuclear heating of the superconducting coils and cold structure. The primary design drivers are space, the 350 C bakeout temperature, and cost; therefore, different shield materials were used for different shield components and locations. The shielding is divided into three areas: (1) torus shielding around the vacuum vessel, (2) duct shielding around the vacuum pumping ducts and vertical diagnostic ducts, and (3) penetration shielding in and around the radial ports. The major shield components include water between the walls of the vacuum vessel, lead monosilicate/boron carbide tiles that are attached to the exterior of the vacuum vessel, shield plugs that fill the openings of the large radial ports, and polyethylene/lead/boron shield blocks for duct shielding. A description of the shielding configuration and the performance and operational requirements are discussed.

  13. Profile control of advanced tokamak plasmas in view of continuous operation

    NASA Astrophysics Data System (ADS)

    Mazon, D.

    2015-07-01

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  14. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  15. Improving Advanced High School Physics

    NASA Astrophysics Data System (ADS)

    Spital, Robin David

    2003-04-01

    A National Research Council study committee recently commissioned a "Physics Panel" to evaluate and make recommendations for improving advanced physics education in American high schools [1]. The Physics Panel recommends the creation of a nationally standardized Newtonian Mechanics Unit that would form the foundation of all advanced physics programs. In a one-year program, the Panel recommends that advanced physics students study at most one other major area of physics, so that sufficient time is available to develop the deep conceptual understanding that is the primary goal of advanced study. The Panel emphasizes that final assessments must be improved to focus on depth of understanding, rather than technical problem-solving skill. The Physics Panel strongly endorses the inclusion of meaningful real-world experiences in advanced physics programs, but believes that traditional "cook-book" laboratory exercises are not worth the enormous amount of time and effort spent on them. The Physics Panel believes that the talent and preparation of teachers are the most important ingredients in effective physics instruction; it therefore calls for a concerted effort by all parts of the physics community to remedy the desperate shortage of highly qualified teachers. [1] Jerry P. Gollub and Robin Spital, "Advanced Physics in the High Schools", Physics Today, May 2002.

  16. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    SciTech Connect

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  17. Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Walker, M. L.; Ferron, J. R.; Liu, F.; Schuster, E.; Barton, J. E.; Boyer, M. D.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Holcomb, C. T.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Park, J. M.; Penaflor, B. G.; Shi, W.; Turco, F.; Wehner, W.; the ITPA-IOS Group members; experts

    2013-06-01

    The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, Ψ(x), (b) the poloidal flux profile together with the normalized pressure parameter, βN, and (c) the inverse of the safety factor profile, \\bar{\\iota}(x)=1/q(x) , are described.

  18. Physical meaning of one-machine and multimachine tokamak scalings

    SciTech Connect

    Dnestrovskij, Yu. N. Danilov, A. V.; Dnestrovskij, A. Yu.; Lysenko, S. E.; Ongena, J.

    2013-04-15

    Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a{sup 2} or P/a{sup 2} are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.

  19. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Researcha)

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Chung, J.

    2010-10-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  20. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.

  1. An advanced plasma control system for the DIII-D tokamak

    SciTech Connect

    Ferron, J.R.; Kellman, A.; McKee, E.; Osborne, T.; Petrach, P.; Taylor, T.S.; Wight, J. ); Lazarus, E. )

    1991-11-01

    An advanced plasma control system is being implemented for the DIII-D tokamak utilizing digital technology. This system will regulate the position and shape of tokamak discharges that range from elongated limiter to single-null divertor and double-null divertor with elongation as high as 2.6. Development of this system is expected to lead to control system technology appropriate for use on future tokamaks such as ITER and BPX. The digital system will allow for increased precision in shape control through real time adjustment of the control algorithm to changes in the shape and discharge parameters such as {beta}{sub p}, {ell}{sub i} and scrape-off layer current. The system will be used for research on real time optimization of discharge performance for disruption avoidance, current and pressure profile control, optimization of rf antenna loading, or feedback on heat deposition patterns through divertor strike point position control, for example. Shape control with this system is based on linearization near a target shape of the controlled parameters as a function of the magnetic diagnostic signals. This digital system is unique in that it is designed to have the speed necessary to control the unstable vertical motion of highly elongated tokamak discharges such as those produced in DIII-D and planned for BPX and ITER. a 40 MHz Intel i860 processor is interfaced to up to 112 channels of analog input signals. The commands to the poloidal field coils can be updated at 80 {mu}s intervals for the control of vertical position with a delay between sampling of the analog signal and update of the command of less than 80 {mu}s.

  2. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  3. Modelling of tokamak glow discharge cleaning I: physical principles

    NASA Astrophysics Data System (ADS)

    Hagelaar, G. J. M.; Kogut, D.; Douai, D.; Pitts, R. A.

    2015-02-01

    Glow discharge cleaning (GDC) is a common technique for the conditioning of tokamak vessel walls in order to improve plasma performance and will be one of the primary conditioning techniques in ITER. The GDC discharge is a dc low-temperature plasma discharge, operated in the absence of the toroidal magnetic field, between one or more anodes inserted into the vessel, and the entire vessel wall serving as a cathode. This paper presents a self-consistent 2D model of the GDC discharge with the aim of improving fundamental understanding and predicting the wall ion current density distribution in ITER. The model combines a standard fluid model of the quasineutral plasma bulk with non-standard fluid equations for the fast electrons accelerated by the cathode sheath, based on transport coefficients and rate coefficients deduced from a Monte Carlo simulation. Examples of model results are shown in order to illustrate the general principles of the GDC discharge and the influence of the model input parameters. An important insight gained from this work is that the GDC discharge operates basically as a hollow-cathode discharge: the plasma is sustained mainly by ionization by secondary electrons emitted from the cathode, accelerated ballistically through a thin cathode sheath, penetrating the plasma as a fast electron beam, and trapped by the cathode fall surrounding the plasma on all sides. The electric field distribution inside the plasma, which determines the ion flux distribution on the vessel walls, is controlled by low-energy plasma bulk electrons. The relatively small surface area of the anode leads to the formation of an anode glow affecting the plasma uniformity. Comparisons with experimental data and predictions for ITER are presented in a companion paper.

  4. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  5. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  6. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak.

    PubMed

    Liu, D M; Li, J; Wan, B N; Lu, Z; Wang, L S; Jiang, L; Lu, C H; Huang, J

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  7. A new low drift integrator system for the Experiment Advanced Superconductor Tokamak.

    PubMed

    Liu, D M; Wan, B N; Wang, Y; Wu, Y C; Shen, B; Ji, Z S; Luo, J R

    2009-05-01

    A new type of the integrator system with the low drift characteristic has been developed to accommodate the long pulse plasma discharges on Experiment Advanced Superconductor Tokamak (EAST). The integrator system is composed of the Ethernet control module and the integral module which includes one integrator circuit, followed by two isolation circuits and two program-controlled amplifier circuits. It compensates automatically integration drift and is applied in real-time control. The performance test and the experimental results in plasma discharges show that the developed integrator system can meet the requirements of plasma control on the accuracy and noise level of the integrator in long pulse discharges.

  8. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  9. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  10. Setup for potential bias experiments on the Saha Institute of Nuclear Physics tokamak

    NASA Astrophysics Data System (ADS)

    Ghosh, J.; Pal, R.; Chattopadhyay, P. K.

    1999-12-01

    An experimental setup for studying the influence of the radial electric field on very low qa plasma on the Saha Institute of Nuclear Physics tokamak is presented. A high current, high voltage pulsed power supply, using a semiconductor controlled rectifier (SCR) as a dc switch is developed and used to bias a tungsten electrode inserted inside the plasma. The electrode's exposed length and its position inside the plasma are controlled by a double bellows assembly to optimize the electrode-exposed length. We show that using the force commutation method to turn the SCR off to get the power pulse desired has good potential for carrying out similar kinds of studies, especially in a low budget small tokamak.

  11. PPPL tokamak program

    SciTech Connect

    Furth, H.P.

    1984-10-01

    The economic prospects of the tokamak are reviewed briefly and found to be favorable - if the size of ignited tokamak plasmas can be kept small and appropriate auxiliary systems can be developed. The main objectives of the Princeton Plasma Physics Laboratory tokamak program are: (1) exploration of the physics of high-temperature toroidal confinement, in TFTR; (2) maximization of the tokamak beta value, in PBX; (3) development of reactor-relevant rf techniques, in PLT.

  12. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.

  13. First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, J. Z.; Zhu, Y. B.; Zhao, J. L.; Wan, B. N.; Li, J. G.; Heidbrink, W. W.

    2016-11-01

    Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

  14. First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak.

    PubMed

    Zhang, J Z; Zhu, Y B; Zhao, J L; Wan, B N; Li, J G; Heidbrink, W W

    2016-11-01

    Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

  15. CONTROL OF MHD STABILITY IN DIII-D ADVANCED TOKAMAK DISCHARGES

    SciTech Connect

    STRAIT,EJ; BIALEK,J; CHANCE,MS; CHU,MS; EDGELL,DH; FERRON,JR; GREENFIELD,CM; GAROFALO,AM; HUMPHREYS,DA; JACKSON,GL; JAYAKUMAR,RJ; JERNIGAN,TC; KIM,JS; LA HAYE,RJ; LAO,LL; LUCE,TC; MAKOWSKI,MA; MURAKAMI,M; NAVRATIL,GA; OKABAYASHI,M; PETTY,CC; REIMERDES,H; SCOVILLE,JT; TURNBULL,AD; WADE,MR; WALKER,ML; WHYTE,DG; DIII-D TEAM

    2003-06-01

    OAK-B135 Advanced tokamak research in DIII-D seeks to optimize the tokamak approach for fusion energy production, leading to a compact, steady state power source. High power density implies operation at high toroidal beta, {beta}{sub T}=

    2{micro}{sub 0}/B{sub T}{sup 2}, since fusion power density increases roughly as the square of the plasma pressure. Steady-state operation with low recirculating power for current drive implies operation at high poloidal beta, {beta}{sub P} =

    2{micro}{sub 0}/{sup 2}, in order to maximize the fraction of self-generated bootstrap current. Together, these lead to a requirement of operation at high normalized beta, {beta}{sub N} = {beta}{sub T}(aB/I), since {beta}{sub P}{beta}{sub T} {approx} 25[(1+{kappa}{sup 2})/2] ({beta}{sub N}/100){sup 2}. Plasmas with high normalized beta are likely to operate near one or more stability limits, so control of MHD stability in such plasmas is crucial.

  16. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lampert, M.; Anda, G.; Réfy, D.; Zoletnik, S.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Nam, Y. U.

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  17. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun; Hu, Liqun; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-01

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey-predator model was found to reproduce the fishbone nonlinear process well.

  18. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    SciTech Connect

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun E-mail: lqhu@ipp.cas.cn; Hu, Liqun E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  19. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  20. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lampert, M.; Anda, G.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Réfy, D.; Nam, Y. U.; Zoletnik, S.

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  1. Preface: Advances in solar physics

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Nakariakov, Valery M.

    2015-12-01

    The idea for this special issue of Advances in Space Research (ASR) was formulated during the 14th European Solar Physics Meeting (ESPM-14) that took place in Dublin, Ireland in September 2014. Since ASR does not publish conference proceedings, it was decided to extend a general call to the international solar-physics community for manuscripts pertinent to the following thematic areas: New and upcoming heliospheric observational and data assimilation facilities.

  2. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  3. Physics Basis for a Spherical Tokamak Power Plant

    NASA Astrophysics Data System (ADS)

    Jardin, S. C.; Kessel, C. E.; Menard, J.; Mau, T. K.; Lin-Liu, Y. R.; Miller, R. L.; Stambaugh, R. D.; Turnbull, A. D.

    1998-11-01

    We present the results of physics optimization studies done as part of the ARIES-ST power plant study. The baseline configuration has the following parameters: β = 54%, β N = 7.5, elongation κ = 3.4, triangularity δ = .65, Aspect Ratio A = 1.6. Calculations using the PEST-II, GATO, BALLOON, and BALOO codes show this is stable to ballooning and kink modes up to n=6 with an ideally conducting wall with a separation of 0.165 a. Neutral beams (40 MW at 120 kV) will provide 5% of the plasma current and the rotation needed to stabilize the resistive-wall mode. We also address the vertical control and plasma initiation issues. Vertical stability is provided by a vertically stabilizing wall segment behind the breeding blanket, but within a separation of 0.45 minor radii from the plasma boundary. Plasma startup is facilitated by a combination of bootstrap current and external heating and current drive. Requirements on heating and current-drive systems and the timescales for current rampup are discussed.

  4. Physics of radiation-driven islands near the tokamak density limit

    NASA Astrophysics Data System (ADS)

    Gates, D. A.; Delgado-Aparicio, L.; White, R. B.

    2013-06-01

    In previous work (Gates and Delgado-Aparicio 2012 Phys. Rev. Lett. 108 165004), the onset criterion for radiation-driven islands (Rebut et al 1985 Proc. 10th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research 1984 (London, UK, 1984) vol 2 (Vienna: IAEA) p 197) in combination with a simple cylindrical model of tokamak current channel behaviour was shown to be consistent with the empirical scaling of the tokamak density limit (Greenwald et al 1988 Nucl. Fusion 28 2199). A number of the unexplained phenomena at the density limit are consistent with this novel physics mechanism. In this work, a more formal theoretical underpinning, consistent with cylindrical tearing mode theory, is developed for the onset criteria of these modes. The appropriate derivation of the radiation-driven addition to the modified Rutherford equation (MRE) is discussed. Additionally, the ordering of the terms in the MRE is examined in a regime near the density limit. It is hoped that, given the apparent success of this simple model in explaining the observed global scalings, it will lead to a more comprehensive analysis of the possibility that radiation-driven islands are the physics mechanism responsible for the density limit. In particular, with modern diagnostic capabilities detailed measurements of current densities, electron densities and impurity concentrations at rational surfaces should be possible, enabling verification of the concepts described above.

  5. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-10-15

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport.

  6. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong

    2010-03-01

    The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.

  7. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    SciTech Connect

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-15

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  8. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    NASA Astrophysics Data System (ADS)

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  9. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Shi Yuejiang; Fu Jia; Li Jiahong; Yang Yu; Wang Fudi; Li Yingying; Zhang Wei; Wan Baonian; Chen Zhongyong

    2010-03-15

    The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.

  10. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong

    2010-03-01

    The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.

  11. Application of visible bremsstrahlung to Z{sub eff} measurement on the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu

    2015-02-15

    The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Z{sub eff} as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Z{sub eff} can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Z{sub eff} with electron density and the relations between Z{sub eff} and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters.

  12. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak

    SciTech Connect

    Liu, D. M. Zhao, W. Z.; He, Y. G.; Chen, B.; Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q.

    2014-11-15

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  13. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics.

    PubMed

    Bak, J G; Lee, S G; Son, D; Ga, E M

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  14. A New Method for Shear Stabilization of Advanced Tokamak Reactors via Mode Converted Ion Bernstein Waves*

    NASA Astrophysics Data System (ADS)

    Sund, Richard; Scharer, John

    2002-11-01

    We examine a new method for generating sheared flows in advanced tokamak D-T reactors with the goal of creating and controlling internal transport barriers. Ion-Bernstein waves (IBWs) have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. Under reactor conditions, the IBW can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side (HFS) on the second harmonic resonance of a minority hydrogen component, with near 100200 MHz) minimizes parasitic absorption and permits the converted IBW to approach the fifth tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. Placement of the 5T absorption layer on the HFS is advantageous for shear production. The scheme is applicable to reactors with aspect ratio < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Various factors (adequate separation of the mode conversion layer from the magnetic axis, concentration of the fast wave near the midplane, large machine size, and plasma elongation) minimize poloidal field effects in the conversion zone and permit a slab analysis. We use a 1-D full-wave code to analyze the conversion and absorption. A 2-D ray-tracing code incorporating poloidal magnetic fields is used to follow the IBW for various equilibria. Within this analysis a weak bean shape appears most favorable. This is an attractive scheme for future advanced tokamak reactors. *Research supported by the Univ. of Wisconsin, Madison

  15. Physics of Radiation-driven Islands Near the Tokamak Density Limit

    SciTech Connect

    D.A. Gates, L. Delgado-Apricio and R.B. White

    2013-01-10

    In previous work [1], the onset criterion for radiation driven islands [2] in combination with a simple cylindrical model of tokamak current channel behavior was shown to be consistent with the empirical scaling of the tokamak density limit [3]. A number of the unexplained phenomena at the density limit are consistent with this novel physics mechanism. In this work, a more formal theoretical underpinning, consistent with cylindrical tearing mode theory, is developed for the onset criteria of these modes. The appropriate derivation of the radiation-driven addition to the modified Rutherford equation is discussed. Additionally, the ordering of the terms in the MRE is examined in a regime near the density limit. It is hoped that given the apparent success of this simple model in explaining the observed global scalings will lead to a more comprehensive analysis of the possibility that radiation driven islands are the physics mechanism responsible for the density limit. In particular, with modern diagnostic capabilities detailed measurements of current densities, electron densities and impurity concentrations at rational surfaces should be possible, enabling verification of the concepts described above.

  16. Modeling of advanced divertor configuration on experimental advanced superconducting tokamak by SOLPS5.0/B2.5-Eirene

    NASA Astrophysics Data System (ADS)

    Si, H.; Guo, H. Y.; Xu, G. S.; Xiao, B. J.; Luo, Z. P.; Guo, Y.; Wang, L.; Ding, R.

    2016-03-01

    Heat exhaust is one of the most challenging issues to be addressed for tokamak magnetic confinement fusion research. Detailed modeling with SOLPS5.0/B2.5-Eirene code package is carried out to examine an alternative advanced divertor configuration, i.e., quasi snowflake (QSF), for long pulse operation in EAST. Comparison is also made with the lower single null (LSN) divertor configuration. SOLPS predicts that the quasi snowflake configuration significantly reduces the peak heat flux at the lower divertor outer target, by a factor of 2-3, owing to the magnetic flux expansion. Furthermore, the density threshold for detachment is much lower for QSF, compared to LSN under the same upstream conditions. This indicates that QSF provides a promising tool for controlling heat flux at divertor target while maintaining a lower separatrix density, which is highly desirable for current drive, thus greatly facilitating long-pulse operation in EAST.

  17. Recent advances in medical physics.

    PubMed

    Kalender, Willi A; Quick, Harald H

    2011-03-01

    Some of the major interests in medical physics over the last few years have concerned the technical advances in Computed Tomography and high field Magnetic Resonance Imaging. This review discusses the introduction of Dual Source CT and explains how it can not only offer faster data acquisition but also operate with lower radiation doses. This provides enormous benefits for all patients, but for cardiac and pediatric examinations in particular. The advances in MRI at 7 T esla are also impressive, with better signal to noise; cardiac and musculoskeletal applications are discussed; technical improvements are work-in-progress for other applications.

  18. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  19. Physics of High-Power ECH Plasmas in T-10 Tokamak

    SciTech Connect

    Kislov, D. A.

    2006-01-15

    Physics of plasma confinement and stability under the conditions of electron cyclotron heating (ECH) is under investigation in T-10 tokamak. High-density plasmas with energy confinement time that exceeds the H-mode scaling predictions have been obtained both with gas puffing and with deuterium pellet injection. Transient internal transport barrier formation has been observed with ECH during the current ramp-up and after off-central ECH switch off. A systematic study of plasma turbulence in a wide range of operating regimes has been performed and a possible link between transport and turbulence properties is under consideration. The value of critical for neoclassical tearing mode onset beta was found to be dependent on q(r) profile. Physical mechanism of sawtooth control by highly localized ECH is analyzed.

  20. Investigation of relativistic runaway electrons in electron cyclotron resonance heating discharges on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Kang, C. S.; Lee, S. G.

    2014-07-15

    The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].

  1. Advanced Computation in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Tang, William

    2001-10-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract

  2. Advanced computations in plasma physics

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2002-05-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  3. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  4. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  5. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  6. Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Qu, H.; Zhang, T.; Han, X.; Xiang, H. M.; Wen, F.; Geng, K. N.; Wang, Y. M.; Kong, D. F.; Cai, J. Q.; Huang, C. B.; Gao, Y.; Gao, X.; Zhang, S.

    2016-11-01

    A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.

  7. Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT

    SciTech Connect

    C.E. Kessel; T.K. Mau; S.C. Jardin; and F. Najmabadi

    2001-06-05

    An advanced tokamak plasma configuration is developed based on equilibrium, ideal-MHD stability, bootstrap current analysis, vertical stability and control, and poloidal-field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current-drive profiles from ray-tracing calculations in combination with optimized pressure profiles, beta(subscript N) values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower beta(subscript N) of 5.4. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal-field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field.

  8. Improved Confinement in Highly Powered Advanced Tokamak Scenarios on DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Leonard, A.; Luce, T.; Osborne, T.; Solomon, W.; Turco, F.; Fenstermacher, M. E.; Holcomb, C.; Lasnier, C.; Makowski, M.

    2016-10-01

    DIII-D has recently demonstrated improved energy confinement by injecting neutral gas into high performance Advanced Tokamak (AT) plasmas during high power operation. Representative parameters are: q95 = 6, PIN up to 15 MW, H98 = 1.4-1.8, and βN = 2.8-4.2. Unlike in lower and moderate powered AT plasmas, τE and βN increased (and νELM decreased) as density was increased by deuterium gas puffing. We discuss how the interplay between pedestal density and temperature with fueling can lead to higher ballooning stability and a peeling/kink current limit that increasers as the pressure gradient increases. Comparison of neon, nitrogen, and argon as ``seed'' impurities in high PIN ATs in terms of their effects on core dilution, τE, and heat flux (q⊥) reduction favors argon. In general, the puff-and-pump radiating divertor was not as effective in reducing q⊥ while maintaining density control at highest PIN than it was at lower PIN. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-FG02-07ER54917.

  9. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  10. Edge-coherent-mode nature of the small edge localized modes in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, H. Q.; Xu, G. S.; Guo, H. Y.; Wan, B. N.; Wang, L.; Chen, R.; Ding, S. Y.; Yan, N.; Gong, X. Z.; Liu, S. C.; Shao, L. M.; Chen, L.; Zhang, W.; Liang, Y. F.; Hu, G. H.; Liu, Y. L.; Li, Y. L.; Zhao, N.

    2014-09-01

    High-confinement regime with high-frequency and low-energy-loss small edge localized modes (ELMs) was achieved in Experimental Advanced Superconducting Tokamak by using the lower hybrid current drive and ion cyclotron resonance heating with lithium wall conditioning. The small ELMs are usually accompanied with a quasi-coherent mode at frequency around 30 kHz, as detected by the Langmuir probes near the separatrix. The coherent mode, with weak magnetic perturbations different from the precursor of conventional ELMs, propagates in the electron diamagnetic drift direction in the lab frame with the poloidal wavelength λθ ˜ 14 cm, corresponding to both high poloidal and toroidal mode numbers (m > 60 and n > 12). This coherent mode, carrying high-temperature high-density filament-like plasma, drives considerable transport from the pedestal region into the scrape-off layer towards divertor region. The co-existence of small ELMs and quasi-coherent modes is beneficial for the sustainment of long pulse H-mode regime without significant confinement degradation.

  11. New Steady-State Quiescent High-Confinement Plasma in an Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, J. S.; Sun, Z.; Guo, H. Y.; Li, J. G.; Wan, B. N.; Wang, H. Q.; Ding, S. Y.; Xu, G. S.; Liang, Y. F.; Mansfield, D. K.; Maingi, R.; Zou, X. L.; Wang, L.; Ren, J.; Zuo, G. Z.; Zhang, L.; Duan, Y. M.; Shi, T. H.; Hu, L. Q.; East Team

    2015-02-01

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H -mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  12. Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak.

    PubMed

    Qu, H; Zhang, T; Han, X; Xiang, H M; Wen, F; Geng, K N; Wang, Y M; Kong, D F; Cai, J Q; Huang, C B; Gao, Y; Gao, X; Zhang, S

    2016-11-01

    A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.

  13. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  14. Plasma models for real-time control of advanced tokamak scenarios

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Mazon, D.; Walker, M. L.; Ferron, J. R.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Hyatt, A. W.; La Haye, R. J.; Lohr, J.; Turco, F.; Schuster, E.; Ou, Y.; Xu, C.; Takase, Y.; Sakamoto, Y.; Ide, S.; Suzuki, T.; ITPA-IOS Group members; experts

    2011-06-01

    An integrated plasma profile control strategy, ARTAEMIS, is being developed for extrapolating present-day advanced tokamak (AT) scenarios to steady-state operation. The approach is based on semi-empirical modelling and was initially explored on JET (Moreau et al 2008 Nucl. Fusion 48 106001). This paper deals with the general applicability of this strategy for simultaneous magnetic and kinetic control on various tokamaks. The determination of the device-specific, control-oriented models that are needed to compute optimal controller matrices for a given operation scenario is discussed. The methodology is generic and can be applied to any device, with different sets of heating and current drive actuators, controlled variables and profiles. The system identification algorithms take advantage of the large ratio between the magnetic and thermal diffusion time scales and have been recently applied to both JT-60U and DIII-D data. On JT-60U, an existing series of high bootstrap current (~70%), 0.9 MA non-inductive AT discharges was used. The actuators consisted of four groups of neutral beam injectors aimed at perpendicular injection (on-axis and off-axis), and co-current tangential injection (also on-axis and off-axis). On DIII-D, dedicated system identification experiments were carried out in the loop voltage (Vext) control mode (as opposed to current control) to avoid feedback in the response data from the primary circuit. The reference plasma state was that of a 0.9 MA AT scenario which had been optimized to combine non-inductive current fractions near unity with 3.5 < βN < 3.9, bootstrap current fractions larger than 65% and H98(y,2) = 1.5. Actuators other than Vext were co-current, counter-current and balanced neutral beam injection, and electron cyclotron current drive. Power and loop voltage modulations resulted in dynamic variations of the plasma current between 0.7 and 1.2 MA. It is concluded that the response of essential plasma parameter profiles to specific

  15. Magnetic confinement experiment. I: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.

  16. Advances in tokamak control: from multi-actuator MHD control to model-based current profile tailoring

    NASA Astrophysics Data System (ADS)

    Felici, Federico

    2012-10-01

    Recent experiments on TCV have demonstrated integrated control of the sawtooth and Neoclassical Tearing Mode (NTM) instabilities in a combined preemption-suppression strategy. This strategy is enabled by new sawtooth control methods (sawtooth pacing) in which modulation of sawtooth-stabilizing electron cyclotron power during the sawtooth cycle stimulates the advent of the crash. Rather than controlling the average sawtooth period, the precise timing of each individual crash can now be prescribed. Using this knowledge, efficient preemptive stabilization of NTMs becomes possible by applying power on the rational surface only at the instant of the crash-generating seed island. TCV experiments demonstrate that this approach, reinforced by NTM stabilization as a backup strategy, is effectively failsafe. This opens the road to inductive H-mode scenarios with long sawteeth providing longer inter-crash periods of high density and temperature. Also Edge Localized Modes are susceptible to EC modulation and it is shown that individual ELM events can be controlled using similar techniques. For advanced tokamak scenarios, MHD control is to be combined with optimization and control of the plasma kinetic and magnetic profile evolution in time. Real-time simulation of a physical model (RAPTOR) of current transport, including bootstrap current, neoclassical conductivity and auxiliary current drive, yields complete knowledge of the relevant profiles at any given time. The pilot implementation on TCV shows that these calculations can indeed be done in real-time and the resulting profiles have been included in feedback control schemes. Integration of this model with time-varying equilibria and internal current profile diagnostics provides a new framework for real-time interpretation of diagnostic data for plasma prediction, scenario monitoring, disruption prevention and feedback control.

  17. Design of a single-channel millimeter-wave interferometer system for Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Cheon, M. S.; Kwon, M.; Hwang, Y. S.

    2003-03-01

    A simple single-channel horizontal millimeter-wave interferometer has been designed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR). To measure line integrated plasma densities of 2×1019 m-2 in the initial phase of the KSTAR, Gunn oscillator frequency of 280 GHz has been chosen to optimize errors due to both vibration on the beam path and refraction in the plasma. To reduce the free propagation length of the probing beam and to obtain small beam width on the vacuum windows, a retractable cassette system for deep positioning of the diagnostic system has been designed, where microwave parts are located as close as possible to the tokamak with a shielding box. A beam focusing system with concave reflecting mirrors has been designed on the cassette and on the inner wall of the tokamak to reduce beam losses and to minimize beam width in the plasma. The estimated total transmission loss is about 25 dB, and beam widths are reduced significantly in the range of 20-50 mm.

  18. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  19. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaks

    SciTech Connect

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-11-15

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at the Large Helical Device. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICS can provide profile measurements of the local emissivity, temperature, and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modified Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example, geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.

  20. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect

    Chi, Yuan; Hu, Chundong; Zhuang, Ge

    2014-02-15

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  1. Study of laser output power stabilization for a deuterium cyanide laser interferometer on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, N.; Gao, X.; Jie, Y. X.; Wang, E. H.

    2011-02-01

    A control system which can improve stabilization of laser power in long-term operation automatically is designed for a deuterium cyanide (DCN) far-infrared laser interferometer on the Experimental Advanced Superconducting Tokamak. It stabilizes the output power of the laser by a closed-loop control system aided by a programmable logic controller. The system has been applied to the DCN laser and it has been proven that it is effective in stabilizing the laser near the highest scope of the output power.

  2. Enhanced confinement regimes and control technology in the DIII-D tokamak

    SciTech Connect

    Lohr, J.; Burrell, K.H.; Coda, S.

    1993-07-01

    Advanced tokamak performance has been demonstrated in the DIII-D tokamak in a series of experiments which brought together developments in technology and improved understanding of the physical principles underlying tokamak operation. The achievement of greatly improved confinement coupled with development of new systems for real time plasma control have permitted investigation of the heretofore hidden or poorly controlled variables which together determine global confinement. These experiments, which included work in transport and control of the plasma boundary, point toward development of operationally and economically attractive reactors based on the tokamak. Some of these experiments are described.

  3. The Physics of Basis For A Conservative Physics And Conservative Technology Tokamak Power Plant, ARIES-ACT2

    SciTech Connect

    Kessel, C. E.

    2014-03-04

    The conservative physics and conservative technology tokamak power plant ARIES-ACT2 has a major radius of 9.75 m at aspect ratio of 4.0, strong shaping with elongation of 2.2 and triangularity of 0.63. The no wall {beta}N reaches {approximately} 2.4, limited by n=1 external kink mode, and can be extended to 3.2 with a stabilizing shell behind the ring structure shield. The bootstrap current fraction is 77% with a q95 of 8.0, requiring about {approximately} 4.0 MA of external current drive. This current is supplied with 30 MW of ICRF/FW and 80 MW of negative ion NB. Up to 1.0 MA can be driven with LH with no wall, and 1.5 or more MA can be driven with a stabilizing shell. EC was examined and is most effective for safety factor control over {rho} {approximately} 0.2-0.6 with 20 MW. The pedestal density is {approximately} 0.65x10{sup 20}/m{sup 3} and the temperature is {approximately} 9.0 keV. The H98 factor is 1.25, n/n{sub Gr} = 1.3, and the net power to LH threshold power is 1.3-1.4 in the flattop. Due to the high toroidal field and high central temperature the cyclotron radiation loss was found to be high depending on the first wall reflectivity.

  4. Advances on modelling of ITER scenarios: physics and computational challenges

    NASA Astrophysics Data System (ADS)

    Giruzzi, G.; Garcia, J.; Artaud, J. F.; Basiuk, V.; Decker, J.; Imbeaux, F.; Peysson, Y.; Schneider, M.

    2011-12-01

    Methods and tools for design and modelling of tokamak operation scenarios are discussed with particular application to ITER advanced scenarios. Simulations of hybrid and steady-state scenarios performed with the integrated tokamak modelling suite of codes CRONOS are presented. The advantages of a possible steady-state scenario based on cyclic operations, alternating phases of positive and negative loop voltage, with no magnetic flux consumption on average, are discussed. For regimes in which current alignment is an issue, a general method for scenario design is presented, based on the characteristics of the poloidal current density profile.

  5. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  6. Advancements in Solar Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino; Antonelli, Vito

    2013-03-01

    We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

  7. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics.

    PubMed

    Yang, J H; Yang, X F; Hu, L Q; Zang, Q; Han, X F; Shao, C Q; Sun, T F; Chen, H; Wang, T F; Li, F J; Hu, A L

    2013-08-01

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

  8. Physics of GAM-initiated L-H transition in a tokamak

    NASA Astrophysics Data System (ADS)

    Askinazi, L. G.; Belokurov, A. A.; Bulanin, V. V.; Gurchenko, A. D.; Gusakov, E. Z.; Kiviniemi, T. P.; Lebedev, S. V.; Kornev, V. A.; Korpilo, T.; Krikunov, S. V.; Leerink, S.; Machielsen, M.; Niskala, P.; Petrov, A. V.; Tukachinsky, A. S.; Yashin, A. Yu; Zhubr, N. A.

    2017-01-01

    Based on experimental observations using the TUMAN-3M and FT-2 tokamaks, and the results of gyrokinetic modeling of the interplay between turbulence and the geodesic acoustic mode (GAM) in these installations, a simple model is proposed for the analysis of the conditions required for L-H transition triggering by a burst of radial electric field oscillations in a tokamak. In the framework of this model, one-dimensional density evolution is considered to be governed by an anomalous diffusion coefficient dependent on radial electric field shear. The radial electric field is taken as the sum of the oscillating term and the quasi-stationary one determined by density and ion temperature gradients through a neoclassical formula. If the oscillating field parameters (amplitude, frequency, etc) are properly adjusted, a transport barrier forms at the plasma periphery and sustains after the oscillations are switched off, manifesting a transition into the high confinement mode with a strong inhomogeneous radial electric field and suppressed transport at the plasma edge. The electric field oscillation parameters required for L-H transition triggering are compared with the GAM parameters observed at the TUMAN-3M (in the discharges with ohmic L-H transition) and FT-2 tokamaks (where no clear L-H transition was observed). It is concluded based on this comparison that the GAM may act as a trigger for the L-H transition, provided that certain conditions for GAM oscillation and tokamak discharge are met.

  9. Physics in advanced GNVQ Science

    NASA Astrophysics Data System (ADS)

    Sang, D.

    1995-07-01

    GNVQ Science is a vocational qualification for students in England, with a demand equivalent to traditional GCE A-levels. This article looks at the approach adopted by GNVQ to physics, and discusses the way in which appropriate teaching resources have been developed by the Nuffield Science in Practice project.

  10. An Assessment of the Penetrations in the First Wall Required for Plasma Measurments for Control of an Advanced Tokamak Plasma Demo

    SciTech Connect

    Kenneth M. Young

    2010-02-22

    A Demonstration tokamak (Demo) is an essential next step toward a magnetic-fusion based reactor. One based on advanced-tokamak (AT) plasmas is especially appealing because of its relative compactness. However, it will require many plasma measurements to provide the necessary signals to feed to ancillary systems to protect the device and control the plasma. This note addresses the question of how much intrusion into the blanket system will be required to allow the measurements needed to provide the information required for plasma control. All diagnostics will require, at least, the same shielding designs as planned for ITER, while having the capability to maintain their calibration through very long pulses. Much work is required to define better the measurement needs and the quantity and quality of the measurements that will have to be made, and how they can be integrated into the other tokamak structures.

  11. Advanced Physics Lab at TCU

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.

    2009-04-01

    The one semester, one credit hour Modern Physics Lab is viewed as a transition between the structured Physics 1 and 2 labs and junior/senior research. The labs focus on a variety of experiments built around a multichannel analyzer, various alpha, beta and gamma ray detectors and weak radioactive sources. Experiments include radiation safety and detection with a Geiger counter and NaI detector, gamma ray spectroscopy with a germanium detector, beta spectrum, alpha energy loss, gamma ray absorption, Compton effect, nuclear and positron annihilation lifetime, speed of gamma rays. Other experiments include using the analog oscilloscope, x-ray diffraction of diamond and using an SEM/EDX. Error analysis is emphasized throughout. The semester ends with an individual project, often an extension of one of the earlier experiments, and students present their results as a paper and an APS style presentation to the department.

  12. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zou, Z. Y.; Liu, H. Q. Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X.; Ding, W. X.; Brower, D. L.; Lan, T.

    2014-11-15

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  13. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak.

    PubMed

    Zou, Z Y; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Wang, Z X; Shen, J S; An, Z H; Yang, Y; Zeng, L; Wei, X C; Li, G S; Zhu, X; Lan, T

    2014-11-01

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  14. Observation of pedestal turbulence in edge localized mode-free H-mode on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X. Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.

    2014-10-15

    Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power P{sub ICRF}/P{sub total} exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = −3. Whereas when P{sub ICRF}/P{sub total} is less than 0.7, harmonic mode with frequency f = 40–300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.

  15. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang

    2016-04-01

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.

  16. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  17. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhuang, H D; Zhang, X D

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.

  18. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  19. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  20. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    SciTech Connect

    Weiland, Jan

    2014-12-15

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α{sub d} diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.

  1. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  2. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    NASA Astrophysics Data System (ADS)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  3. Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC

    SciTech Connect

    Chang, C S; Ku, Seung-Hoe; Adams, Mark; D'Azevedo, Eduardo; Chen, Yang; Cummings, Julian; Ethier, Stephane; Greengard, Leslie; Hahm, Taik Soo; Hinton, Fred; Keyes, David E; Klasky, Scott A; Lee, Wei-Li; Lin, Zhihong; Nishimura, Yasutaro; Parker, Scott; Samtaney, Ravi; Stotler, D.; Weitzner, Harold; Worley, Patrick H; Zorin, Denis

    2007-01-01

    An integrated gyrokinetic particle simulation with turbulence and neoclassical physics in a diverted tokamak edge plasma has been performed. Neoclassical equilibrium gyrokinetic solutions in the whole edge plasma have been separated from the turbulence activities for the first time, using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The equilibrium solutions in an H-mode-like edge plasma condition show strongly sheared global ExB and parallel flows in the entire edge plasma including the pedestal and scrape-off regions. In an L-mode-like edge plasma condition, the sheared flows in the pedestal layer are much weaker, supporting the conjecture that the neoclassical flow-shear may play a significant role in the H-mode physics.

  4. Ray Tracing for Doppler Backscattering System in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhou, Chu; Liu, Adi; Hu, Jianqiang; Wang, Mingyuan; Zhang, Xiaohui; Li, Hong; Yu, Changxuan; Liu, Wandong; Lan, Tao; Xie, Jinlin

    2015-09-01

    The Doppler backscattering system has been widely used for turbulence measurements, and the microwave beam will be backscattered near the cut-off layer when the Brag condition is fulfilled. In tokamak, the ray-tracing code is used to obtain the radial position and perpendicular wave number of the scattering layer for turbulence velocity measurement and the WKB (Wentzel-Kramers-Brillouin) approximation should be satisfied for optical propagation. To calculate the backscattering location and wave number at the cut-off layer only, a single ray tracing in the cross section is enough, while for spatial and wave number resolution calculation, multiple rays reflecting the microwave beam size should be used. Considering the angle between the wave vector and the magnetic field, a three-dimension quasi-optical Gaussian ray tracing is sometimes needed. supported by National Natural Science Foundation of China (Nos. 10990211 and 11105146) and the ITER-CN Project, 973 Program of China (No. 2013GB106002)

  5. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    SciTech Connect

    Ogando, F.; Heikkinen, J. A.; Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S.

    2006-11-30

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.

  6. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  7. Texas Experimental Tokamak

    SciTech Connect

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  8. Resistive edge mode instability in stellarator and tokamak geometries

    NASA Astrophysics Data System (ADS)

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-01

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  9. Resistive edge mode instability in stellarator and tokamak geometries

    SciTech Connect

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-15

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  10. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  11. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  12. Physics challenges for advanced fuel cycle assessment

    SciTech Connect

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  13. Advanced Fencing; Physical Education: 5551.54.

    ERIC Educational Resources Information Center

    McInerney, Marjorie

    GRADES OR AGES: Grades 8-12. SUBJECT MATTER: Strategy, tactics, principles, and fundamentals of advanced fencing skills. ORGANIZATION AND PHYSICAL APPEARANCE: The contents are divided into seven areas, which are Course Guidelines, Course Description and Broad Goal, Course of Study Behavioral Objectives, Course Content, Learning Activities and…

  14. Teacher's Handbook for Advanced Physical Science 2.

    ERIC Educational Resources Information Center

    Chaffee, Everett

    This handbook is an adjunct to the "Laboratory Manual for Advanced Physical Science 2," and is intended to assist teachers in organizing laboratory experiences. Information for each experiment includes (1) Introduction, (2) Scheduling, (3) Time required, (4) Materials needed , (5) Precautions, (6) Laboratory hints, (7) Sample data, and…

  15. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    NASA Astrophysics Data System (ADS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.

    2009-05-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  16. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  17. Physics of the L-mode to H-mode transition in tokamaks

    SciTech Connect

    Burrell, K.H.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Kim, J.; Osborne, T.H.; St. John, H.; Stambaugh, R.D. ); Doyle, E.J.; Moyer, R.A.; Rettig, C.L.; Peebles, W.A.; Rhodes, T.L. ); Finkenthal, D. ); Hillis, D.L.; Wade, M.R. (Oak Ridge National Lab., TN (United

    1992-07-01

    Combined theoretical and experimental work has resulted in the creation of a paradigm which has allowed semi-quantitative understanding of the edge confinement improvement that occurs in the H-mode. Shear in the E {times} B flow of the fluctuations in the plasma edge can lead to decorrelation of the fluctuations, decreased radial correlation lengths and reduced turbulent transport. Changes in the radial electric field, the density fluctuations and the edge transport consistent with shear stabilization of turbulence have been seen in several tokamaks. The purpose of this paper is to discuss the most recent data in the light of the basic paradigm of electric field shear stabilization and to critically compare the experimental results with various theories.

  18. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  19. Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing

    2016-02-01

    Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.

  20. Studies of challenge in lower hybrid current drive capability at high density regime in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Li, Y. C.; Wang, M.; Liu, F. K.; Shan, J. F.; Li, J. G.; Wan, B. N.; Wan

    2017-02-01

    Aiming at a fusion reactor, two issues must be solved for the lower hybrid current drive (LHCD), namely good lower hybrid wave (LHW)-plasma coupling and effective current drive at high density. For this goal, efforts have been made to improve LHW-plasma coupling and current drive capability at high density in experimental advanced superconducting tokamak (EAST). LHW-plasma coupling is improved by means of local gas puffing and gas puffing from the electron side is taken as a routine way for EAST to operate with LHCD. Studies of high density experiments suggest that low recycling and high lower hybrid (LH) frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. With the combination of 2.45 GHz and 4.6 GHz LH waves, a repeatable high confinement mode plasma with maximum density up to 19~\\text{m}-3$ was obtained by LHCD in EAST. In addition, in the first stage of LHCD cyclic operation, an alternative candidate for more economical fusion reactors has been demonstrated in EAST and further work will be continued.

  1. Kinetic-MHD hybrid simulation of fishbone modes excited by fast ions on the experimental advanced superconducting tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing

    2017-03-01

    Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.

  2. Real geometry gyrokinetic PIC computations of ion turbulence in advanced tokamak discharges with SUMMIT/PG3EQ_/NC

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel; Decyk, Viktor; Rhodes, Terry; Dimits, Andris; Shumaker, Dan

    2006-04-01

    The PG3EQ_/NC module within the SUMMIT Gyrokinetic PIC FORTRAN90 Framework makes possible 3D nonlinear toroidal computations of ion turbulence in the real geometry of DIII-D discharges. This is accomplished with the use of local, field line following, quasi-ballooning coordinates and through a direct interface with DIII-D equilibrium data via the EFIT and ONETWO codes, as well as Holger Saint John's PLOTEQ code for the (R, Z) position of each flux surface. The effect of real geometry is being elucidated with CYCLONE shot 81499 by comparing results from PGEQ_/NC to those of its circular counterpart. The PG3EQ_/NC module is also being used to model ion channel turbulence in advanced tokamak discharges 118561 and 120327. Linear results will be compared to growth rate calculations with the GKS code. Nonlinear results will also be compared with scattering measurements of turbulence, as well as with accessible measurements of fluctuation amplitudes and spectra from other diagnostics.

  3. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  4. Dynamically stable, self-similarly evolving, and self-organized states of high beta tokamak and reversed pinch plasmas and advanced active control

    SciTech Connect

    Kondoh, Yoshiomi; Fukasawa, Toshinobu

    2009-11-15

    Generalized simultaneous eigenvalue equations derived from a generalized theory of self-organization are applied to a set of simultaneous equations for two-fluid model plasmas. An advanced active control by using theoretical time constants is proposed by predicting quantities to be controlled. Typical high beta numerical configurations are presented for the ultra low q tokamak plasmas and the reversed-field pinch (RFP) ones in cylindrical geometry by solving the set of simultaneous eigenvalue equations. Improved confinement with no detectable saw-teeth oscillations in tokamak experiments is reasonably explained by the shortest time constant of ion flow. The shortest time constant of poloidal ion flow is shown to be a reasonable mechanism for suppression of magnetic fluctuations by pulsed poloidal current drives in RFP experiments. The bifurcation from basic eigenmodes to mixed ones deduced from stability conditions for eigenvalues is shown to be a good candidate for the experimental bifurcation from standard RFP plasmas to their improved confinement regimes.

  5. Her Physics, His Physics: Gender Issues in Israeli Advanced Placement Physics Classes.

    ERIC Educational Resources Information Center

    Zohar, Anat; Sela, David

    2003-01-01

    Investigates gender issues in Israeli advanced placement physics classes. Analyzes matriculation exam scores from approximately 400 high schools over 12 years. Conducts semi-constructed interviews with 50 advanced placement physics students (25 girls and 25 boys). Discusses changes in the ratio of girls, performance, and factors that are…

  6. Advanced Electron Microscopy in Materials Physics

    SciTech Connect

    Zhu, Y.; Jarausch, K.

    2009-06-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together {approx}100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  7. The physics mechanisms of the weakly coherent mode in the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Z. X.; Xu, X. Q.; Gao, X.; Hubbard, A. E.; Hughes, J. W.; Walk, J. R.; Theiler, C.; Xia, T. Y.; Baek, S. G.; Golfinopoulos, T.; Whyte, D.; Zhang, T.; Li, J. G.

    2016-12-01

    The weakly coherent mode (WCM) in I-mode has been studied by a six-field two-fluid model based on the Braginskii equations under the BOUT++ framework for the first time. The calculations indicate that a tokamak pedestal exhibiting a WCM is linearly unstable to drift Alfven wave (DAW) instabilities and the resistive ballooning mode. The nonlinear simulation shows promising agreement with the experimental measurements of the WCM. The shape of the density spectral and location of the spectral peak of the dominant toroidal number mode n = 20 agrees with the experimental data from reflectometry. The simulated mode propagates in electron diamagnetic direction is consistent with the results from the magnetic probes in the laboratory frame, a large ratio of particle to heat diffusivity is consistent with the distinctive experimental feature of I-mode, and the value of the simulated χe at the edge is in the range of experimental errors of χeff from the experiment. The prediction of the WCM shows that free energy is mainly provided by the electron pressure gradient, which gives guidance for pursuing future I-mode studies.

  8. Physics and Advanced Technologies 2001 Annual Report

    SciTech Connect

    Jacobs, R

    2002-05-09

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  9. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  10. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang; Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi; Dong, Chunfeng; and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  11. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  12. Advanced physical fine coal cleaning: Final report

    SciTech Connect

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination of Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.

  13. ECH tokamak

    SciTech Connect

    Firestone, M.A.; Mau, T.K.; Conn, R.W.

    1985-04-01

    A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.

  14. Linear optimal control of tokamak fusion devices

    SciTech Connect

    Kessel, C.E.; Firestone, M.A.; Conn, R.W.

    1989-05-01

    The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.

  15. Gas Puff Imaging Studies of Tokamak Edge Physics in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Sechrest, Yancey

    In order to be viable, Next-step fusion devices must overcome two pressing problems: they must be able to achieve high levels of confinement while also handling potentially damaging heat loads on material surfaces. The study of plasma edge physics promises solutions to both problems because the plasma edge, being the boundary between confined and unconfined regions, plays a key role in determining the global confinement and the plasma interaction with material surfaces (e.g. edge transport barriers, pedestal evolution, and edge localized modes). However, the steep gradients in density and temperature in the plasma edge that drive strong fluctuations in plasma parameters require measurements of fluctuations with high spatial and temporal resolution. By measuring drift scale (kyrhos < 2) fluctuations for frequencies less than ˜ 200 kHz, Gas Puff Imaging (GPI) meets these requirements while providing two-dimensional coverage at a large number of measurement locations. This dissertation presents GPI studies of transitions from low to high confinement regimes (L-H transitions) and Edge Localized Modes (ELMs). In 2010, a study of L-H transitions with the GPI diagnostic revealed quasi-periodic reductions in the scrape-off-layer turbulence levels during the 30 ms preceding the transition. The two-dimensional flow fields for these "quiet-periods", estimated from the GPI data by a pattern-matching velocimetry technique, exhibit intriguing similarity with the Drift Wave - Zonal Flow paradigm, a leading candidate in explaining L-H transitions. Following this study, a survey of GPI data from RF heated H-mode plasmas near the L-H power threshold identified short-lived, coherent oscillations in edge emission preceding the ELM crash. These observations provide detailed two-dimensional dynamics of the growth, filamentation, and crash of the ELM event, which could improve our understanding through comparison with nonlinear simulation. Cross diagnostic comparisons of GPI and Beam

  16. Flow Shear Effects in the Onset Physics of Resistive MHD Instabilities in Tokamaks. Final report

    SciTech Connect

    Brennan, Dylan P.

    2013-04-24

    The progress in this research centers around the computational analysis of flow shear effects in the onset of a 3/2 mode driven by a 1/1 mode in DIII-D equilibria. The initial idea was to try and calculate, via nonlinear simulations with NIMROD, the effects of rotation shear on driven 3/2 and 2/1 seed island physics, in experimentally relevant DIIID equilibria. The simulations indicated that very small seed islands were directly driven, as shielding between the sawtooth and the surfaces is significant at the high Lundquist numbers of the experiment. Instead, long after the initial crash the difference in linear stability of the 3/2, which remained prevalent despite the flattening of the core profiles from the sawtooth, contributed to a difference in the eventual seed island evolution. Essentially the seed islands grew or decayed long after the sawtooth crash, and not directly from it. Effectively the dominant 1/1 mode was found to be dragging the coupled modes surrounding it at a high rate through the plasma at their surfaces. The 1/1 mode is locked to the local frame of the plasma in the core, where the flow rate is greatest. The resonant perturbations at the surrounding surfaces propagate in the 'high slip regime' in the language of Fitzpatrick. Peaked flux averaged jxb forces (see Figs. 1 and 2) agree with localized flow modifications at the surfaces in analogy with Ebrahimi, PRL 2007. We track the mode into nonlinear saturation and have found oscillatory states in the evolution. During a visit (11/09) to Tulsa by R.J. LaHaye (GA), it became clear that similar oscillatory states are observed in DIII-D for these types of discharges.

  17. Advanced Dark Energy Physics Telescope (ADEPT)

    SciTech Connect

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan

  18. Physics and Advanced Technologies 2003 Annual Report

    SciTech Connect

    Hazi, A; Sketchley, J

    2005-01-20

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as

  19. Experimental determination of some equilibrium parameter of Damavand tokamak by magnetic probe measurements for representing a physical model for plasma vertical movement.

    PubMed

    Farahani, N Darestani; Davani, F Abbasi

    2015-10-01

    This investigation is about plasma modeling for the control of vertical instabilities in Damavand tokamak. This model is based on online magnetic measurement. The algebraic equation defining the vertical position in this model is based on instantaneous force-balance. Two parameters in this equation, including decay index, n, and lambda, Λ, have been considered as functions of time-varying poloidal field coil currents and plasma current. Then these functions have been used in a code generated for modeling the open loop response of plasma. The main restriction of the suitability analysis of the model is that the experiments always have to be performed in the presence of a control loop for stabilizing vertical position. As a result, open loop response of the system has been identified from closed loop experimental data by nonlinear neural network identification method. The results of comparison of physical model with identified open loop response from closed loop experiments show root mean square error percentage less than 10%. The results are satisfying that the physical model is useful as a Damavand tokamak vertical movement simulator.

  20. Experimental determination of some equilibrium parameter of Damavand tokamak by magnetic probe measurements for representing a physical model for plasma vertical movement

    NASA Astrophysics Data System (ADS)

    Darestani Farahani, N.; Abbasi Davani, F.

    2015-10-01

    This investigation is about plasma modeling for the control of vertical instabilities in Damavand tokamak. This model is based on online magnetic measurement. The algebraic equation defining the vertical position in this model is based on instantaneous force-balance. Two parameters in this equation, including decay index, n, and lambda, Λ, have been considered as functions of time-varying poloidal field coil currents and plasma current. Then these functions have been used in a code generated for modeling the open loop response of plasma. The main restriction of the suitability analysis of the model is that the experiments always have to be performed in the presence of a control loop for stabilizing vertical position. As a result, open loop response of the system has been identified from closed loop experimental data by nonlinear neural network identification method. The results of comparison of physical model with identified open loop response from closed loop experiments show root mean square error percentage less than 10%. The results are satisfying that the physical model is useful as a Damavand tokamak vertical movement simulator.

  1. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall

    SciTech Connect

    Hu, Z. M.; Xie, X. F.; Chen, Z. J.; Peng, X. Y.; Du, T. F.; Cui, Z. Q.; Ge, L. J.; Li, T.; Yuan, X.; Zhang, X.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Gorini, G.

    2014-11-15

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 {sup 3}He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated “experimental” result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the “experimental” measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device.

  2. Use of the Berkeley Physics Laboratory to Teach an Advanced Physics Course

    ERIC Educational Resources Information Center

    Logan, James David

    1973-01-01

    Discusses a course, centered around 32 experiments taught for advanced students, designed to develop a laboratory strongly suggestive of contemporary research using relatively sophisticated apparatus. Its unique advantage lies in enriching advanced physics curriculum. (DF)

  3. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1

    SciTech Connect

    1995-09-22

    This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

  4. NEW APPROACHES: Reading in Advanced level physics

    NASA Astrophysics Data System (ADS)

    Fagan, Dorothy

    1997-11-01

    Teachers often report that their A-level pupils are unwilling to read physics-related material. What is it about physics texts that deters pupils from reading them? Are they just too difficult for 16 - 18 year olds, or is it that pupils lack specific reading skills? This article describes some of the results from my research into pupils' reading of physics-related texts and tries to clarify the situation.

  5. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  6. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2016-07-12

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  7. Educating Scientifically: Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  8. Educating Scientifically - Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  9. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    SciTech Connect

    Dale M. Meade

    2004-10-21

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

  10. Fabrication and Characterization of Samples for a Material Migration Experiment on the Experimental Advanced Superconducting Tokamak (EAST).

    SciTech Connect

    Wampler, William R.; Van Deusen, Stuart B.

    2015-12-01

    This report documents work done for the ITER International Fusion Energy Organization (Sponsor) under a Funds-In Agreement FI 011140916 with Sandia National Laboratories. The work consists of preparing and analyzing samples for an experiment to measure material erosion and deposition in the EAST Tokamak. Sample preparation consisted of depositing thin films of carbon and aluminum onto molybdenum tiles. Analysis consists of measuring the thickness of films before and after exposure to helium plasma in EAST. From these measurements the net erosion and deposition of material will be quantified. Film thickness measurements are made at the Sandia Ion Beam Laboratory using Rutherford backscattering spectrometry and nuclear reaction analysis, as described in this report. This report describes the film deposition and pre-exposure analysis. Results from analysis after plasma exposure will be given in a subsequent report.

  11. Advances in Measurement Technology at NIST's Physical Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dehmer, Joseph

    2014-03-01

    The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology. The Physical Measurement Laboratory (PML) has responsibility for maintaining national standards for two dozen physical quantities needed for international trade; and, importantly, it carries out advanced research at the frontiers of measurement science to enable extending innovation into new realms and new markets. This talk will highlight advances being made across several sectors of technology; and it will describe how PML interacts with its many collaborators and clients in industry, government, and academe.

  12. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  13. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    SciTech Connect

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.

    2001-02-02

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement.

  14. Project for the Institution of an Advanced Course in Physics

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  15. Advanced Software Methods for Physics Analysis

    NASA Astrophysics Data System (ADS)

    Lista, L.

    2006-01-01

    Unprecedented data analysis complexity is experienced in modern High Energy Physics experiments. The complexity arises from the growing size of recorded data samples, the large number of data analyses performed by different users in each single experiment, and the level of complexity of each single analysis. For this reason, the requirements on software for data analysis impose a very high level of reliability. We present two concrete examples: the former from BaBar experience with the migration to a new Analysis Model with the definition of a new model for the Event Data Store, the latter about a toolkit for multivariate statistical and parametric Monte Carlo analysis developed using generic programming.

  16. Natural current profiles in a tokamak

    SciTech Connect

    Taylor, J.B.

    1990-08-01

    In this paper I show how one may arrive at a universal, or natural, family of Tokamak profiles using only accepted physical principles. These particular profiles are similar to ones proposed previously on the basis of ad hoc variational principles and the point of the present paper is to provide a justification for them. However in addition, the present work provides an interesting view of Tokamak fluctuations and leads to a new result -- a relationship between the inward particle pinch velocity, the diffusion coefficient and the current profile. The basic Tokamak model is described in this paper. Then an analogy is developed between Tokamak profiles and the equilibrium of a realisable dynamical system. Then the equations governing the natural Tokamak profiles are derived by applying standard statistical mechanics to this analog. The profiles themselves are calculated and some other results of the theory are described.

  17. Advanced Physical Chemistry of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jun; Pandey, Gaind P.

    2015-04-01

    The past decade has seen a surge of exciting research and applications of carbon nanotubes (CNTs) stimulated by deeper understanding of their fundamental properties and increasing production capability. The intrinsic properties of various CNTs were found to strongly depend on their internal microstructures. This review summarizes the fundamental structure-property relations of seamless tube-like single- and multiwalled CNTs and conically stacked carbon nanofibers, as well as the organized architectures of these CNTs (including randomly stacked thin films, parallel aligned thin films, and vertically aligned arrays). It highlights the recent development of CNTs as key components in selected applications, including nanoelectronics, filtration membranes, transparent conductive electrodes, fuel cells, electrical energy storage devices, and solar cells. Particular emphasis is placed on the link between the basic physical chemical properties of CNTs and the organized CNT architectures with their functions and performance in each application.

  18. ALPhA: The Advanced Laboratory Physics Association

    NASA Astrophysics Data System (ADS)

    Black, Eric; McCann, Lowell; Reichert, Jonathan; Spalding, Gabe; Essick, John; van Baak, David; Wonnell, Steve

    2011-03-01

    The Advanced Laboratory Physics Association (ALPhA) is a group of people with a shared interest in teaching physics labs at the advanced undergraduate or graduate level. ALPhA works closely with the American Physical Society (APS), the Optical Society of America (OSA), and the American Association of Physics Teachers (AAPT) to develop new methods for teaching modern experimental physics. In the summer of 2010 we initiated the ALPhA Immersion Program, a three-day short course where instructors visit a lab, do one or more of the local experiments (home-built or commercial) with the local instructor, and learn the experiments well enough to incorporate them into their own programs. These immersions were very well received, with attendees filling up all available slots. In this talk I will describe ALPhA and the Immersions Program and solicit input from the broader community.

  19. Atomic physics at the advanced photon source

    SciTech Connect

    Berry, H.G.; Cowan, P.L.; Gemmell, D.S.

    1995-08-01

    Argonne`s 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons.

  20. Chapter 1: Recent Advances in Solar Physics

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2008-10-01

    For millennia, the Sun (and the universe) has been viewed in the visual light. As the bestower of light and life, the ancients made God out of the Sun. With the Babylonians, or with the multiple origins with the Chinese, Egyptians and Indians, quoting the Rig Veda:"All that exists was born from Sūrya, the God of gods.", we have come a long way to understanding the Sun. In the early seventeenth century, however, Galileo showed that the Sun was not an immaculate object. Thus began our scientific interests in our nearest stellar neighbour, the Sun (cf., Figure 1.1.), with its sunspots and the related solar activity. The observations of the Sun and their interpretations are of universal importance for at least two reasons: First, the Sun is the source of energy for the entire planetary system and all aspects of our life have direct impact on what happens on the Sun; and second, the Sun's proximity makes it unique among the billions of stars in the sky of which we can resolve its surface features and study physical processes at work...

  1. Current profile modeling to extend the duration of high performance advanced tokamak modes in DIII-D

    SciTech Connect

    Casper, T.A.; Nevins, W.M.; Pearlstein, L.D.; Rice, B.W.; Stallard, B.W.; Hawreliak, J.A.; Taylor, T.S.

    1998-07-01

    In DIII-D, as in a number of tokamaks, high performance is obtained with various optimized magnetic shear configurations that exhibit internal transport barriers. Negative central shear (NCS) discharges are created transiently during the current ramp-up by auxiliary heating and current drive from neutral beam injection. Both q{sub min} and the radius at which it occurs, {rho}{sub qmin}, decrease with time as the Ohmic current diffuses inward. The q-profiles calculated using EFIT with external magnetic and Motional Stark Effect (MSE) measurements as constraints are comparable to those calculated with the Corsica code, a time-dependent, 2D equilibrium and 1D transport modeling code. Corsica is used to predict the temporal evolution of the current density from a combination of measured profiles, transport models and neoclassical resistivity. Using these predictive capabilities, the authors are exploring methods for increasing the duration and {rho}{sub qmin} of the NCS configuration by local control of the current density profile with simulations of the possible control available from the electron cyclotron heating and current drive system currently being upgraded on DIII-D. Their intention is not to do a detailed investigation of transport models but rather to provide a reasonable model of heat conductivity to be able to simulate effects of electron cyclotron heating (ECH) and current drive (ECCD) on confinement in NCS configurations. The authors adjust free parameters (c, c1 and c2) in the model to obtain a reasonable representation of the temporal evolution of electron and ion temperature profiles consistent with those measured in selected DIII-D shots. In all cases, they use the measured density profiles rather than self-consistently solve for particle sources and particle transport at this time.

  2. BOOK REVIEW: Astrophysics (Advanced Physics Readers)

    NASA Astrophysics Data System (ADS)

    Kibble, Bob

    2000-07-01

    Here is a handy and attractive reader to support students on post-16 courses. It covers the astrophysics, astronomy and cosmology that are demanded at A-level and offers anyone interested in these fields an interesting and engaging reference book. The author and the production team deserve credit for producing such an attractive book. The content, in ten chapters, covers what one would expect at this level but it is how it is presented that struck me as the book's most powerful asset. Each chapter ends with a summary of key ideas. Line drawings are clear and convey enough information to make them more than illustrations - they are as valuable as the text in conveying information. Full colour is used throughout to enhance illustrations and tables and to lift key sections of the text. A number of colour photographs complement the material and serve to maintain interest and remind readers that astrophysics is about real observable phenomena. Included towards the end is a set of tables offering information on physical and astronomical data, mathematical techniques and constellation names and abbreviations. This last table puzzled me as to its value. There is a helpful bibliography which includes society contacts and a website related to the text. Perhaps my one regret is that there is no section where students are encouraged to actually do some real astronomy. Astrophysics is in danger of becoming an armchair and calculator interest. There are practical projects that students could undertake either for school assessment or for personal interest. Simple astrophotography to capture star trails, observe star colours and estimate apparent magnitudes is an example, as is a simple double-star search. There are dozens more. However, the author's style is friendly and collaborative. He befriends the reader as they journey together through the ideas. There are progress questions at the end of each chapter. Their style tends to be rather closed and they emphasize factual recall

  3. Preliminary investigation of the effects of lower hybrid power on asymmetric behaviors in the scrape-off layer in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J. Li, M. H.; Liu, F. K.; Shan, J. F.; Wei, W.; Li, Y. C.; Yang, J. H.; Wu, Z. G.; Liu, L.; Wang, M.; Zhao, L. M.; Ma, W. D.; Xiu, H. D.; Wang, X. J.; Jia, H.; Yang, Y.; Cheng, M.; Wu, D. J.; Xu, L.; and others

    2014-02-15

    The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of the density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.

  4. UCLA program in reactor studies: The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  5. 2004 Physics and Advanced Technologies In the News

    SciTech Connect

    Hazi, A

    2005-11-01

    Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

  6. 2005 Physics and Advanced Technologies in the News

    SciTech Connect

    Hazi, A U

    2006-12-19

    Several outstanding research activities in the Physics and Advanced Technologies Directorate in 2005 were featured in ''Science and Technology Review'', the monthly publication of Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2005. As part of the World Year of Physics commemorating the 100th anniversary of Einstein's ''miraculous year'', we also highlight ongoing physics research that would not be possible without Einstein's pioneering accomplishments.

  7. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    SciTech Connect

    R.V. Budny

    2000-11-15

    ELMy H-mode plasmas form the basis of conservative performance predictions for tokalmak reactors of the size of ITER. Relatively high performace for long durations has been achieved and the scaling is favorable. It will be necessary to sustain low Zeff and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one in which the degradation occurs with an intense gas puff, and the other with a spontaneous transition at the heating power threshold from Type I to III ELMs. Linear gryokinetic analysis gives the growth rate, glin of the fastest growing mode. Our results indicate that the flow-shearing rate wExB and glin are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high *wExB*/glin near the top of the pedestal for high confinement.

  8. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  9. Nonlinear Effects at Tokamak Electron Cyclotron Resonance in Inhomogeneous Magnetic Field.*

    NASA Astrophysics Data System (ADS)

    Stefan, V.

    1996-11-01

    Nonlinear interaction of X- and O- modes with drift plasma waves is studied. The drift waves with frequency given by ωD ~ Ωc (ρ_e/r)^2 (ρe electron Larmor radius, Ωe electron cyclotron frequency, r small tokamak radius, where nabla Ω / Ωe ~ 1/R (for large tokamaks R ~ r)), are coupled to driver pump via scattering instability. Nonlocality of the interaction is taken into account. It is shown that nonlinear mechanism of interaction (Brillouin scattering) can be used as a tool for dynamic rf confinement^1 of tokamak plasmas. Particularly, it is possible to achieve longer confinement times due to suppression of drift wave turbulence. Supported by Tesla Laboratories, Inc., La Jolla, CA 92038-2946. ^1M.N. Rosenbluth (Editor-in-Chief). New Ideas in Tokamak Confinement. Research Trends in Physics Series of the La Jolla International School of Physics, The Institute for Advanced Physics Studies, La Jolla, CA (AIP Press, New York, 1994).

  10. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  11. Creation of a magnetic barrier at a noble q close to physical midpoint between two resonant surfaces in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Vazquez, Justin; Ali, Halima; Punjabi, Alkesh

    2009-11-01

    Ciraolo, Vittot and Chandre method of building invariant manifolds inside chaos in Hamiltonian systems [Ali H. and Punjabi A, Plasma Phys. Control. Fusion, 49, 1565--1582 (2007)] is used in the ASDEX UG tokamak. In this method, a second order perturbation is added to the perturbed Hamiltonian [op cit]. It creates an invariant torus inside the chaos, and reduces the plasma transport. The perturbation that is added to the equilibrium Hamiltonian is at least an order of magnitude smaller than the perturbation that causes chaos. This additional term has a finite, limited number of Fourier modes. Resonant magnetic perturbations (m,n) = (3,2)+(4,3) are added to the field line Hamiltonian for the ASDEX UG. An area-preserving map for the field line trajectories in the ASDEX UG is used. The common amplitude δ of these modes that gives complete chaos between the resonant surfaces ψ43 and ψ32 is determined. A magnetic barrier is built at a surface with noble q that is very nearly equals to the q at the physical midpoint between the two resonant surfaces. The maximum amplitude of magnetic perturbation for which this barrier can be sustained is determined. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  12. Advanced Swimming, Phase II--Advanced Swimmer; Physical Education: 5551.48.

    ERIC Educational Resources Information Center

    Gutting, Dick

    GRADES OR AGES: Grades 7-12. SUBJECT MATTER: Advanced swimming. ORGANIZATION AND PHYSICAL APPEARANCE: The first two sections of the guides are devoted to course guidelines, description, and broad goal statement. The next two sections list behavioral and skill objectives and course content. The fifth section presents learning activities and…

  13. Filamentation in tokamaks

    SciTech Connect

    Cardozo, N.J.; Barth, C.J.; Chu, C.C.; Lok, J.; Montvai, A.; Oomens, A.A.; Peters, M.; Pijper, F.J.; de Rover, M.; Schueller, F.C.; Steenbakkers, M.F.; RTP team

    1995-09-01

    The relevance of a nest of toroidal flux surfaces as a paradigm of the magnetic topology of a tokamak plasma is challenged. High resolution Thomson scattering measurements of electron temperature and density in RTP show several hot filaments in the plasma center and sharp gradients near the sawtooth inversion radius and structures outside the sawtooth region under central ECH. In ohmic plasmas, too, the pressure and temperature profiles show significant bumps. These measurements give evidence of a complex magnetic topology. Transport in a medium with spatially strongly varying diffusivity is considered. It is shown that macroscopic transport is determined by the microscopic structure: a transport theory must predict this structure and the diffusivity in the insulating regions, while the {open_quote}turbulent{close_quote} diffusivity is irrelevant. A numerical approach to equilibria with broken surfaces is presented. {copyright} {ital 1995 American Institute of Physics.}

  14. Recent progress on the Compact Ignition Tokamak (CIT)

    SciTech Connect

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  15. Options for an ignited tokamak

    SciTech Connect

    Sheffield, J.

    1984-02-01

    It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon ..beta../sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed.

  16. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor.

    PubMed

    Singh, M J; De Esch, H P L

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  17. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; De Esch, H. P. L.

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H- accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  18. Resource Letter ANP-1: Advances in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Goodman, Maury C.

    2016-12-01

    Three of the twelve fundamental fermions in particle physics are neutrinos. It was long thought that neutrinos might be massless, but we now know through the phenomenon of neutrino oscillations that neutrinos have mass. This resource letter will cover the history of the growth in our knowledge about neutrinos since they were first proposed in the 1930s, and also covers some up the upcoming experiments which will further our understanding of neutrino properties. Results from experiments are described that use various sources of neutrinos including nuclear reactors, cosmic rays, accelerators, and supernovae. In this resource letter, the resources that can be used to trace the past, present, and anticipated future advances in neutrino physics are reviewed.

  19. Identifying and addressing specific student difficulties in advanced thermal physics

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.

    As part of an ongoing multi-university research study on student understanding of concepts in thermal physics at the upper division, I identified several student difficulties with topics related to heat engines (especially the Carnot cycle), as well as difficulties related to the Boltzmann factor. In an effort to address these difficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for use in advanced undergraduate thermal physics courses. Both tutorials seek to improve student understanding of the utility and physical background of a particular mathematical expression. One tutorial focuses on a derivation of Carnot's theorem regarding the limit on thermodynamic efficiency, starting from the Second Law of Thermodynamics. The other tutorial helps students gain an appreciation for the origin of the Boltzmann factor and when it is applicable; focusing on the physical justification of its mathematical derivation, with emphasis on the connections between probability, multiplicity, entropy, and energy. Student understanding of the use and physical implications of Carnot's theorem and the Boltzmann factor was assessed using written surveys both before and after tutorial instruction within the advanced thermal physics courses at the University of Maine and at other institutions. Classroom tutorial sessions at the University of Maine were videotaped to allow in-depth scrutiny of student successes and failures following tutorial prompts. I also interviewed students on various topics related to the Boltzmann factor to gain a more complete picture of their understanding and inform tutorial revisions. Results from several implementations of my tutorials at the University of Maine indicate that students did not have a robust understanding of these physical principles after lectures alone, and that they gain a better understanding of relevant topics after tutorial instruction; Fisher's exact tests yield statistically significant improvement at the

  20. On Stochastic Control of Tokamak and Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Rastovic, Danilo

    2007-12-01

    Instead of the theory of invariant manifolds and entropy reduction, the theory of fractional Brownian motions and artificiall neural networks is used for description of advanced methods for control of tokamak plasma behaviour.

  1. Tokamak Spectroscopy for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Fournier, Kevin B.; Finkenthal, M.; Pacella, D.; May, M. J.; Soukhanovskii, V.; Mattioli, M.; Leigheb, M.; Rice, J. E.

    2000-01-01

    This paper presents the measured x-ray and Extreme Ultraviolet (XUV) spectra of three astrophysically abundant elements (Fe, Ca and Ne) from three different tokamak plasmas. In every case, each spectrum touches on an issue of atomic physics that is important for simulation codes to be used in the analysis of high spectral resolution data from current and future x-ray telescopes. The utility of the tokamak as a laboratory test bed for astrophysical data is demonstrated. Simple models generated with the HULLAC suite of codes demonstrate how the atomic physics issues studied can affect the interpretation of astrophysical data.

  2. Do spherical tokamaks have a thermonuclear future?

    NASA Astrophysics Data System (ADS)

    Mirnov, S. V.

    2012-12-01

    This work has been initiated by the publication of a review by B.V.Kuteev et al., "Intense Fusion Neutron Sources" [Plasma Physics Reports 36, 281 (2010)]. It is stated that the key thesis of the above review that a spherical tokamak can be recommended for research neutron sources and for demonstration hybrid systems as an alternative to expensive "classical" tokamaks of the JET and ITER type is inconsistent. The analysis of the experimental material obtained during the last 10 years in the course of studies on the existing spherical tokamaks shows that the TIN-ST fusion neutron source spherical tokamak proposed by the authors of the review and intended, according to the authors' opinion, to replace "monsters" in view of its table-top dimensions (2 m3) and laboratory-level energetics cannot be transformed into any noticeable stationary megawatt-power neutron source competing with the existing classical tokamaks (in particular, with JET with its quasi-steady DT fusion power at a level of 5 MW). Namely, the maximum plasma current in the proposed tokamak will be not 3 MA, as the authors suppose erroneously, but, according to the present-day practice of spherical tokamaks, within 0.6-0.7 MA, which will lead to a reduction on the neutron flux by two to three orders of magnitude from the expected 5 MW. The possibility of the maintenance of the stationary process itself even in such a "weakened" spherical tokamak is very doubtful. The experience of the largest existing devices of this type (such as NSTX and MAST) has shown that they are incapable of operating even in a quasi-steady operating mode, because the discharge in them is spontaneously interrupted about 1 s after the beginning of the current pulse, although its expected duration is of up to 5 s. The nature of this phenomenon is the subject of further study of the physics of spherical tokamaks. This work deals with a critical analysis of the available experimental data concerning such tokamaks and a discussion of

  3. Advanced physical assessment skills: implementation of a module.

    PubMed

    Aldridge-Bent, Sharon

    2011-02-01

    This article aims to explore and examine advanced physical assessment skills and the role of the district nurse. It will particularly highlight district nurses' perceptions of how they may implement skills learnt on a new module introduced into the Community Health Care Nursing degree at a university in London. Physical assessment skills have traditionally been viewed as part of a doctor's role; however, with the advancement of nursing roles, it is argued that it has become a key nursing skill. As Government policy continues to expect health professionals to keep patients in the community who have complex health and social care needs, the role of the district nurse presents as 'best placed' to take on this challenge (Department of Health (DH), 2005a; 2005b). Evaluation of the district nurses' perceptions of their practice is shared here, highlighting some of the challenges that they face. The article will address the complexity of developing a curriculum in response to the DH initiatives and the importance of listening to students on courses.

  4. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  5. Next-step-targeted experiments on the Mega-Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M.; Akers, R. J.; Counsell, G. F.; Cunningham, G.; Dnestrovskij, A.; Field, A. R.; Hender, T. C.; Kirk, A.; Lloyd, B.; Meyer, H.; Morris, A. W.; Sykes, A.; Tabasso, A.; Valovic, M.; Voss, G. M.; Wilson, H. R.

    2003-05-01

    Since its first physics campaign, the principal parameters on MAST (Mega-Amp Spherical Tokamak) [A. Sykes et al., Nuclear Fusion 41, 1423 (2001)] have been brought up towards their design values. Considerable advances have been made in a range of physics areas of direct relevance to the International Thermonuclear Experimental Reactor (ITER) [ITER Physics Basis, Nuclear Fusion 39, 2175 (1999)]. In this paper, results on H-mode access, global confinement and pedestal studies are presented and compared with conventional aspect ratio tokamak scalings. Physics and engineering requirements relevant to next step spherical tokamak devices are discussed, in particular the plasma formation, current ramp-up and sustainment, and plasma exhaust. Results of first experiments directly targeting these issues are presented: Plasma current up to 0.5 MA has been produced without use of the central solenoid flux, and current ramp-up and sustainment without use of the central solenoid flux has been demonstrated. Experiments on neutral beam heating and current drive (CD) demonstrate up to 50% bootstrap current fraction and good CD efficiency, and divertor power loading has been found to be tolerable and have a favorable outboard asymmetry.

  6. Magnetic control of magnetohydrodynamic instabilities in tokamaks

    NASA Astrophysics Data System (ADS)

    Strait, E. J.

    2015-02-01

    Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB /B ˜10-3 to 10-4 ) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low

  7. Magnetic control of magnetohydrodynamic instabilities in tokamaks

    SciTech Connect

    Strait, E. J.

    2015-02-15

    Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries (δB/B∼10{sup −3} to 10{sup −4}) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas (β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error

  8. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  9. Overview of the National Centralized Tokamak programme

    NASA Astrophysics Data System (ADS)

    Kikuchi, M.; Tamai, H.; Matsukawa, M.; Fujita, T.; Takase, Y.; Sakurai, S.; Kizu, K.; Tsuchiya, K.; Kurita, G.; Morioka, A.; Hayashi, N.; Miura, Y.; Itoh, S.; Bialek, J.; Navratil, G.; Ikeda, Y.; Fujii, T.; Kurihara, K.; Kubo, H.; Kamada, Y.; Miya, N.; Suzuki, T.; Hamamatsu, K.; Kawashima, H.; Kudo, Y.; Masaki, K.; Takahashi, H.; Takechi, M.; Akiba, M.; Okuno, K.; Ishida, S.; Ichimura, M.; Imai, T.; Hashizume; Miura, Y. M.; Horiike, H.; Kimura, A.; Tsutsui, H.; Matsuoka, M.; Uesugi, Y.; Sagara, A.; Nishimura, A.; Shimizu, A.; Sakamoto, M.; Nakamura, K.; Sato, K.; Okano, K.; Ida, K.; Shimada, H. R.; Kishimoto, Y.; Azechi, H.; Tanaka, S.; Yatsu, K.; Yoshida, N.; Inutake, M.; Fujiwara, M.; Inoue, N.; Hosogane, N.; Kuriyama, M.; Ninomiya, H.

    2006-03-01

    An overview is given of the National Centralized Tokamak (NCT) programme as a research programme for advanced tokamak research to succeed JT-60U. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility is pursued in aspect ratio and shape controllability for the demonstration of the high-β steady-state, feedback control of resistive wall modes, wide current and pressure profile control capability and also very long pulse steady-state operation. Existing JT-60 infrastructure such as the heating and current drive system, power supplies and cooling systems will be best utilized for this modification.

  10. Climate Solutions based on advanced scientific discoveries of Allatra physics

    NASA Astrophysics Data System (ADS)

    Vershigora, Valery

    2016-01-01

    Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE group), offers increased opportunities for advanced fundamental and applied research in climatic engineering.

  11. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  12. Reflection on problem solving in introductory and advanced physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.

    Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

  13. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  14. The ARIES-III D- sup 3 He tokamak reactor: Design-point determination and parametric studies

    SciTech Connect

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A. ); Santarius, J.F. )

    1991-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-3 design uses a D-{sup 3}He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. Results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-1 is included. 11 refs., 5 figs.

  15. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  16. Tokamak reactor studies

    SciTech Connect

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features.

  17. Options for commercial tokamaks

    SciTech Connect

    Dabiri, A.E.; Keeton, D.C.; Thomson, S.L.

    1986-07-01

    Systems studies have been performed at the Fusion Engineering Design Center (FEDC) to assess commercial tokamak options. One study investigates the economics of high-beta operation and determines an optimum operating range of 10 to 20% beta, with a corresponding neutron wall loading of 6 to 8 MW/m/sup 2/. A second study determines conditions under which small, low-power tokamaks can be economically combined into a 1200-MW(electric) multiplex power plant. The results of these studies have directed future efforts at the FEDC toward a high-beta, tokamak design using a modular maintenance configuration.

  18. XII Advanced Computing and Analysis Techniques in Physics Research

    NASA Astrophysics Data System (ADS)

    Speer, Thomas; Carminati, Federico; Werlen, Monique

    November 2008 will be a few months after the official start of LHC when the highest quantum energy ever produced by mankind will be observed by the most complex piece of scientific equipment ever built. LHC will open a new era in physics research and push further the frontier of Knowledge This achievement has been made possible by new technological developments in many fields, but computing is certainly the technology that has made possible this whole enterprise. Accelerator and detector design, construction management, data acquisition, detectors monitoring, data analysis, event simulation and theoretical interpretation are all computing based HEP activities but also occurring many other research fields. Computing is everywhere and forms the common link between all involved scientists and engineers. The ACAT workshop series, created back in 1990 as AIHENP (Artificial Intelligence in High Energy and Nuclear Research) has been covering the tremendous evolution of computing in its most advanced topics, trying to setup bridges between computer science, experimental and theoretical physics. Conference web-site: http://acat2008.cern.ch/ Programme and presentations: http://indico.cern.ch/conferenceDisplay.py?confId=34666

  19. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  20. Breakdown in the pretext tokamak

    SciTech Connect

    Benesch, J.F.

    1981-06-01

    Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges.

  1. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  2. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    SciTech Connect

    Xu, G. S.; Wang, H. Q.; Wan, B. N.; Guo, H. Y.; Zhang, W.; Chang, J. F.; Wang, L.; Chen, R.; Liu, S. C.; Ding, S. Y.; Shao, L. M.; Xiong, H.; Naulin, V.; Diamond, P. H.; Tynan, G. R.; Xu, M.; Yan, N.; Zhao, H. L.

    2012-12-15

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1 MHz) turbulence was observed in the steep-gradient region leading to intermittent transport events across the edge transport barrier. Good confinement (H{sub 98y,2} {approx} 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows reproduced this state well.

  3. Nonlinear stabilization of tokamak microturbulence by fast ions.

    PubMed

    Citrin, J; Jenko, F; Mantica, P; Told, D; Bourdelle, C; Garcia, J; Haverkort, J W; Hogeweij, G M D; Johnson, T; Pueschel, M J

    2013-10-11

    Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys. Rev. Lett. 107, 135004 (2011)], this result explains the experimentally observed ion heat flux and stiffness reduction. These findings are expected to improve the extrapolation of advanced tokamak scenarios to reactor relevant regimes.

  4. Quiescent Double Barrier H-Mode Plasmas in the DIII-D Tokamak

    SciTech Connect

    Burrell, K H; Austin, M E; Brennan, D P; DeBoo, J C; Doyle, E J; Fenzi, C; Fuchs, C; Gohil, P; Greenfield, C M; Groebner, R J; Lao, L L; Luce, T C; Makowski, M A; McKee, G R; Moyer, R A; Petty, C C; Porkolab, M; Rettig, C L; Rhodes, T L; Rost, J C; Stallard, B W; Strait, E J; Synakowski, E J; Wade, M R; Watkins, J G; West, W P

    2000-11-01

    High confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation which is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 seconds or >25 energy confinement times {tau}{sub E}), yielding a quiescent double barrier regime. By slowly ramping the input power, we have achieved {beta}{sub N} H89 = 7 for up to 5 times the {tau}{sub E} of 150 ms. The {beta}{sub N} H89 values of 7 substantially exceed the value of 4 routinely achieved in standard ELMing H-mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density and impurity control in the quiescent H-mode is possible because of the presence of an edge magnetic hydrodynamic (MHD) oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.

  5. QUIESCENT DOUBLE BARRIER H-MODE PLASMAS IN THE DIII-D TOKAMAK

    SciTech Connect

    K.H. BURRELL; M.E. AUSTIN; D.P. BRENNAN; J.C. DeBOO; E.J. DOYLE; C. FENZI; C. FUCHS; P. GOHIL; R.J. GROEBNER; L.L. LAO; T.C. LUCE; M.A. MAKOWSKI; G.R. McKEE; R.A. MOYER; C.C. PETTY; M. PORKOLAB; C.L.RETTIG; T.L. RHODES; J.C. ROST; B.W. STALLARD; E.J. STRAIT; E.J. SYNAKOWSKI; M.R. WADE; J.G. WATKINS; W.P. WEST

    2000-11-01

    High confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J.L. Luxon, et al., Plasma Phys. and Contr. Nucl. Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987) Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation which is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 seconds or >25 energy confinement times {tau}{sub E}), yielding a quiescent double barrier regime. By slowly ramping the input power, we have achieved {beta}{sub N} H{sub 89} = 7 for up to 5 times the {tau}{sub E} of 150 ms. The {beta}{sub N} H{sub 89} values of 7 substantially exceed the value of 4 routinely achieved in standard ELMing H-mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density and impurity control in the quiescent H-mode is possible because of the presence of an edge magnetic hydrodynamic (MHD) oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.

  6. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three

  7. PET/CT: underlying physics, instrumentation, and advances.

    PubMed

    Torres Espallardo, I

    2017-01-12

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important

  8. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  9. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  10. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    NASA Astrophysics Data System (ADS)

    Azizov, E. A.

    2012-02-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.

  11. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  12. UCLA Tokamak Program Close Out Report.

    SciTech Connect

    Taylor, Robert John

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.

  13. TIMSS Advanced 2015 and Advanced Placement Calculus & Physics. A Framework Analysis. Research in Review 2016-1

    ERIC Educational Resources Information Center

    Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele

    2016-01-01

    This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…

  14. MHD Equilibrium Reconstruction in the DIII-D Tokamak

    SciTech Connect

    Lao, L.L.; St John, H.E.; Peng, Q.; Ferron, J.R.; Strait, E.J.; Taylor, T.S.; Meyer, W.H.; Zhang, C.; You, K.I.

    2005-10-15

    Physics elements and advances crucial for the development of axisymmetric magnetohydrodynamic equilibrium reconstruction to support plasma operation and data analysis in the DIII-D tokamak are reviewed. A response function formalism and a Picard linearization scheme are used to efficiently combine the equilibrium and the fitting iterations and search for the optimum solution vector. Algorithms to incorporate internal current and pressure profile measurements, topological constraints, and toroidal plasma rotation into the equilibrium reconstruction are described. Choice of basis functions and boundary conditions essential for accurate reconstruction of L- and H-mode equilibrium plasma boundary and current and pressure profiles is discussed. The computational structure used to efficiently integrate these elements into the equilibrium reconstruction code EFIT is summarized.

  15. Understanding disruptions in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid

    2011-10-01

    Disruptions in tokamaks are known since 1963 but even now some aspects of them remain a mystery. This talk describes progress made recently in understanding disruptions. A major step forward occurred in 2007 when the importance of galvanic contact of the plasma with the wall in plasma dynamics was pointed out. The toroidal asymmetry of plasma current, observed in JET vertical disruptions, was explained by the theory of the wall touching kink mode. The currents shared by the plasma with the wall and responsible for the asymmetry were identified as generated by the kink mode. Such currents are referred to as Hiro currents. They have shown exceptional consistency with the entire JET disruption data base (more than 5500 cases) and ruled out the long lasting interpretation based on ``halo currents,'' which contradict experiments even in the sign of the measured asymmetry. Accordingly, the sideways forces are understood and their scaling from JET to ITER was justified. Hiro currents provide also a plausible explanation of the current spike at the beginning of the disruptions. The important role of the plasma edge and its interaction with the wall was revealed. Based on this new understanding of disruptions, dedicated experiments on the current spike (J-TEXT, Wuhan, China) and runaway prevention by the repetitive triggering of kink modes (T-10, AUG, Tore Supra) were motivated and are in progress. Accordingly, the need for new, adaptive grid approaches to numerical simulations of disruptions became evident. In addition to the core MHD, simulations of realistic wall geometry, disruption specific plasma edge physics, plasma-wall interaction, and energetic particles need be developed. The first results of simulations of the fast MHD regime, Hiro current generation, and slower plasma decay due to a wall touching kink mode made with the new DSC code are presented. This work is supported by US DoE contract No. DE-AC02-09-CH11466.

  16. Completely bootstrapped tokamak

    SciTech Connect

    Weening, R.H. ); Boozer, A.H. )

    1992-01-01

    Numerical simulations of the evolution of large-scale magnetic fields have been developed using a mean-field Ohm's law. The Ohm's law is coupled to a {Delta}{prime} stabilty analysis and a magnetic island growth equation in order to simulate the behavior of tokamak plasmas that are subject to tearing modes. In one set of calculations, the magnetohydrodynamic (MHD)-stable regime of the tokamak is examined via the construction of an {ital l}{sub {ital i}} -{ital q}{sub {ital a}} diagram. The results confirm previous calculations that show that tearing modes introduce a stability boundary into the {ital l}{sub {ital i}} -{ital q}{sub {ital a}} space. In another series of simulations, the interaction between tearing modes and the bootstrap current is investigated. The results indicate that a completely bootstrapped tokamak may be possible, even in the absence of any externally applied loop voltage or current drive.

  17. Predictive Modeling of Tokamak Configurations*

    NASA Astrophysics Data System (ADS)

    Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.

    2001-10-01

    The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  18. Texas Experimental Tokamak. Technical progress report, April 1990--April 1993

    SciTech Connect

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  19. Simulation of runaway electrons in tokamak

    NASA Astrophysics Data System (ADS)

    Guo, Zehua; Tang, Xianzhu; McDevitt, Chris

    2015-11-01

    Runaway electrons with relativisitc energy (>Mev) are generated in tokamaks when the acceleration by parallel electric field exceeds the drag due to Coulomb collisions with the bulk plasma. Carrying about 70% of the ITER thermal current (15MA), they can possibly cause severe damage to tokamak facing components. Here we report the development of a solver for computing the evolution of runaway electron distribution in tokamak geometries. Essential effects from Coulomb collisions, radiation losses, toroidal effects and the radial transport are included on the same footings. Numerical techniques (implicit-explicit time-stepping, KT/NT central schemes) to overcome the difficulties arising from the wide spread of time scales in runaway electron dynamics and the hyperbolic nature of the relativistic Fokker-Planck equation will be discussed. We will use the solver to study two important physics: 1) the presence of stable point in the phase space and its relation to the electric field threshold; 2) the radial transport of runaways in tokamak geometry and its effects on the distribution function. Work supported by DOE via LANL-LDRD.

  20. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  1. Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Bonoli, P.; Bramley, Randall B; Breslau, Joshua; Elwasif, Wael R; Foley, S.; Jaeger, Erwin Frederick; Jardin, S. C.; Klasky, Scott A; Kruger, Scott E; Ku, Long-Poe; McCune, Douglas; Ramos, J.; Schissel, David P; Schnack, Dalton D

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  2. A control-oriented model of the current profile in tokamak plasma

    NASA Astrophysics Data System (ADS)

    Witrant, E.; Joffrin, E.; Brémond, S.; Giruzzi, G.; Mazon, D.; Barana, O.; Moreau, P.

    2007-07-01

    This paper proposes a control-oriented approach to the tokamak plasma current profile dynamics. It is established based on a consistent set of simplified relationships, in particular for the microwave current drive sources, rather than exact physical modelling. Assuming that a proper model for advanced control schemes can be established using the so-called cylindrical approximation and neglecting the diamagnetic effects, we propose a model that focuses on the flux diffusion (from which the current profile is inferred). Its inputs are some real-time measurements available on modern tokamaks and the effects of some major actuators, such as the magnetic coils, lower hybrid (LHCD), electron and ion cyclotron frequency (ECCD and ICRH) systems, are particularly taken into account. More precisely, the non-inductive current profile sources are modelled as 3-parameters functions of the control inputs derived either from approximate theoretical formulae for the ECCD and bootstrap terms or from experimental scaling laws specifically developed from hard x-ray Tore Supra data for the LHCD influence. The use of scaling laws in this model reflects the fact that the operation of future reactors will certainly depend upon a great number of scaling laws and specific engineering parameters. The discretization issues are also specifically addressed, to ensure robustness with respect to discretisation errors and the efficiency (in terms of computation time) of the associated algorithm. This model is compared with experimental results and the CRONOS solver for tore supra tokamak.

  3. Modular tokamak configuration

    SciTech Connect

    Thomson, S.L.

    1985-01-01

    This report is concerned with the modular tokamak configuration, and presents information on the following topics: modularity; external vacuum boundary; vertical maintenance; combined reactor building/biological shield with totally remote maintenance; independent TF coils; minimum TF coil bore; saddle PF coils; and heat transport system in bore.

  4. Self-Organized Stationary States of Tokamaks

    SciTech Connect

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-01

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  5. Self-Organized Stationary States of Tokamaks.

    PubMed

    Jardin, S C; Ferraro, N; Krebs, I

    2015-11-20

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  6. CURRICULUM GUIDES IN PHYSICS--GENERAL ADVANCED PLACEMENT, COLLEGE LEVEL.

    ERIC Educational Resources Information Center

    WESNER, GORDON E.

    THE GENERAL PHYSICS CURRICULUM IS PLANNED FOR THOSE WHOSE GENERAL ABILITY IS BETTER THAN AVERAGE AND IS OFFERED IN GRADES 11 OR 12. GENERAL OBJECTIVES ARE, TO DEVELOP CRITICAL THINKING THROUGH THE SCIENTIFIC METHOD, TO UNDERSTAND BASIC PHYSICAL LAWS AND MAN'S PLACE IN THE UNIVERSE, AND TO DEVELOP A SCIENTIFIC ABILITY AND INTEREST. ELEVEN UNITS OF…

  7. Teachers' Views about the Nuffield Advanced Physics Course.

    ERIC Educational Resources Information Center

    Tebbutt, M. J.

    1981-01-01

    Summarizes results of a survey on teachers' views of the Nuffield A-level physics course (NAP) including, among others, course content, philosophy, examinations, organization, and individual units. Suggests that most teachers surveyed were satisfied with their NAP course. (SK)

  8. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  9. Advances in the physics basis for the European DEMO design

    NASA Astrophysics Data System (ADS)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  10. Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics

    DTIC Science & Technology

    2011-07-28

    nonequilibrium. For example, the plasma transport may transition between rarefied and continuum flow , requiring appropriate models for each case through...AFRL-AFOSR-UK-TR-2011-0023 Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics...2010 4. TITLE AND SUBTITLE Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics 5a

  11. The Efficacy of Advance Organizers and Behavioral Objectives for Improving Achievement in Physics.

    ERIC Educational Resources Information Center

    Hershman, Kenneth Eugene

    This research investigates the utility of advance organizers and behavioral objectives in a traditional introductory physics class at the college level. The advance organizer was designed to compare and contrast content to be learned with content previously studied or with assumed common knowledge. Behavioral objectives listed the expected…

  12. INTOR: a first-generation tokamak experimental reactor

    SciTech Connect

    Stacey, Jr, W M; Gilleland, J R; Kulcinski, G L; Rutherford, P H

    1980-02-01

    An intensive, year-long, international evaluation of the next major tokamak beyond the generation of large experiments currently under construction was carried out during 1979. This evaluation consisted of the definition of objectives, an assessment of the physics and technology base and R and D needs and the identification of a set of parameters that physically characterize the machine.

  13. Recent Advances in Indirect Drive ICF Target Physics

    SciTech Connect

    Hammel, B; Lindl, J; Amendt, P A; Bernat, G W; Collins, G W; Glenzer, S H; Koch, S H; Haan, S; Landen, O L; Suter, L J

    2002-10-08

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a lEnergie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization & fabrication.

  14. Recent advances in indirect drive ICF target physics at LLNL

    SciTech Connect

    Bernat, T P; Collins, G W; Haan, S; Hammel, B A; Landen, O L; MacGowan, B J; Sutter, L J

    1998-01-13

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a 1'Energie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization & fabrication.

  15. Working with Advanced Primary School Students in Physics

    NASA Astrophysics Data System (ADS)

    Jankovic, Ljiljana; Cucic, Dragoljub

    2010-01-01

    Working with students who have special needs is the type of work that requires special engagement and skills of those who perform it. Working with gifted children requires outstanding knowledge of a teacher and above all the teachers should be very well informed on the subject they teach, Physics in our case. This work also requires great pedagogical and psychological skills so that these talented students would be approached in a suitable way. In this paper we will present to you our methods of teaching Physics to these talented children (13 years old), in the Regional Center for Talents "Mihajlo Pupin" in Pancevo.

  16. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  17. The Spherical Tokamak MEDUSA for Mexico

    NASA Astrophysics Data System (ADS)

    Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.

    2011-10-01

    The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14m, a < 0.10m, BT < 0.5T, Ip < 40kA, 3ms pulse) is currently being recomissioned at the Universidad Autónoma de Nuevo León, Mexico, as part of an agreement between the Faculties of Mech.-Elect. Eng. and Phy. Sci.-Maths. The main objective for having MEDUSA is to train students in plasma physics & technical related issues, aiming a full design of a medium size device (e.g. Tokamak-T). Details of technical modifications and a preliminary scientific programme will be presented. MEDUSA-MX will also benefit any developments in the existing Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.

  18. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  19. UCLA program in reactor studies: The ARIES tokamak reactor study. Progress report, December 1, 1990--November 30, 1991

    SciTech Connect

    Not Available

    1991-12-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ``modest`` extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  20. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  1. Advanced Quantitative Measurement Methodology in Physics Education Research

    ERIC Educational Resources Information Center

    Wang, Jing

    2009-01-01

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and…

  2. Recent advances in understanding physical properties of metallurgical slags

    NASA Astrophysics Data System (ADS)

    Min, Dong Joon; Tsukihashi, Fumitaka

    2017-01-01

    Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden's rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

  3. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  4. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Industrial Physics.

    ERIC Educational Resources Information Center

    Whisenhunt, James E.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour introduction to industrial physics that explains and demonstrates to industrial maintenance mechanics the direct relationship of physics to machinery. Project TEAM is intended to upgrade basic technical competencies of…

  5. Integrating Advanced Physical Training Programs into the Marine Corps

    DTIC Science & Technology

    2009-02-20

    the CrossFit program and consequently a fee is required to participate in the CrossFit 3 P90X , Extreme Body Workout, (unknown... P90X , Extreme Body Workout n.d.) , P90X is a home based DVD workout program designed to achieve results in 90 days at a cost of $119.85. 4...PFT and is characterized by anaerobic (short burst) energy demands”.13 By coincidence, many of the advanced training programs, such as P90X , CrossFit

  6. Advanced physical-chemical life support systems research

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  7. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    PubMed

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  8. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  9. Advances in atomic physics: Four decades of contribution of the Cairo University - Atomic Physics Group.

    PubMed

    El-Sherbini, Tharwat M

    2015-09-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University - Atomic Physics Group. Starting from the late 1960s - when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.

  10. Spherical tokamaks with plasma centre-post

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2013-10-01

    The metal centre-post (MCP) in tokamaks is a structure which carries the total toroidal field current and also houses the Ohmic heating solenoid in conventional or low aspect ratio (Spherical)(ST) tokamaks. The MCP and solenoid are critical components for producing the toroidal field and for the limited Ohmic flux in STs. Constraints for a ST reactor related to these limitations lead to a minimum plasma aspect ratio of 1.4 which reduces the benefit of operation at higher betas in a more compact ST reactor. Replacing the MCP is of great interest for reactor-based ST studies since the device is simplified, compactness increased, and maintenance reduced. An experiment to show the feasibility of using a plasma centre-post (PCP) is being currently under construction and involves a high level of complexity. A preliminary study of a very simple PCP, which is ECR(Electron Cyclotron Resonance)-assisted and which includes an innovative fuelling system based on pellet injection, has recently been reported. This is highly suitable for an ultra-low aspect ratio tokamak (ULART) device. Advances on this PCP ECR-assisted concept within a ULART and the associated fuelling system are presented here, and will include the field topology for the PCP ECR-assisted scheme, pellet ablation modeling, and a possible global equilibrium simulation. VIE-ITCR, IAEA-CRP contr.17592, National Instruments-Costa Rica.

  11. Nonlinear gyrokinetic equations for tokamak microturbulence

    SciTech Connect

    Hahm, T.S.

    1988-05-01

    A nonlinear electrostatic gyrokinetic Vlasov equation, as well as Poisson equation, has been derived in a form suitable for particle simulation studies of tokamak microturbulence and associated anomalous transport. This work differs from the existing nonlinear gyrokinetic theories in toroidal geometry, since the present equations conserve energy while retaining the crucial linear and nonlinear polarization physics. In the derivation, the action-variational Lie perturbation method is utilized in order to preserve the Hamiltonian structure of the original Vlasov-Poisson system. Emphasis is placed on the dominant physics of the collective fluctuations in toroidal geometry, rather than on details of particle orbits. 13 refs.

  12. Advances in reactor physics education: Visualization of reactor parameters

    SciTech Connect

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-07-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  13. The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak

    PubMed Central

    Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei

    2014-01-01

    The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given. PMID:24892099

  14. The dynamic mutation characteristics of thermonuclear reaction in Tokamak.

    PubMed

    Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei

    2014-01-01

    The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z 2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given.

  15. Edge-localized-modes in tokamaks

    SciTech Connect

    Leonard, A. W.

    2014-09-15

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.

  16. Adaptive grid finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Kuprat, A.P.; Glasser, A.H.

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  17. Advancing the understanding of plasma transport in mid-size stellarators

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams

    2017-01-01

    The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.

  18. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  19. Advances in computed radiography systems and their physical imaging characteristics.

    PubMed

    Cowen, A R; Davies, A G; Kengyelics, S M

    2007-12-01

    Radiological imaging is progressing towards an all-digital future, across the spectrum of medical imaging techniques. Computed radiography (CR) has provided a ready pathway from screen film to digital radiography and a convenient entry point to PACS. This review briefly revisits the principles of modern CR systems and their physical imaging characteristics. Wide dynamic range and digital image enhancement are well-established benefits of CR, which lend themselves to improved image presentation and reduced rates of repeat exposures. However, in its original form CR offered limited scope for reducing the radiation dose per radiographic exposure, compared with screen film. Recent innovations in CR, including the use of dual-sided image readout and channelled storage phosphor have eased these concerns. For example, introduction of these technologies has improved detective quantum efficiency (DQE) by approximately 50 and 100%, respectively, compared with standard CR. As a result CR currently affords greater scope for reducing patient dose, and provides a more substantive challenge to the new solid-state, flat-panel, digital radiography detectors.

  20. BOOK REVIEW: New Understanding Physics for Advanced Level

    NASA Astrophysics Data System (ADS)

    Breithaupt, Jim

    2000-09-01

    Breithaupt's new book is big: at 727 pages, it will be a hefty addition to any student's bag. According to the preface, the book is designed to help students achieve the transition from GCSE to A-level and to succeed well at this level. It also aims to cover the requirements of the compulsory parts of all new syllabuses and to cover most of the optional material, too. The book is organized into seven themes along traditional lines: mechanics, materials, fields, waves, electricity, inside the atom, and physics in medicine. Each theme begins with a colourful title page that outlines what the theme is about, lists the applications that students will meet in their reading, identifies prior learning from GCSE and gives a checklist of what students should be able to do once they have finished their reading of the theme. This is all very useful. The text of the book is illustrated with many colourful photographs, pictures and cartoons, but despite this it looks very dense. There are a lot of words on every page in a small font that makes them seem very unfriendly, and although the book claims to be readable I rather doubt that the layout will encourage voluntary reading of the text. Each chapter ends with a useful summary and a selection of short questions that allow students to test their understanding. Each theme has a set of multiple choice and long questions. Some of the questions have an icon referring the student to the accompanying CD (more of this later). There is much up-to-date material in the book. For example, the section on cosmology gives a brief description of the inflationary scenario within the Big Bang model of the origin of the universe, although no mechanism for the inflation is given, which might prove unsatisfying to some students. I do have some reservations about the presentation of some topics within the book: the discussion of relativistic mass, for example, states that `Einstein showed that the mass ... is given by the formula ...' and quotes

  1. Where the girls aren't: High school girls and advanced placement physics enrollment

    NASA Astrophysics Data System (ADS)

    Barton, Susan O'brien

    During the high school years, when many students first have some choice in course selection, research indicates that girls choose to enroll in more math and science courses, take more advanced placement courses, and take more honors courses in English, biology, chemistry, mathematics, and foreign languages than ever before. Yet, not only are boys more likely to take all of the three core science courses (biology, chemistry, and physics), boys enroll in advanced placement physics approximately three times as often as do girls. This study examines the perceptions, attitudes, and aspirations of thirty high school girls enrolled in senior-level science electives in an attempt to understand their high school science course choices, and what factors were influencing them. This is a qualitative investigation employing constructivist grounded theory methods. There are two main contributions of this study. First, it presents a new conceptual and analytical framework to investigate the problem of why some high school girls do not enroll in physics coursework. This framework is grounded in the data and is comprised of three existing feminist perspectives along the liberal/radical continuum of feminist thought. Second, this study illuminates a complex set of reasons why participants avoided high school physics (particularly advanced placement physics) coursework. These reasons emerged as three broad categories related to: (a) a lack of connectedness with physics curriculum and instruction; (b) prior negative experiences with physics and math classroom climates; and (c) future academic goals and career aspirations. Taken together, the findings of this study indicate that the problem of high school girls and physics enrollment---particularly advanced placement physics enrollment---is a problem that cannot be evaluated or considered from one perspective.

  2. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  3. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    SciTech Connect

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma

  4. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    NASA Astrophysics Data System (ADS)

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-01

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST

  5. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; ...

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in

  6. Princeton Plasma Physics Laboratory:

    SciTech Connect

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  7. RAPTOR: Optimization, real-time simulation and control of the tokamak q profile evolution using a simplified transport model

    NASA Astrophysics Data System (ADS)

    Felici, Federico; Sauter, Olivier; Goodman, Timothy; Paley, James

    2010-11-01

    Control of the plasma current density and safety factor profile evolution in a tokamak is crucial for accessing advanced regimes. The evolution of the current density profile is steered by a combination of inductive voltage and auxiliary current drive actuators, and is nonlinearly coupled to the evolution of the (ion/electron) temperature and density profiles. Using appropriate simplifications, a model has been obtained which can be simulated on time scales faster than the tokamak discharge itself, but still retains the essential physics describing the nonlinear coupling between the profiles. This model, dubbed RAPTOR (Rapid Plasma Transport simulatOR) has been implemented in the new real-time control system on the TCV tokamak at CRPP, and can be used for real-time reconstruction and model-based control of the q profile. It can also be used off-line to determine optimal actuator trajectories in open loop simulations to steer the plasma profiles towards their required steady-state shapes while remaining within a constrained set of allowable profiles.

  8. Edge turbulence in tokamaks

    NASA Astrophysics Data System (ADS)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  9. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  10. Prediction of density limit disruptions on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Yan, W.; Wei, Y. N.; Ma, T. K.; Zhang, M.; Zhuang, G.

    2016-05-01

    Disruption mitigation is essential for the next generation of tokamaks. The prediction of plasma disruption is the key to disruption mitigation. A neural network combining eight input signals has been developed to predict the density limit disruptions on the J-TEXT tokamak. An optimized training method has been proposed which has improved the prediction performance. The network obtained has been tested on 64 disruption shots and 205 non-disruption shots. A successful alarm rate of 82.8% with a false alarm rate of 12.3% can be achieved at 4.8 ms prior to the current spike of the disruption. It indicates that more physical parameters than the current physical scaling should be considered for predicting the density limit. It was also found that the critical density for disruption can be predicted several tens of milliseconds in advance in most cases. Furthermore, if the network is used for real-time density feedback control, more than 95% of the density limit disruptions can be avoided by setting a proper threshold.

  11. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  12. Probing the scale of new physics by Advanced LIGO/VIRGO

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mazumdar, A.

    2016-05-01

    We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.

  13. Tight aspect ratio tokamak experiments and prospects for the future

    SciTech Connect

    Sykes, A; Peng, Yueng Kay Martin

    1995-01-01

    The present status of experimental results from low aspect ratio tokamaks is described, together with plans for physics experiments at the mega-amp level. Further development of the concept, and its potential for a materials/component test facility or ultimately a fusion power plant, are indicated.

  14. Kinetic Energy Principle And Neoclassical Toroidal Torque In Tokamaks

    SciTech Connect

    Jong-Kyu Park

    2011-11-07

    It is shown that when tokamaks are perturbed the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the Neoclassical Toroidal Viscosity (NTV). A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy

  15. Tokamak building-design considerations for a large tokamak device

    SciTech Connect

    Barrett, R.J.; Thomson, S.L.

    1981-01-01

    Design and construction of a satisfactory tokamak building to support FED appears feasible. Further, a pressure vessel building does not appear necessary to meet the plant safety requirements. Some of the building functions will require safety class systems to assure reliable and safe operation. A rectangular tokamak building has been selected for FED preconceptual design which will be part of the confinement system relying on ventilation and other design features to reduce the consequences and probability of radioactivity release.

  16. Self-Organized Stationary States of Tokamaks

    SciTech Connect

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-17

    We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to non-linearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary non-sawtoothing “hybrid” discharges, often referred to as “flux-pumping”.

  17. Overview of the Compact Ignition tokamak

    SciTech Connect

    Flanagan, C. A.; Peng, Yueng Kay Martin

    1986-01-01

    The Compact Ignition Tokamak (CIT) mission is to achieve ignition and provide the capability to experimentally study burning plasma behavior. A national team has developed a baseline concept including definition of the necessary research and development. The baseline concept satisfies the physics performance objectives established for the project and complies with defined design specifications. To ensure that the mission is achieved, the design requires large magnetic fields on axis (10 T) and use of large plasma currents (10 MA). The design is capable of accommodating significant auxiliary heating to enter the ignited regime. The CIT is designed to operate in plasma parameter regimes that a are directly relevant to future fusion power reactors.

  18. Recent advances in the link between physical activity, sedentary behavior, physical fitness, and colorectal cancer

    PubMed Central

    Namasivayam, Vikneswaran; Lim, Sam

    2017-01-01

    Physical inactivity is a well-established risk factor for colorectal cancer (CRC). Recent studies have characterized physical activity (PA), sedentary behavior, and cardiorespiratory fitness as distinct, interrelated constructs that influence the risk of CRC and related outcomes. PA levels required to confer protection against CRC may be higher than previously thought. Sedentary behavior, defined as time spent sitting, increases CRC risk independent of PA and may require novel interventions distinct from those targeting PA. Finally, cardiorespiratory fitness is inversely associated with CRC risk and mortality and may provide a potential tool for risk stratification and intervention. PMID:28344777

  19. Ripple-induced energetic particle loss in tokamaks

    NASA Astrophysics Data System (ADS)

    White, R. B.; Goldston, R. J.; Redi, M. H.; Budny, R. V.

    1996-08-01

    The threshold for stochastic transport of high energy trapped particles in a tokamak due to toroidal field ripple is calculated by explicit construction of primary resonances, and a numerical examination of the route to chaos. Critical field ripple amplitude is determined for loss. The expression is given in magnetic coordinates and makes no assumptions regarding shape or up-down symmetry. An algorithm is developed including the effects of prompt axisymmetic orbit loss, ripple trapping, convective banana flow, and stochastic ripple loss, which gives accurate ripple loss predictions for representative Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Phys. Controlled Fusion 33, 1509 (1991)] and International Thermonuclear Experimental Reactor [K. Tomabechi, Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1989), Vol. 3, p. 214] equilibria. The algorithm is extended to include the effects of collisions and drag, allowing rapid estimation of alpha particle loss in tokamaks.

  20. Prospects and status of low-aspect-ratio tokamaks

    SciTech Connect

    Peng, Y.K.M.

    1994-12-31

    The prospects for the low-aspect-ratio (A) tokamak to fulfill the requirements of viable fusion power plants are considered relative to the present status in data and modeling. Desirable physics and design features for an attractive Blanket Test Facility and power reactors are estimated for low-A tokamaks based on calculations improved with the latest data from small pioneering experiments. While these experiments have confirmed some of the recent predictions for low-A, they also identify the remaining issues that require verification before reliable projections can be made for these deuterium-tritium applications. The results show that the low-A regime of small size, modest field, and high current offers a path complementary to the standard and high A tokamaks in developing the full potential of fusion power.

  1. Runaway electrons in a tokamak: A free-electron maser

    SciTech Connect

    Kurzan, B.; Steuer, K.

    1997-04-01

    In ohmic divertor plasma discharges of the ASDEX upgrade tokamak containing a small population of runaway electrons, fluctuating emission in the microwave region with a very narrow bandwidth is observed. The radiation can be explained by relativistic runaway electrons, which are captured in a ripple resonance of the tokamak and are thus made monoenergetic enough that they can undergo the collective instability of a free-electron maser. From the frequency of the maser, the energy of the runaway electrons, and from the linewidth and energy per radiation pulse, the particle density of the runaway electrons is determined locally. Observing this maser radiation is thus a different diagnostic for runaway electrons in tokamaks. {copyright} {ital 1997} {ital The American Physical Society}

  2. Short Animation Movies as Advance Organizers in Physics Teaching: A Preliminary Study

    ERIC Educational Resources Information Center

    Koscianski, Andre; Ribeiro, Rafael Joao; da Silva, Sani Carvalho Rutz

    2012-01-01

    Background: Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose: The study aimed to determine guidelines for the…

  3. Advanced Swimming, Phase One--Swimmer; Physical Education: 5551.48.

    ERIC Educational Resources Information Center

    Gutting, Dick

    GRADES OR AGES: Grades 7-12. SUBJECT MATTER: Advanced swimming. ORGANIZATION AND PHYSICAL APPEARANCE: The first five sections of the guide list course guidelines, course description, broad goal statement, behavioral objectives, course content, learning activities, and teaching procedures. The guide also contains evaluation forms and a five-item…

  4. Physical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the second of six modules in advanced crop and soil science and introduces the agriculture student to the subject of physical features of the soil. Upon completing the two day lesson, the student will be able to determine the texture and structural types of soil, list the structural classes of the soil and where they…

  5. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  6. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Turner, W. C.; Allen, S. L.; Byers, J. A.; Felker, B.; Fenstermacher, M. E.; Ferguson, S. W.; Hooper, E. G.; Thomassen, K. I.; Throop, A. L.

    1990-08-01

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single RF pulses generated using the ETA-2 accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50 cm diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5 kHz pulse rate, and bar P is greater than 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW CW or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of RF generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating.

  7. The Spherical Tokamak MEDUSA for Costa Rica

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso; Vargas, Ivan; Guadamuz, Saul; Mora, Jaime; Ansejo, Jose; Zamora, Esteban; Herrera, Julio; Chaves, Esteban; Romero, Carlos

    2012-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R<0.14m, a<0.10m, BT<0.5T, Ip<40kA, 3ms pulse)[1] is in a process of donation to Costa Rica Institute of Technology. The main objective of MEDUSA is to train students in plasma physics /technical related issues which will help all tasks of the very low aspect ratio stellarator SCR-1(A≡R/>=3.6, under design[2]) and also the ongoing activities in low temperature plasmas. Courses in plasma physics at undergraduate and post-graduate joint programme levels are regularly conducted. The scientific programme is intend to clarify several issues in relevant physics for conventional and mainly STs, including transport, heating and current drive via Alfv'en wave, and natural divertor STs with ergodic magnetic limiter[3,4]. [1] G.D.Garstka, PhD thesis, University of Wisconsin at Madison, 1997 [2] L.Barillas et al., Proc. 19^th Int. Conf. Nucl. Eng., Japan, 2011 [3] C.Ribeiro et al., IEEJ Trans. Electrical and Electronic Eng., 2012(accepted) [4] C.Ribeiro et al., Proc. 39^th EPS Conf. Contr. Fusion and Plasma Phys., Sweden, 2012

  8. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    SciTech Connect

    Not Available

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  9. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    NASA Astrophysics Data System (ADS)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  10. NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK

    SciTech Connect

    WALKER, ML; FERRON, JR; HUMPHREYS, DA; JOHNSON, RD; LEUER, JA; PENAFLOR, BG; PIGLOWSKI, DA; ARIOLA, M; PIRONTI, A; SCHUSTER, E

    2002-10-01

    OAK A271 NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK. The advanced tokamak (AT) operating mode which is the principal focus of the DIII-D tokamak requires highly integrated and complex plasma control. Simultaneous high performance regulation of the plasma boundary and internal profiles requires multivariable control techniques to account for the highly coupled influences of equilibrium shape, profile, and stability control. This paper describes progress towards the DIII-D At mission goal through both significantly improved real-time computational hardware and control algorithm capability.

  11. Bootstrap current in a tokamak

    SciTech Connect

    Kessel, C.E.

    1994-03-01

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.

  12. The Thor tokamak experiment

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Bonizzoni, G.; Cirant, S.; Corti, S.; Grosso, G.; Lampis, G.; Rossi, L.; Carretta, U.; Jacchia, A.; de Luca, F.

    1981-06-01

    The principle characteristics of plasma discharges produced in Thor tokamak experiments are discussed. The equilibrium and stability characteristics of the plasma produced are considered, with attention given to the density limits and critical streaming parameter for stable operation. The temporal evolution of the main plasma parameters, including electron density, electron temperature distribution, hard X-ray emission from suprathermal electrons, neutral gas influx, plasma density and Ohmic heating efficiency, is then examined, with particular emphasis on means used to control the electron runaway. The results achieved are noted to have demonstrated the possibility of controlling both plasma equilibrium and discharge regime, and further improvements expected by the use of more efficient preionization, gas puffing and feedback poloidal control of column position are indicated.

  13. Physical activity in patients with advanced-stage cancer: a systematic review of the literature.

    PubMed

    Albrecht, Tara A; Taylor, Ann Gill

    2012-06-01

    The importance of physical activity for chronic disease prevention and management has become generally well accepted. The number of research interventions and publications examining the benefits of physical activity for patients with cancer has been rising steadily. However, much of that research has focused on the impact of physical activity either prior to or early in the cancer diagnosis, treatment, and survivorship process. Research focusing on the effects of physical activity, specifically for patients with advanced-stage cancer and poorer prognostic outcomes, has been addressed only recently. The purpose of this article is to examine the state of the science for physical activity in the advanced-stage disease subset of the cancer population. Exercise in a variety of intensities and forms, including yoga, walking, biking, and swimming, has many health benefits for people, including those diagnosed with cancer. Research has shown that, for people with cancer (including advanced-stage cancer), exercise can decrease anxiety, stress, and depression while improving levels of pain, fatigue, shortness of breath, constipation, and insomnia. People diagnosed with cancer should discuss with their oncologist safe, easy ways they can incorporate exercise into their daily lives.

  14. Physics of Spherical Torus Plasmas

    SciTech Connect

    Peng, Yueng Kay Martin

    2000-01-01

    Broad and important progress in plasma tests, theory, new experiments, and future visions of the spherical torus (ST, or very low aspect ratio tokamaks) have recently emerged. These have substantially improved our understanding of the potential properties of the ST plasmas, since the preliminary calculation of the ST magnetohydrodynamic equilibria more than a decade ago. Exciting data have been obtained from concept exploration level ST experiments of modest capabilities (with major radii up to 35 cm), making important scientific contributions to toroidal confinement in general. The results have helped approval and construction of new and/or more powerful ST experiments, and stimulated an increasing number of theoretical calculations of interest to magnetic fusion energy. Utilizing the broad knowledge base from the successful tokamak and advanced tokamak research, a wide range of new ST physics features has been suggested. These properties of the ST plasma will be tested at the 1 MA level with major radius up to similar to 80 cm in the new proof of principle devices National Spherical Torus Experiment (NSTX, U.S.) [M. Peng , European Conf. Abst. 22C, 451 (1998); S. M. Kaye , Fusion Technol. 36, 16 (1999); M. Ono , "Exploration of Spherical Torus Physics in the NSTX Device," 17th IAEA Fusion Energy Conf., paper IAEA-CN-69/ICP/01 (R), Yokohama, Japan (1998)], Mega Ampere Spherical Tokamak (MAST, U.K.) [A. C. Darke , Fusion Technol. 1, 799 (1995); Q. W. Morris , Proc. Int. Workshop on ST (Ioffe Inst., St. Petersburg, 1997), Vol. 1, p. 290], and Globus-M (R.F.) [V. K. Gusev , European Conf. Abst. 22C, 576 (1998)], which have just started full experimental operation. New concept exploration experiments, such as Pegasus (University of Wisconsin) [R. Fonck and the PEGASUS Team, Bull. Am. Phys. Soc. 44, 267 (1999)], Helicity Injected Tokamak-II (HIT-II, University of Washington) [T. R. Jarboe , Phys. Plasmas 5, 1807 (1998)], and Current Drive Experiment-Upgrade (CDX

  15. HL-2A tokamak disruption forecasting based on an artificial neural network

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Ai-Ke; Yang, Qing-Wei; Ding, Xuan-Tong; Dong, Jia-Qi; H, Sanuki; H, Itoh

    2007-12-01

    Artificial neural networks are trained to forecast the plasma disruption in HL-2A tokamak. Optimized network architecture is obtained. Saliency analysis is made to assess the relative importance of different diagnostic signals as network input. The trained networks can successfully detect the disruptive pulses of HL-2A tokamak. The results obtained show the possibility of developing a neural network predictor that intervenes well in advance for avoiding plasma disruption or mitigating its effects.

  16. [Fusion research/tokamak]. Final report, 1 May 1988--30 April 1994

    SciTech Connect

    1994-12-31

    The objectives of the Fusion Research Center Program are: (1) to advance /the transport studies of tokamaks, including the development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for the text-upgrade tokamak. Work is described on five basic categories: (1) magnetic fusion energy database; (2) computational support and numerical modeling; (3) support for TEXT-upgrade and diagnostics; (4) transport studies; and (5) Alfven waves.

  17. Strategies for Advancing Women in Physics and other Sciences in an Undergraduate Hispanic Institution (abstract)

    NASA Astrophysics Data System (ADS)

    Ramos, Idalia

    2009-04-01

    For the past 15 years, University of Puerto Rico at Humacao (UPRH) has implemented various efforts to increase participation and promote advancement of women in physics and other sciences. The strategies used include mentoring, collaborating, forming women's organizations, and offering training workshops. The physics program at UPRH is the largest in Puerto Rico with approximately 95 undergraduates. Since 1995, female students in the program have increased from 17% to 32%. Efforts to integrate women in undergraduate research as early as possible in their studies show promising results, with the percentage of women in research increasing from 13% to 60% in the last 13 years. The Faculty in Training (FIT) program, begun in 2003, has supported talented women students interested in academic careers. The first FIT physics student will obtain her PhD in 2009. At the faculty level, UPRH received a first-round US National Science Foundation ADVANCE Institutional Transformation Award in 2001. The ADVANCE legacy at UPRH is evident at levels ranging from changes in individual behaviors to the adoption of institutional policies. A strong network of women in science and their supporters continues to advance this legacy.

  18. How Gender and Reformed Introductory Physics Impacts Student Success in Advanced Physics Courses and Continuation in the Physics Major

    ERIC Educational Resources Information Center

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-01-01

    Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., "Proc. Natl. Acad. Sci. U.S.A. 111," 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of…

  19. Advanced stellarator power plants

    SciTech Connect

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  20. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  1. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  2. Innovative experimental particle physics through technological advances: Past, present and future

    SciTech Connect

    Cheung, Harry W.K.; /Fermilab

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  3. Fractal structure of films deposited in a tokamak

    SciTech Connect

    Budaev, V. P.; Khimchenko, L. N.

    2007-04-15

    The surface of amorphous films deposited in the T-10 tokamak was studied in a scanning tunnel microscope. The surface relief on a scale from 10 nm to 100 {mu}m showed a stochastic surface topography and revealed a hierarchy of grains. The observed variety of irregular structures of the films was studied within the framework of the concept of scale invariance using the methods of fractal geometry and statistical physics. The experimental probability density distribution functions of the surface height variations are close in shape to the Cauchy distribution. The stochastic surface topography of the films is characterized by a Hurst parameter of H = 0.68-0.85, which is evidence of a nontrivial self-similarity of the film structure. The fractal character and porous structure of deposited irregular films must be considered as an important issue related to the accumulation of tritium in the ITER project. The process of film growth on the surface of tokamak components exposed to plasma has been treated within the framework of the general concept of inhomogeneous surface growth. A strong turbulence of the edge plasma in tokamaks can give rise to fluctuations in the incident flux of particles, which leads to the growth of fractal films with grain dimensions ranging from nano-to micrometer scale. The shape of the surface of some films found in the T-10 tokamak has been interpreted using a model of diffusion-limited aggregation (DLA). The growth of films according to the discrete DLA model was simulated using statistics of fluctuations observed in a turbulent edge plasma of the T-10 tokamak. The modified DLA model reproduces well the main features of the surface of some films deposited in tokamaks.

  4. Tokamak magneto-hydrodynamics and reference magnetic coordinates for simulations of plasma disruptions

    SciTech Connect

    Zakharov, Leonid E.; Li, Xujing

    2015-06-15

    This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.

  5. Deuterium-Tritium Simulations of the Enhanced Reversed Shear Mode in the Tokamak Fusion Test Reactor

    SciTech Connect

    Mikkelsen, D.R.; Manickam, J.; Scott, S.D.; Zarnstorff

    1997-04-01

    The potential performance, in deuterium-tritium plasmas, of a new enhanced con nement regime with reversed magnetic shear (ERS mode) is assessed. The equilibrium conditions for an ERS mode plasma are estimated by solving the plasma transport equations using the thermal and particle dif- fusivities measured in a short duration ERS mode discharge in the Tokamak Fusion Test Reactor [F. M. Levinton, et al., Phys. Rev. Letters, 75, 4417, (1995)]. The plasma performance depends strongly on Zeff and neutral beam penetration to the core. The steady state projections typically have a central electron density of {approx}2:5x10 20 m{sup -3} and nearly equal central electron and ion temperatures of {approx}10 keV. In time dependent simulations the peak fusion power, {approx} 25 MW, is twice the steady state level. Peak performance occurs during the density rise when the central ion temperature is close to the optimal value of {approx} 15 keV. The simulated pressure profiles can be stable to ideal MHD instabilities with toroidal mode number n = 1, 2, 3, 4 and {infinity} for {beta}{sub norm} up to 2.5; the simulations have {beta}{sub norm} {le} 2.1. The enhanced reversed shear mode may thus provide an opportunity to conduct alpha physics experiments in conditions imilar to those proposed for advanced tokamak reactors.

  6. Understanding L–H transition in tokamak fusion plasmas

    NASA Astrophysics Data System (ADS)

    Guosheng, XU; Xingquan, WU

    2017-03-01

    This paper reviews the current state of understanding of the L–H transition phenomenon in tokamak plasmas with a focus on two central issues: (a) the mechanism for turbulence quick suppression at the L–H transition; (b) the mechanism for subsequent generation of sheared flow. We briefly review recent advances in the understanding of the fast suppression of edge turbulence across the L–H transition. We uncover a comprehensive physical picture of the L–H transition by piecing together a number of recent experimental observations and insights obtained from 1D and 2D simulation models. Different roles played by diamagnetic mean flow, neoclassical-driven mean flow, turbulence-driven mean flow, and turbulence-driven zonal flows are discussed and clarified. It is found that the L–H transition occurs spontaneously mediated by a shift in the radial wavenumber spectrum of edge turbulence, which provides a critical evidence for the theory of turbulence quench by the flow shear. Remaining questions and some key directions for future investigations are proposed. This work was supported by National Magnetic Confinement Fusion Science Program of China under Contracts No. 2015GB101000, No. 2013GB106000, and No. 2013GB107000 and National Natural Science Foundation of China under Contracts No. 11575235 and No. 11422546.

  7. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  8. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  9. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  10. Resistive instabilities in tokamaks

    SciTech Connect

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.

  11. Status of tokamak experiments

    SciTech Connect

    Wolf, G.H.

    1996-03-01

    Plasma-wall interaction, heat removal and ash exhaust have emerged as the dominant problems still to be solved in order to achieve ignition and - even more difficult - to maintain a state of self-sustained thermo-nuclear burn. This is of particular delicacy, since those operational regimes which yield the best energy confinement correspond to an even better particle confinement and confinement of impurities, which then tend to accumulate in the plasma core and to result in disruption or degradation of the tokamak discharge. Therefore, plasma-wall interaction, heat removal and particle exhaust will determine not only the structure and configuration of the plasma edge region, of the wall system and of the materials facing the plasma, but also the final choice of useful confinement regimes. Moreover, the potential effect of powerful {alpha}-particle heating on plasma stability and confinement has to be kept below critical values. For the latter requirement, a final answer can only be obtained in an ITER-type device where ignition and burn will become accessible. 72 refs., 12 figs.

  12. Toroidal Alfven Waves in Advanced Tokamaks

    NASA Astrophysics Data System (ADS)

    Berk, Herbert L.

    2003-10-01

    In burning plasma experiments, alpha particles have speeds that readily resonate with shear Alfven waves. It is essential to understand this Alfven wave spectrum for toroidal plasma confinement. Most interest has focused on the Toroidal Alfven Eigenmode (TAE), and a method of analysis has been developed to understand the structure of this mode at a flux surface with a given magnetic shear. However, this model fails when the shear is too low or reversed. In this case a new method of analysis is required, which must incorporate novel fluid-like effects from the energetic particles [1] and also include effects that are second order in the inverse toroidal aspect ratio. With this new method [2] we can obtain spectral features that agree with experimental results. In particular, this theory gives an explanation for the so-called Cascade modes that have been observed in JT-60 [3], JET [4], and TFTR [5]. For these Cascade modes, slow upward frequency sweeping is observed, beginning from frequencies below the TAE range but then often blending into the TAE range of frequencies. The theoretical understanding of the Cascades modes has evolved to the point where these modes can be used as a diagnostic "signature" [6] to experimentally optimize the formation of thermal barriers in reversed-shear operation when the minimum q value is an integer. [1] H. L. Berk et al., Phys. Rev. Lett. 87, 185 (2002). [2] B. N. Breizman et al., submitted to Phys. Plasmas (2003). [3] H. Kimura et al., Nucl. Fusion 38, 1303 (1998). [4] S. Sharapov et al., Phys. Lett. A 289, 127 (2001); S. Sharapov, Phys. Plasmas 9, 2027 (2002). [5] R. Nazikian, H. L. Berk, et al., Bull. Am. Phys. Soc. 47, 327 (2002). [6] E. Joffrin et al., Plasma Phys. Contr. Fusion 44, 1739 (2002); E. Joffrin et al., in Proc. 2002 IAEA Fusion Energy Conference, submitted to Nucl. Fusion.

  13. Mirnov Coil Analysis by Singular Value Decomposition Method in IR-T1 Tokamak

    NASA Astrophysics Data System (ADS)

    Salemi, Mohammad K.; Saadat, Shervin; Ghoranneviss, Mahmoud; Tabadar, Alireza

    2010-10-01

    The spatial and temporal structures of magnetic signal in the tokamak is analyzed using recently developed singular value decomposition (SVD) technique to determine the structure of current perturbation as the discharge progresses. In this work we use SVD technique for that purpose in IR-T1 tokamak.ootnotetextC. Nardonet, ``Multichannel Fluctuation Data Analysis By The Singular Value Decomposition Method Application To MHD Modes In Jet,'' Plasma Physics & Controlled Fusion, V. 34, No. 9, 1992, 1447-1465

  14. SOFTWARE REVIEW: The Advanced Physics Virtual Laboratory Series: CD-ROM Thermodynamics and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Dobson, Ken

    1998-09-01

    The program installed easily although the inexperienced might be as terrified as I was by the statements threatening to delete various files it had found on my machine. However, I ignored these and all went well. The user is faced with a menu of 14 simulations covering molecular topics such as the Kinetic Model of an Ideal Gas, Diffusion (through a variable diameter aperture) and a Semi-permeable Membrane, the Maxwell Distribution and Brownian Motion. Thermodynamics is covered by simulations of ideal-gas behaviour at constant pressure, volume and temperature. This is extended to deal with adiabatic changes, the work done by and on a gas, specific heats, work cycles, and to the behaviour of real gases in evaporation and condensation. Finally there are short video-clips of actual experiments showing gas and vapour behaviour. Each simulation is displayed in a `picture window' which gives a qualitative display of how molecules are moving in a container, or how a parameter changes as conditions are varied, as appropriate. Attached (somewhat loosely as it turned out) to these are relevant graphs showing how the important variables such as temperature, volume and pressure change as conditions are changed. The simulations are dynamic and set off by clicking on a RUN button. The simulation can be stopped at any stage and reset to change parameters. It is easy to change the conditions of the simulation by moving sliders along a scale. I particularly liked the simulations of molecular behaviour and the isotherms of a real gas - an ideal case for animation. Each simulation has a short spoken commentary which you can switch in, a brief drop-down text describing the simulation, and a single question. This is where, I felt, things started to go wrong. The simulation displays are informative and give a good visual impression of a part of physics that students find abstract and difficult. But the supporting commentary and text are much too thin for, say, `supported self

  15. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  16. Predicting temperature and density profiles in tokamaks

    SciTech Connect

    Bateman, G.; Kritz, A.H.; Kinsey, J.E.; Redd, A.J.; Weiland, J.

    1998-05-01

    A fixed combination of theory-based transport models, called the Multi-Mode Model, is used in the BALDUR [C. E. Singer {ital et al.}, Comput. Phys. Commun. {bold 49}, 275 (1988)] transport simulation code to predict the temperature and density profiles in tokamaks. The choice of the Multi-Mode Model has been guided by the philosophy of using the best transport theories available for the various modes of turbulence that dominate in different parts of the plasma. The Multi-Mode model has been found to provide a better match to temperature and density profiles than any of the other theory-based models currently available. A description and partial derivation of the Multi-Mode Model is presented, together with three new examples of simulations of the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire {ital et al.}, Phys. Plasmas {bold 2}, 2176 (1995)]. The first simulation shows the strong effect of recycling on the ion temperature profile in TFTR supershot simulations. The second simulation explores the effect of a plasma current ramp{emdash}where the plasma energy content changes slowly on the energy confinement time scale. The third simulation shows that the Multi-Mode Model reproduces the experimentally measured profiles when tritium is used as the hydrogenic isotope in L-mode (low confinement mode) plasmas. {copyright} {ital 1998 American Institute of Physics.}

  17. Gyrokinetic simulation of microturbulence in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Zhang, Taige; Zhao, Chen

    2014-10-01

    A complete understanding of anomalous transport is critical for designing future magnetic fusion reactors. It is generally accepted that the micro-scale turbulence leads to anomalous transport. For low beta toroidal plasmas, the electrostatic modes may dominate and ion temperature gradient (ITG) mode and trapped electron mode (TEM) are two very important candidates accounting for ion and electron turbulent transport respectively. Recently the massively parallel gyrokinetic simulation has emerged as a major tool to investigate the nonlinear physics of the turbulent transport. The newly-developed capabilities enable the gyrokinetic code GTC to simulate the turbulent transport for real tokamak plasma shape and profiles. These capabilities include a new gyrokinetic Poisson solver and zonal flow solver suitable for general plasma shape and profiles, improvements on the conventional four-point gyroaverage and newly-developed nonuniform initial marker loading. The GTC code is now able to import experimental plasma profiles and equilibrium magnetic field that come from the EFIT or TRANSP equilibrium reconstruction. Linear and nonlinear gyrokinetic simulations are carried out with the new capabilities in GTC for the electron coherent mode (ECM) recently observed in the EAST tokamak (EAST shot # 38300). We found that in the pedestal region with strong electron temperature gradient, the unstable waves propagate in the electron diamagnetic direction, showing a trapped electron mode (TEM) feature. It is also found in the collisionless limit, the linear mode frequency is higher than that from the experiment.

  18. A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks

    NASA Astrophysics Data System (ADS)

    Windsor, C. G.; Pautasso, G.; Tichmann, C.; Buttery, R. J.; Hender, T. C.; EFDA Contributors, JET; ASDEX Upgrade Team

    2005-05-01

    First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just seven normalized plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 s before the disruption. The converse test led to a 69% success rate in advance of 0.04 s before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET, 86%; ASDEX Upgrade, 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross-machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development might help to reduce disruption frequency and minimize the need for a large disruption campaign to train disruption avoidance systems.

  19. Equilibrium properties on the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Qian, J. P.; Wan, B. N.; Lao, L. L.; Shen, B.; Sabbagh, S. A.; Menard, J.; Sun, Y. W.; Duan, Y. M.; Li, J. H.; Xiao, B. J.; Gong, X. Z.; Gong

    2009-06-01

    The Experimental Advanced Superconducting Tokamak (EAST) has a major radius of R0 = 1.75 m and a midplane halfwidth of 0.5 m. It has been operated with a toroidal magnetic field B0 = 2 T and Ip ≤ 500 kA. The evolution of the plasma equilibrium is analysed between discharges by Equilibrium Fitting Code (EFIT). Limiter, single-null and double-null diverted configurations have been produced. A plasma elongation in the range 1.3 ≤ κ ≤ 1.9 and a triangularity in the range 0.1 ≤ δ ≤ 0.55 have been sustained. The operation space of elongated discharges is also presented based on the EAST database.

  20. Short animation movies as advance organizers in physics teaching: a preliminary study

    NASA Astrophysics Data System (ADS)

    Koscianski, André; João Ribeiro, Rafael; Carvalho Rutz da Silva, Sani

    2012-11-01

    Background : Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose : The study aimed to determine guidelines for the construction of an instructional short animation movie, with the role of an advance organizer. A film was created in order to evaluate the effectiveness of the approach, making part of a physics lesson and concerning the subject 'moment of a force'. Sample : The study took place in a Brazilian school in the city of Arapoti, in the south region of the country. Thirty-eight students participated, having an average age of 16 and following the third year of high school. Design and methods : Criteria drawn from a literature review directed the construction of the movie and the lesson. Data were collected using pre- and post-tests; registers of oral comments were also done during the class. The post-test included open-ended questions, allowing students to write remarks concerning the lesson and the animation. Conclusions : The article describes steps and guidelines to orient the process of designing an animation movie with the role of advance organizer. Data indicated that the movie facilitated the construction of links between pre-existent knowledge and the new information presented in the lesson. The proposed methodology can be considered a valid framework to derive similar approaches.

  1. Reducing anxiety and enhancing physical performance by using an advanced version of EMDR: a pilot study

    PubMed Central

    Rathschlag, Marco; Memmert, Daniel

    2014-01-01

    Background The main aim of this pilot study was to investigate an advanced version of eye movement desensitization and reprocessing (EMDR) for reducing anxiety. Methods Fifty participants were asked at two times of measurement (T1 and T2 with a rest of 4 weeks) to generate anxiety via the recall of autobiographical memories according to their anxiety. Furthermore, the participants were randomly assigned to an experimental group and a control group, and the experimental group received an intervention of 1–2 h with the advanced version of EMDR in order to their anxiety 2 weeks after T1. At T1 as well as T2, we measured the intensity of participants' anxiety with a Likert scale (LS) and collected participants' state (temporary) and trait (chronic) anxiety with the State-Trait Anxiety Inventory (STAI). In addition, we measured participants' physical performance in a test for the finger musculature under the induction of their anxiety. Results The results showed that participant's ratings of their perceived intensity of anxiety (measured by a 9-point LS) and the state and trait anxiety decreased significantly in the experimental group but not in the control group from T1 to T2. Moreover, the physical performance under the induction of participants' anxiety increased significantly in the experimental group from T1 to T2 and there were no significant changes in the control group. Conclusions The study could show that the advanced version of EMDR is an appropriate method to reduce anxiety. PMID:24944864

  2. Controlling fusion yield in tokamaks with spin polarized fuel, and feasibility studies on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; ...

    2015-09-21

    The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here asmore » an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.« less

  3. Controlling fusion yield in tokamaks with spin polarized fuel, and feasibility studies on the DIII-D tokamak

    SciTech Connect

    Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; Sandorfi, Andy M.; Smith, S. P.; Wei, Xiangdong

    2015-09-21

    The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here as an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.

  4. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.; Poore III, Willis P.; Muhlheim, Michael David

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  5. Recent Advances in Free-Living Physical Activity Monitoring: A Review

    PubMed Central

    Andre, David; Wolf, Donna L.

    2007-01-01

    It has become clear recently that the epidemic of type 2 diabetes sweeping the globe is associated with decreased levels of physical activity and an increase in obesity. Incorporating appropriate and sufficient physical activity into one's life is an essential component of achieving and maintaining a healthy weight and overall health, especially for those with type II diabetes mellitus. Regular physical activity can have a positive impact by lowering blood glucose, helping the body to be more efficient at using insulin. There are other substantial benefits for patients with diabetes, including prevention of cardiovascular disease, hyperlipidemia, hypertension, and obesity. Several complications of utilizing a self-care treatment methodology involving exercise include (1) patients may not know how much activity that they engage in and (2) health-care providers do not have objective measurements of how much activity their patients perform. However, several technological advances have brought a variety of activity monitoring devices to the market that can address these concerns. Ranging from simple pedometers to multisensor devices, the different technologies offer varying levels of accuracy, comfort, and reliability. The key notion is that by providing feedback to the patient, motivation can be increased and targets can be set and aimed toward. Although these devices are not specific to the treatment of diabetes, the importance of physical activity in treating the disease makes an understanding of these devices important. This article reviews these physical activity monitors and describes the advantages and disadvantages of each. PMID:19885145

  6. Advances of Yemeni women in physics: Climbing toward a better status

    NASA Astrophysics Data System (ADS)

    Fakhraddin, S.; Alsowidi, N. A.

    2013-03-01

    In the three years since the last IUPAP Women in Physics Conference in 2008, the overall status of women in physics in Yemen has improved. The enrollment of women in the Department of Physics at Sana'a University has increased at both the undergraduate and graduate levels. At the graduate level, female enrollment has been equal to (50%) or greater than (57%) male enrollment in recent years. In addition, four of the leading state universities already have female faculty members with a PhD in physics who hold the title of assistant professor or better. These women in academia have made remarkable progress by publishing their work in distinctive journals as well as by winning national and regional scientific awards. We can be rather satisfied with the overall advances of Yemeni women in physics, as well, at every step up the academic ladder, but we simultaneously acknowledge their significant underrepresentation in the highest scientific positions as well as in decision-making positions at the faculty or administrative level of universities.

  7. An enhanced tokamak startup model

    NASA Astrophysics Data System (ADS)

    Goswami, Rajiv; Artaud, Jean-François

    2017-01-01

    The startup of tokamaks has been examined in the past in varying degree of detail. This phase typically involves the burnthrough of impurities and the subsequent rampup of plasma current. A zero-dimensional (0D) model is most widely used where the time evolution of volume averaged quantities determines the detailed balance between the input and loss of particle and power. But, being a 0D setup, these studies do not take into consideration the co-evolution of plasma size and shape, and instead assume an unchanging minor and major radius. However, it is known that the plasma position and its minor radius can change appreciably as the plasma evolves in time to fill in the entire available volume. In this paper, an enhanced model for the tokamak startup is introduced, which for the first time takes into account the evolution of plasma geometry during this brief but highly dynamic period by including realistic one-dimensional (1D) effects within the broad 0D framework. In addition the effect of runaway electrons (REs) has also been incorporated. The paper demonstrates that the inclusion of plasma cross section evolution in conjunction with REs plays an important role in the formation and development of tokamak startup. The model is benchmarked against experimental results from ADITYA tokamak.

  8. High Energy Particles in Tokamaks

    SciTech Connect

    White, R. B.

    2008-05-14

    This lecture covers the derivation of guiding center equations in a tokamak, orbit classification, the effect of magnetic perturbations and ripple, the interaction of particles with magnetohydrodynamic modes, including passing particle resonance, toroidal Alfven mode drive and saturation, the fishbone mode, and sawtooth stabilization.

  9. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  10. Off-axis electron cyclotron heating and the sandpile paradigm for transport in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    March, T. K.; Chapman, S. C.; Dendy, R. O.; Merrifield, J. A.

    2004-02-01

    Previous observations that suggest a substantial role for nondiffusive energy transport in tokamaks subjected to off-axis electron cyclotron heating (ECH) are compared to the output from a sandpile model. The observations considered include local and global aspects of temperature profile evolution in the DIII-D [for example, C. C. Petty and T. C. Luce, Nucl. Fusion 34, 121 (1994)] and RTP (Rijnhuizen Tokamak Project) [for example, M. R. de Baar, M. N. A. Beurskens, G. M. D. Hogeweij, and N. J. Lopes Cardozo, Phys. Plasmas 6, 4645 (1999)] tokamaks. The sandpile model employed is an extension, to incorporate noncentral fueling, of one used previously to address tokamak physics issues [S. C. Chapman, R. O. Dendy, and B. Hnat, Phys. Rev. Lett. 86, 2814 (2001)]. It is found that there are significant points of resemblance between the phenomenology of the noncentrally fueled sandpile and of the tokamaks with off-axis ECH. This suggests that the essential ingredient of the sandpile model, namely avalanching conditioned by a local critical gradient, may be one of the key transport effects generated by the tokamak plasma physics.

  11. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  12. Princeton Plasma Physics Laboratory

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  13. Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers

    PubMed Central

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols. PMID:24399155

  14. The Advanced Light Source: A new tool for research in atomic and molecular physics

    NASA Astrophysics Data System (ADS)

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters.

  15. The case for advanced physics topics in oral and maxillofacial surgery.

    PubMed

    Tandon, Rahul; Herford, Alan S

    2014-10-01

    Research in oral and maxillofacial surgery has focused mainly on principles founded in the biological and chemical sciences, which have provided excellent answers to many questions. However, recent technologic advances have begun to gain prominence in many of the medical sciences, providing clinicians with more effective tools for diagnosis and treatment. The era of modern physics has led to the development of diagnostic techniques that could provide information at a more basic level than many of the current biochemical methods used. The goal of this report is to introduce 2 of these methods and describe how they can be applied to oral and maxillofacial surgery.

  16. Advanced Physics-Based Modeling of Discrete Clutter and Diffuse Reverberation in the Littoral Environment

    DTIC Science & Technology

    2005-12-01

    2 9 0 V I L L A G E P A R K D R V I E • L E B A N O N , O H • 4 5 0 3 6 - 7 8 8 5 P H O N E : ( 5 1 3 ) 2 2 8 - 0 0 7 3 December 8...DEC 2005 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Advanced Physics- Based Modeling of Discrete Clutter and Diffuse...2400 and 3600 Hz using path a (see Figure 3) shown by the solid blue line, using path e shown by the solid red line and path d shown by the dashed

  17. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  18. Tearing mode analysis in tokamaks, revisited

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1998-12-01

    A new {Delta}{sup {prime}} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon}{le}0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of the finite pressure term. Numerical results compare favorably with Furth {ital et al.} [H. P. Furth {ital et al.}, Phys. Fluids {bold 16}, 1054 (1973)] results. The effects of finite pressure, which are shown to decrease {Delta}{sup {prime}}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even in a low-{beta} regime before the toroidal magnetic curvature effects come into play. {copyright} {ital 1998 American Institute of Physics.}

  19. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  20. Opportunities for Regenerative Rehabilitation and Advanced Technologies in Physical Therapy: Perspective From Academia.

    PubMed

    Norland, Ryan; Muchnick, Matthew; Harmon, Zachary; Chin, Tiffany; Kakar, Rumit Singh

    2016-04-01

    As rehabilitation specialists, physical therapists must continue to stay current with advances in technologies to provide appropriate rehabilitation protocols, improve patient outcomes, and be the preferred clinician of choice. To accomplish this vision, the physical therapy profession must begin to develop a culture of lifelong learning at the early stages of education and clinical training in order to embrace cutting-edge advancements such as stem cell therapies, tissue engineering, and robotics, to name a few. The purposes of this article are: (1) to provide a current perspective on faculty and graduate student awareness of regenerative rehabilitation concepts and (2) to advocate for increased integration of these emerging technologies within the doctor of physical therapy (DPT) curriculum. An online survey was designed to gauge awareness of principles in regenerative rehabilitation and to determine whether the topic was included and assessed in doctoral curricula. The survey yielded 1,006 responses from 82 DPT programs nationwide and indicated a disconnect in familiarity with the term "regenerative rehabilitation" and awareness of the inclusion of this material in the curriculum. To resolve this disconnect, the framework of the curriculum can be used to integrate new material via guest lecturers, interdisciplinary partnerships, and research opportunities. Successfully mentoring a generation of clinicians and rehabilitation scientists who incorporate new medical knowledge and technology into their own clinical and research practice depends greatly on sharing the responsibility among graduate students, professors, the American Physical Therapy Association (APTA), and DPT programs. Creating an interdisciplinary culture and integrating regenerative medicine and rehabilitation concepts into the curriculum will cultivate individuals who will be advocates for interprofessional behaviors and will ensure that the profession meets the goals stated in APTA Vision 2020.

  1. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    NASA Astrophysics Data System (ADS)

    von Nessi, G. T.; Hole, M. J.; The MAST Team

    2014-11-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript.

  2. Successful aging: Advancing the science of physical independence in older adults.

    PubMed

    Anton, Stephen D; Woods, Adam J; Ashizawa, Tetso; Barb, Diana; Buford, Thomas W; Carter, Christy S; Clark, David J; Cohen, Ronald A; Corbett, Duane B; Cruz-Almeida, Yenisel; Dotson, Vonetta; Ebner, Natalie; Efron, Philip A; Fillingim, Roger B; Foster, Thomas C; Gundermann, David M; Joseph, Anna-Maria; Karabetian, Christy; Leeuwenburgh, Christiaan; Manini, Todd M; Marsiske, Michael; Mankowski, Robert T; Mutchie, Heather L; Perri, Michael G; Ranka, Sanjay; Rashidi, Parisa; Sandesara, Bhanuprasad; Scarpace, Philip J; Sibille, Kimberly T; Solberg, Laurence M; Someya, Shinichi; Uphold, Connie; Wohlgemuth, Stephanie; Wu, Samuel Shangwu; Pahor, Marco

    2015-11-01

    The concept of 'successful aging' has long intrigued the scientific community. Despite this long-standing interest, a consensus definition has proven to be a difficult task, due to the inherent challenge involved in defining such a complex, multi-dimensional phenomenon. The lack of a clear set of defining characteristics for the construct of successful aging has made comparison of findings across studies difficult and has limited advances in aging research. A consensus on markers of successful aging is furthest developed is the domain of physical functioning. For example, walking speed appears to be an excellent surrogate marker of overall health and predicts the maintenance of physical independence, a cornerstone of successful aging. The purpose of the present article is to provide an overview and discussion of specific health conditions, behavioral factors, and biological mechanisms that mark declining mobility and physical function and promising interventions to counter these effects. With life expectancy continuing to increase in the United States and developed countries throughout the world, there is an increasing public health focus on the maintenance of physical independence among all older adults.

  3. Successful Aging: Advancing the Science of Physical Independence in Older Adults

    PubMed Central

    Anton, Stephen D.; Woods, Adam J.; Ashizawa, Tetso; Barb, Diana; Buford, Thomas W.; Carter, Christy S.; Clark, David J.; Cohen, Ronald A.; Corbett, Duane B.; Cruz-Almeida, Yenisel; Dotson, Vonetta; Ebner, Natalie; Efron, Philip A.; Fillingim, Roger B.; Foster, Thomas C.; Gundermann, David M.; Joseph, Anna-Maria; Karabetian, Christy; Leeuwenburgh, Christiaan; Manini, Todd M.; Marsiske, Michael; Mankowski, Robert T.; Mutchie, Heather L.; Perri, Michael G.; Ranka, Sanjay; Rashidi, Parisa; Sandesara, Bhanuprasad; Scarpace, Philip J.; Sibille, Kimberly T.; Solberg, Laurence M.; Someya, Shinichi; Uphold, Connie; Wohlgemuth, Stephanie; Wu, Samuel Shangwu; Pahor, Marco

    2015-01-01

    The concept of ‘Successful Aging’ has long intrigued the scientific community. Despite this long-standing interest, a consensus definition has proven to be a difficult task, due to the inherent challenge involved in defining such a complex, multi-dimensional phenomenon. The lack of a clear set of defining characteristics for the construct of successful aging has made comparison of findings across studies difficult and has limited advances in aging research. The domain in which consensus on markers of successful aging is furthest developed is the domain of physical functioning. For example, walking speed appears to be an excellent surrogate marker of overall health and predicts the maintenance of physical independence, a cornerstone of successful aging. The purpose of the present article is to provide an overview and discussion of specific health conditions, behavioral factors, and biological mechanisms that mark declining mobility and physical function and promising interventions to counter these effects. With life expectancy continuing to increase in the United States and developed countries throughout the world, there is an increasing public health focus on the maintenance of physical independence among all older adults. PMID:26462882

  4. Self-organized stationary states of tokamaks

    NASA Astrophysics Data System (ADS)

    Jardin, Stephen

    2015-11-01

    We report here on a nonlinear mechanism that forms and maintains a self-organized stationary (sawtooth free) state in tokamaks. This process was discovered by way of extensive long-time simulations using the M3D-C1 3D extended MHD code in which new physics diagnostics have been added. It is well known that most high-performance modes of tokamak operation undergo ``sawtooth'' cycles, in which the peaking of the toroidal current density triggers a periodic core instability which redistributes the current density. However, certain modes of operation are known, such as the ``hybrid'' mode in DIII-D, ASDEX-U, JT-60U and JET, and the long-lived modes in NSTX and MAST, which do not experience this cycle of instability. Empirically, it is observed that these modes maintain a non-axisymmetric equilibrium which somehow limits the peaking of the toroidal current density. The physical mechanism responsible for this has not previously been understood, but is often referred to as ``flux-pumping,'' in which poloidal flux is redistributed in order to maintain q0 >1. In this talk, we show that in long-time simulations of inductively driven plasmas, a steady-state magnetic equilibrium may be obtained in which the condition q0 >1 is maintained by a dynamo driven by a stationary marginal core interchange mode. This interchange mode, unstable because of the pressure gradient in the ultra-low shear region in the center region, causes a (1,1) perturbation in both the electrostatic potential and the magnetic field, which nonlinearly cause a (0,0) component in the loop voltage that acts to sustain the configuration. This hybrid mode may be a preferred mode of operation for ITER. We present parameter scans that indicate when this sawtooth-free operation can be expected.

  5. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  6. Analytical solutions for Tokamak equilibria with reversed toroidal current

    SciTech Connect

    Martins, Caroline G. L.; Roberto, M.; Braga, F. L.; Caldas, I. L.

    2011-08-15

    In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile.

  7. Numerical Study of Tokamak Equilibrium with Toroidal Flow on EAST

    NASA Astrophysics Data System (ADS)

    Ren, Qilong; Zhang, Cheng

    2006-09-01

    The effect of the toroidal flow on the equilibrium of tokamak plasmas is a sensitive point for high performance plasma and its precise control. In this paper the effect is studied numerically using the EFIT (Equilibrium Fitting) code on EAST (Experimental Advanced Superconducting Tokamak). Firstly, the numerical calculation exhibits a clear outward shift of pressure contour from the magnetic surfaces in the plasma core and the shift grows with the increase of the toroidal velocity. The peak shift of 8% is observed when the ratio between the plasma velocity and the Alfvén speed equals to 0.15. Secondly, it is shown that the magnetic surfaces shift outwards from those without flow. With a certain plasma current the safety factor on the magnetic axis decreases as the plasma flow velocity increases. The magnetic shear increases about 10% on the plasma boundary compared with the case without flow.

  8. MHD analysis of edge instabilities in the JET tokamak

    NASA Astrophysics Data System (ADS)

    Perez von Thun, Christian Pedro

    2004-03-01

    The aim of nuclear fusion energy research is to demonstrate the feasibility of nuclear fusion reactors as a future energy source. The tokamak is the most advanced fusion machine to date, and is most likely the first system to be converted into a reactor. An important subject of nuclear fusion research is the study of the equilibrium and stability of a plasma with respect to large scale displacements. In a tokamak, several instabilities can occur. A class of edge instabilities that occur in the high confinement regime, H-mode, have been called Edge Localised Modes (ELMs). ELMs are relaxation oscillations that cause quasiperiodic energy and particle losses out of the confined plasma into the scrape-off layer. These losses are of concern for future burning fusion plasmas, such as ITER, due to the large transient heat loads expected on plasma facing components in contact with the scrape-off layer. These heat loads may reduce the target lifetime below tolerable levels. Although the existence of ELMs has been known for many years, their physics is not well understood yet. Much effort has been spent world-wide in an attempt to improve the understanding of these instabilities. A review of the present state of ELM research is given. Empirically, at least three types of ELMs have been identified, which are normally classified as type-I, type-II and type-III ELMs. From the point of view of plasma stability, research has increasingly focussed on the role of certain MHD instabilities, namely (finite-n) ballooning and kink (peeling) modes, as well as coupled ballooning-kink modes, leading to the proposition of a theoretical model called the peeling-ballooning cycle. This thesis presents new insight into ELMs obtained from the analysis of experimental data in the JET tokamak, and compares the observations with present theoretical ELM models. Low frequency coherent type-I ELM precursor modes have been identified. Their properties are studied in detail. Precursors with low toroidal

  9. A driver linac for the Advanced Exotic Beam Laboratory : physics design and beam dynamics simulations.

    SciTech Connect

    Ostroumov, P. N.; Mustapha, B.; Nolen, J.; Physics

    2007-01-01

    The Advanced Exotic Beam Laboratory (AEBL) being developed at ANL consists of an 833 MV heavy-ion driver linac capable of producing uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. We have designed all accelerator components including a two charge state LEBT, an RFQ, a MEBT, a superconducting linac, a stripper station and chicane. We present the results of an optimized linac design and end-to-end simulations including machine errors and detailed beam loss analysis. The Advanced Exotic Beam Laboratory (AEBL) has been proposed at ANL as a reduced scale of the original Rare Isotope Accelerator (RIA) project with about half the cost but the same beam power. AEBL will address 90% or more of RIA physics but with reduced multi-users capabilities. The focus of this paper is the physics design and beam dynamics simulations of the AEBL driver linac. The reported results are for a multiple charge state U{sup 238} beam.

  10. Bootstrapped tokamak with oscillating field current drive

    SciTech Connect

    Weening, R.H. )

    1993-07-01

    A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.

  11. Recent Advances and Cross-Century Outlooks in Physics, Interplay between Theory and Experiment.

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Wong, Cheuk-Yin

    The Table of Contents for the book is as follows: * Preface * Interdisciplinary Topics * SUPERSYMMETRY * Supersymmetry, Noncommutative Geometry and Ultimate Unification * Supersymmetry and Beam Dynamics * Brane World * Dynamical Symmetries in High-Temperature Superconductivity * BEAM, PLASMA, GRAVITATION, AND ASTRONOMY * Toroidal Akfvén Eigenmode Experiments in TFTR * Empirical Tests of the Relativistic Gravity: The Past, the Present and the Future * Radio Astronomy in Taiwan: (Personal) Highlights * PARTICLE AND NUCLEAR PHYSICS * Is There only Top Quark? Review of Top Results * Some Topics on Double Heavy Mesons: Heavy Quarkonia and Bc Meson * Softly Broken CP Symmetry * A Pilot Experiment with Reactor Neutrinos in Taiwan * The Composition of the Proton Spin * Recent Results from Thomas Jefferson National Accelerator Facility * SYNCHROTRON RADIATION AND ATOMIC PHYSICS * Synchrotron Radiation/Laser and Doubly-Excited Atoms * Multiply Excited States for Lithium * FRACTIONAL QUANTUM HALL EFFECT * An Introduction to Topological Orders and Edge Excitations in Quantum Hall States * Phases and Phase Transitions in the Quantum Hall Effect * Chiral Luttinger Liquids at the Fractional Quantum Hall Edge * HIGH-Tc SUPERCONDUCTOR PHYSICS * Two Energy Gaps in Cuprate Superconductors: Clues to the High-Tc Mechanism * Applications of High Temperature Superconductors * Magnetism and Superconductivity in Ru-Based Perovskites * Correlation between Crystal Symmetry, Weak Ferromagnetism and Superconductivity in Distorted T'-phase Cuprates * CHAOS * An Overview of Chaos * Chaotic Dynamics: Introduction and Recent Developments * Chaos in Accelerators * HIGHLIGHTS OF PHYSICS ADVANCES IN TAIWAN * Solving the X-Ray Phase Problem for omolecular Crystals by Multi-Wave X-Ray Interference * BOSE-EINSTEIN CONDENSATION * Bogoliubov Dispersion Relation and the Possibility of Superfluidity for Weakly-interacting Photons * Bose-Einstein Effects in High-Energy Physics * Physics without Borders

  12. Insights into the physical chemistry of materials from advances in HAADF-STEM

    DOE PAGES

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; ...

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging formore » probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.« less

  13. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  14. Insights into the physical chemistry of materials from advances in HAADF-STEM

    SciTech Connect

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; Pennycook, Stephen J.

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging for probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.

  15. Twenty Years of Research on the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  16. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    SciTech Connect

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  17. Cryogenic needs for future tokamaks

    NASA Astrophysics Data System (ADS)

    Katheder, H.

    The ITER tokamak is a machine using superconducting magnets. The windings of these magnets will be subjected to high heat loads resulting from a combination of nuclear energy absorption and AC-losses. It is estimated that about 100 kW at 4.5 K are needed. The total cooling mass flow rate will be around 10 - 15 kg/s. In addition to the large cryogenic power required for the superconducting magnets cryogenic power is also needed for refrigerated radiation shield, various cryopumps, fuel processing and test beds. A general description of the overall layout and the envisaged refrigerator cycle, necessary cold pumps and ancillary equipment is given. The basic cryogenic layout for the ITER tokakmak design, as developed during the conceptual design phase and a short overview about existing tokamak designs using superconducting magnets is given.

  18. The design, development, and assessment of advanced modeling based projects in introductory physics

    NASA Astrophysics Data System (ADS)

    Ramsdell, Michael W.

    The results of Physics Education Research (PER) have provided much insight into developing more effective learning environments in introductory physics courses. In this dissertation we discuss the design, development, and implementation of two advanced Modeling Based Projects (MBP) that have evolved through research-based criteria. The projects serve as an alternative to the traditional laboratory portion of the introductory calculus-based courses taught at Clarkson University for undergraduate science and engineering majors. Each project has gone through several research-redevelopment cycles, through which the experimental apparatuses and pedagogical approaches have been improved. Details of each projects' pedagogical structure and implementation are presented and discussed within the context of recommendations established through PER. We present a detailed assessment of their effectiveness in terms of students' conceptual learning via the Force Concepts Inventory (FCI) and the Conceptual Survey of Electricity and Magnetism (CSEM), course performance via exam scores, and attitudes via the Maryland Physics Expectations Survey (MPEX). The results show that students who participate in MBP at Clarkson University achieve significant gains over students taught elsewhere with a traditional approach and similar gains to those achieved by others using well tested, research motivated curricula reforms. An internal evaluation was performed to compare students participating in MBP with a control group of statistically comparable students who attended traditional laboratories. The results reveal that students who participated in MBP obtain statistically significant gains over similar students taught with the traditional approach for both courses within the introductory sequence.

  19. 20 years of research on the Alcator C-Mod tokamak

    SciTech Connect

    Greenwald, M.; Baek, S.; Barnard, H.; Beck, W.; Bonoli, P.; Brunner, D.; Burke, W.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Gao, C.; Golfinopoulos, T.; Granetz, R.; Hartwig, Z.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; and others

    2014-11-15

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  20. Transport Equations In Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.

    2009-11-01

    Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for: neoclassical effects on the parallel Ohm's law (trapped particle effects on resistivity, bootstrap current); fluctuation-induced transport; heating, current-drive and flow sources and sinks; small B field non-axisymmetries; magnetic field transients etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed recently using a kinetic-based framework. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales (and constraints they impose) are considered sequentially: compressional Alfv'en waves (Grad-Shafranov equilibrium, ion radial force balance); sound waves (pressure constant along field lines, incompressible flows within a flux surface); and ion collisions (damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on the plasma fluid: 7 ambipolar collision-based ones (classical, neoclassical, etc.) and 8 non-ambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients etc.). The plasma toroidal rotation equation [1] results from setting to zero the net radial current induced by the non-ambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the non-ambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The resultant transport equations will be presented and contrasted with the usual ones. [4pt] [1] J.D. Callen, A.J. Cole, C.C. Hegna, ``Toroidal Rotation In

  1. Magnetic island formation in tokamaks

    SciTech Connect

    Yoshikawa, S.

    1989-04-01

    The size of a magnetic island created by a perturbing helical field in a tokamak is estimated. A helical equilibrium of a current- carrying plasma is found in a helical coordinate and the helically flowing current in the cylinder that borders the plasma is calculated. From that solution, it is concluded that the helical perturbation of /approximately/10/sup /minus/4/ of the total plasma current is sufficient to cause an island width of approximately 5% of the plasma radius. 6 refs.

  2. Equilibrium Reconstruction in EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Qian, Jinping; Wan, Baonian; L. Lao, L.; Shen, Biao; A. Sabbagh, S.; Sun, Youwen; Liu, Dongmei; Xiao, Bingjia; Ren, Qilong; Gong, Xianzu; Li, Jiangang

    2009-04-01

    Reconstruction of experimental axisymmetric equilibria is an important part of tokamak data analysis. Fourier expansion is applied to reconstruct the vessel current distribution in EFIT code. Benchmarking and testing calculations are performed to evaluate and validate this algorithm. Two cases for circular and non-circular plasma discharges are presented. Fourier expansion used to fit the eddy current is a robust method and the real time EFIT can be introduced to the plasma control system in the coming campaign.

  3. Tokamak Plasma Flows Induced by Local RF Forces

    NASA Astrophysics Data System (ADS)

    Chen, Jiale; Gao, Zhe

    2015-10-01

    The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant parallel momentum transport term (i.e. the parallel component of the resonant ponderomotive forces). Different momentum balance relations are employed to calculate the plasma flows depending on different assumptions of momentum transport. With the RF fields solved from RF simulation codes, the toroidal and poloidal flows by these forces under the lower hybrid current drive and the mode conversion ion cyclotron resonance heating on EAST-like plasmas are evaluated. supported by National Natural Science Foundation of China (Nos. 11405218, 11325524, 11375235 and 11261140327), in part by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB111002, 2013GB112001 and 2013GB112010), and the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning

  4. Maintenance concept development for the Compact Ignition Tokamak

    SciTech Connect

    Macdonald, D.

    1988-01-01

    The Compact Ignition Tokamak (CIT), located at the Princeton Plasma Physics Laboratory, will be the next major experimental machine in the US Fusion Program. Its use of deuterium-tritium (D-T) fuel requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist of removing and repairing such components as diagnostic equipment modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the vacuum vessel includes both bridge-mounted and floor-mounted manipulator systems. Additionally, decontamination (decon) equipment, hot cell repair facilities, and equipment for handling and packaging solid radioactive waste (rad-waste) are being developed. Recent design activities have focused on establishing maintenance system interfaces with the facility design, developing manipulator system requirements, and using mock-ups to support the tokamak configuration design. 3 refs., 8 figs.

  5. Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks

    SciTech Connect

    Chen, L. )

    1994-07-20

    The resonant excitations of high-n magnetohydrodynamic (MHD) instabilities by the energetic ions/alpha particles in tokamaks are theoretically analyzed. Here, n is the toroidal mode number. Since, typically, the MHD modes consist of two-scale structures; one singular ( inertial'') region and one regular (ideal) region, the energetic particle contributions in the singular region are suppressed by the finite-size orbits. Analytical dispersion relations can then be derived via the asymptotic matching analysis. The dispersion relations have the generic form of the fishbone'' dispersion relation and demonstrate, in particular, the existence of two types of modes; that is, the MHD gap mode and the energetic-particle continuum mode. Specific expressions are given for both the kinetic ballooning modes (KBM) and the toroidal Alfven modes (TAM). It is suggested that the stability property may be qualitatively regarded as the hybrid'' of conventional MHD tokamaks and field reversed ion rings. [copyright]American Institute of Physics

  6. Plasma diagnostics for the compact ignition tokamak

    SciTech Connect

    Medley, S.S.; Young, K.M.

    1988-06-01

    The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10/sup 21/m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs.

  7. COMPRES Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Thomas, S.

    2012-12-01

    The Consortium for Materials Properties Research in Earth Sciences (COMPRES) is a community-based consortium whose goal is to advance and facilitate experimental high pressure research in the Earth Sciences. An important aspect of this goal is sharing our knowledge with the next generation of researchers. To facilitate this, we have created a group of web-based educational modules on mineral physics topics. The modules reside in the On Cutting Edge, Teaching Mineralogy collection on the Science Education Resource Center (SERC) website. Although the modules are designed to function as part of a full semester course, each module can also stand alone. Potential users of the modules include mineral physics faculty teaching "bricks and mortar" classes at their own institutions, or in distance education setting, mineralogy teachers interested in including supplementary material in their mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other sub-disciplines who wish to brush up on a mineral physics topic. We used the modules to teach an on-line course entitled "Introduction to Mineral Physics" during the spring 2012 semester. More than 20 students and postdocs as well as 15 faculty and senior scientists participated in the course which met twice weekly as a webinar. Recordings of faculty lectures and student-led discussions of journal articles are now available upon request and edited versions of the lectures will be incorporated into the educational modules. Our experience in creating the modules and the course indicates that the use of 1) community-generated internet-based resources and 2) webinars to enable shared teaching between faculty at different universities, has the potential to both enrich graduate education and create efficiencies for university faculty.;

  8. PREFACE: FLUIDOS 2010: XI Meeting on Recent Advances in the Physics of Fluids and their Applications

    NASA Astrophysics Data System (ADS)

    Bove, Italo; Cabeza, Cecilia; Martí, Arturo C.; Sarasúa, Gustavo

    2011-04-01

    The papers published in this volume of the Journal of Physics: Conference Series were selected from the manuscripts submitted to the XI Meeting on Recent Advances in the Physics of Fluids and their Applications (FLUIDOS2010), which was held in Colonia del Sacramento, Uruguay, 3-5 November 2010. FLUIDOS takes place every two years, usually in November, with the aim of gathering together researchers from all areas of the Physics of Fluids, to update themselves on the latest technical developments and applications, share knowledge and stimulate new ideas. This 11th meeting continues the successful experience of the previous ones which were held in different Argentinian cities. For the first time, the meeting was celebrated in Uruguay, more specifically, in the peaceful town of Colonia del Sacramento, designated a World Heritage Site by UNESCO. The conference presented an outstanding program of papers covering the most recent advances in Physics of Fluids in the following areas: General Fluid Dynamics General and non-Newtonian Flows Magnetohydrodynamics Electrohydrodynamics and Plasmas Hydraulics, Thermohydraulics and Multiple Phase Flows A website with full details of the conference program, abstracts and other information can be found at http://fluidos2010.fisica.edu.uy. We would like to thank all the participants, especially those who contributed with talks, posters and manuscripts, for making FLUDOS2010 such a successful conference. Our thanks also go to our colleagues for their support and encouragement, particularly in the refereeing of papers. We would like to acknowledge additional financial support from Comisión Sectorial de Investigación Científica (Universidad de la República, Uruguay), Programa de Desarrollo de las Ciencias Básicas (Uruguay) and the Centro Latinoamericano de Física (CLAF). Our thanks are extended to the local government of Colonia del Sacramento. The next FLUIDOS conference will be held in November 2013, in Buenos Aires, Argentina. We

  9. Serum 25-hydroxyvitamin D and Physical Function in Adults of Advanced Age: The CHS All Stars

    PubMed Central

    Houston, Denise K.; Tooze, Janet A.; Davis, Cralen C.; Chaves, Paulo H. M.; Hirsch, Calvin H.; Robbins, John A.; Arnold, Alice M.; Newman, Anne B.; Kritchevsky, Stephen B.

    2011-01-01

    Objectives To examine the association between 25-hydroxyvitamin D (25[OH]D) and physical function in adults of advanced age. Design Cross-sectional and longitudinal analysis of physical function over 3 years of follow-up in the Cardiovascular Health Study All Stars. Setting Forsyth County, NC; Sacramento County, CA; Washington County, MD; and Allegheny County, PA. Participants Community-dwelling adults aged 77–100 years (n=988). Measurements Serum 25(OH)D, short physical performance battery (SPPB) and grip and knee extensor strength assessed at baseline. Mobility disability (difficulty walking half a mile or up 10 steps) and activities of daily living (ADL) disability were assessed at baseline and every 6 months over 3 years of follow-up. Results 30.8% of participants had deficient 25(OH)D (<20 ng/mL). SPPB scores were lower among those with deficient 25(OH)D compared to those with sufficient 25(OH)D (≥30 ng/mL) after adjusting for sociodemographic characteristics, season, health behaviors and chronic conditions (mean±SE: 6.53±0.24 vs. 7.15±0.25, p <0.01). Grip strength adjusted for body size was also lower among those with deficient versus sufficient 25(OH)D (mean±SE: 24.7±0.6 vs. 26.0±0.6 kg, p <0.05). Participants with deficient 25(OH)D were more likely to have prevalent mobility and ADL disability at baseline (OR (95% CI): 1.44 (0.96–2.14) and 1.51 (1.01–2.25), respectively) compared to those with sufficient 25(OH)D. Furthermore, participants with deficient 25(OH)D were at increased risk of incident mobility disability over 3 years of follow-up (HR (95% CI): 1.56 (1.06–2.30)). Conclusion Vitamin D deficiency was common and was associated with poorer physical performance, lower muscle strength, and prevalent mobility and ADL disability among community-dwelling adults of advanced age. Moreover, vitamin D deficiency predicted incident mobility disability. PMID:22091492

  10. Atomic physics processes in radial transport calculations

    SciTech Connect

    Hogan, J.T.

    1983-02-01

    These lectures were intended as preparation for detailed discussions of the role of atomic and molecular physics in confinement research at the 1982 NATO Advanced Study Institute. They begin with a description of the major approaches to magnetic confinement: tandem (ambipolar) mirrors with their associated auxiliary barriers, tokamaks, and stellarators. The leading alternatives, the ELMO Bumpy Torus and the reversed field pinch, are also treated. The evolution equations for particle, energy, and (where relevant) field diffusion are presented and discussed. This is the context for atomic and molecular processes relevant to confinement.

  11. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation'', to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  12. Economic analyses of alpha channeling in tokamak power plants.

    SciTech Connect

    Ehst, D.A.

    1998-09-17

    The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T{sub i} somewhat larger than the electron temperature T{sub e}, which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small.

  13. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Wallace, G. M.; Shinya, T.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Takase, Y.; Wukitch, S.

    2016-05-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k|| increases for the fixed launched k||, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k|| are observed in the spectrally broadened wave components, as compared to the measured k|| at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k|| resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  14. Using Recent Planetary Science Data to Develop Advanced Undergraduate Physics and Astronomy Activities

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Lindell, Rebecca

    2016-10-01

    Teaching science by having students manipulate real data is a popular trend in astronomy and planetary science education. However, many existing activities simply couple this data with traditional "cookbook" style verification labs. As with most topics within science, this instructional technique does not enhance the average students' understanding of the phenomena being studied. Here we present a methodology for developing "science by doing" activities that incorporate the latest discoveries in planetary science with up-to-date constructivist pedagogy to teach advanced concepts in Physics and Astronomy. In our methodology, students are first guided to understand, analyze, and plot real raw scientific data; develop and test physical and computational models to understand and interpret the data; finally use their models to make predictions about the topic being studied and test it with real data.To date, two activities have been developed according to this methodology: Understanding Asteroids through their Light Curves (hereafter "Asteroid Activity"), and Understanding Exoplanetary Systems through Simple Harmonic Motion (hereafter "Exoplanet Activity"). The Asteroid Activity allows students to explore light curves available on the Asteroid Light Curve Database (ALCDB) to discover general properties of asteroids, including their internal structure, strength, and mechanism of asteroid moon formation. The Exoplanet Activity allows students to investigate the masses and semi-major axes of exoplanets in a system by comparing the radial velocity motion of their host star to that of a coupled simple harmonic oscillator. Students then explore how noncircular orbits lead to deviations from simple harmonic motion. These activities will be field tested during the Fall 2016 semester in an advanced undergraduate mechanics and astronomy courses at a large Midwestern STEM-focused university. We will present the development methodologies for these activities, description of the

  15. Tritium experience in the Tokamak Fusion Test Reactor

    SciTech Connect

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Brooks, J.N.; Hogan, J.

    1998-07-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors.

  16. Monte Carlo Simulations in Statistical Physics -- From Basic Principles to Advanced Applications

    NASA Astrophysics Data System (ADS)

    Janke, Wolfhard

    2013-08-01

    This chapter starts with an overview of Monte Carlo computer simulation methodologies which are illustrated for the simple case of the Ising model. After reviewing importance sampling schemes based on Markov chains and standard local update rules (Metropolis, Glauber, heat-bath), nonlocal cluster-update algorithms are explained which drastically reduce the problem of critical slowing down at second-order phase transitions and thus improve the performance of simulations. How this can be quantified is explained in the section on statistical error analyses of simulation data including the effect of temporal correlations and autocorrelation times. Histogram reweighting methods are explained in the next section. Eventually, more advanced generalized ensemble methods (simulated and parallel tempering, multicanonical ensemble, Wang-Landau method) are discussed which are particularly important for simulations of first-order phase transitions and, in general, of systems with rare-event states. The setup of scaling and finite-size scaling analyses is the content of the following section. The chapter concludes with two advanced applications to complex physical systems. The first example deals with a quenched, diluted ferromagnet, and in the second application we consider the adsorption properties of macromolecules such as polymers and proteins to solid substrates. Such systems often require especially tailored algorithms for their efficient and successful simulation.

  17. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1990-01-01

    a study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is the eighth quarterly report prepared in accordance with the project reporting requirements covering the period from July 1,1990 to September 30, 1990. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. The data from the basic research on coal surfaces, bench scale testing and proof-of-concept scale testing will be utilized to design a final conceptual flowsheet. The economics of the flowsheet will be determined to enable industry to assess the feasibility of incorporating the advanced fine coal cleaning technology into the production of clean coal for generating electricity. 22 figs., 11 tabs.

  18. Leakage of runaway electrons from tokamaks

    SciTech Connect

    Wong, K.L.

    1982-02-01

    Runaway electron orbits are calculated in a tokamak magnetic field. It is shown that these electrons tend to drift towards a larger major radius with a velocity v Vector/sub R/ = qcE/B/sub 0/ R. This effect may be relevant to some recent experimental observations in tokamaks.

  19. Numerical tokamak turbulence project (OFES grand challenge)

    SciTech Connect

    Beer, M; Cohen, B I; Crotinger, J; Dawson, J; Decyk, V; Dimits, A M; Dorland, W D; Hammett, G W; Kerbel, G D; Leboeuf, J N; Lee, W W; Lin, Z; Nevins, W M; Reynders, J; Shumaker, D E; Smith, S; Sydora, R; Waltz, R E; Williams, T

    1999-08-27

    The primary research objective of the Numerical Tokamak Turbulence Project (NTTP) is to develop a predictive ability in modeling turbulent transport due to drift-type instabilities in the core of tokamak fusion experiments, through the use of three-dimensional kinetic and fluid simulations and the derivation of reduced models.

  20. Equilibrium reconstruction based on core magnetic measurement and its applications on equilibrium transition in Joint-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhuang, G.; Jian, X.; Li, Q.; Liu, Y.; Gao, L.; Wang, Z. J.

    2014-10-01

    Evaluation and reconstruction of plasma equilibrium, especially to resolve the safety factor profile, is imperative for advanced tokamak operation and physics study. Based on core magnetic measurement by the high resolution laser polarimeter-interferometer system (POLARIS), the equilibrium of Joint-TEXT (J-TEXT) plasma is reconstructed and profiles of safety factor, current density, and electron density are, therefore, obtained with high accuracy and temporal resolution. The equilibrium reconstruction procedure determines the equilibrium flux surfaces essentially from the data of POLARIS. Refraction of laser probe beam, a major error source of the reconstruction, has been considered and corrected, which leads to improvement of accuracy more than 10%. The error of reconstruction has been systematically assessed with consideration of realistic diagnostic performance and scrape-off layer region of plasma, and its accuracy has been verified. Fast equilibrium transitions both within a single sawtooth cycle and during the penetration of resonant magnetic perturbation have been investigated.

  1. Equilibrium reconstruction based on core magnetic measurement and its applications on equilibrium transition in Joint-TEXT tokamak

    SciTech Connect

    Chen, J.; Zhuang, G. Jian, X.; Li, Q.; Liu, Y.; Gao, L.; Wang, Z. J.

    2014-10-15

    Evaluation and reconstruction of plasma equilibrium, especially to resolve the safety factor profile, is imperative for advanced tokamak operation and physics study. Based on core magnetic measurement by the high resolution laser polarimeter-interferometer system (POLARIS), the equilibrium of Joint-TEXT (J-TEXT) plasma is reconstructed and profiles of safety factor, current density, and electron density are, therefore, obtained with high accuracy and temporal resolution. The equilibrium reconstruction procedure determines the equilibrium flux surfaces essentially from the data of POLARIS. Refraction of laser probe beam, a major error source of the reconstruction, has been considered and corrected, which leads to improvement of accuracy more than 10%. The error of reconstruction has been systematically assessed with consideration of realistic diagnostic performance and scrape-off layer region of plasma, and its accuracy has been verified. Fast equilibrium transitions both within a single sawtooth cycle and during the penetration of resonant magnetic perturbation have been investigated.

  2. Equilibrium reconstruction based on core magnetic measurement and its applications on equilibrium transition in Joint-TEXT tokamak.

    PubMed

    Chen, J; Zhuang, G; Jian, X; Li, Q; Liu, Y; Gao, L; Wang, Z J

    2014-10-01

    Evaluation and reconstruction of plasma equilibrium, especially to resolve the safety factor profile, is imperative for advanced tokamak operation and physics study. Based on core magnetic measurement by the high resolution laser polarimeter-interferometer system (POLARIS), the equilibrium of Joint-TEXT (J-TEXT) plasma is reconstructed and profiles of safety factor, current density, and electron density are, therefore, obtained with high accuracy and temporal resolution. The equilibrium reconstruction procedure determines the equilibrium flux surfaces essentially from the data of POLARIS. Refraction of laser probe beam, a major error source of the reconstruction, has been considered and corrected, which leads to improvement of accuracy more than 10%. The error of reconstruction has been systematically assessed with consideration of realistic diagnostic performance and scrape-off layer region of plasma, and its accuracy has been verified. Fast equilibrium transitions both within a single sawtooth cycle and during the penetration of resonant magnetic perturbation have been investigated.

  3. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    SciTech Connect

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  4. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    PubMed

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-03-22

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  5. MO-FG-BRC-00: Joint AAPM-ESTRO Symposium: Advances in Experimental Medical Physics.

    PubMed

    Berbeco, Ross; Ionascu, Dan

    2016-06-01

    Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and the implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.

  6. Dust-Particle Transport in Tokamak Edge Plasmas

    SciTech Connect

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K; Rognlien, T D

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.

  7. Transport timescale calculations of sawteeth and helical structures in non-circular tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Jardin, Stephen; Ferraro, Nate; Breslau, Josh; Chen, Jin

    2012-10-01

    We present results of using the implicit 3D MHD code M3D-C^1 [1,2] to perform 3D nonlinear magnetohydrodynamics calculations of the internal dynamics of a shaped cross-section tokamak plasma that span the timescales associated with ideal and resistive stability as well as parallel and perpendicular transport. We specify the transport coefficients and apply a ``current controller'' that adjusts the boundary loop-voltage to keep the total plasma current fixed. The 3D 2-fluid plasma model advances the magnetic field, velocities, electron and ion temperatures, and plasma density. We find that the plasma either reaches a stationary quasi-helical state in which the central safety factor is approximately unity, or it periodically undergoes either simple or compound sawtooth oscillations [3] with a period that approaches a constant value. By comparing a dee-shaped cross section with an elliptical shaped cross section, it is shown that the plasma shape has a large effect on determining the sawtooth behavior and the associated mode activity. Application to ITER shaped tokamak plasmas predict the magnitude of the 3D boundary deformation as a result of a stationary quasi-helical state forming in the interior. [4pt] [1] J. Breslau, N. Ferraro, S.C. Jardin, Physics of Plasmas 16 092503 (2009) [0pt] [2] S. C. Jardin, N. Ferraro, J. Breslau, J. Chen, Computational Science and Discovery 5 014002 (2012) [0pt] [3] X. von Goeler, W. Stodiek, and N. Sauthoff, Phys. Rev. Lett. 33, 1201 (1974)

  8. Collection and Characterization of Particulate from the Tore Supra Tokamak (Dec. 1999 Vent)

    SciTech Connect

    Sharpe, John Phillip

    2002-12-01

    Particulate generated during the operation of a fusion device contributes to the radiological source term associated with accident scenarios in the device.1,2 Understanding the mechanisms generating the particulate and correctly describing its physical and chemical behavior is essential for safety analyses of future fusion devices. Knowledge of these mechanisms is gained by collecting and characterizing particulate matter from operating fusion facilities. Tokamak dust, the particulate matter generated during the operation of a tokamak fusion device, was collected from Tore Supra in December 1999, during the initial phase of the scheduled shutdown for installation of advanced plasma facing components. Tore Supra, located at CEA Cadarache, France, is presently the third largest operating tokamak with the capability of long-pulse operation. Eighteen super-conducting coils produce the 4.5 T magnetic field inside a vessel 2.4 m in major radius and 1.2 m in minor radius. Limiter and divertor regimes of operation are possible. In the divertor regime, the circular magnetic configuration is ergodized by six outboard resonant divertor modules that are covered with 12 m2 of carbon fiber composite (CFC) tiles. In addition, some field lines are diverted to actively cooled neutralizing plates made of CuCrZr bars covered with B4C. In the limiter regime, the plasma leans on the actively cooled inboard first wall or on a set of inertially cooled pumped limiters. The first wall area of 12 m2 is covered with both polycrystalline graphite tiles (83%) and CFC tiles (17%). The single outboard limiter is constructed of pyrolitic graphite, and the four toroidally symmetric bottom limiters are constructed of CFC. Figure 1.1 displays the relative location of plasma facing components within the plasma chamber of Tore Supra. In this report, we present in Section 2 the methods used to collect and analyze this dust and describe the selection of sampling locations. Section 3 includes a

  9. Multi-field plasma sandpile model in tokamaks and applications

    NASA Astrophysics Data System (ADS)

    Peng, X. D.; Xu, J. Q.

    2016-08-01

    A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.

  10. Transport equations in tokamak plasmas

    SciTech Connect

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2010-05-15

    Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfven waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The 'mean field' effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The

  11. Advances in Galactic Dynamics: Classical Physics in the 21st Century

    NASA Astrophysics Data System (ADS)

    Dubinski, John

    2007-04-01

    During the past 2 decades, there have been tremendous advances in computational power and algorithmic efficiency in the numerical N-body problem. Despite the vast scale of the universe, the original Newtonian equations of motion along with the inverse-square law of gravity still provide an adequate physical framework for studying many of the complexities of the dynamic universe. The relativistic limit in the macroscopic universe is only reached on the extreme scales of the entire observable universe and the event horizons of black holes. Here I will review some of the recent advances in parallel computational algorithms for application to the collisionless N-body problem with the main applications to the problem of the dynamics of galaxies and cosmological structure formation. The cosmological paradigm of cold dark matter with a cosmological constant is now so well-constrained that in principle detailed predictions of the dynamical behavior of galaxies can be tested against observation. I will describe two recent studies that use realistic, self-consistent N-body models of disk galaxies to study the effects of two cosmological predictions: dark matter halo triaxiality and substructure. The reaction of a stellar disk to these dark matter characteristics leads to triggering of the bar instability at random times in a given galaxy's life history and so can help explain the observed fraction and incidence of bars in the spiral galaxy population. I will also present some recent work on high-resolution computer animation of galactic dynamics that originated as a way to illustrate and develop intuition about dynamical processes but has since developed into a means of artistic expression through the beauty of complex gravitating systems.

  12. Analysis of uncertainty in equilibrium reconstruction in the EAST superconducting tokamak.

    PubMed

    Liu, G J; Wan, B N; Sun, Y W; Xiao, B J; Wang, Y; Luo, Zh P; Qian, J P; Liu, D M

    2013-07-01

    The analysis of uncertainties of magnetic measurements in equilibrium reconstruction is carried out on the EAST (Experimental Advanced Superconducting Tokamak) tokamak. It is shown that uncertainties of magnetic diagnostics are about 0.2% and 10 mWb for flux loops and 0.6% and 20 G for magnetic probes. Analyzing the sensitivity of the magnetic data uncertainty in the plasma shape reconstruction is presented, based on EFIT fixed boundary and fitting mode and applying overall uncertainty as fitting weight in EFIT. It is found that reconstruction uncertainties are ranged in 0.5-1.4 cm for 6 control segments, less than 0.8 cm for X-points, and 1.0-1.6 cm for strike points with 95% confidence, in the last experimental campaign on the EAST tokamak.

  13. Analysis of uncertainty in equilibrium reconstruction in the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Liu, G. J.; Wan, B. N.; Sun, Y. W.; Xiao, B. J.; Wang, Y.; Luo, Zh. P.; Qian, J. P.; Liu, D. M.

    2013-07-01

    The analysis of uncertainties of magnetic measurements in equilibrium reconstruction is carried out on the EAST (Experimental Advanced Superconducting Tokamak) tokamak. It is shown that uncertainties of magnetic diagnostics are about 0.2% and 10 mWb for flux loops and 0.6% and 20 G for magnetic probes. Analyzing the sensitivity of the magnetic data uncertainty in the plasma shape reconstruction is presented, based on EFIT fixed boundary and fitting mode and applying overall uncertainty as fitting weight in EFIT. It is found that reconstruction uncertainties are ranged in 0.5-1.4 cm for 6 control segments, less than 0.8 cm for X-points, and 1.0-1.6 cm for strike points with 95% confidence, in the last experimental campaign on the EAST tokamak.

  14. Full tokamak discharge simulation of ITER by combining DINA-CH and CRONOS

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Artaud, J. F.; Basiuk, V.; Dokuka, V.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.

    2009-10-01

    A full tokamak discharge simulator has been developed by combining a free-boundary equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. The combined tokamak discharge simulator provides a full simulation of a whole tokamak discharge, including non-linear coupling effects between the evolution of the free-boundary plasma equilibrium and transport. The free-boundary plasma equilibrium evolution is self-consistently calculated with the plasma current diffusion, in response to currents flowing in the PF coils and the surrounding conducting system. The heat and current source profiles calculated taking the free-boundary plasma equilibrium are used for the plasma transport. The constraints in operating a tokamak, such as the PF coil current and voltage limits, are taken into account. The potential of the combined tokamak discharge simulator is demonstrated by simulating whole operation phases of the inductive 15 MA ELMy H-mode ITER scenario 2. Issues related to ITER operation, such as respecting the coil current limit, vertical instability and poloidal flux consumption, are investigated. ITER hybrid mode operation is studied focusing on the capability of operating the plasma with a stationary flat safety factor profile.

  15. Investigation of the Flow Physics Driving Stall-Side Flutter in Advanced Forward Swept Fan Designs

    NASA Technical Reports Server (NTRS)

    Sanders, Albert J.; Liu, Jong S.; Panovsky, Josef; Bakhle, Milind A.; Stefko, George; Srivastava, Rakesh

    2003-01-01

    Flutter-free operation of advanced transonic fan designs continues to be a challenging task for the designers of aircraft engines. In order to meet the demands of increased performance and lighter weight, these modern fan designs usually feature low-aspect ratio shroudless rotor blade designs that make the task of achieving adequate flutter margin even more challenging for the aeroelastician. This is especially true for advanced forward swept designs that encompass an entirely new design space compared to previous experience. Fortunately, advances in unsteady computational fluid dynamic (CFD) techniques over the past decade now provide an analysis capability that can be used to quantitatively assess the aeroelastic characteristics of these next generation fans during the design cycle. For aeroelastic applications, Mississippi State University and NASA Glenn Research Center have developed the CFD code TURBO-AE. This code is a time-accurate three-dimensional Euler/Navier-Stokes unsteady flow solver developed for axial-flow turbomachinery that can model multiple blade rows undergoing harmonic oscillations with arbitrary interblade phase angles, i.e., nodal diameter patterns. Details of the code can be found in Chen et al. (1993, 1994), Bakhle et al. (1997, 1998), and Srivastava et al. (1999). To assess aeroelastic stability, the work-per-cycle from TURBO-AE is converted to the critical damping ratio since this value is more physically meaningful, with both the unsteady normal pressure and viscous shear forces included in the work-per-cycle calculation. If the total damping (aerodynamic plus mechanical) is negative, then the blade is unstable since it extracts energy from the flow field over the vibration cycle. TURBO-AE is an integral part of an aeroelastic design system being developed at Honeywell Engines, Systems & Services for flutter and forced response predictions, with test cases from development rig and engine tests being used to validate its predictive

  16. The GBS code for tokamak scrape-off layer simulations

    SciTech Connect

    Halpern, F.D.; Ricci, P.; Jolliet, S.; Loizu, J.; Morales, J.; Mosetto, A.; Musil, F.; Riva, F.; Tran, T.M.; Wersal, C.

    2016-06-15

    We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarization drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.

  17. Theoretical Transport Model for Tokamaks

    NASA Astrophysics Data System (ADS)

    Ghanem, Elsayed Mohammad

    In the present thesis work a theoretical transport model is suggested to study the anomalous transport of plasma particles and energy across the axisymmetric equilibrium toroidal magnetic flux surfaces in tokamaks. The model suggests a linear combination of two transport mechanisms; drift waves, which dominate the transport in the core region, and resistive ballooning modes, which dominate the transport in the edge region. The resulting unified model has been used in a predictive transport code to simulate the plasma transport in different tokamak experiments operating in both the ohmic heating phase and the low confinement mode (L-mode). For ohmic plasma, the model was used to study the saturation of energy confinement time at high plasma density. The effect of the resistive ballooning mode as a possible cause of the saturation phenomena has been investigated together with the effect of the ion temperature gradient mode. For the low confinement mode plasmas, the study has emphasized on using the model to obtain a scaling law for the energy confinement time with the various plasma parameters compared to the scaling laws that are derived based on fitting the experimental data.

  18. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  19. The advanced light source at Lawrence Berkeley laboratory: a new tool for research in atomic physics

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1991-04-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ps) will be ideal for time-resolved measurements. Undulators will generate high-brightness partially coherent soft X-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV; this radiation is plane polarized. Wigglers and bend magnets will extend the spectrum by generating high fluxes of X-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy), and in biology, such as X-ray microscopy with element-specific sensitivity; the high flux will allow measurements in atomic physics and chemistry to be made with tenuous gas-phase targets. Technological applications could include lithography and nano-fabrication.

  20. Could Advanced Fusion Fuels Be Used with Today's Technology?

    NASA Astrophysics Data System (ADS)

    Santarius, J. F.; Kulcinski, G. L.; El-Guebaly, L. A.; Khater, H. Y.

    1998-03-01

    Could today's technology suffice for engineering advanced-fuel, magnetic-fusion power plants, thus making fusion development primarily a physics problem? Such a path would almost certainly cost far less than the present D-T development program, which is driven by daunting engineering challenges as well as physics questions. Advanced fusion fuels, in contrast to D-T fuel, produce a smaller fraction of the fusion power as neutrons but have lower fusion reactivity, leading to a trade-off between engineering and physics. This paper examines the critical fusion engineering issues and related technologies with an eye to their application in tokamak and alternate-concept D-3He power plants. These issues include plasma power balance, magnets, surface heat flux, input power, fuel source, radiation damage, radioactive waste disposal, and nuclear proliferation.

  1. Advances in Simulation of Wave Interaction with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; Abla, Gheni; D'Azevedo, Ed F; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, Joshua; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Foley, S.; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  2. Public Data Set: Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup

    SciTech Connect

    Hinson, Edward T.; Barr, Jayson L.; Bongard, Michael W.; Burke, Marcus G.; Fonck, Raymond J.; Perry, Justin M.

    2016-05-31

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in E.T. Hinson et al., 'Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup,' Physics of Plasmas 23, 052515 (2016).

  3. Initial testing of the tritium systems at the Tokamak Fusion Test Reactor

    SciTech Connect

    Anderson, J.L.; Sissingh, R.A.P.; Gentile, C.A.; Rossmassler, R.L.; Walters, R.T.; Voorhees, D.R.

    1993-11-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton will start its D-T experiments in late 1993, introducing and operating the tokamak with tritium in order to begin the study of burning plasma physics in D-T. Trace tritium injection experiments, using small amounts of tritium will begin in the fall of 1993. In preparation for these experiments, a series of tests with low concentrations of tritium inn deuterium have been performed as an initial qualification of the tritium systems. These tests began in April 1993. This paper describes the initial testing of the equipment in the TFTR tritium facility.

  4. Data processing and analysis of the imaging Thomson scattering diagnostic system on HT-7 tokamak.

    PubMed

    Han, Xiaofeng; Shao, Chunqiang; Xi, Xiaoqi; Zhao, Junyu; Qing, Zang; Yang, Jianhua; Dai, Xingxing; Kado, Shinichiro

    2013-05-01

    A high spatial resolution imaging Thomson scattering diagnostic system was developed in ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences). After about one month trial running on the superconducting HT-7 (Hefei Tokamak-7) tokamak, the system was proved to be capable of measuring plasma electron temperature. The system setup and data calibration are described in this paper and then the instrument function is studied in detail, as well as the measurement capability, an electron temperature of 50 eV to 2 keV and density beyond 1 × 10(19) m(-3). Finally, the data processing method and experimental results are presented.

  5. On the physical interconnection of Seismic Electric Signals with seismicity: Recent advances

    NASA Astrophysics Data System (ADS)

    Sarlis, Nicholas; Skordas, Efthimios; Lazaridou, Mary; Varotsos, Panayiotis

    2013-04-01

    We review the recent advances on Seismic Electric Signals (SES) which are low frequency (˜ 1Hz) signals that precede earthquakes [1-3]. Since the 1980's Varotsos and Alexopoulos proposed [4] that SES are generated in the future focal area when the stress reaches a critical value, thus causing a cooperative orientation of the electric dipoles that anyhow exist in the focal area due to lattice imperfections in the ionic constituents of the rocks. A series of such signals within a short time are termed SES activity [5] and usually appear before major earthquakes. The combination of their physical properties enable the determination of the epicentral region and the magnitude well in advance. Natural time analysis introduced a decade ago [6, 7] may uncover novel dynamic features hidden behind time series in complex systems [8]. By employing this analysis, several advances have been made towards a better understanding of the SES properties. For example, it has been found [6, 8] that the natural time analysis of the seismicity subsequent to the initiation of a SES activity enables the determination of the occurrence time of an impending major mainshock within a time window of around one week. On this basis, predictions -including the magnitude, epicenter and time window of the expected event- have been documented well in advance for all five mainshocks with M_w×6.4 in Greece since 2001 [8, 9]. In addition, by applying natural time analysis to the time series of earthquakes, we recently found [10] that the order parameter of seismicity exhibits a unique change approximately at the date at which SES activities have been reported to initiate. This is the first time that before the occurrence of major earthquakes, anomalous changes are found to appear almost simultaneously in two different geophysical observables. 1. P. Varotsos and K. Alexopoulos, Tectonophysics 110, 73-98, 1984a. 2. P. Varotsos and K. Alexopoulos, Tectonophysics 110, 99-125, 1984b. 3. P.A. Varotsos, N

  6. Ion plateau transport near the tokamak magnetic axis

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1998-04-01

    Conventional neoclassical transport theory does not pertain near the magnetic axis, where orbital variation of the minor radius and the poloidal field markedly change the nature of guiding-center trajectories. Instead of the conventional tokamak banana-shaped trajectories, near-axis orbits, called potato orbits, are radially wider and lead to distinctive kinetic considerations. Here it is shown that there is a plateau regime for the near-axis case; the corresponding potato-plateau ion thermal conductivity is computed. {copyright} {ital 1998 American Institute of Physics.}

  7. Sensitivity of kinetic ballooning mode instability to tokamak equilibrium implementations

    NASA Astrophysics Data System (ADS)

    Xie, H. S.; Xiao, Y.; Holod, I.; Lin, Z.; Belli, E. A.

    2016-10-01

    Global, first-principles study of the kinetic ballooning mode (KBM) is crucial to understand tokamak edge physics in high-confinement mode (H-mode). In contrast to the ion temperature gradient mode and trapped electron mode, the KBM is found to be very sensitive to the equilibrium implementations in gyrokinetic codes. In this paper, we show that a second-order difference in Shafranov shift or geometric coordinates, or a difference between local and global profile implementations can bring a factor of two or more discrepancy in real frequency and growth rate. This suggests that an accurate global equilibrium is required for validation of gyrokinetic KBM simulations.

  8. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  9. Tokamak dust in ITER -- Safety issues and R and D supporting dust limits

    SciTech Connect

    McCarthy, K.A.; Petti, D.A.; Carmack, W.J.; Gorman, S.V.

    1998-07-01

    Tokamak dust is an important contributor to the source term in ITER safety analyses. In this paper the authors present results of R and D at the INEEL to characterize tokamak dust, and which has been used to set safety limits on dust for ITER. They present the results of analysis of particulate collected from three operating tokamaks: DIII-D at General Atomics, TFTR at Princeton Plasma Physics Laboratory, and Alcator C-MOD at Massachusetts Institute of Technology, and analysis of particulate produced in SIRENS, a disruption simulator at North Carolina State University. Analyses done include characterization of particulate to produce particle size distributions, chemical analysis, and measurement of effective surface area. The safety limits on dust in ITER have evolved during the EDA as more data have become available. The safety limits specified in NSSR-2 envelope the majority of the data, and provide conservatism to account for the uncertainty in extrapolation of the data to ITER.

  10. The consequences of using advanced physical assessment skills in medical and surgical nursing: A hermeneutic pragmatic study

    PubMed Central

    Zambas, Shelaine I.; Smythe, Elizabeth A.; Koziol-Mclain, Jane

    2016-01-01

    Aims and objectives The aim of this study was to explore the consequences of the nurse's use of advanced assessment skills on medical and surgical wards. Background Appropriate, accurate, and timely assessment by nurses is the cornerstone of maintaining patient safety in hospitals. The inclusion of “advanced” physical assessment skills such as auscultation, palpation, and percussion is thought to better prepare nurses for complex patient presentations within a wide range of clinical situations. Design This qualitative study used a hermeneutic pragmatic approach. Method Unstructured interviews were conducted with five experienced medical and surgical nurses to obtain 13 detailed narratives of assessment practice. Narratives were analyzed using Van Manen's six-step approach to identify the consequences of the nurse's use of advanced assessment skills. Results The consequences of using advanced assessment skills include looking for more, challenging interpretations, and perseverance. The use of advanced assessment skills directs what the nurse looks for, what she sees, interpretation of the findings, and her response. It is the interpretation of what is seen, heard, or felt within the full context of the patient situation, which is the advanced skill. Conclusion Advanced assessment skill is the means to an accurate interpretation of the clinical situation and contributes to appropriate diagnosis and medical management in complex patient situations. Relevance to clinical practice The nurse's use of advanced assessment skills enables her to contribute to diagnostic reasoning within the acute medical and surgical setting. PMID:27607193

  11. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    SciTech Connect

    Gorelenkov, Nikolai N

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  12. Sensitivity of predictive tokamak plasma transport simulations

    SciTech Connect

    Redd, A.J.; Kritz, A.H.; Bateman, G.; Kinsey, J.E.

    1997-06-01

    The sensitivity of our time-dependent simulations of low confinement (L-mode) discharges to variations in initial profiles and time-dependent boundary conditions has been explored. These time-dependent tokamak plasma simulations were performed using a theory-based Multi-mode transport model that includes ion temperature gradient (ITG) and trapped electron modes (TEM), kinetic and resistive ballooning modes and neoclassical modes. The density and temperature profiles predicted in our simulations of L-mode discharges are found to be robust, even with significant variations in the initial or boundary conditions. Although transport associated with a single mode can be strongly affected by local changes in plasma parameters resulting from changes in the boundary conditions, the total transport remains largely unchanged because of compensation by other transport modes. The sensitivity of the predicted temperature and density profiles to a variation in the Multi-mode model is also examined. When the Dominguez-Waltz theory of transport driven by ITG and TEM modes is replaced in the Multi-mode model by the Weiland description, we find that the predictions of the Weiland model more closely match the experimental data. {copyright} {ital 1997 American Institute of Physics.}

  13. HPGe well-type detectors for neutron activation measurements on the Frascati Tokamak Upgrade tokamak

    SciTech Connect

    Bertalot, L.; Damiani, M.; Esposito, B.; Lagamba, L.; Podda, S.; Batistoni, P.; De Felice, P.; Biagini, R.

    1997-01-01

    We describe an improvement of the neutron activation system in operation on the Frascati Tokamak Upgrade (FTU) tokamak for the measurement of the total neutron yield. A HPGe well-type detector (200 cm{sup 3} active volume) is used to detect the photoemission from neutron activated samples ({sup 115m}In336.2 keV {gamma} rays from DD neutrons on indium for FTU). Due to their high geometrical efficiency, HPGe well-type detectors are particularly suited to the FTU low-level activity measurements. A particular effort has been devoted to the calibration of the measuring system. In particular, a multi-{gamma} calibration source (59{endash}1332 keV energy range) with a density of 7.31 g/cm{sup 3} consisting of a stack of indium foils has been prepared. This assures that the shape and volume of the calibration source are the same as those of the samples used in the actual measurements. The full-energy-peak efficiency at the {sup 115m}In336.2 keV line is 0.197 with an overall uncertainty of 2{percent} (1{sigma}). For a better characterization of the detector response as a function of the sample density, a further calibration source with the same geometry has been prepared in a gel aqueous solution (density {approximately}1 g/cm{sup 3}). The calibration curves for the well-type detector at the two different density values are compared. {copyright} {ital 1997 American Institute of Physics.}

  14. Control of Dust Inventory in Tokamaks

    SciTech Connect

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Pitcher, C. S.; Taylor, N.; Furlan, J.

    2008-09-07

    Particles with sizes ranging from 100 nm to 100 {mu}m are produced in tokamaks by the interaction of the plasma with the first wall materials and divertor. Dust has not yet been of a major concern in existing tokamaks mainly because their quantities are small and these devices are not nuclear facilities. However, in ITER and in future reactors, they could represent operational and potential safety issues. The aim of this paper is thus to describe the dust creation processes in the tokamak environment. The diagnostics and removal techniques that are needed to be implemented to measure and minimise the dust inventory are also presented. The integration of these techniques into a tokamak environment is also discussed.

  15. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    SciTech Connect

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  16. Simulation of plasma flow in the DIII-D Tokamak

    SciTech Connect

    Porter, G. D., LLNL

    1998-06-19

    The importance of the parallel flow of primary and impurity ions in the Scrape-Off layer (SOL) of divertor tokamaks has been recognized recently. Impurity accumulation on the closed flux surfaces is determined in part by their parallel flow in the SOL. In turn, the parallel transport of the impurity ions is determined in part by drag from the primary ion flow. Measurement of flow in the DIII-D tokamak has begun recently. We describe initial results of modeling plasma ion flow using the 2-D code UEDGE in this paper. We assume the impurity (carbon) arises from chemical and physical sputtering from the walls surrounding the DIII-D plasma. We include six charge states of carbon in our simulations. We make detailed compaison with a multitude of SOL plasma diagnostics, including the flow measurement, to verify the UEDGE physics model. We begin the paper with a brief description of the plasma and neutral models in the UEDGE code in Section 2. We then present initial results of flow simulations and compare them with experimental measurement in Section 3. We conclude with a discussion of the dominant physics processes identified in the modeling in Section 4.

  17. D-D tokamak reactor studies

    SciTech Connect

    Evans, K.E. Jr.; Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Finn, P.A.; Jung, J.; Mattas, R.F.; Misra, B.; Smith, D.L.; Stevens, H.C.

    1980-11-01

    A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated.

  18. Relations of morale and physical function to advanced activities of daily living in health promotion class participants

    PubMed Central

    Yajima, Masahide; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu

    2016-01-01

    [Purpose] The aim of this study was to clarify the relations of morale and physical function to the presence/absence of advanced activities of daily living. [Subjects] The subjects were 86 elderly community residents participating in health promotion classes. [Methods] A questionnaire survey on age, gender, presence/absence of advanced activities of daily living, and Philadelphia Geriatric Center Morale Scale score was conducted, in addition to assessment of fitness, consisting of measurement of height, body weight, grip and knee extensor muscle strength, functional reach, one-leg standing time, and Timed Up and Go test. Furthermore, multiple logistic regression analysis was performed with the presence/absence of advanced activities of daily living as a dependent variable. [Results] Grip strength and Timed Up and Go time were identified as variables influencing the presence/absence of advanced activities of daily living. [Conclusion] Physical function represented by grip strength and Timed Up and Go time was higher among subjects performing advanced activities of daily living. PMID:27065541

  19. Scoping study for compact high-field superconducting net energy tokamaks

    NASA Astrophysics Data System (ADS)

    Mumgaard, R. T.; Greenwald, M.; Freidberg, J. P.; Wolfe, S. M.; Hartwig, Z. S.; Brunner, D.; Sorbom, B. N.; Whyte, D. G.

    2016-10-01

    The continued development and commercialization of high temperature superconductors (HTS) may enable the construction of compact, net-energy tokamaks. HTS, in contrast to present generation low temperature superconductors, offers improved performance in high magnetic fields, higher current density, stronger materials, higher temperature operation, and simplified assembly. Using HTS along with community-consensus confinement physics (H98 =1) may make it possible to achieve net-energy (Q>1) or burning plasma conditions (Q>5) in DIII-D or ASDEX-U sized, conventional aspect ratio tokamaks. It is shown that, by operating at high plasma current and density enabled by the high magnetic field (B>10T), the required triple products may be achieved at plasma volumes under 20m3, major radii under 2m, with external heating powers under 40MW. This is at the scale of existing devices operated by laboratories, universities and companies. The trade-offs in the core heating, divertor heat exhaust, sustainment, stability, and proximity to known plasma physics limits are discussed in the context of the present tokamak experience base and the requirements for future devices. The resulting HTS-based design space is compared and contrasted to previous studies on high-field copper experiments with similar missions. The physics exploration conducted with such HTS devices could decrease the real and perceived risks of ITER exploitation, and aid in quickly developing commercially-applicable tokamak pilot plants and reactors.

  20. Who will save the tokamak - Harry Potter, Arnold Schwarzenegger, or Shaquille O'Neil?

    NASA Astrophysics Data System (ADS)

    Freidberg, J.; Mangiarotti, F.; Minervini, J.

    2014-10-01

    The tokamak is the current leading contender for a fusion power reactor. The reason for the preeminence of the tokamak is its high quality plasma physics performance relative to other concepts. Even so, it is well known that the tokamak must still overcome two basic physics challenges before becoming viable as a DEMO and ultimately a reactor: (1) the achievement of non-inductive steady state operation, and (2) the achievement of robust disruption free operation. These are in addition to the PMI problems faced by all concepts. The work presented here demonstrates by means of a simple but highly credible analytic calculation that a ``standard'' tokamak cannot lead to a reactor - it is just not possible to simultaneously satisfy all the plasma physics plus engineering constraints. Three possible solutions, some more well-known than others, to the problem are analyzed. These visual image generating solutions are defined as (1) the Harry Potter solution, (2) the Arnold Schwarzenegger solution, and (3) the Shaquille O'Neil solution. Each solution will be described both qualitatively and quantitatively at the meeting.

  1. Results from deuterium-tritium tokamak confinement experiments

    SciTech Connect

    Hawryluk, R.J.

    1997-02-01

    Recent scientific and technical progress in magnetic fusion experiments has resulted in the achievement of plasma parameters (density and temperature) which enabled the production of significant bursts of fusion power from deuterium-tritium fuels and the first studies of the physics of burning plasmas. The key scientific issues in the reacting plasma core are plasma confinement, magnetohydrodynamic (MHD) stability, and the confinement and loss of energetic fusion products from the reacting fuel ions. Progress in the development of regimes of operation which have both good confinement and are MHD stable have enabled a broad study of burning plasma physics issues. A review of the technical and scientific results from the deuterium-tritium experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) is given with particular emphasis on alpha-particle physics issues.

  2. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks. Annual report, November 16, 1991--November 15, 1992

    SciTech Connect

    Scharer, J.E.

    1992-12-31

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  3. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    SciTech Connect

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described.

  4. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  6. PREFACE: X Meeting on Recent Advances in the Physics of Fluids and their Applications

    NASA Astrophysics Data System (ADS)

    Saita, Fernando Adolfo; Giavedoni, María Delia

    2009-07-01

    The X Meeting on Recent Advances in Physics of Fluids and Related Applications (Fluids 2008) was held in Santa Fe, Argentina, on 19-21 November 2008. It belongs to a series of meetings that started in 1989 and has continued - except for just one occasion - every other year. Thus, the first meeting took place in the city of Tandil in 1989 followed by three events in the city of La Plata (1991-93-95), Tunuyán (Mendoza) in 1997, Paraná (Entre Rios) in 1999, Buenos Aires in 2001, Tandil in 2003 and Mendoza in 2006. These meetings gather together most of the people working in Fluid Mechanics and related problems in Argentina. The objective of the meetings is to provide a forum to facilitate the interactions between participants in a friendly academic atmosphere. This goal is achieved by means of lectures and technical presentations on different subjects and from different points of view, the only constraint being the current academic/technical interest. Applications usually deal with problems of local interest. In the present meeting a variety of lecture topics were presented, among them we might mention Capillary Hydrodynamics, Wetting, Density Currents, Instabilities, Elastic-Dynamics, Flows in Porous Media, Sediment Transport, Plasma Dynamics, etc. In particular, we would like to highlight the specially invited lectures given by Dr Ramon Cerro (Chemical and Material Engineering Department University of Alabama in Huntsville, USA), Dr David Quéré (Physique et Mécanique des Milieux Hétérogènes ESPCI, FRANCE), Dr Marcelo García (College of Engineering University of Illinois at Urbana-Champaign) and Dr Víctor Calo (Earth and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST) and Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin). In addition, we had 18 invited talks and more than fifty contributions that were presented in poster sessions. On behalf of both the Honorary

  7. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Pan, X. M.; Yang, Z. J.; Ma, X. D.; Zhu, Y. L.; Luhmann, N. C.; Domier, C. W.; Ruan, B. W.; Zhuang, G.

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  8. Evidence for Anomalous Effects on the Current Evolution in Tokamak Operating Scenarios

    SciTech Connect

    Casper, T; Jayakumar, R; Allen, S; Holcomb, C; Makowski, M; Pearlstein, L; Berk, H; Greenfield, C; Luce, T; Petty, C; Politzer, P; Wade, M; Murakami, M; Kessel, C

    2006-10-03

    Alternatives to the usual picture of advanced tokamak (AT) discharges are those that form when anomalous effects alter the plasma current and pressure profiles and those that achieve stationary characteristics through mechanisms so that a measure of desired AT features is maintained without external current-profile control. Regimes exhibiting these characteristics are those where the safety factor (q) evolves to a stationary profile with the on-axis and minimum q {approx} 1 and those with a deeply hollow current channel and high values of q. Operating scenarios with high fusion performance at low current and where the inductively driven current density achieves a stationary configuration with either small or non-existing sawteeth may enhance the neutron fluence per pulse on ITER and future burning plasmas. Hollow current profile discharges exhibit high confinement and a strong ''box-like'' internal transport barrier (ITB). We present results providing evidence for current profile formation and evolution exhibiting features consistent with anomalous effects or with self-organizing mechanisms. Determination of the underlying physical processes leading to these anomalous effects is important for scaling of current experiments for application in future burning plasmas.

  9. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.

    PubMed

    Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  10. Homoclinic tangle of the ideal separatrix in the DIII-D tokamak from (30, 10) + (40, 10) perturbation

    SciTech Connect

    Punjabi, Alkesh

    2014-12-15

    Trajectories of magnetic field lines are a 1½ degree of freedom Hamiltonian system. The perturbed separatrix in a divertor tokamak is radically different from the unperturbed one. This is because magnetic asymmetries cause the separatrix to form extremely complicated structures called homoclinic tangles. The shape of flux surfaces in the edge region of divertor tokamaks such as the DIII (J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)) is fundamentally different from near-circular. Recently, a new method is developed to calculate the homoclinic tangle and lobes of the separatrix of divertor tokamaks in physical space (A. Punjabi and A. Boozer, Phys. Lett. A 378, 2410 (2014)). This method is based on three elements: preservation of the two invariants—symplectic and topological neighborhood—and a new set of canonical coordinates called the natural canonical coordinates. The very complicated shape of edge surfaces can be represented very accurately and very realistically in these new coordinates (A. Punjabi and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)). A symplectic map in the new coordinates can advance the separatrix manifold forward and backward in time. Every time the two manifolds meet in a fixed poloidal plane, they intersect and form homoclinic tangle to preserve the two invariants. The new coordinates can be mapped to physical space and the dynamical evolution of the homoclinic tangle can be seen and pictured in physical space. Here, the new method is applied to the DIII-D tokamak to study the basic features of the homoclinic tangle of the unperturbed separatrix from two Fourier components, which represent the peeling-ballooning modes of equal amplitude and no radial dependence, and the results are analyzed. Homoclinic tangle has a very complicated structure and becomes extremely complicated for as the lines take more toroidal turns, especially near the X-point. Homoclinic tangle is the most

  11. Full f gyrokinetic method for particle simulation of tokamak transport

    SciTech Connect

    Heikkinen, J.A. Janhunen, S.J.; Kiviniemi, T.P.; Ogando, F.

    2008-05-10

    A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear predictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a sufficiently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number (M{sub p}{approx}1) of the poloidal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels particularly strongly in a large aspect ratio tokamak at low plasma current.

  12. Overview of the EUROfusion Medium Size Tokamak scientific program

    NASA Astrophysics Data System (ADS)

    Martin, Piero; Coda, Stefano; Eich, Thomas; Hakola, Antti; Meyer, Hendrik; EUROfusion MST1 Team; AUG Team; MAST-U Team; TCV Team

    2016-10-01

    The EUROfusion MST (Medium Size Tokamaks) task force is in charge of the European science programme in the ASDEX Upgrade, TCV and MAST-U tokamaks. This paper will present an overview of the main results obtained in the 2015/16 campaign in AUG and TCV and the future plans. We will discuss, among others, successful disruption and runaway electron control experiments with MGI and 3D fields, the achievement of full ELM suppression with RMP accompanied by the understanding of plasma response and the heat load pattern study, the exploration of regimes with impurity seeding at high P/R with 85% radiation fraction and good confinement, the study of tungsten fuzz, where W samples with pre-formed nanostructures were exposed to H-mode Helium plasmas and the investigation on advanced divertor concepts. A survey of MHD limits and of MHD control in standard and high-beta regimes will be presented. The results from the AUG campaign dedicated to He plasmas in support of ITER initial operation will also be presented, as well as analysis of old MAST data that reveal interesting features in the filamentary transport. See http://www.euro-fusionscipub.org/mst1.

  13. An overview of results from the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Goodman, T. P.; Ahmed, S. M.; Alberti, S.; Andrèbe, Y.; Angioni, C.; Appert, K.; Arnoux, G.; Behn, R.; Blanchard, P.; Bosshard, P.; Camenen, Y.; Chavan, R.; Coda, S.; Condrea, I.; Degeling, A.; Duval, B. P.; Etienne, P.; Fasel, D.; Fasoli, A.; Favez, J.-Y.; Furno, I.; Henderson, M.; Hofmann, F.; Hogge, J.-P.; Horacek, J.; Isoz, P.; Joye, B.; Karpushov, A.; Klimanov, I.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Manini, A.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Martynov, An.; Mayor, J.-M.; Mlynar, J.; Moret, J.-M.; Nelson-Melby, E.; Nikkola, P.; Paris, P. J.; Perez, A.; Peysson, Y.; Pitts, R. A.; Pochelon, A.; Porte, L.; Raju, D.; Reimerdes, H.; Sauter, O.; Scarabosio, A.; Scavino, E.; Seo, S. H.; Siravo, U.; Sushkov, A.; Tonetti, G.; Tran, M. Q.; Weisen, H.; Wischmeier, M.; Zabolotsky, A.; Zhuang, G.

    2003-12-01

    The Tokamak à Configuration Variable (TCV) tokamak (R = 0.88 m, a < 0.25 m, B < 1.54 T) programme is based on flexible plasma shaping and heating for studies of confinement, transport, control and power exhaust. Recent advances in fully sustained off-axis electron cyclotron current drive (ECCD) scenarios have allowed the creation of plasmas with high bootstrap fraction, steady-state reversed central shear and an electron internal transport barrier. High elongation plasmas, kgr = 2.5, are produced at low normalized current using far off-axis electron cyclotron heating and ECCD to broaden the current profile. Third harmonic heating is used to heat the plasma centre where the second harmonic is in cut-off. Both second and third harmonic heating are used to heat H-mode plasmas, at the edge and centre, respectively. The ELM frequency is decreased by the additional power. In separate experiments, the ELM frequency can be affected by locking to an external perturbation current in the internal coils of TCV. Spatially resolved current profiles are measured at the inner and outer divertor targets by Langmuir probe arrays during ELMs. The strong, reasonably balanced currents are thought to be thermoelectric in origin.

  14. Toroidal Flow in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Cole, A. J.; Hegna, C. C.

    2007-11-01

    Many effects influence toroidal flow evolution in tokamak plasmas. Momentum sources and radial diffusion due to axisymmetric neoclassical, paleoclassical and anomalous transport are usually considered. In addition, the toroidal flow can be affected by field errors. Small, non-axisymmetric field errors arise from coil irregularities, active control coils and collective plasma magnetic distortions (e.g., NTMs, RWMs). Resonant field errors cause localized electromagnetic torques near rational surfaces in the plasma, which can lock the plasma to the wall leading to magnetic islands and reduced confinement or disruptions. Their penetration into the plasma is limited by flow-shielding effects; but they can be amplified by the plasma response at high beta. Non-resonant field errors cause magnetic pumping and radial banana drifts, and lead to toroidal flow damping over the entire plasma. Many of these processes can also produce momentum pinch and intrinsic flow effects. This poster will seek to present a coherent picture of all these effects and suggest ways they could be tested and distinguished experimentally.

  15. Sensitivity of magnetic field-line pitch angle measurements to sawtooth events in tokamaks

    NASA Astrophysics Data System (ADS)

    Ko, J.

    2016-11-01

    The sensitivity of the pitch angle profiles measured by the motional Stark effect (MSE) diagnostic to the evolution of the safety factor, q, profiles during the tokamak sawtooth events has been investigated for Korea Superconducting Tokamak Advanced Research (KSTAR). An analytic relation between the tokamak pitch angle, γ, and q estimates that Δγ ˜ 0.1° is required for detecting Δq ˜ 0.05 near the magnetic axis (not at the magnetic axis, though). The pitch angle becomes less sensitive to the same Δq for the middle and outer regions of the plasma (Δγ ˜ 0.5°). At the magnetic axis, it is not straightforward to directly relate the γ sensitivity to Δq since the gradient of γ(R), where R is the major radius of the tokamak, is involved. Many of the MSE data obtained from the 2015 KSTAR campaign, when calibrated carefully, can meet these requirements with the time integration down to 10 ms. The analysis with the measured data shows that the pitch angle profiles and their gradients near the magnetic axis can resolve the change of the q profiles including the central safety factor, q0, during the sawtooth events.

  16. Energetic-ion-driven global instabilities in stellarator/helical plasmas and comparison with tokamak plasmas

    SciTech Connect

    Toi, K.; Ogawa, K.; Isobe, M.; Osakabe, M.; Spong, Donald A; Todo, Yasushi

    2011-01-01

    Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs that exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.

  17. Global modelling of non-axisymmetric disruptions and halo currents in tokamaks

    NASA Astrophysics Data System (ADS)

    McCarrick, James F.

    1997-12-01

    As tokamak plasmas become more robust with the development of increasingly advanced operating regimes, the occurrence of plasma disruptions places a greater demand on the tokamak structure. In particular, the flow of halo currents, large currents which appear in tokamak vacuum vessels as a result of direct contact with bulk plasma, has become a matter of increasing concern. Experimental measurements have confirmed the existence of large, toroidally asymmetric currents which flow poloidally in the wall, exerting strong localized forces on the wall as they interact with the toroidal magnetic field. A new model has been developed to study this phenomenon, based on the use of nested sheet currents to represent a disrupting plasma. This model contains the minimum number of degrees of freedom which permit the flow of continuous, non-axisymmetric poloidal and toroidal currents; furthermore, the model can be put into a compact integral formulation which allows rapid numerical solution even in the presence of complicated tokamak geometries. A fast code called TSPS-3D has been written to solve the sheet current model; the code has been matched against experimental data and used to examine basic scaling relationships of halo currents and the resulting J x B loads with plasma parameters. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  18. Energetic-ion-driven global instabilities in stellarator/helical plasmas and comparison with tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Toi, K.; Ogawa, K.; Isobe, M.; Osakabe, M.; Spong, D. A.; Todo, Y.

    2011-02-01

    Comprehensive understanding of energetic-ion-driven global instabilities such as Alfvén eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs that exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.

  19. GBS: Global 3D simulation of tokamak edge region

    NASA Astrophysics Data System (ADS)

    Zhu, Ben; Fisher, Dustin; Rogers, Barrett; Ricci, Paolo

    2012-10-01

    A 3D two-fluid global code, namely Global Braginskii Solver (GBS), is being developed to explore the physics of turbulent transport, confinement, self-consistent profile formation, pedestal scaling and related phenomena in the edge region of tokamaks. Aimed at solving drift-reduced Braginskii equations [1] in complex magnetic geometry, the GBS is used for turbulence simulation in SOL region. In the recent upgrade, the simulation domain is expanded into close flux region with twist-shift boundary conditions. Hence, the new GBS code is able to explore global transport physics in an annular full-torus domain from the top of the pedestal into the far SOL. We are in the process of identifying and analyzing the linear and nonlinear instabilities in the system using the new GBS code. Preliminary results will be presented and compared with other codes if possible.[4pt] [1] A. Zeiler, J. F. Drake and B. Rogers, Phys. Plasmas 4, 2134 (1997)

  20. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    SciTech Connect

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-06-15

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of