Science.gov

Sample records for advanced tokamak regime

  1. Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Barbato, E.; Bécoulet, A.; Doyle, E. J.; Fujita, T.; Gohil, P.; Imbeaux, F.; Sauter, O.; Sips, G.; ITPA Group on Transport; Internal ITB Physics; Connor, J. W.; Doyle, E. J.; Esipchuk, Yu; Fujita, T.; Fukuda, T.; Gohil, P.; Kinsey, J.; Kirneva, N.; Lebedev, S.; Litaudon, X.; Mukhovatov, V.; Rice, J.; Synakowski, E.; Toi, K.; Unterberg, B.; Vershkov, V.; Wakatani, M.; International ITB Database Working Group; Aniel, T.; Baranov, Yu F.; Barbato, E.; Bécoulet, A.; Behn, R.; Bourdelle, C.; Bracco, G.; Budny, R. V.; Buratti, P.; Doyle, E. J.; Esipchuk, Yu; Esposito, B.; Ide, S.; Field, A. R.; Fujita, T.; Fukuda, T.; Gohil, P.; Gormezano, C.; Greenfield, C.; Greenwald, M.; Hahm, T. S.; Hoang, G. T.; Hobirk, J.; Hogeweij, D.; Ide, S.; Isayama, A.; Imbeaux, F.; Joffrin, E.; Kamada, Y.; Kinsey, J.; Kirneva, N.; Litaudon, X.; Luce, T. C.; Murakami, M.; Parail, V.; Peng, Y.-K. M.; Ryter, F.; Sakamoto, Y.; Shirai, H.; Sips, G.; Suzuki, T.; Synakowski, E.; Takenaga, H.; Takizuka, T.; Tala, T.; Wade, M. R.; Weiland, J.

    2004-05-01

    Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H\\times \\beta _{\\rm N}/q^{2}_{95} , is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters. A preliminary version of this study was presented in the 29th EPS Conf. on Plasma Phys. and Control. Fusion (Montreux, Switzerland, 17 21 June 2002) [1].

  2. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    SciTech Connect

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  3. Study on lower hybrid current drive efficiency at high density towards long-pulse regimes in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Ding, B. J.; Zhang, J. Z.; Gan, K. F.; Wang, H. Q.; Peysson, Y.; Decker, J.; Zhang, L.; Wei, W.; Li, Y. C.; Wu, Z. G.; Ma, W. D.; Jia, H.; Chen, M.; Yang, Y.; Feng, J. Q.; Wang, M.; Xu, H. D.; Shan, J. F.; Liu, F. K.

    2014-06-01

    Significant progress on both L- and H-mode long-pulse discharges has been made recently in Experimental Advanced Superconducting Tokamak (EAST) with lower hybrid current drive (LHCD) [J. Li et al., Nature Phys. 9, 817 (2013) And B. N. Wan et al., Nucl. Fusion 53, 104006 (2013).]. In this paper, LHCD experiments at high density in L-mode plasmas have been investigated in order to explore possible methods of improving current drive (CD) efficiency, thus to extend the operational space in long-pulse and high performance plasma regime. It is observed that the normalized bremsstrahlung emission falls much more steeply than 1/ne_av (line-averaged density) above ne_av = 2.2 × 1019 m-3 indicating anomalous loss of CD efficiency. A large broadening of the operating line frequency (f = 2.45 GHz), measured by a radio frequency (RF) probe located outside the EAST vacuum vessel, is generally observed during high density cases, which is found to be one of the physical mechanisms resulting in the unfavorable CD efficiency. Collisional absorption of lower hybrid wave in the scrape off layer (SOL) may be another cause, but this assertion needs more experimental evidence and numerical analysis. It is found that plasmas with strong lithiation can improve CD efficiency largely, which should be benefited from the changes of edge parameters. In addition, several possible methods are proposed to recover good efficiency in future experiments for EAST.

  4. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  5. Plasma Physics Regimes in Tokamaks with Li Walls

    SciTech Connect

    L.E. Zakharo; N.N. Gorelenkov; R.B. White; S.I. Krasheninnikov; G.V. Pereverzev

    2003-08-21

    Low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak reactors. These regimes could make ignition feasible in compact tokamaks. Ignited Spherical Tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary step for development of the physics and technology of power reactors.

  6. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  7. MHD stable regime of the tokamak

    SciTech Connect

    Cheng, C.Z.; Furth, H.P.; Boozer, A.H.

    1986-10-01

    A broad family of tokamak current profiles is found to be stable against ideal and resistive MHD kink modes for 1 less than or equal to q(0), with q(a) as low 2. For 0.5 less than or equal to q(0) < and q(a) > 1, current profiles can be found that are unstable only to the m = 1, n = 1 mode. A specific ''optimal'' tokamak profile can be selected from the range of stable solutions, by imposing a common upper limit on dj/dr - corresponding in ohmic equilibrium to a limitation of dT/sub e//dr by anomalous transport.

  8. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in

  9. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    SciTech Connect

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma

  10. Advanced geometries and regimes

    SciTech Connect

    Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.

    2013-07-26

    We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.

  11. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    SciTech Connect

    Sonnino, Giorgio; Peeters, Philippe

    2008-06-15

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10{sup 2}. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10{sup 2} when the nonlinear contributions are duly taken into account but, there is still a factor of 10{sup 2} to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.

  12. Transport in the plateau regime in a tokamak pedestal

    SciTech Connect

    Seol, J.; Shaing, K. C.

    2012-07-15

    In a tokamak H-mode, a strong E Multiplication-Sign B flow shear is generated during the L-H transition. Turbulence in a pedestal is suppressed significantly by this E Multiplication-Sign B flow shear. In this case, neoclassical transport may become important. The neoclassical fluxes are calculated in the plateau regime with the parallel plasma flow using their kinetic definitions. In an axisymmetric tokamak, the neoclassical particles fluxes can be decomposed into the banana-plateau flux and the Pfirsch-Schlueter flux. The banana-plateau particle flux is driven by the parallel viscous force and the Pfirsch-Schlueter flux by the poloidal variation of the friction force. The combined quantity of the radial electric field and the parallel flow is determined by the flux surface averaged parallel momentum balance equation rather than requiring the ambipolarity of the total particle fluxes. In this process, the Pfirsch-Schlueter flux does not appear in the flux surface averaged parallel momentum equation. Only the banana-plateau flux is used to determine the parallel flow in the form of the flux surface averaged parallel viscosity. The heat flux, obtained using the solution of the parallel momentum balance equation, decreases exponentially in the presence of sonic M{sub p} without any enhancement over that in the standard neoclassical theory. Here, M{sub p} is a combination of the poloidal E Multiplication-Sign B flow and the parallel mass flow. The neoclassical bootstrap current in the plateau regime is presented. It indicates that the neoclassical bootstrap current also is related only to the banana-plateau fluxes. Finally, transport fluxes are calculated when M{sub p} is large enough to make the parallel electron viscosity comparable with the parallel ion viscosity. It is found that the bootstrap current has a finite value regardless of the magnitude of M{sub p}.

  13. DIII-D Advanced Tokamak Research Overview

    SciTech Connect

    V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler

    1999-12-01

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously {beta}{sub N}H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues.

  14. M = 1 internal kink mode in the plateau and banana regimes in tokamaks

    SciTech Connect

    Mikhailovskii, A.B.; Tsypin, V.S.

    1983-01-01

    A theory is derived for the m = 1 internal kink mode of a tokamak in the plateau and banana regimes. The growth rate for this mode in the plateau regime is shown to be smaller by a factor of a/R than the MHD prediction (a and R are the minor and major radii of the torus). The growth rate in the banana regime is higher than in the plateau regime and approaches the standard MHD value.

  15. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offeringmore » one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.« less

  16. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    SciTech Connect

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offering one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.

  17. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    NASA Astrophysics Data System (ADS)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA

  18. Profile control of advanced tokamak plasmas in view of continuous operation

    NASA Astrophysics Data System (ADS)

    Mazon, D.

    2015-07-01

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  19. Resonance parallel viscosity in the banana regime in poloidally rotating tokamak plasmas

    SciTech Connect

    Shaing, K.C.; Hsu, C.T.; Dominguez, N. )

    1994-05-01

    Parallel viscosity in the banana regime in a poloidally ([bold E][times][bold B]) rotating tokamak plasma is calculated to include the effects of orbit squeezing and to allow the poloidal [bold E][times][bold B] Mach number [ital M][sub [ital p

  20. Relaxation rate of poloidal rotation in the banana regime in tokamaks

    SciTech Connect

    Shaing, K.C.; Hirshman, S.P.

    1989-03-01

    The relaxation rate ..nu../sub p/ of poloidal rotation in the banana regime in tokamaks is calculated using a time-dependent parallel viscosity. It is found that ..nu../sub p/ is on the order of ..nu../sub i//sub i/, the ion--ion collision frequency, with no geometric enhancement factor associated with toroidicity.

  1. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  2. Impurity flows and plateau-regime poloidal density variation in a tokamak pedestal

    SciTech Connect

    Landreman, M.; Fueloep, T.; Guszejnov, D.

    2011-09-15

    In the pedestal of a tokamak, the sharp radial gradients of density and temperature can give rise to poloidal variation in the density of impurities. At the same time, the flow of the impurity species is modified relative to the conventional neoclassical result. In this paper, these changes to the density and flow of a collisional impurity species are calculated for the case when the main ions are in the plateau regime. In this regime, it is found that the impurity density can be higher at either the inboard or outboard side. This finding differs from earlier results for banana- or Pfirsch-Schlueter-regime main ions, in which case the impurity density is always higher at the inboard side in the absence of rotation. Finally, the modifications to the impurity flow are also given for the other regimes of main-ion collisionality.

  3. Low-frequency linear-mode regimes in the tokamak scrape-off layer

    NASA Astrophysics Data System (ADS)

    Mosetto, Annamaria; Halpern, Federico D.; Jolliet, Sébastien; Ricci, Paolo

    2012-11-01

    Motivated by the wide range of physical parameters characterizing the scrape-off layer (SOL) of existing tokamaks, the regimes of low-frequency linear instabilities in the SOL are identified by numerical and analytical calculations based on the linear, drift-reduced Braginskii equations, with cold ions. The focus is put on ballooning modes and drift wave instabilities, i.e., their resistive, inertial, and ideal branches. A systematic study of each instability is performed, and the parameter space region where they dominate is identified. It is found that the drift waves dominate at high R /Ln, while the ballooning modes at low R /Ln; the relative influence of resistive and inertial effects is discussed. Electromagnetic effects suppress the drift waves and, when the threshold for ideal stability is overcome, the ideal ballooning mode develops. Our analysis is a first stage tool for the understanding of turbulence in the tokamak SOL, necessary to interpret the results of non-linear simulations.

  4. Shape Optimization for DIII-D Advanced Tokamak Plasmas

    SciTech Connect

    C.E. Kesse; J.R. Ferron; C.M. Greenfield; J.E. Menard; T.S. Taylor

    2003-07-30

    The advanced tokamak program on DIII-D is targeting the full integration of high-beta and high-bootstrap/noninductive current fraction for long-pulse lengths and the high confinement consistent with these features. Central to achieving these simultaneously is access to the highest ideal beta limits possible to maximize the headroom for experimental operation with RWM control. A study of the ideal-MHD stability is done for plasmas modeled after DIII-D advanced tokamak plasmas, varying the plasma elongation, triangularity, and outboard squareness. The highest beta(sub)N limits reach 6-7 for the n=1 kink mode for all elongation, outer squareness values, and plasma triangularity equals 0.8.

  5. Exploration of low-aspect-ratio tokamak regimes in CDX-U

    SciTech Connect

    Hwang, Y.S.; Jones, T.G.; Ono, M.

    1994-12-31

    In the low-aspect-ratio tokamak regime, a lower q(a) regime (i.e. q(a) {le}5, A = R/a {approx} 1.5) has been explored in CDX-U. Using a relatively low toroidal magnetic field, plasma discharges with I{sub p} {le}53 kA, and q(a) {ge} 4 [qcyl(a) {ge}1] have been obtained. Low q(a), ohmic plasmas in CDX-U show stronger MHD activity as the edge safety factor is reduced. Those MHD modes appear to reduce the current ramp-up rate and, at present, limit the access to even lower q(a) regimes.

  6. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  7. New Fluctuation Phenomena in the H-Mode Regime of Poloidal-Diverter Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Slusher, R. E.; Surko, C. M.; Valley, J. F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-08-01

    A new kind of fluctuation is observed near the edge of plasmas in the PDX tokamak operating in the "H-mode" (improved-confinement) regime. These fluctuations are evidenced as vacuum-uv and density-fluctuation bursts at well-defined frequencies (Δωω<~0.1) in the range between 50 and 180 kHz. The bursts are correlated, both in space and in time, with changes in the temperature-density product near the plasma edge where large density and temperature gradients develop during the H mode.

  8. New fluctuation phenomena in the H-mode regime of poloidal-divertor tokamak plasmas

    SciTech Connect

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-08-13

    A new kind of fluctuation is observed near the edge of plasmas in the PDX tokamak operating in the ''H-mode'' (improved-confinement) regime. These fluctuations are evidenced as vacuum-UV and density-fluctuation bursts at well-defined frequencies (..delta omega../..omega..< or approx. =0.1) in the range between 50 and 180 kHz. The bursts are correlated, both in space and in time, with changes in the temperature-density product near the plasma edge where large density and temperature gradients develop during the H mode.

  9. Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime

    NASA Astrophysics Data System (ADS)

    Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; Holcomb, C. T.; Lao, L. L.; McKee, G. R.; Meneghini, O.; Staebler, G. M.; Grierson, B. A.; Qian, J. P.; Solomon, W. M.; Turnbull, A. D.; Holland, C.; Guo, W. F.; Ding, S. Y.; Pan, C. K.; Xu, G. S.; Wan, B. N.

    2016-06-01

    Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of βp and βN , despite strong internal transport barriers. Good confinement has been achieved with reduced toroidal rotation. These high βp plasmas challenge the energy transport understanding, especially in the electron energy channel. A new turbulent transport model, named TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. More investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.

  10. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  11. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  12. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Beer, M.; Batha, S.

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

  13. Deuterium--tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Batha, S.; Beer, M.; Bell, R.E.; Belov, A.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Bretz, N.L.; Budny, R.; Bush, C.E.; Callen, J.; Cauffman, S.; Chang, C.S.; Chang, Z.; Cheng, C.Z.; Darrow, D.S.; Dendy, R.O.; Dorland, W.; Duong, H.; Efthimion, P.C.; Ernst, D.; Evenson, H.; Fisch, N.J.; Fisher, R.; Fonck, R.J.; Fredrickson, E.D.; Fu, G.Y.; Furth, H.P.; Gorelenkov, N.N.; Goloborodko, V.Y.; Grek, B.; Grisham, L.R.; Hammett, G.W.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.W.; Hogan, J.; Hooper, B.; Hosea, J.C.; Houlberg, W.A.; Hughes, M.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Kaita, R.; Kaye, S.; Kesner, J.; Kim, J.S.; Kissick, M.; Krasilnikov, A.V.; Kugel, H.; Kumar, A.; Lam, N.T.; Lamarche, P.; LeBlanc, B.; Levinton, F.M.; Ludescher, C.; Machuzak, J.; Majeski, R.P.; Manickam, J.; Mansfield, D.K.; Mauel, M.; Mazzucato, E.; McChesney, J.; McCune, D.C.; McKee, G.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Nagayama, Y.; Navratil, G.A.; Nazikian, R.; Okabayashi, M.; Osakabe, M.; Owens, D.K.; Park, H.K.; Park, W.; Paul, S.F.; Petrov, M.P.; Phillips, C.K.; Phillips, M.; Phillips, P.; Ramsey, A.T.; Rice, B.; Redi, M.H.; Rewoldt, G.; Reznik, S.; Roquemore, A.L.; Rogers, J.; Ruskov, E.; Sabbagh, S.A.; Sasao, M.; Schilling, G.; Schmidt, G.L.; Scott, S.D.; Semenov, I.; Senko, T.; Skinner, C.H.; Stevenson, T.; Strait, E.J.; Stratton, B.C.; Strachan, J.D.; Stodiek, W.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Thompson, M.E.; von Goeler, S.; Von Halle, A.; Walters, R.T.; Wang, S.; White, R.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.L.; Wurden, G.A.; Yamada, M.; Yavorski, V.; Young, K.M.; Zakharov, L.; Zarnstorff, M.C.; Zweben, S.J.

    1997-05-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas {bold 2}, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium{endash}tritium (D--T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through {ital in situ} deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a}{approx}4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D--T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D--T plasmas with q{sub 0}{gt}1 and weak magnetic shear in the central region, a toroidal Alfvn eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. {copyright} {ital 1997 American Institute of Physics.}

  14. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Park, Jinhyung; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-01

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 1019 m-3 when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  15. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    SciTech Connect

    Seo, Seong-Heon; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Park, Jinhyung; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-15

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  16. Edge Biasing of SINP-Tokamak Plasma in High-Q Regime

    NASA Astrophysics Data System (ADS)

    Pal, Rabindranath; Basu, Debjyoti

    2009-11-01

    In high q regime (qedge=5-7) of SINP-TOKAMAK [an iron-core device having major and minor radii of 30 and 7.5 cm, respectively and Btoroidal = 1.2 Tesla] fast edge biasing experiment is carried out introducing a Molybdenum electrode of 5mm in diameter, radially positioned at 7.0 cm. Biasing seems to cause a change in plasma current density profile forming a negative shear in the region 6.4-6.9 cm and it leads to better confinement and longer duration of plasma current as was observedfootnotetextGhosh J., Pal R., Chattopadhyay P. K. and Basu D. 2007 Nucl. Fusion 47 331 also in very low q (VLQ) regimes of the same machine. The electrode current drawn in this regime is about 5-10 amp. Lowering of Hα signal and loop voltage is also observed indicating better confinement, independently confirmed by diamagnetic loop too. On applying bias, electron density and temperature profile develop sharper gradient near the edge. Interestingly, electrostatic and magnetic fluctuations, observed by inserting electric and magnetic probes in the edge plasma, are suppressed in the inner region (6.4-6.8 cm) in the frequency range of 30-70 kHz by the effect of electrode biasing.

  17. Effects of orbit squeezing on ion transport in the banana regime in tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Hazeltine, R. D.

    1992-08-01

    It is shown that ion transport in the banana regime in tokamaks is reduced in the presence of a strong shear in the radial electric field Er , as is often observed in the edge region. For simplicity, the ordering with ρpi‖d ln Er /dr‖ ≫ 1 but c‖Er‖/Bpvti < 1 is adopted. Here, ρpi is the ion poloidal gyroradius, Bp is the poloidal magnetic field strength, vti is the ion thermal speed, and c is the speed of light. A kinetic transport theory similar to those for bumpy tori and stellarators is developed to show that the ion thermal conductivity χi is reduced by a factor of roughly S-3/2, where S = 1 - (ρpi d ln Er /dr)(cEr Bpvti). The result reflects more than simple orbit squeezing: The fraction of trapped ions is also modified by S.

  18. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Gao, W.; Chen, Y. J.; Wu, C. R.; Zhang, L.; Huang, J.; Chang, J. F.; Yao, X. J.; Gao, W.; Zhang, P. F.; Jin, Z.; Hou, Y. M.; Guo, H. Y.

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  19. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  20. Advanced ICRF antenna design for R-TOKAMAK

    NASA Astrophysics Data System (ADS)

    Kako, E.; Ando, R.; Ichimura, M.; Ogawa, Y.; Amano, T.; Watari, T.

    1986-01-01

    The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For high power heating, a new type antenna called Panel heater antenna is proposed. It has a wide radiation area and is able to select a parallel wave number k. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma.

  1. Design of vibration compensation interferometer for Experimental Advanced Superconducting Tokamak.

    PubMed

    Yang, Y; Li, G S; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Zhu, X; Wang, Z X; Zeng, L; Zou, Z Y; Wei, X C; Lan, T

    2014-11-01

    A vibration compensation interferometer (wavelength at 0.532 μm) has been designed and tested for Experimental Advanced Superconducting Tokamak (EAST). It is designed as a sub-system for EAST far-infrared (wavelength at 432.5 μm) poloarimeter/interferometer system. Two Acoustic Optical Modulators have been applied to produce the 1 MHz intermediate frequency. The path length drift of the system is lower than 2 wavelengths within 10 min test, showing the system stability. The system sensitivity has been tested by applying a periodic vibration source on one mirror in the system. The vibration is measured and the result matches the source period. The system is expected to be installed on EAST by the end of 2014.

  2. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    SciTech Connect

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-07-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.

  3. The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2014-03-05

    Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

  4. The ARIES Advanced and Conservative Tokamak Power Plant Study

    SciTech Connect

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; EL-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Rader, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.

  5. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE PAGES

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; et al

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, anmore » n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less

  6. Effects of orbit squeezing on ion transport in the banana regime in tokamaks

    SciTech Connect

    Shaing, K.C. ); Hazeltine, R.D. . Inst. for Fusion Studies)

    1992-02-01

    It is shown that ion transport in the banana regime in tokamaks is reduced in the presence of a strong shear in the radial electric field E{sub r}, as is often observed in the edge region. For simplicity, the ordering with {rho}{sub pi}{vert bar}d ln E{sub r}/dr{vert bar} {much gt} 1 but c{vert bar}E{sub r}{vert bar}/B{sub p}{upsilon}{sub ti} < 1 is adopted. Here, {rho}{sub pi} is the ion poloidal gyroradius, B{sub p} is the poloidal magnetic field strength, {upsilon}{sub ti} is the ion thermal speed, and c is the speed of light. A kinetic transport theory similar to those for bumpy tori and stellarators is developed to show that the ion thermal conductivity {chi}{sub i} is reduced by a factor of roughly S{sup {minus}3/2}, where S = 1 {minus} ({rho}{sub pi}d ln E{sub r}/dr)(cE{sub r}/B{sub {rho}}{upsilon}{sub ti}). The result reflects more than simple orbit squeezing: the fraction of trapped ions is also modified by S.

  7. Effects of orbit squeezing on ion transport in the banana regime in tokamaks

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1992-02-01

    It is shown that ion transport in the banana regime in tokamaks is reduced in the presence of a strong shear in the radial electric field E{sub r}, as is often observed in the edge region. For simplicity, the ordering with {rho}{sub pi}{vert_bar}d ln E{sub r}/dr{vert_bar} {much_gt} 1 but c{vert_bar}E{sub r}{vert_bar}/B{sub p}{upsilon}{sub ti} < 1 is adopted. Here, {rho}{sub pi} is the ion poloidal gyroradius, B{sub p} is the poloidal magnetic field strength, {upsilon}{sub ti} is the ion thermal speed, and c is the speed of light. A kinetic transport theory similar to those for bumpy tori and stellarators is developed to show that the ion thermal conductivity {chi}{sub i} is reduced by a factor of roughly S{sup {minus}3/2}, where S = 1 {minus} ({rho}{sub pi}d ln E{sub r}/dr)(cE{sub r}/B{sub {rho}}{upsilon}{sub ti}). The result reflects more than simple orbit squeezing: the fraction of trapped ions is also modified by S.

  8. Effects of orbit squeezing on ion transport in the banana regime in tokamaks

    SciTech Connect

    Shaing, K.C. ); Hazeltine, R.D. )

    1992-08-01

    It is shown that ion transport in the banana regime in tokamaks is reduced in the presence of a strong shear in the radial electric field {ital E}{sub {ital r}} , as is often observed in the edge region. For simplicity, the ordering with {rho}{sub {ital pi}}{vert bar}{ital d} ln {ital E}{sub {ital r} }/{ital dr}{vert bar} {much gt} 1 but {ital c}{vert bar}{ital E}{sub {ital r}}{vert bar}/{ital B}{sub {ital p}v}{sub {ital ti}} {lt} 1 is adopted. Here, {rho}{sub {ital pi}} is the ion poloidal gyroradius, {ital B}{sub {ital p}} is the poloidal magnetic field strength, {ital v}{sub {ital ti}} is the ion thermal speed, and {ital c} is the speed of light. A kinetic transport theory similar to those for bumpy tori and stellarators is developed to show that the ion thermal conductivity {chi}{sub {ital i}} is reduced by a factor of roughly {ital S}{sup {minus}3/2}, where {ital S} = 1 {minus} ({rho}{sub {ital pi} }{ital d} ln {ital E}{sub {ital r}} /{ital dr})({ital cE}{sub {ital r}} {ital B}{sub {ital pv}}{sub {ital ti}}). The result reflects more than simple orbit squeezing: The fraction of trapped ions is also modified by {ital S}.

  9. Exploration of low-aspect-ratio tokamak regimes in the CDX-U and TS-3 devices

    SciTech Connect

    Hwang, Y.S.; Yamada, M.; Jones, T.G.

    1994-12-31

    In the low-aspect-ratio tokamak regime, a lower q(a) regime (i.e. q(a) {le} 5, A = R/a {approx} 1.5) has been explored in CDX-U, and the ultra-low-aspect-ratio tokamak regime (1.05 {le} A {le} 1.5) has been explored in TS-3. Using a relatively low toroidal magnetic field, plasma discharges with I{sub p} {le} 53 kA, and q(a) {ge} 4 [q{sub cyl}(a) {ge}1] have been obtained in CDX-U. Low q(a), Ohmic plasmas in CDX-U show increasing MHD activity as the edge safety factor is lowered. These modes appear to reduce the current ramp-up rate and, at present, limit the access to even lower q(a) regimes. An experiment carried out in the ULART regime (A {approx} 1.05 {minus} 1.5) on the TS-3 device identifies a threshold of q(a) {ge} 3 with q{sub cyl}(a) < 1 for stability of global tilt/shift modes.

  10. Plasma Shape and Current Density Profile Control in Advanced Tokamak Operating Scenarios

    NASA Astrophysics Data System (ADS)

    Shi, Wenyu

    The need for new sources of energy is expected to become a critical problem within the next few decades. Nuclear fusion has sufficient energy density to potentially supply the world population with its increasing energy demands. The tokamak is a magnetic confinement device used to achieve controlled fusion reactions. Experimental fusion technology has now reached a level where tokamaks are able to produce about as much energy as is expended in heating the fusion fuel. The next step towards the realization of a nuclear fusion tokamak power plant is ITER, which will be capable of exploring advanced tokamak (AT) modes, characterized by a high fusion gain and plasma stability. The extreme requirements of the advanced modes motivates researchers to improve the modeling of the plasma response as well as the design of feedback controllers. This dissertation focuses on several magnetic and kinetic control problems, including the plasma current, position and shape control, and data-driven and first-principles-driven modeling and control of plasma current density profile and the normalized plasma pressure ratio betaN. The plasma is confined within the vacuum vessel by an external electromagnetic field, produced primarily by toroidal and poloidal field coils. The outermost closed plasma surface or plasma boundary is referred to as the shape of the plasma. A central characteristic of AT plasma regimes is an extreme elongated shape. The equilibrium among the electromagnetic forces acting on an elongated plasma is unstable. Moreover, the tokamak performance is improved if the plasma is located in close proximity to the torus wall, which guarantees an efficient use of available volume. As a consequence, feedback control of the plasma position and shape is necessary. In this dissertation, an Hinfinity-based, multi-input-multi-output (MIMO) controller for the National Spherical Torus Experiment (NSTX) is developed, which is used to control the plasma position, shape, and X

  11. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  12. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.

  13. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-01

    An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.

  14. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak.

    PubMed

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-01

    An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.

  15. Development on JET of advanced tokamak operations for ITER

    NASA Astrophysics Data System (ADS)

    Tuccillo, A. A.; Crisanti, F.; Litaudon, X.; Baranov, Yu. F.; Becoulet, A.; Becoulet, M.; Bertalot, L.; Castaldo, C.; Challis, C. D.; Cesario, R.; DeBaar, M. R.; de Vries, P. C.; Esposito, B.; Frigione, D.; Garzotti, L.; Giovannozzi, E.; Giroud, C.; Gorini, G.; Gormezano, C.; Hawkes, N. C.; Hobirk, J.; Imbeaux, F.; Joffrin, E.; Lomas, P. J.; Mailloux, J.; Mantica, P.; Mantsinen, M. J.; Mazon, D.; Moreau, D.; Murari, A.; Pericoli-Ridolfini, V.; Rimini, F.; Sips, A. C. C.; Sozzi, C.; Tudisco, O.; Van Eester, D.; Zastrow, K.-D.; work-programme contributors, JET-EFDA

    2006-02-01

    Recent research on advanced tokamak in JET has focused on scenarios with both monotonic and reversed shear q-profiles having plasma parameters as relevant as possible for extrapolation to ITER. Wide internal transport barriers (ITBs), r/a ~ 0.7, are formed at ITER relevant triangularity δ ~ 0.45 and moderate plasma current, IP = 1.5-2.5 MA, with ne/nG ~ 60% when ELMs are moderated by Ne injection. At higher current (IP <= 3.5 MA, δ ~ 0.25) wide ITBs sitting at r/a >= 0.5, in the positive shear region, have been developed. Generally MHD events terminate these barriers otherwise limited in strength by power availability. ITBs with core density close to Greenwald value, Te ~ Ti and low toroidal rotation (4 times lower than standard ITBs) are obtained in plasma target preformed by opportune timing of lower hybrid current drive (LHCD), pellet injection and a small amount of NBI power. Wide ITBs, r/a ~ 0.6, of moderate strength, can be sustained without impurities accumulation for a time close to neoclassical resistive time in 3 T/1.8 MA discharges that exhibit reversed magnetic shear profiles and type-III ELMy edge. These discharges have been extended to the maximum duration allowed by JET subsystems (20 s) bringing to the record of injected energy in a JET discharge: E ~ 330 MJ. Portability of ITB physics has been addressed through dedicated similarity experiments. The ITB is identified as a layer of reduced diffusivity studying the propagation of the heat wave generated by modulating the ICRF mode conversion (MC) electron heating. Impressive results, QDT ~ 0.25, are obtained in these deuterium discharges with 3He minority when the MC layer is located in the core. The ion behaviour has been investigated in pure LHCD electron ITBs optimizing the 3He minority concentration for direct ion heating. Preliminary results of particle transport, studied via injection of a trace of tritium and an Ar-Ne mixture, will be presented.

  16. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    SciTech Connect

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-15

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  17. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  18. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  19. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028

  20. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-01

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  1. Advances in Dust Detection and Removal for Tokamaks

    NASA Astrophysics Data System (ADS)

    Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.

    2008-11-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.

  2. Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan

    2014-05-15

    Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.

  3. Characteristics of radiated power for various TFTR (Tokamak Fusion Test Reactor) regimes

    SciTech Connect

    Bush, C.E.; Schivell, J.; McNeill, D.H.; Medley, S.S.; Hendel, H.W.; Hulse, R.A.; Ramsey, A.T.; Stratton, B.C.; Dylla, H.F.; Grek, B.; Johnson, D.W.; Taylor, G.; Ulrickson, M.; Wieland, R.M.

    1988-04-01

    Power loss studies were carried out to determine the impurity radiation and energy transport characteristics of various TFTR operation and confinement regimes including L-Mode, detached plasma, co-only neutral beam injection (energetic ion regime), and the enhanced confinement (''supershot'') regime. Combined bolometric, spectroscopic, and infrared photometry measurements provide a picture of impurity behavior and power accounting in TFTR. The purpose of this paper is to make a survey of the various regimes with the aim of determining the radiated power signatures of each. 10 refs., 6 figs., 1 tab.

  4. Evaluation of toroidal torque by non-resonant magnetic perturbations in tokamaks for resonant transport regimes using a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot; Kasilov, Sergei V.; Kernbichler, Winfried; Martitsch, Andreas F.

    2016-08-01

    Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.

  5. Plasma potential and geodesic acoustic mode evolution with Helium puffing in the ECRH regime on the T-10 tokamak

    NASA Astrophysics Data System (ADS)

    Zenin, V. N.; Subbotin, G. F.; Klyuchnikov, L. A.; Melnikov, A. V.

    2016-09-01

    The evolution of the Geodesic Acoustic Mode (GAM) and mean plasma electric potential were examined in the regime with short (5 ms) Helium puffing into Electron Cyclotron Resonance heated discharge of the T-10 tokamak. It was shown that a Helium pulse leads to temporal perturbation of the plasma electron temperature and density and concomitant evolution of the mean potential, happening in the diffusive time-scale ∼⃒ 30 ms. Afterwards, the potential restores to the new stationary level with the same time-scale. On top of that GAM amplitude reduces sharply (within 2-5 ms) and GAM frequency also decreases within 30 ms after Helium puffing. Afterwards GAM amplitude and frequency relax to a new stationary level within about 50-70 ms. The evolution of electron density, electron and ion temperatures, total stored energy and plasma density turbulence is discussed in order to clarify their links with potential and GAM evolution.

  6. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect

    Campos, A.; Skinner, C.H.

    2009-01-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  7. Fluid-particle hybrid simulation on the transports of plasma, recycling neutrals, and carbon impurities in the Korea Superconducting Tokamak Advanced Research divertor region

    NASA Astrophysics Data System (ADS)

    Kim, Deok-Kyu; Hong, Sang Hee

    2005-06-01

    A two-dimensional simulation modeling that has been performed in a self-consistent way for analysis on the fully coupled transports of plasma, recycling neutrals, and intrinsic carbon impurities in the divertor domain of tokamaks is presented. The numerical model coupling the three major species transports in the tokamak edge is based on a fluid-particle hybrid approach where the plasma is described as a single magnetohydrodynamic fluid while the neutrals and impurities are treated as kinetic particles using the Monte Carlo technique. This simulation code is applied to the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak [G. S. Lee, J. Kim, S. M. Hwang et al., Nucl. Fusion 40, 575 (2000)] to calculate the peak heat flux on the divertor plate and to explore the divertor plasma behavior depending on the upstream conditions in its base line operation mode for various values of input heating power and separatrix plasma density. The numerical modeling for the KSTAR tokamak shows that its full-powered operation is subject to the peak heat loads on the divertor plate exceeding an engineering limit, and reveals that the recycling zone is formed in front of the divertor by increasing plasma density and by reducing power flow into the scrape-off layer. Compared with other researchers' work, the present hybrid simulation more rigorously reproduces severe electron pressure losses along field lines by the presence of recycling zone accounting for the transitions between the sheath limited and the detached divertor regimes. The substantial profile changes in carbon impurity population and ionic composition also represent the key features of this divertor regime transition.

  8. Dynamically stable, self-similarly evolving, and self-organized states of high beta tokamak and reversed pinch plasmas and advanced active control

    SciTech Connect

    Kondoh, Yoshiomi; Fukasawa, Toshinobu

    2009-11-15

    Generalized simultaneous eigenvalue equations derived from a generalized theory of self-organization are applied to a set of simultaneous equations for two-fluid model plasmas. An advanced active control by using theoretical time constants is proposed by predicting quantities to be controlled. Typical high beta numerical configurations are presented for the ultra low q tokamak plasmas and the reversed-field pinch (RFP) ones in cylindrical geometry by solving the set of simultaneous eigenvalue equations. Improved confinement with no detectable saw-teeth oscillations in tokamak experiments is reasonably explained by the shortest time constant of ion flow. The shortest time constant of poloidal ion flow is shown to be a reasonable mechanism for suppression of magnetic fluctuations by pulsed poloidal current drives in RFP experiments. The bifurcation from basic eigenmodes to mixed ones deduced from stability conditions for eigenvalues is shown to be a good candidate for the experimental bifurcation from standard RFP plasmas to their improved confinement regimes.

  9. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,KH

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  10. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    SciTech Connect

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (..delta omega../..omega.. less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement.

  11. Characterization of density fluctuations during the search for an I-mode regime on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Marinoni, A.; Rost, J. C.; Porkolab, M.; Hubbard, A. E.; Osborne, T. H.; White, A. E.; Whyte, D. G.; Rhodes, T. L.; Davis, E. M.; Ernst, D. R.; Burrell, K. H.

    2015-09-01

    The I-mode regime, routinely observed on the Alcator C-Mod tokamak, is characterized by an edge energy transport barrier without an accompanying particle barrier and with broadband instabilities, known as weakly coherent modes (WCM), believed to regulate particle transport at the edge. Recent experiments on the DIII-D tokamak exhibit I-mode characteristics in various physical quantities. These DIII-D plasmas evolve over long periods, lasting several energy confinement times, during which the edge electron temperature slowly evolves towards an H-mode-like profile, while maintaining a typical L-mode edge density profile. During these periods, referred to as I-mode phases, the radial electric field at the edge also gradually reaches values typically observed in H-mode. Density fluctuations measured with the phase contrast imaging diagnostic during I-mode phases exhibit three features typically observed in H-mode on DIII-D, although they develop progressively with time and without a sharp transition: the intensity of the fluctuations is reduced; the frequency spectrum is broadened and becomes non-monotonic; two dimensional space-time spectra appear to approach those in H-mode, showing phase velocities of density fluctuations at the edge increasing to about 10 km s-1. However, in DIII-D there is no clear evidence of the WCM. Preliminary linear gyro-kinetic simulations are performed in the pedestal region with the GS2 code and its recently upgraded model collision operator that conserves particles, energy and momentum. The increased bootstrap current and flow shear generated by the temperature pedestal are shown to decrease growth rates, thus possibly generating a feedback mechanism that progressively stabilizes fluctuations.

  12. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

  13. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  14. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  15. The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  16. Simple contour analysis of ignition conditions and plasma operating regimes in tokamaks

    SciTech Connect

    Uckan, N.A.; Sheffield, J.; Selcow, E.C.

    1985-01-01

    Contour plots of ignition, auxiliary power requirements, heating and operating windows, optimal path to ignition, ignition margin, etc., are generated analytically in terms of a small number of parameters (aB/sub 0//sup 2//q/sub */, R/sub 0//B/sub 0/, , etc.) for classes of devices with equivalent performance. Numerical studies are carried out to map the physics design space. Considering both the Murakami density limit (approx.B/sub 0//R/sub 0/) and the Troyon beta limit (approx.I/aB/sub 0/), results from analytic calculations indicate that in a standard tokamak geometry (A approx. 2.5 to 3.5, kappa = b/a approx. 1.6 to 1.7, q/sub psi/ approx. 2.6) devices with aB/sub 0//sup 2//q/sub */ approx. 20 should be ignitable provided confinement does not degrade with heating (ohmic + alpha + auxiliary, etc.) power; however, aB/sub 0//sup 2//q/sub */ approx. 30 (25) may be required for minimal ignition for a typical L- (H-) mode confinement scaling. Increased plasma elongation (kappa approx. 2) may help to reduce these requirements.

  17. Kinetic description of rotating Tokamak plasmas with anisotropic temperatures in the collisionless regime

    SciTech Connect

    Cremaschini, Claudio; Tessarotto, Massimo

    2011-11-15

    A largely unsolved theoretical issue in controlled fusion research is the consistent kinetic treatment of slowly-time varying plasma states occurring in collisionless and magnetized axisymmetric plasmas. The phenomenology may include finite pressure anisotropies as well as strong toroidal and poloidal differential rotation, characteristic of Tokamak plasmas. Despite the fact that physical phenomena occurring in fusion plasmas depend fundamentally on the microscopic particle phase-space dynamics, their consistent kinetic treatment remains still essentially unchallenged to date. The goal of this paper is to address the problem within the framework of Vlasov-Maxwell description. The gyrokinetic treatment of charged particles dynamics is adopted for the construction of asymptotic solutions for the quasi-stationary species kinetic distribution functions. These are expressed in terms of the particle exact and adiabatic invariants. The theory relies on a perturbative approach, which permits to construct asymptotic analytical solutions of the Vlasov-Maxwell system. In this way, both diamagnetic and energy corrections are included consistently into the theory. In particular, by imposing suitable kinetic constraints, the existence of generalized bi-Maxwellian asymptotic kinetic equilibria is pointed out. The theory applies for toroidal rotation velocity of the order of the ion thermal speed. These solutions satisfy identically also the constraints imposed by the Maxwell equations, i.e., quasi-neutrality and Ampere's law. As a result, it is shown that, in the presence of nonuniform fluid and EM fields, these kinetic equilibria can sustain simultaneously toroidal differential rotation, quasi-stationary finite poloidal flows and temperature anisotropy.

  18. Transitions Out of High-Confinement Mode to Lower Confinement Regimes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Eldon, David

    A high-resolution edge Thomson Scattering (TS) system was developed and installed on the DIII-D tokamak, and was then used to study the back transition from High Confinement (H-mode) to Low Confinement (L-mode) in DIII-D. The transient event seen to initiate some back transition sequences is superficially similar to a large type-I ELM, which is described by the linear ideal MHD theory of peeling-ballooning modes. Detailed edge pedestal profile evolution studies during the back transition show that the plasma does not exceed this linear stability limit during the back transition, indicating that the transient is not a type-I ELM event. The E x B shearing rate oE x B and turbulence decorrelation rate oT were then compared before the H-L sequence. The results show that the back transition sequence begins while oE x B is still well above oT, indicating that the sequences observed in these experiments are not triggered by the collapse of the E x B shear layer. Further investigation is made to characterize a coherent density fluctuation whose behavior is linked to back transition sequences. Strategies for avoiding the transient are tested and a reliable method for producing a "soft'' back transition is identified. Such cases are compared to the class of "hard'' transitions in which the pedestal pressure gradient rapidly relaxes.

  19. Lower hybrid wave propagation in tokamaks in weak and strong absorption regimes

    NASA Astrophysics Data System (ADS)

    Wright, J. C.; Bonoli, P. T.; Harvey, R. W.; Schmidt, A. E.; Wallace, G. W.; Valeo, E. J.; Phillips, C. K.

    2011-12-01

    Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)×vte, where vte = (2Te/me)1/2. The velocity at which damping occurs depends on the non-linear balance between quasilinear diffusion and collisions. For high efficiency current drive, a low parallel index of refraction, n∥, corresponding to a high phase velocity, is chosen. Depending on the plasma electron temperature this may put the wave propagation in a multi-pass regime. In cases of low parallel refractive index, ray tracing with no SOL has been shown to have differences with experiment [1] and collision effects in the scrape off layer may be important [2]. Using a coupled model of the full wave code, TORLH[3], and the Fokker-Planck code, CQL3D[4], the importance of full wave effects in weak and strong absorption regimes are studied.

  20. Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Steinmetz, K.; Noterdaeme, J.-M.; Wagner, F.; Wesner, F.; Bäumler, J.; Becker, G.; Bosch, H. S.; Brambilla, M.; Braun, F.; Brocken, H.; Eberhagen, A.; Fritsch, R.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Hofmeister, F.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; van Mark, E.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Puri, S.; Rapp, H.; Röhr, H.; Ryter, F.; Schmitter, K.-H.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Steuer, K.-H.; Vollmer, O.; Wedler, H.; Zasche, D.

    1987-01-01

    The H mode in ion cyclotron-resonance-heated plasmas has been investigated with and without additional neutral beam injection. Ion cyclotron-resonance heating can cause the transition into a high-confinement regime (H mode) in combination with beam heating. The H mode, however, has also been realized-for the first time-with ion cyclotron-resonance heating alone in the D (H)-hydrogen minority scheme at an absorbed rf power of 1.1 MW.

  1. Second stable regime of internal kink modes excited by barely passing energetic ions in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    He, H. D.; Dong, J. Q.; Fu, G. Y.; Zheng, G. Y.; Sheng, Z. M.; Long, Y. X.; He, Z. X.; Jiang, H. B.; Shen, Y.; Wang, L. F.

    2010-08-01

    The internal kink (fishbone) modes, driven by barely passing energetic ions (EIs), are numerically studied with the spatial distribution of the EIs taking into account. It is found that the modes with frequencies comparable to the toroidal precession frequencies are excited by resonant interaction with the EIs. Positive and negative density gradient dominating cases, corresponding to off- and near-axis depositions of neutral beam injection (NBI), respectively, are analyzed in detail. The most interesting and important feature of the modes is that there exists a second stable regime in higher βh (=pressure of EIs/toroidal magnetic pressure) range, and the modes may only be excited by the barely passing EIs in a region of βth1<βh<βth2 (βth is threshold or critical beta of EIs). Besides, the unstable modes require minimum density gradients and minimum radial positions of NBI deposition. The physics mechanism for the existence of the second stable regime is discussed. The results may provide a means of reducing or even preventing the loss of NBI energetic ions and increasing the heating efficiency by adjusting the pitch angle and driving the system into the second stable regime fast enough.

  2. Transition From High Harmonic Fast Wave to Whistler/Helicon Regime in Tokamaks

    NASA Astrophysics Data System (ADS)

    Harris, S. P.; Pinsker, R. I.; Porkolab, M.

    2014-10-01

    Experiments are being prepared1 on DIII-D in which fast waves (FWs) at 0.5 GHz will be used to drive current noninductively in the mid-radius region. Previous DIII-D experiments used FWs at ~0.1 GHz to drive central current; in this work we examine the frequency dependence of wave propagation and damping in the 0.1-1.0 GHz range with the goal of identifying the optimum frequency range for a particular application. Strongly enhanced electron damping and reduced ion damping at higher frequencies must be weighed against increasing coupling difficulties at higher frequencies and more restrictive wave accessibility at low toroidal field. Wave propagation and accessibility is studied with ray tracing models in slab, cylindrical, and fully toroidal geometries. Analytic expressions for electron and ion damping will be derived with an emphasis on understanding the transition from the moderate-to-high ion cyclotron harmonic regime to the very high harmonic or ``whistler''/``helicon''/lower hybrid FW regime. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US Department of Energy under DE-FC02-04ER54698.

  3. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Nam, Y. U.; Chung, J.

    2010-10-15

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  4. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839

  5. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  6. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.

  7. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,HK

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  8. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  9. Optical system design for the charge exchange spectroscopy of the Korea superconducting tokamak advanced research device

    NASA Astrophysics Data System (ADS)

    Oh, Seungtae; Ko, Won-Ha

    2011-04-01

    The collective optical design is described for the charge exchange spectroscopy (CES) of the Korea superconducting tokamak advanced research (KSTAR) device. The CES diagnostic measures the ion temperature of carbon and other impurities, in conjunction with the neutral heating beam in KSTAR. The visible light from the plasma is concentrated via collection optics and imaged onto quartz fibers. The collection optics in the system is the key component for the CES system. The final design is derived through four steps and its performance is examined in a simulation step. In this paper, the design details of the collective optical system for the KSTAR CES are discussed.

  10. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  11. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Huang, J.; Heidbrink, W. W.; Wan, B.; von Hellermann, M. G.; Zhu, Y.; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Shi, Y.; Ye, M.; Hu, L.; Hu, C.

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  12. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak.

    PubMed

    Huang, J; Heidbrink, W W; Wan, B; von Hellermann, M G; Zhu, Y; Gao, W; Wu, C; Li, Y; Fu, J; Lyu, B; Yu, Y; Shi, Y; Ye, M; Hu, L; Hu, C

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  13. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    SciTech Connect

    Zhu, Y. B. Liu, D.; Heidbrink, W. W.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Wan, B. N.; Li, J. G.

    2014-11-15

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  14. First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, J. Z.; Zhu, Y. B.; Zhao, J. L.; Wan, B. N.; Li, J. G.; Heidbrink, W. W.

    2016-11-01

    Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

  15. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Liu, D.; Heidbrink, W. W.; Wan, B. N.; Li, J. G.

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  16. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak.

    PubMed

    Zhu, Y B; Zhang, J Z; Qi, M Z; Xia, S B; Liu, D; Heidbrink, W W; Wan, B N; Li, J G

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  17. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377

  18. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    SciTech Connect

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun E-mail: lqhu@ipp.cas.cn; Hu, Liqun E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  19. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.; Xu, G. S.; Guo, H. Y.; Cao, B.; Wang, H. Q.; Wang, L.; Yan, N.; Xia, S. B.; Zhang, W.; Chen, R.; Chen, L.; Ding, S. Y.; Xiong, H.; Zhao, Y.; Wan, B. N.; Gong, X. Z.; Gao, X.

    2012-12-01

    Gas puff imaging (GPI) offers a direct and effective diagnostic to measure the edge turbulence structure and velocity in the edge plasma, which closely relates to edge transport and instability in tokamaks. A dual GPI diagnostic system has been installed on the low field side on experimental advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6°. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130×130 mm (radial versus poloidal) objective plane. A fast camera is used to capture the light emission from the image plane with a speed up to 390 804 frames/s with 64×64 pixels and an exposure time of 2.156 μs. The spatial resolution of the system is 2 mm at the objective plane. A total amount of 200 Pa.L helium gas is puffed into the plasma edge for each GPI viewing region for about 250 ms. The new GPI diagnostic has been applied on EAST for the first time during the recent experimental campaign under various plasma conditions, including ohmic, L-mode, and type-I, and type-III ELMy H-modes. Some of these initial experimental results are also presented.

  20. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun; Hu, Liqun; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-01

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey-predator model was found to reproduce the fishbone nonlinear process well.

  1. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lampert, M.; Anda, G.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Réfy, D.; Nam, Y. U.; Zoletnik, S.

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  2. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lampert, M.; Anda, G.; Réfy, D.; Zoletnik, S.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Nam, Y. U.

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  3. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  4. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  5. ECH tokamak

    SciTech Connect

    Firestone, M.A.; Mau, T.K.; Conn, R.W.

    1985-04-01

    A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.

  6. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q. E-mail: guohuizhang@pku.edu.cn; Zhang, G. H. E-mail: guohuizhang@pku.edu.cn; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  7. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  8. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-12-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  9. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-10-18

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  10. Application of visible bremsstrahlung to Z{sub eff} measurement on the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu

    2015-02-15

    The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Z{sub eff} as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Z{sub eff} can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Z{sub eff} with electron density and the relations between Z{sub eff} and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters.

  11. Application of visible bremsstrahlung to Z(eff) measurement on the Experimental Advanced Superconducting Tokamak.

    PubMed

    Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu

    2015-02-01

    The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Zeff as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Zeff can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Zeff with electron density and the relations between Zeff and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters.

  12. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak.

    PubMed

    Liu, D M; Wan, B N; Zhao, W Z; Shen, B; He, Y G; Chen, B; Huang, J; Liu, H Q

    2014-11-01

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  13. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak

    SciTech Connect

    Liu, D. M. Zhao, W. Z.; He, Y. G.; Chen, B.; Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q.

    2014-11-15

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  14. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  15. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  16. Development of advanced superconducting coil technologies for the National Centralized Tokamak

    NASA Astrophysics Data System (ADS)

    Kizu, K.; Miura, Y. M.; Tsuchiya, K.; Ando, T.; Koizumi, N.; Matsui, K.; Sakasai, A.; Tamai, H.; Matsukawa, M.; Ishida, S.; Okuno, K.

    2005-11-01

    Advanced technologies for fabrication of superconducting coils have been developed for the National Centralized Tokamak which is based on modification of JT-60. One of the technologies developed is the application of the react-and-wind (R&W) method of fabrication of a Nb3Al D-shaped coil. The bending strain of 0.4% due to the R&W method did not affect the critical current characteristics. This finding indicates the possibilities that the manufacturing cost of large size coils can be reduced further by downsizing the heat treatment furnace, and large complicated shape coils can be manufactured by using the Nb3Al conductor. Another technology is an advanced winding technique for the reduction of the ac losses of Nb3Sn coils by loading bending strain on the conductor. It was found that 0.2% bending strain is enough to reduce the ac losses to one-fifth at the virgin state. The newly developed NbTi conductor attained both (i) low ac loss of 116 ms in coupling time constant and (ii) low cost owing to the stainless steel wrap of the sub-cables and Ni plated NbTi strands with 11 µm filaments.

  17. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; Phillips, C. K.; Berry, L.; Bonoli, P. T.; Gerhardt, S. P.; Green, D.; LeBlanc, B.; Perkins, R. J.; Qin, C. M.; Pinsker, R. I.; Prater, R.; Ryan, P. M.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Wright, J. C.; Zhang, X. J.

    2016-01-01

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSA results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for ‘conventional’ tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime. This article is dedicated to the memory of Cynthia K. Phillips

  18. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    DOE PAGES

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; Phillips, C. K.; Berry, L.; Bonoli, P. T.; Gerhardt, S. P.; Green, D.; LeBlanc, B.; Perkins, R. J.; et al

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSAmore » results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.« less

  19. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    SciTech Connect

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; Phillips, C. K.; Berry, L.; Bonoli, P. T.; Gerhardt, S. P.; Green, D.; LeBlanc, B.; Perkins, R. J.; Qin, C. M.; Pinsker, R. I.; Prater, R.; Ryan, P. M.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Wright, J. C.; Zhang, X. J.

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSA results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.

  20. Investigation of relativistic runaway electrons in electron cyclotron resonance heating discharges on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Kang, C. S.; Lee, S. G.

    2014-07-15

    The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].

  1. Progress toward long-pulse high-performance Advanced Tokamak discharges on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Wade, M. R.; Luce, T. C.; Politzer, P. A.; Ferron, J. R.; Allen, S. L.; Austin, M. E.; Baker, D. R.; Bray, B.; Brennen, D. P.; Burrell, K. H.; Casper, T. A.; Chu, M. S.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gohil, P.; Gorelov, I. A.; Greenfield, C. M.; Groebner, R. J.; Heidbrink, W. W.; Hsieh, C.-L.; Hyatt, A. W.; Jayakumar, R.; Kinsey, J. E.; La Haye, R. J.; Lao, L. L.; Lasnier, C. J.; Lazarus, E. A.; Leonard, A. W.; Lin-Liu, Y. R.; Lohr, J.; Mahdavi, M. A.; Makowski, M. A.; Murakami, M.; Petty, C. C.; Pinsker, R. I.; Prater, R.; Rettig, C. L.; Rhodes, T. L.; Rice, B. W.; Strait, E. J.; Taylor, T. S.; Thomas, D. M.; Turnbull, A. D.; Watkins, J. G.; West, W. P.; Wong, K.-L.

    2001-05-01

    Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ˜10 has been sustained for >5 τE with qmin>1.5. These edge localized modes (ELMing) H-mode discharges have β˜5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated in long-pulse high-performance ELMing H-mode discharges with βNH89˜7 for up to 6.3 s. In plasma shapes compatible with good density control in the present divertor configuration, the achieved βN is somewhat less than that in the high βNH89=10 discharges.

  2. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  3. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Yu Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Hong, Suk-Ho; Yoon, Si-Woo; Zhuang Huidong; Chen Zhongyong

    2012-12-15

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is {approx}3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D{sub 2} MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  4. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  5. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  6. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  7. Analysis of pedestal gradient characteristic on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Teng Fei; Han, Xiao Feng; Zang, Qing; Xiao, Shu Mei; Tian, Bao Gang; Hu, Ai Lan; Zhao, Jun Yu

    2016-05-01

    A pedestal database was built based on type I edge localized mode H-modes in the Experimental Advanced Superconducting Tokamak. The most common functional form hyperbolic tangent function (tanh) method is used to analyze pedestal characteristics. The pedestal gradient scales linearly with its pedestal top and the normalized pedestal pressure gradient α shows a strong correlation with electron collisionality. The connection among pedestal top value, gradient, and width is established with the normalized pedestal pressure gradient. In the core region of the plasma, the nature of the electron temperature stiffness reflects a proportionality between core and pedestal temperature while the increase proportion is lower than that expected in the high temperature region. However, temperature profile stiffness is limited or even disappears at the edge of the plasma, while the gradient length ratio ( ηe ) on the pedestal is important. The range of ηe is from 0.5 to 2, varying with the plasma parameters. The pedestal temperature brings a more significant impact on ηe than pedestal density.

  8. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Yu, Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Zhuang, Huidong; Chen, Zhongyong; Hong, Suk-Ho; Yoon, Si-Woo

    2012-12-01

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is ˜3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D2 MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  9. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  10. Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Qu, H.; Zhang, T.; Han, X.; Xiang, H. M.; Wen, F.; Geng, K. N.; Wang, Y. M.; Kong, D. F.; Cai, J. Q.; Huang, C. B.; Gao, Y.; Gao, X.; Zhang, S.

    2016-11-01

    A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.

  11. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  12. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Yu, Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Zhuang, Huidong; Chen, Zhongyong; Hong, Suk-Ho; Yoon, Si-Woo

    2012-12-01

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is ~3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D(2) MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  13. Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; Lister, G. G.; Mayer, H. M.; Meisel, D.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Röhr, H.; Schneider, F.; Siller, G.; Speth, E.; Stäbler, A.; Steuer, K. H.; Venus, G.; Vollmer, O.; Yü, Z.

    1982-11-01

    A new operational regime has been observed in neutral-injection-heated ASDEX divertor discharges. This regime is characterized by high βp values comparable to the aspect ratio A (βp<=0.65A) and by confinement times close to those of Ohmic discharges. The high-βp regime develops at an injection power >=1.9 MW, a mean density n¯e>=3×1013 cm-3, and a q(a) value >=2.6. Beyond these limits or in discharges with material limiter, low βp values and reduced particle and energy confinement times are obtained compared to the Ohmic heating phase.

  14. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.

  15. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    SciTech Connect

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  16. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  17. Compact Fusion Advanced Rankine (CFARII) power cycle---Operating regimes

    SciTech Connect

    Logan, B.G.

    1991-09-30

    Performance (cost/kWe and efficiency) of generic Compact Fusion Advanced Rankine (CFARII) power conversion is investigated for various working fluids, operating temperatures and pressures, and thermal power levels. A general conclusion is that good CFARII performance is found for a remarkably broad range of materials, temperatures, pressures and power levels, which gives considerable flexibility to future design studies which may apply CFARII energy conversion to specific fusion energy sources such as ICF, MICF, and Mini-PACER. 5 refs, 7 figs., 2 tabs.

  18. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    SciTech Connect

    S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.

  19. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect

    Chi, Yuan; Hu, Chundong; Zhuang, Ge

    2014-02-15

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  20. Optimizing the regimes of the Advanced LIGO gravitational wave detector for multiple source types

    SciTech Connect

    Kondrashov, I. S.; Simakov, D. A.; Khalili, F. Ya.; Danilishin, S. L.

    2008-09-15

    We developed algorithms which allow us to find regimes of the signal-recycled Fabry-Perot-Michelson interferometer [for example, the Advanced Laser Interferometric Gravitational Wave Observatory (LIGO)], optimized concurrently for two (binary inspirals + bursts) and three (binary inspirals + bursts + millisecond pulsars) types of gravitational wave sources. We show that there exists a relatively large area in the interferometer parameters space where the detector sensitivity to the first two kinds of sources differs only by a few percent from the maximal ones for each kind of source. In particular, there exists a specific regime where this difference is {approx_equal}0.5% for both of them. Furthermore, we show that even more multipurpose regimes are also possible that provide significant sensitivity gain for millisecond pulsars with only minor sensitivity degradation for binary inspirals and bursts.

  1. Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Walker, M. L.; Ferron, J. R.; Liu, F.; Schuster, E.; Barton, J. E.; Boyer, M. D.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Holcomb, C. T.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Park, J. M.; Penaflor, B. G.; Shi, W.; Turco, F.; Wehner, W.; the ITPA-IOS Group members; experts

    2013-06-01

    The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, Ψ(x), (b) the poloidal flux profile together with the normalized pressure parameter, βN, and (c) the inverse of the safety factor profile, \\bar{\\iota}(x)=1/q(x) , are described.

  2. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak.

    PubMed

    Zou, Z Y; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Wang, Z X; Shen, J S; An, Z H; Yang, Y; Zeng, L; Wei, X C; Li, G S; Zhu, X; Lan, T

    2014-11-01

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  3. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zou, Z. Y.; Liu, H. Q. Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X.; Ding, W. X.; Brower, D. L.; Lan, T.

    2014-11-15

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  4. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  5. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, H. Y.; Hahn, S. H.; Ghim, Y.-C.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho

    2015-12-01

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2-3 and the ELM size, which was estimated from the Dα amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34-0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  6. First results obtained from the soft x-ray pulse height analyzer on experimental advanced superconducting tokamak

    SciTech Connect

    Xu, P.; Lin, S. Y.; Hu, L. Q.; Duan, Y. M.; Zhang, J. Z.; Chen, K. Y.; Zhong, G. Q.

    2010-06-15

    An assembly of soft x-ray pulse height analyzer system, based on silicon drift detector (SDD), has been successfully established on the experimental advanced superconducting tokamak (EAST) to measure the spectrum of soft x-ray emission (E=1-20 keV). The system, including one 15-channel SDD linear array, is installed on EAST horizontal port C. The time-resolved radial profiles of electron temperature and K{sub {alpha}} intensities of metallic impurities have been obtained with a spatial resolution of around 7 cm during a single discharge. It was found that the electron temperatures derived from the system are in good agreement with the values from Thomson scattering measurements. The system can also be applied to the measurement of the long pulse discharge for EAST. The diagnostic system is introduced and some typical experimental results obtained from the system are also presented.

  7. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang

    2016-04-01

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.

  8. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, W.; Park, H. K.; Lee, D. J.; Nam, Y. U.; Leem, J.; Kim, T. K.

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm-1. The upper limit corresponds to the normalized wavenumber kθρe of ˜0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  9. Effect of gas puffing from different side on lower hybrid wave-plasma coupling in experimental advanced superconductive tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Kong, E. H.; Zhang, T.; Ekedahl, A.; Li, M. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wu, J. H.; Xu, G. S.; Zhao, H. L.; Wang, M.; Gong, X. Z.; Shan, J. F.; Liu, F. K.; EAST Team

    2013-10-01

    Effect of gas puffing from electron-side and ion-side on lower hybrid wave (LHW)-plasma is investigated in experimental advanced superconductive tokamak for the first time. Experimental results with different gas flow rates show that electron density at the grill is higher in the case of gas puffing from electron-side; consequently, a lower reflection coefficient is observed, suggesting better effect of puffing from electron-side on LHW-plasma. The difference in edge density between electron- and ion-side cases suggests that local ionization of puffed gas plays a dominant role in affecting the density at the grill due to different movement direction of ionized electrons and that part of gas has been locally ionized near the gas pipe before diffusing into the grill region. Such difference could be enlarged and important in ITER due to the improvement of plasma parameters and LHW power.

  10. Observation of pedestal turbulence in edge localized mode-free H-mode on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Han, X.; Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.

    2014-10-01

    Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power PICRF/Ptotal exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = -3. Whereas when PICRF/Ptotal is less than 0.7, harmonic mode with frequency f = 40-300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.

  11. ELMy H-mode linear simulation with 3-field model on experimental advanced superconducting tokamak using BOUT++

    SciTech Connect

    Liu, Z. X.; Gao, X.; Liu, S. C.; Ding, S. Y.; Li, J. G.; Xia, T. Y.; Xu, X. Q.; Hughes, J. W.

    2012-10-15

    H-mode plasmas with ELM (edge localized mode) have been realized on experimental advanced superconducting tokamak (EAST) with 2.45 GHz low hybrid wave at P{sub LHW}{approx}1 MW in 2010. Data from EAST experiments including magnetic geometry, measured pressure profiles, and calculated current profiles are used to investigate the physics of ELM utilizing the BOUT++ code. Results from linear simulations show that the ELMs in EAST are dominated by resistive ballooning modes. When the Lundquist number (dimensionless ratio of the resistive diffusion time to the Alfven time) is equal to or less than 10{sup 7}, the resistive ballooning modes are found to become unstable in the ELMy H-mode plasma. For a fixed pedestal pressure profile, increasing plasma current generates more activities of low-n ELMs.

  12. Observation of pedestal turbulence in edge localized mode-free H-mode on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X. Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.

    2014-10-15

    Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power P{sub ICRF}/P{sub total} exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = −3. Whereas when P{sub ICRF}/P{sub total} is less than 0.7, harmonic mode with frequency f = 40–300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.

  13. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  14. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhuang, H D; Zhang, X D

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.

  15. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    SciTech Connect

    Weiland, Jan

    2014-12-15

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α{sub d} diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.

  16. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Weiland, Jan

    2014-12-01

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, "Recent experiments in the EAST and HT-7 superconducting tokamaks," Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α - αd diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.

  17. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    NASA Astrophysics Data System (ADS)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  18. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    SciTech Connect

    Ogando, F.; Heikkinen, J. A.; Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S.

    2006-11-30

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.

  19. A need for non-tokamak approaches to magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Focusing exclusively on conventional tokamak physics in the quest for commercial fusion power is premature, and the options for both advanced-tokamak and non-tokamak concepts need continued investigation. The basis for this claim is developed, and promising advanced-tokamak and non-tokamak options are suggested.

  20. Advanced limiter test (ALT-1) in the TEXTOR tokamak: concept and experimental design

    SciTech Connect

    Conn, R.W.; Grontz, S.P.; Prinja, A.K.; Gauster, W.B.; Malinowski, H.E.; Pontau, A.E.; Blewer, R.S.; Whitley, J.B.; Dippel, K.H.; Fuchs, G.

    1983-01-01

    The concept and experimental design of a pump-limiter for the TEXTOR tokamak is described. The module is constructed of stainless steel with a compound curvature head designed to limit the maximum heat flux to 300 W/cm/sup 2/. The head is made of TiC-coated graphite containing a variable-aperture slot to admit plasma to a deflector plate for ballistic pumping action. The assembly is actively pumped using Zr-Al getters with an estimated hydrogen pumping speed of 3 x 10/sup 4/ 1/s. The aspect ratio of the pump duct and the length of the plasma channel are both variable to permit study of plasma plugging, ballistic scattering, and enhanced gas-conduction effects. The module can be moved radially by 10 cm to permit its operation either as the primary or secondary limiter. Major diagnostics include Langmuir and solid state probes, bolometers, infrared thermography, thermocouples, ion gauges, manometers, and a gas mass analyzer.

  1. Magnetic confinement experiment -- 1: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1994-12-31

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization.

  2. Completely bootstrapped tokamak

    SciTech Connect

    Weening, R.H. ); Boozer, A.H. )

    1992-01-01

    Numerical simulations of the evolution of large-scale magnetic fields have been developed using a mean-field Ohm's law. The Ohm's law is coupled to a {Delta}{prime} stabilty analysis and a magnetic island growth equation in order to simulate the behavior of tokamak plasmas that are subject to tearing modes. In one set of calculations, the magnetohydrodynamic (MHD)-stable regime of the tokamak is examined via the construction of an {ital l}{sub {ital i}} -{ital q}{sub {ital a}} diagram. The results confirm previous calculations that show that tearing modes introduce a stability boundary into the {ital l}{sub {ital i}} -{ital q}{sub {ital a}} space. In another series of simulations, the interaction between tearing modes and the bootstrap current is investigated. The results indicate that a completely bootstrapped tokamak may be possible, even in the absence of any externally applied loop voltage or current drive.

  3. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  4. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  5. Experimental investigation of density behaviors in front of the lower hybrid launcher in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J.; Li, M. H.; Kong, E. H.; Wei, W.; Liu, F. K.; Shan, J. F.; Wu, Z. G.; Zhu, L.; Ma, W. D.; Tong, Y. Y.; Li, Y. C.; Wang, M.; Zhao, L. M.; Hu, H. C.; Liu, L.; Collaboration: EAST Team

    2013-06-15

    A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup −2} to 10.3 MWm{sup −2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup −3} for 2.45 GHz lower hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.

  6. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand.

    PubMed

    Wannamaker, Philip E; Caldwell, T Grant; Jiracek, George R; Maris, Virginie; Hill, Graham J; Ogawa, Yasuo; Bibby, Hugh M; Bennie, Stewart L; Heise, Wiebke

    2009-08-01

    Newly forming subduction zones on Earth can provide insights into the evolution of major fault zone geometries from shallow levels to deep in the lithosphere and into the role of fluids in element transport and in promoting rock failure by several modes. The transpressional subduction regime of New Zealand, which is advancing laterally to the southwest below the Marlborough strike-slip fault system of the northern South Island, is an ideal setting in which to investigate these processes. Here we acquired a dense, high-quality transect of magnetotelluric soundings across the system, yielding an electrical resistivity cross-section to depths beyond 100 km. Our data imply three distinct processes connecting fluid generation along the upper mantle plate interface to rock deformation in the crust as the subduction zone develops. Massive fluid release just inland of the trench induces fault-fracture meshes through the crust above that undoubtedly weaken it as regional shear initiates. Narrow strike-slip faults in the shallow brittle regime of interior Marlborough diffuse in width upon entering the deeper ductile domain aided by fluids and do not project as narrow deformation zones. Deep subduction-generated fluids rise from 100 km or more and invade upper crustal seismogenic zones that have exhibited historic great earthquakes on high-angle thrusts that are poorly oriented for failure under dry conditions. The fluid-deformation connections described in our work emphasize the need to include metamorphic and fluid transport processes in geodynamic models. PMID:19661914

  7. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand.

    PubMed

    Wannamaker, Philip E; Caldwell, T Grant; Jiracek, George R; Maris, Virginie; Hill, Graham J; Ogawa, Yasuo; Bibby, Hugh M; Bennie, Stewart L; Heise, Wiebke

    2009-08-01

    Newly forming subduction zones on Earth can provide insights into the evolution of major fault zone geometries from shallow levels to deep in the lithosphere and into the role of fluids in element transport and in promoting rock failure by several modes. The transpressional subduction regime of New Zealand, which is advancing laterally to the southwest below the Marlborough strike-slip fault system of the northern South Island, is an ideal setting in which to investigate these processes. Here we acquired a dense, high-quality transect of magnetotelluric soundings across the system, yielding an electrical resistivity cross-section to depths beyond 100 km. Our data imply three distinct processes connecting fluid generation along the upper mantle plate interface to rock deformation in the crust as the subduction zone develops. Massive fluid release just inland of the trench induces fault-fracture meshes through the crust above that undoubtedly weaken it as regional shear initiates. Narrow strike-slip faults in the shallow brittle regime of interior Marlborough diffuse in width upon entering the deeper ductile domain aided by fluids and do not project as narrow deformation zones. Deep subduction-generated fluids rise from 100 km or more and invade upper crustal seismogenic zones that have exhibited historic great earthquakes on high-angle thrusts that are poorly oriented for failure under dry conditions. The fluid-deformation connections described in our work emphasize the need to include metamorphic and fluid transport processes in geodynamic models.

  8. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  9. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Q. Q.; Xu, G. S.; Zhong, F. C.; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Jia, M. N.; Li, Y. L.; Liu, J. B.

    2015-06-01

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E × B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E × B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  10. Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Ekedahl, A.; Peysson, Y.; Decker, J.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST

    2011-08-01

    Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (Ip) ˜ 250 kA and central line averaged density (ne) ˜ 1.0-1.3 × 1019 m-3 recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N//peak=2.1, where N//peak is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with ˜0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

  11. Banana drift transport in tokamaks with ripple

    SciTech Connect

    Linsker, R.; Boozer, A.H.

    1981-04-01

    Ripple transport in tokamaks is discussed for the banana drift collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and the resulting transport coefficients can consequently differ by several orders of magnitude.

  12. Banana drift transport in tokamaks with ripple

    SciTech Connect

    Linsker, R.; Boozer, A.H.

    1982-01-01

    Ripple transport in tokamaks is discussed for the ''banana drift'' collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and consequently the resulting transport coefficients can differ by several orders of magnitude.

  13. Progress in physics and control of the resistive wall mode in advanced tokamaks

    SciTech Connect

    Liu Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C.; Reimerdes, H.; Villone, F.; Ambrosino, G.; Pironti, A.; Portone, A.

    2009-05-15

    Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K[Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures.

  14. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm2 and pixel numbers of 1024 × 255 (26 × 26 μm2/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  15. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification. PMID:26724029

  16. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang; Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi; Dong, Chunfeng; and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  17. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  18. Transport of Dust Particles in Tokamak Devices

    SciTech Connect

    Pigarov, A Y; Smirnov, R D; Krasheninnikov, S I; Rognlien, T D; Rozenberg, M

    2006-06-06

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  19. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Du, T. F.; Chen, Z. J.; Peng, X. Y.; Yuan, X.; Zhang, X.; Hu, Z. M.; Cui, Z. Q.; Xie, X. F.; Ge, L. J.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometer at EAST are studied for future data interpretation.

  20. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Du, T F; Chen, Z J; Peng, X Y; Yuan, X; Zhang, X; Gorini, G; Nocente, M; Tardocchi, M; Hu, Z M; Cui, Z Q; Xie, X F; Ge, L J; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometer at EAST are studied for future data interpretation.

  1. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall

    SciTech Connect

    Hu, Z. M.; Xie, X. F.; Chen, Z. J.; Peng, X. Y.; Du, T. F.; Cui, Z. Q.; Ge, L. J.; Li, T.; Yuan, X.; Zhang, X.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Gorini, G.

    2014-11-15

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 {sup 3}He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated “experimental” result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the “experimental” measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device.

  2. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall.

    PubMed

    Hu, Z M; Xie, X F; Chen, Z J; Peng, X Y; Du, T F; Cui, Z Q; Ge, L J; Li, T; Yuan, X; Zhang, X; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Gorini, G; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 (3)He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated "experimental" result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the "experimental" measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device.

  3. A Prospective Comparative Study of the Toxicity Profile of 5-Flurouracil, Adriamycin, Cyclophosphamide Regime VS Adriamycin, Paclitaxel Regime in Patients with Locally Advanced Breast Carcinoma

    PubMed Central

    Pillai, Pradeep Sadasivan; Jayakumar, Krishnan Nair Lalithamma

    2015-01-01

    Introduction A 5-flurouracil, Adriamycin, Cyclophosphamide (FAC) and Adriamycin, Paclitaxel (AT) are two popular chemotherapeutic regimens for treatment of breast carcinoma. The most time tested and popular regimen is FAC. It is extensively studied for efficacy and toxicity. But data regarding toxicity profile and efficacy of AT regimen is sparse. Aim To study the toxicity profile, severity of toxicities and clinical response rate of FAC and AT regimens in patients with locally advanced breast carcinoma. Materials and Methods A prospective observational study with 50 patients in each treatment arm. Study duration was 12 months from November 2012 to October 2013. Consecutive patients with locally advanced breast carcinoma receiving treatment with either FAC or AT regimen, satisfying inclusion criteria were enrolled into the study after getting informed written consent. Prior to initiation of treatment detailed medical history was taken from all patients. General clinical examination, examination of organ systems and local examination of breast lump were done. After each cycle of chemotherapy and after completion of treatment patients were interviewed and examined for clinical response and toxicities. Toxicities were graded with WHO toxicity grading criteria. All data were entered in a structured proforma. At least 50% reduction in tumour size was taken as adequate clinical response. Statistical Analysis Data was analysed using Chi-square test with help of Excel 2007 and SPSS-16 statistical software. Results Different pattern of toxicities were seen with FAC and AT regimens. Anaemia, thrombocytopenia, stomatitis, hyperpigmentation, photosensitivity and diarrhoea were more common with patients receiving FAC regimen. Leucopenia, peripheral neuropathy, myalgia, arthralgia, vomiting and injection site reactions were more common in AT regimen. Both FAC and AT regimens gave 100% clinical response. Conclusion FAC and AT regimens are equally efficacious but have different

  4. Self-suppression of double tearing modes via Alfven resonance in rotating tokamak plasmas

    SciTech Connect

    Wang Zhengxiong; Wei Lai; Liu Yue; Wang Xiaogang

    2011-05-15

    Reversed magnetic shear configuration, a key method for improving plasma confinement in advanced tokamaks, is prone to exciting double tearing modes (DTMs) that can severely degrade the plasma confinement. In this letter, we reveal a new mechanism of suppressing the DTM instability due to the self-induced Alfven resonance in rotating tokamak plasmas. The linear growth rate is reduced from {approx}S{sub Hp}{sup -1/3} of the fast DTM regime to {approx}S{sub Hp}{sup -3/5} of the slow single tearing mode regime, where S{sub Hp} is magnetic Reynolds number. Instead of generating magnetic islands at the inner rational surface that can greatly enhance plasma transport in the core region, the formation of current sheets at resonance layers not only prevents the fast nonlinear DTM reconnection phase but also contributes to plasma heating.

  5. Fabrication and Characterization of Samples for a Material Migration Experiment on the Experimental Advanced Superconducting Tokamak (EAST).

    SciTech Connect

    Wampler, William R.; Van Deusen, Stuart B.

    2015-12-01

    This report documents work done for the ITER International Fusion Energy Organization (Sponsor) under a Funds-In Agreement FI 011140916 with Sandia National Laboratories. The work consists of preparing and analyzing samples for an experiment to measure material erosion and deposition in the EAST Tokamak. Sample preparation consisted of depositing thin films of carbon and aluminum onto molybdenum tiles. Analysis consists of measuring the thickness of films before and after exposure to helium plasma in EAST. From these measurements the net erosion and deposition of material will be quantified. Film thickness measurements are made at the Sandia Ion Beam Laboratory using Rutherford backscattering spectrometry and nuclear reaction analysis, as described in this report. This report describes the film deposition and pre-exposure analysis. Results from analysis after plasma exposure will be given in a subsequent report.

  6. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  7. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability. PMID:27587120

  8. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  9. Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Burrell, K. H.; Austin, M. E.; Brennan, D. P.; DeBoo, J. C.; Doyle, E. J.; Fenzi, C.; Fuchs, C.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Lao, L. L.; Luce, T. C.; Makowski, M. A.; McKee, G. R.; Moyer, R. A.; Petty, C. C.; Porkolab, M.; Rettig, C. L.; Rhodes, T. L.; Rost, J. C.; Stallard, B. W.; Strait, E. J.; Synakowski, E. J.; Wade, M. R.; Watkins, J. G.; West, W. P.

    2001-05-01

    High-confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation that is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 s or >25 energy confinement times τE), yielding a quiescent double barrier regime. By slowly ramping the input power, we have achieved βNH89=7 for up to 5 times the τE of 150 ms. The βNH89 values of 7 substantially exceed the value of 4 routinely achieved in the standard ELMing H mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density and impurity control in the quiescent H mode is possible because of the presence of an edge magnetohydrodynamic (MHD) oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.

  10. Tokamak pump limiters

    NASA Astrophysics Data System (ADS)

    Conn, Robert W.

    1984-12-01

    Experiments with pump limiters on several operating tokamaks have established them as efficient collectors of particles. The gas pressure rise within the chamber behind the limiters has been as high as 50 mTorr when there is no internal chamber pumping. Observations of the plasma power distribution over the front face of these limiter modules yield estimates for the scale length of radial power decay consistent with predictions of relatively simple theory. Interaction of the in-flowing plasma with recycling neutral gas near the limiter deflector plate is predicted to become important when the effective ionization mean free path is comparable to or less than the neutral atom mean path length within the throat structure of the limiter. Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased

  11. Superconducting magnet system for the TPX Tokamak

    SciTech Connect

    Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.

    1993-09-15

    The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.

  12. Neoclassical magnetic microislands in tokamaks

    SciTech Connect

    Kovalishen, E.A.; Mikhailovskii, A.B.; Botov, P.V.; Shirokov, M.S.; Konovalov, S.V.; Tsypin, V.S.; Galvao, R.M.O.

    2005-09-15

    Possibility of existence of neoclassical magnetic microislands (island width smaller than the ion Larmor radius) in a tokamak in the banana regime is shown. The rotation frequency of such islands is found. It is shown that for the case of positive electron temperature gradient, the bootstrap current destabilizes the microislands while the polarization current leads to their stabilization. Maximally possible neoclassical microisland width is estimated.

  13. Numerical investigations of plasma parameters in the COMPASS tokamak

    SciTech Connect

    Havlickova, E.; Zagorski, R.; Panek, R.

    2008-09-15

    A numerical investigation of plasma parameters in a diverter configuration of COMPASS tokamak is presented. The plasma parameters in the device are analyzed in the frame of the self-consistent description of the central plasma and edge region. The possibility of achieving high recycling and detached regimes in the boundary layer of the COMPASS tokamak is discussed.

  14. Preliminary investigation of the effects of lower hybrid power on asymmetric behaviors in the scrape-off layer in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J. Li, M. H.; Liu, F. K.; Shan, J. F.; Wei, W.; Li, Y. C.; Yang, J. H.; Wu, Z. G.; Liu, L.; Wang, M.; Zhao, L. M.; Ma, W. D.; Xiu, H. D.; Wang, X. J.; Jia, H.; Yang, Y.; Cheng, M.; Wu, D. J.; Xu, L.; and others

    2014-02-15

    The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of the density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.

  15. Effects of heating power on divertor in-out asymmetry and scrape-off layer flow in reversed field on Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Liu, S. C. Wang, H. Q.; Gan, K. F.; Xia, T. Y.; Xu, G. S.; Liu, Z. X.; Chen, L.; Zhang, W.; Chen, R.; Shao, L. M.; Ding, S.; Hu, G. H.; Liu, Y. L.; Zhao, N.; Li, Y. L.; Gong, X. Z.; Gao, X.; Guo, H. Y.; Wang, L.; Xu, X. Q.; and others

    2014-12-15

    The dependence of divertor asymmetry and scrape-off layer (SOL) flow on heating power has been investigated in the Experimental Advanced Superconducting Tokamak (EAST). Divertor plasma exhibits an outboard-enhanced in-out asymmetry in heat flux in lower single null configuration for in reversed (ion ∇B drift direction toward the upper X-point) field directions. Upper single null exhibits an inboard-favored asymmetry in low heating power condition, while exhibits an outboard-favored asymmetry when increasing the heating power. Double null has the strongest in-out asymmetry in heat flux, favoring the outer divertor. The in-out asymmetry ratios of q{sub t,out}/q{sub t,in} and P{sub out}/P{sub total} increase with the power across the separatrix P{sub loss}, which is probably induced by the enhanced radial particle transport due to a large pressure gradient. The characteristics of the measured SOL parallel flow under various discharge conditions are consistent with the Pfirsch-Schlüter (PS) flow with the parallel Mach number M{sub ∥} decreasing with the line averaged density but increasing with P{sub loss}, in the same direction as the PS flow. The contributions of both poloidal E×B drift and parallel flow on poloidal particle transport in SOL on EAST are also assessed.

  16. Physics and control of ELMing H-mode negative-central-shear advanced tokamak ITER scenario based on experimental profiles from DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Chan, V. S.; Chu, M. S.; Evans, T.; Humphreys, D. A.; Leuer, J. A.; Mahdavi, M. A.; Petrie, T. W.; Snyder, P. B.; St. John, H. E.; Staebler, G. M.; Stambaugh, R. D.; Taylor, T. S.; Turnbull, A. D.; West, W. P.; Brennan, D. P.

    2003-10-01

    Key DIII-D advanced tokamak (AT) experimental and modelling results are applied to examine the physics and control issues for ITER to operate in a negative central shear (NCS) AT scenario. The effects of a finite edge pressure pedestal and current density are included based on the DIII-D experimental profiles. Ideal and resistive stability analyses demonstrate that feedback control of resistive wall modes by rotational drive or flux conserving intelligent coils is crucial for these AT configurations to operate at attractive bgrN values in the range 3.0-3.5. Vertical stability and halo current analyses show that reliable disruption mitigation is essential and mitigation control using an impurity gas can significantly reduce the local mechanical stress to an acceptable level. Core transport and turbulence analyses indicate that control of the rotational shear profile is essential to reduce the pedestal temperature required for high bgr. Consideration of edge stability and core transport suggests that a sufficiently wide pedestal is necessary for the projected fusion performance. Heat flux analyses indicate that, with core-only radiation enhancement, the outboard peak divertor heat load is near the design limit of 10 MW m-2. Detached operation may be necessary to reduce the heat flux to a more manageable level. Evaluation of the ITER pulse length using a local step response approach indicates that the 3000 s ITER long-pulse scenario is probably both necessary and sufficient for demonstration of local current profile control.

  17. Mode Conversion of High-Field-Side-Launched Fast Waves at the Second Harmonic of Minority Hydrogen in Advanced Tokamak Reactors

    NASA Astrophysics Data System (ADS)

    Sund, R.; Scharer, J.

    2003-12-01

    Under advanced tokamak reactor conditions, the Ion-Bernstein wave (IBW) can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side on the second harmonic resonance of a minority hydrogen component, with near 100% efficiency. IBWs have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. The relatively high frequency (around 200 MHz) minimizes parasitic electron absorption and permits the converted IBW to approach the 5th tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. The scheme is applicable to reactors with aspect ratios < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Large machine size and adequate separation of the mode conversion layer from the magnetic axis minimize poloidal field effects in the conversion zone and permit a 1-D full-wave analysis. 2-D ray tracing of the IBW indicates a slightly bean-shaped equilibrium allows access to the tritium resonance.

  18. Effects of neoclassical toroidal viscosity induced by the intrinsic error fields and toroidal field ripple on the toroidal rotation in tokamaks

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Seol, J.; Ko, W. H.; Terzolo, L.; Aydemir, A. Y.; In, Y.; Ghim, Y.-c.; Lee, S. G.

    2016-08-01

    Effects of neoclassical toroidal viscosity (NTV) induced by intrinsic error fields and toroidal field ripple on cocurrent toroidal rotation in H-mode tokamak plasmas are investigated. It is expected that large NTV torque can be localized at the edge region through the 1/ν-regime in the vicinity of E r ˜ 0 in the cocurrent rotating H-mode plasma. Numerical simulation on toroidal rotation demonstrates that the edge localized NTV torque determined by the intrinsic error fields and toroidal field ripples in the level of most tokamaks can damp the toroidal rotation velocity over the whole region while reducing the toroidal rotation pedestal which is clearly observed in Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It is found that the NTV torque changes the toroidal rotation gradient in the pedestal region dramatically, but the toroidal rotation profile in the core region responds rigidly without a change in the gradient. On the other hand, it shows that the NTV torque induced by the intrinsic error fields and toroidal field ripple in the level of the KSTAR tokamak, which are expected to be smaller than most tokamaks by at least one order of magnitude, is negligible in determining the toroidal rotation velocity profile. Experimental observation on the toroidal rotation change by the externally applied nonaxisymmetric magnetic fields on KSTAR also suggests that NTV torque arising from nonaxisymmetric magnetic fields can damp the toroidal rotation over the whole region while diminishing the toroidal rotation pedestal.

  19. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    NASA Astrophysics Data System (ADS)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T. H.; Wang, H. Q.

    2016-08-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew-Goldburger-Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  20. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  1. Neoclassical Transport Properties of Tokamak Plasmas

    SciTech Connect

    Weyssow, B.

    2004-03-15

    The classical transport theory is strictly valid for a plasma in a homogeneous and stationary magnetic field. In the '60, experiments have shown that this theory does not apply as a local theory of transport in Tokamaks. It was shown that global geometric characteristics of the confining elements have a strong influence on the transport. Three regimes of collisionality are characteristic of the neoclassical transport theory: the banana regime (the electronic diffusion coefficient increases starting from zero), the plateau regime (the diffusion coefficient is almost independent of the collisionality) and the Pfirsch-Schlueter regime (the electronic diffusion coefficient again increases with the collisionality)

  2. Neoclassical tearing modes in a tokamak

    SciTech Connect

    Hahm, T.S.

    1988-12-01

    Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation, so that the growth rate of tearing modes driven by ..delta..' is dramatically reduced compared to the usual resistive magnetohydrodynamic values. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed.

  3. Neoclassical tearing modes in a tokamak

    SciTech Connect

    Hahm, T.S.

    1988-08-01

    Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation so that the growth rate of tearing modes driven by ..delta..' is dramatically reduced compared to the usual resistive MHD value. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed. 10 refs.

  4. Status of tokamak experiments

    SciTech Connect

    Wolf, G.H.

    1996-03-01

    Plasma-wall interaction, heat removal and ash exhaust have emerged as the dominant problems still to be solved in order to achieve ignition and - even more difficult - to maintain a state of self-sustained thermo-nuclear burn. This is of particular delicacy, since those operational regimes which yield the best energy confinement correspond to an even better particle confinement and confinement of impurities, which then tend to accumulate in the plasma core and to result in disruption or degradation of the tokamak discharge. Therefore, plasma-wall interaction, heat removal and particle exhaust will determine not only the structure and configuration of the plasma edge region, of the wall system and of the materials facing the plasma, but also the final choice of useful confinement regimes. Moreover, the potential effect of powerful {alpha}-particle heating on plasma stability and confinement has to be kept below critical values. For the latter requirement, a final answer can only be obtained in an ITER-type device where ignition and burn will become accessible. 72 refs., 12 figs.

  5. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  6. RF Profile Control for Sustained Plasma Regimes

    NASA Astrophysics Data System (ADS)

    Hosea, J.; Bernabei, S.; Leblanc, B.; Majeski, R.; Menard, J.; Ono, M.; Phillips, C. K.; Schilling, G.; Wilson, J. R.

    1999-11-01

    For advancing plasma operation regimes for AT tokamaks and steady state concepts, as well as for forming and sustaining alternate concepts, it is necessary to provide control of the spatial profiles for the important plasma parameters - pressure, current, etc.. RF techniques offer considerable promise for providing this control and should be further developed as rapidly as possible within the well established tokamak program for forming a basis for application to all confinement concepts. Notably, IBW promises to provide internal transport barrier control if the coupling physics can be understood and efficient antenna coupling to the Bernstein wave can be developed. We will review the IBW experience and discuss possible explanations and solutions for the coupling problems encountered. In particular, the competing roles of parametric decay instability and surface mode excitation will be examined in order to elucidate the increase in surface power losses for the larger devices DIII-D and TFTR. Also, issues which need to be understood for employing ICRF and LH techniques to best advantage, such as antenna bombardment and energetic electron excitation, respectively, will be outlined.

  7. Transport Equations In Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.

    2009-11-01

    Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for: neoclassical effects on the parallel Ohm's law (trapped particle effects on resistivity, bootstrap current); fluctuation-induced transport; heating, current-drive and flow sources and sinks; small B field non-axisymmetries; magnetic field transients etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed recently using a kinetic-based framework. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales (and constraints they impose) are considered sequentially: compressional Alfv'en waves (Grad-Shafranov equilibrium, ion radial force balance); sound waves (pressure constant along field lines, incompressible flows within a flux surface); and ion collisions (damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on the plasma fluid: 7 ambipolar collision-based ones (classical, neoclassical, etc.) and 8 non-ambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients etc.). The plasma toroidal rotation equation [1] results from setting to zero the net radial current induced by the non-ambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the non-ambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The resultant transport equations will be presented and contrasted with the usual ones. [4pt] [1] J.D. Callen, A.J. Cole, C.C. Hegna, ``Toroidal Rotation In

  8. Magnetic confinement experiment. I: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.

  9. SPECIAL TOPIC: A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Mazon, D.; Ariola, M.; DeTommasi, G.; Laborde, L.; Piccolo, F.; Sartori, F.; Tala, T.; Zabeo, L.; Boboc, A.; Bouvier, E.; Brix, M.; Brzozowski, J.; Challis, C. D.; Cocilovo, V.; Cordoliani, V.; Crisanti, F.; DeLa Luna, E.; Felton, R.; Hawkes, N.; King, R.; Litaudon, X.; Loarer, T.; Mailloux, J.; Mayoral, M.; Nunes, I.; Surrey, E.; Zimmerman, O.; EFDA Contributors, JET

    2008-10-01

    Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters is being investigated on JET, in view of developing integrated control of advanced tokamak scenarios. This paper describes the new model-based profile controller which has been implemented during the 2006-2007 experimental campaigns. The controller aims to use the combination of heating and current drive (H&CD) systems—and optionally the poloidal field (PF) system—in an optimal way to regulate the evolution of plasma parameter profiles such as the safety factor, q(x), and gyro-normalized temperature gradient, \\rho _Te^*(x) . In the first part of the paper, a technique for the experimental identification of a minimal dynamic plasma model is described, taking into account the physical structure and couplings of the transport equations, but making no quantitative assumptions on the transport coefficients or on their dependences. To cope with the high dimensionality of the state space and the large ratio between the time scales involved, the model identification procedure and the controller design both make use of the theory of singularly perturbed systems by means of a two-time-scale approximation. The second part of the paper provides the theoretical basis for the controller design. The profile controller is articulated around two composite feedback loops operating on the magnetic and kinetic time scales, respectively, and supplemented by a feedforward compensation of density variations. For any chosen set of target profiles, the closest self-consistent state achievable with the available actuators is uniquely defined. It is reached, with no steady state offset, through a near-optimal proportional-integral control algorithm. Conventional optimal control is recovered in the limiting case where the ratio of the plasma confinement time to the resistive diffusion time tends to zero. Closed-loop simulations of the controller response have been performed in

  10. Operating tokamaks with steady-state toroidal current

    SciTech Connect

    Fisch, N.J.

    1981-04-01

    Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements.

  11. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  12. Dementia and Robotics: People with Advancing Dementia and Their Carers Driving an Exploration into an Engineering Solution to Maintaining Safe Exercise Regimes.

    PubMed

    Cooper, Carol; Penders, Jacques; Procter, Paula M

    2016-01-01

    The merging of the human world and the information technology world is advancing at a pace, even for those with dementia there are many useful smart 'phone applications including reminders, family pictures display, GPS functions and video communications. This paper will report upon initial collaborative work developing a robotic solution to engaging individuals with advancing dementia in safe exercise regimes. The research team has been driven by the needs of people with advancing dementia and their carers through a focus group methodology, the format, discussions and outcomes of these groups will be reported. The plans for the next stage of the research will be outlined including the continuing collaboration with advancing dementia and their carers. PMID:27332260

  13. Burning plasma regime for Fussion-Fission Research Facility

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  14. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    SciTech Connect

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  15. High beta plasmas in the PBX tokamak

    SciTech Connect

    Bol, K.; Buchenauer, D.; Chance, M.; Couture, P.; Fishman, H.; Fonck, R.; Gammel, G.; Grek, B.; Ida, K.; Itami, K.

    1986-04-01

    Bean-shaped configurations favorable for high ..beta.. discharges have been investigated in the Princeton Beta Experiment (PBX) tokamak. Strongly indented bean-shaped plasmas have been successfully formed, and beta values of over 5% have been obtained with 5 MW of injected neutral beam power. These high beta discharges still lie in the first stability regime for ballooning modes, and MHD stability analysis implicates the external kink as responsible for the present ..beta.. limit.

  16. Neoclassical transport in high [beta] tokamaks

    SciTech Connect

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high [beta] large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high [beta] large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low [beta] values by a factor ([var epsilon]/q[sup 2][beta])[sup [1/2

  17. Electron cyclotron emission diagnostics on KSTAR tokamak.

    PubMed

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  18. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  19. Transport equations in tokamak plasmas

    SciTech Connect

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2010-05-15

    Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfven waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The 'mean field' effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The

  20. Transport equations in tokamak plasmasa)

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2010-05-01

    Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfvén waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The "mean field" effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The

  1. Tokamak plasma self-organization and the possibility to have the peaked density profile in ITER

    NASA Astrophysics Data System (ADS)

    Razumova, K. A.; Andreev, V. F.; Kislov, A. Ya.; Kirneva, N. A.; Lysenko, S. E.; Pavlov, Yu. D.; Shafranov, T. V.; T-10 Team; Donné, A. J. H.; Hogeweij, G. M. D.; Spakman, G. W.; Jaspers, R.; TEXTOR Team; Kantor, M.; Walsh, M.

    2009-06-01

    The self-organization of a tokamak plasma is a fundamental turbulent plasma phenomenon, which leads to the formation of a self-consistent pressure profile. This phenomenon has been investigated in several tokamaks with different methods of heating. It is shown that the normalized pressure profile has a universal shape for a wide class of tokamaks and regimes, if the normalized radius ρ = r/(IpR/κB)1/2 is used. The consequences of this phenomenon for low aspect ratio tokamaks, the optimal deposition of additional heating, fast velocity of heat/cold pulse propagation and the possibility of obtaining a peaked density profile in ITER are discussed.

  2. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    SciTech Connect

    Xu, G. S.; Wang, H. Q.; Wan, B. N.; Guo, H. Y.; Zhang, W.; Chang, J. F.; Wang, L.; Chen, R.; Liu, S. C.; Ding, S. Y.; Shao, L. M.; Xiong, H.; Naulin, V.; Diamond, P. H.; Tynan, G. R.; Xu, M.; Yan, N.; Zhao, H. L.

    2012-12-15

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1 MHz) turbulence was observed in the steep-gradient region leading to intermittent transport events across the edge transport barrier. Good confinement (H{sub 98y,2} {approx} 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows reproduced this state well.

  3. Understanding disruptions in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid

    2011-10-01

    Disruptions in tokamaks are known since 1963 but even now some aspects of them remain a mystery. This talk describes progress made recently in understanding disruptions. A major step forward occurred in 2007 when the importance of galvanic contact of the plasma with the wall in plasma dynamics was pointed out. The toroidal asymmetry of plasma current, observed in JET vertical disruptions, was explained by the theory of the wall touching kink mode. The currents shared by the plasma with the wall and responsible for the asymmetry were identified as generated by the kink mode. Such currents are referred to as Hiro currents. They have shown exceptional consistency with the entire JET disruption data base (more than 5500 cases) and ruled out the long lasting interpretation based on ``halo currents,'' which contradict experiments even in the sign of the measured asymmetry. Accordingly, the sideways forces are understood and their scaling from JET to ITER was justified. Hiro currents provide also a plausible explanation of the current spike at the beginning of the disruptions. The important role of the plasma edge and its interaction with the wall was revealed. Based on this new understanding of disruptions, dedicated experiments on the current spike (J-TEXT, Wuhan, China) and runaway prevention by the repetitive triggering of kink modes (T-10, AUG, Tore Supra) were motivated and are in progress. Accordingly, the need for new, adaptive grid approaches to numerical simulations of disruptions became evident. In addition to the core MHD, simulations of realistic wall geometry, disruption specific plasma edge physics, plasma-wall interaction, and energetic particles need be developed. The first results of simulations of the fast MHD regime, Hiro current generation, and slower plasma decay due to a wall touching kink mode made with the new DSC code are presented. This work is supported by US DoE contract No. DE-AC02-09-CH11466.

  4. Diagnosing transient plasma status: from solar atmosphere to tokamak divertor

    NASA Astrophysics Data System (ADS)

    Giunta, A. S.; Henderson, S.; O'Mullane, M.; Harrison, J.; Doyle, J. G.; Summers, H. P.

    2016-09-01

    This work strongly exploits the interdisciplinary links between astrophysical (such as the solar upper atmosphere) and laboratory plasmas (such as tokamak devices) by sharing the development of a common modelling for time-dependent ionisation. This is applied to the interpretation of solar flare data observed by the UVSP (Ultraviolet Spectrometer and Polarimeter), on-board the Solar Maximum Mission and the IRIS (Interface Region Imaging Spectrograph), and also to data from B2-SOLPS (Scrape Off Layer Plasma Simulations) for MAST (Mega Ampère Spherical Tokamak) Super-X divertor upgrade. The derived atomic data, calculated in the framework of the ADAS (Atomic Data and Analysis Structure) project, allow equivalent prediction in non-stationary transport regimes and transients of both the solar atmosphere and tokamak divertors, except that the tokamak evolution is about one thousand times faster.

  5. Enhancement of confinement in tokamaks

    SciTech Connect

    Furth, H.P.

    1986-05-01

    A plausible interpretation of the experimental evidence is that energy confinement in tokamaks is governed by two separate considerations: (1) the need for resistive MHD kink-stability, which limits the permissible range of current profiles - and therefore normally also the range of temperature profiles; and (2) the presence of strongly anomalous microscopic energy transport near the plasma edge, which calibrates the amplitude of the global temperature profile, thus determining the energy confinement time tau/sub E/. Correspondingly, there are two main paths towards the enhancement of tokamak confinement: (1) Configurational optimization, to increase the MHD-stable energy content of the plasma core, can evidently be pursued by varying the cross-sectional shape of the plasma and/or finding stable radial profiles with central q-values substantially below unity - but crossing from ''first'' to ''second'' stability within the peak-pressure region would have the greatest ultimate potential. (2) Suppression of edge turbulence, so as to improve the heat insulation in the outer plasma shell, can be pursued by various local stabilizing techniques, such as use of a poloidal divertor. The present confinement model and initial TFTR pellet-injection results suggest that the introduction of a super-high-density region within the plasma core should be particularly valuable for enhancing ntau/subE/. In D-T operation, a centrally peaked plasma pressure profile could possibly lend itself to alpha-particle-driven entry into the second-stability regime.

  6. Electron transport fluxes in potato plateau regime

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1997-12-01

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}

  7. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  8. Computational methods in tokamak transport

    SciTech Connect

    Houlberg, W.A.; Attenberger, S.E.; Lao, L.L.

    1982-06-01

    A variety of numerical methods for solving the time-dependent fluid transport equations for tokamak plasmas is presented. Among the problems discussed are techniques for solving the sometimes very stiff parabolic equations for particle and energy flow, treating convection-dominated energy transport that leads to large cell Reynolds numbers, optimizing the flow of a code to reduce the time spent updating the particle and energy source terms, coupling the one-dimensional (1-D) flux-surface-averaged fluid transport equations to solutions of the 2-D Grad-Shafranov equation for the plasma geometry, handling extremely fast transient problems such as internal MHD disruptions and pellet injection, and processing the output to summarize the physics parameters over the potential operating regime for reactors. Emphasis is placed on computational efficiency in both computer time and storage requirements.

  9. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  10. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    NASA Astrophysics Data System (ADS)

    Vdovin, V.

    2014-02-01

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20-40) IC frequency harmonics) at frequencies of 500-1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure βN > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D - Kurchatov Institute experiment on helicons CD [1].

  11. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    SciTech Connect

    Vdovin, V.

    2014-02-12

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20–40) IC frequency harmonics) at frequencies of 500–1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β{sub N} > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D – Kurchatov Institute experiment on helicons CD [1].

  12. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  13. Energetic-particle stabilization of ballooning modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Rosenbluth, M. N.; Tsai, S. T.; van Dam, J. W.; Engguist, M. G.

    1983-07-01

    Introduction of an anisotropic, highly energetic trapped-particle species into a Tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent fishbone observations on PDX.

  14. Energetic Particle Stabilization of Ballooning Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Rosenbluth, M. N.; Tsai, S. T.; van Dam, J. W.; Engquist, M. G.

    1983-11-01

    Introduction of an anisctropic, highly energetic trapped-particle species into a tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent "fishbone" observations on PDX.

  15. Energetic particle stabilization of ballooning modes in tokamaks

    SciTech Connect

    Rosenbluth, M.N.; Tsai, S.T.; Van Dam, J.W.; Engquist, M.G.

    1983-11-21

    Introduction of an anisotropic, highly energetic trapped-particle species into a tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent ''fishbone'' observations on PDX.

  16. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    NASA Astrophysics Data System (ADS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.

    2009-05-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  17. Texas Experimental Tokamak

    SciTech Connect

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  18. A Midsize Tokamak As Fast Track To Burning Plasmas

    SciTech Connect

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (≥10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  19. On the Production of Relativistic Runaway Electrons in Damavand Tokamak

    NASA Astrophysics Data System (ADS)

    Moslehi-Fard, Mahmoud

    2013-02-01

    Experimental observations in Damavand tokamak show that hard X-ray is produced by either disruption with I p < 20 kA or by shots with I p > 20 kA. Hard X-ray also persists from the initiation of plasma discharge to the end. Occurrence of multiple spikes in hard X-ray during the discharge is evident. The propagation of hard X-ray is attributed to runaway electrons. We observe runaway electrons in two regimes with different characteristics. Regime (RADI) is similar to the observations of other Tokamak during disruption on that the plasma current is reduced abruptly and interpreted by Dreicer theory. In the regime of RADII, hard X-ray and subsequently runaway electrons are observed from starting of plasma discharge which provides the condition that the most of runaway electrons contain the toroidal plasma current. Runaway electron beam excites whistler waves and scattered electrons in velocity space and prevent growing the runaway electrons beam.

  20. ARIES tokamak reactor study

    SciTech Connect

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein.

  1. Long-wavelength turbulence measurements in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Fonck, Raymond

    1999-11-01

    A quantum jump in our understanding of turbulence in magnetically confined plasmas has been driven by advances in both plasma theory and diagnostic capabilities. Beam Emission Spectroscopy, reflectometry, and microwave scattering provide increasingly detailed measurements of tokamak plasma turbulence, especially for long wavelength (i.e., larger than the ion gyroradius) modes. Measurements of amplitudes and spatial and temporal correlation properties are consistent with this turbulence causing the ion transport observed in standard confinement regimes such as L-mode and hot-ion regimes. Radial and poloidal spectra are in good agreement with those calculated in theoretical gyrokinetic simulations. A signature characteristic of ion temperature gradient driven turbulence is the prediction of relatively large ion thermal fluctuations, which has been confirmed to exist in experiment and establishes ITG turbulence as the dominant mechanism in the ion channel. This identification has been reinforced by the reduction of turbulence in the presence of shear flow stabilization. At both the plasma edge region (H-mode) and the hot plasma interior (Internal Transport Barrier), a drop in local turbulence and transport is observed when the local flow-induced shearing rate exceeds the calculated growth rate of the most unstable modes. Advances in challenging theory will require new experimental techniques: nonlinear spectral analysis to provide experimentally determined growth rates; 2-D visualization of the density turbulence via several proposed techniques; and high time resolution measurements to provide details on intermittency. New correlation techniques may allow measurement of flow velocity fluctuations. This in turn may allow study of zonal flows and/or fluctuations in the local electrostatic potential.

  2. Effect of the inductive electric field on ion flow in tokamaks

    SciTech Connect

    Catto, Peter J.; Hastie, R. J.; Hutchinson, I. H.; Helander, P.

    2001-07-01

    The effect of the inductive electric field of a tokamak on the parallel (and poloidal) ion flow in the banana regime is evaluated. It is demonstrated that the flow is in the direction of the parallel current and is surprisingly large -- comparable to the usual banana regime ion temperature gradient drive.

  3. Forced Magnetic Reconnection In A Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.

    2015-11-01

    The theory of forced magnetic field reconnection induced by an externally imposed resonant magnetic perturbation usually uses a sheared slab or cylindrical magnetic field model and often focuses on the potential time-asymptotic induced magnetic island state. However, tokamak plasmas have significant magnetic geometry and dynamical plasma toroidal rotation screening effects. Also, finite ion Larmor radius (FLR) and banana width (FBW) effects can damp and thus limit the width of a nascent magnetic island. A theory that is more applicable for tokamak plasmas is being developed. This new model of the dynamics of forced magnetic reconnection considers a single helicity magnetic perturbation in the tokamak magnetic field geometry, uses a kinetically-derived collisional parallel electron flow response, and employs a comprehensive dynamical equation for the plasma toroidal rotation frequency. It is being used to explore the dynamics of bifurcation into a magnetically reconnected state in the thin singular layer around the rational surface, evolution into a generalized Rutherford regime where the island width exceeds the singular layer width, and assess the island width limiting effects of FLR and FBW polarization currents. Support by DoE grants DE-FG02-86ER53218, DE-FG02-92ER54139.

  4. Tearing Modes in Tokamaks

    SciTech Connect

    White, R. B.

    2008-05-14

    This lecture gives a basic introduction to magnetic pound elds, magnetic surface destruction, toroidal equilibrium and tearing modes in a tokamak, including the linear and nonlinear development of these modes and their modi pound cation by current drive and bootstrap current, and sawtooth oscillations and disruptions.

  5. Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae

    SciTech Connect

    Vdovin, V. L.

    2013-02-15

    The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) {>=} 2 and q(a) {>=} 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure {beta}{sub N} > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

  6. High Beta Tokamaks

    SciTech Connect

    Cowley, S.

    1998-11-14

    Perhaps the ideal tokamak would have high {beta} ({beta} {approx}> 1) and classical confinement. Such a tokamak has not been found, and we do not know if one does exist. We have searched for such a possibility, so far without success. In 1990, we obtained analytic equilibrium solutions for large aspect ratio tokamaks at {beta} {approx} {Omicron}(1) [1]. These solutions and the extension at high {beta} poloidal to finite aspect ratio [2] provided a basis for the study of high {beta} tokamaks. We have shown that these configurations can be stable to short scale MHD modes [3], and that they have reduced neoclassical transport [4]. Microinstabilities (such as the {del}T{sub i} mode) seem to be stabilized at high {beta} [5] - this is due to the large local shear [3] and the magnetic well. We have some concerns about modes associated with the compressional branch which may appear at high {beta}. Bill Dorland and Mike Kotschenreuther have studied this issue and our concerns may be unfounded. It is certainly tantalizing, especially given the lowered neoclassical transport values, that these configurations could have no microinstabilities and, one could assume, no anomalous transport. Unfortunately, while this work is encouraging, the key question for high {beta} tokamaks is the stability to large scale kink modes. The MHD {beta} limit (Troyon limit) for kink modes at large aspect ratio is problematically low. There is ample evidence from computations that the limit exists. However, it is not known if stable equilibria exist at much higher {beta}--none have been found. We have explored this question in the asymptotic high {beta} poloidal limit. Unfortunately, we are unable to find stable equilibrium and also unable to show that they don't exist. The results of these calculations will be published when a more definitive answer is found.

  7. 'Snowflake' H Mode in a Tokamak Plasma

    SciTech Connect

    Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.

    2010-10-08

    An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy ({Delta}W{sub ELM}/W{sub p}) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

  8. First Engineering Commissioning of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Wan, Yuanxi; Li, Jiangang; Weng, Peide; EAST Team

    2006-05-01

    Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak. The first commissioning started on Feb. 1st of 2006 and finished on March 30th of 2006 at the Institute of Plasma Physics, Chinese Academy of Sciences. It consists of leakage testing at both room temperature and low temperature, pumping down, cooling down all coils, current leads, bus bar and the thermal shielding, exciting all the coils, measuring magnetic configuration and warming up the magnets. The electromagnetic, thermal hydraulic and mechanical performance of EAST Toroidal Field (TF) and Poloidal Field (PF) magnets have also been tested. All sub-systems, including pumping system, cryogenic system, PF& TF power supply systems, magnet instrumentation system, quench detection and protection system, water cooling system, data acquisition system, main control system, plasma control system (PCS), interlock and safety system have been successfully tested.

  9. Tokamak plasma modelling and atomic processes

    NASA Astrophysics Data System (ADS)

    Kawamura, T.

    1986-06-01

    Topics addressed include: particle control in a tokomak device; ionizing and recombining plasmas; effects of data accuracy on tokamak impurity transport modeling; plasma modeling of tokamaks; and ultraviolet and X-ray spectroscopy of tokamak plasmas.

  10. Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks

    SciTech Connect

    Parra, Felix I.; Barnes, Michael

    2011-06-15

    Two symmetries of the local nonlinear {delta}f gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.

  11. Resistive edge mode instability in stellarator and tokamak geometries

    NASA Astrophysics Data System (ADS)

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-01

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  12. Resistive edge mode instability in stellarator and tokamak geometries

    SciTech Connect

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-15

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  13. Experimental observations of driven and intrinsic rotation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Rice, J. E.

    2016-08-01

    Experimental observations of driven and intrinsic rotation in tokamak plasmas are reviewed. For momentum sources, there is direct drive from neutral beam injection, lower hybrid and ion cyclotron range of frequencies waves (including mode conversion flow drive), as well as indirect \\mathbf{j}× \\mathbf{B} forces from fast ion and electron orbit shifts, and toroidal magnetic field ripple loss. Counteracting rotation drive are sinks, such as from neutral drag and toroidal viscosity. Many of these observations are in agreement with the predictions of neo-classical theory while others are not, and some cases of intrinsic rotation remain puzzling. In contrast to particle and heat fluxes which depend on the relevant diffusivity and convection, there is an additional term in the momentum flux, the residual stress, which can act as the momentum source for intrinsic rotation. This term is independent of the velocity or its gradient, and its divergence constitutes an intrinsic torque. The residual stress, which ultimately responds to the underlying turbulence, depends on the confinement regime and is a complicated function of collisionality, plasma shape, and profiles of density, temperature, pressure and current density. This leads to the rich intrinsic rotation phenomenology. Future areas of study include integration of these many effects, advancement of quantitative explanations for intrinsic rotation and development of strategies for velocity profile control.

  14. Physics evaluation of compact tokamak ignition experiments

    SciTech Connect

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.

  15. Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X.; Grierson, B. A.; Ren, Q.; Solomon, W. M.; Strait, E. J.; Van Zeeland, M. A.; Holcomb, C. T.; Meneghini, O.; Smith, S. P.; Staebler, G. M.; Wan, B.; Bravenec, R.; Budny, R. V.; Ding, S.; Hanson, J. M.; Heidbrink, W. W.; Lao, L. L.; Li, G.; Pan, C.; Petty, C. C.; Qian, J.; Paz-Soldan, C.; Xu, G.

    2015-11-01

    Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by  ⩾30% relative to earlier work (Politzer et al 2005 Nucl. Fusion 45 417). The advancement was enabled by improved understanding of the ‘relaxation oscillations’, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the ‘relaxation oscillations’ are coupled core-edge modes amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced to classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction  ⩾80%, {β\\text{N}}≤slant 4 , {β\\text{P}}≥slant 3 , and {β\\text{T}}≥slant 2% . These results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.

  16. Upgrades for the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Duval, Basil; TCV Team

    2013-10-01

    Major upgrades are being implemented on the TCV tokamak to extend its operational domain towards a burning plasma regime. The goals of obtaining high normalized plasma beta and comparable ion and electron temperatures will be achieved with the addition of a 1 MW neutral heating system and 2 MW additional third harmonic EC power. Spatial constraints together with beam occlusion required severe design optimization and the additional of a new large tangential port on the TCV vessel. For EC, the existing vertical launch mirror will be sufficient but new 1MW EC units will be employed with the legacy X3 systems modified for lateral launch. The modifications will not affect TCV's strong RT shaping and EC actuator ranges or the open divertor vacuum chamber that permits access to Snowflake divertor or doublet configurations although some wall protection enhancement is envisaged. TCV can then contribute to disentangling effects of electron-ion coupling, rotation, current and density profile control all as a function of shape in L and H-modes with ITER (or higher) values of plasma beta. Together with fast-ion physics, TCV will also be able to explore heat, particle and momentum transport and turbulence effects in electron-heat dominated discharges for Te/Ti in the (0.02 to 3) range.

  17. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  18. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  19. Regime change?

    SciTech Connect

    Pilat, Joseph F.; Budlong-Sylvester, K. W.

    2004-01-01

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  20. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  1. Power supplies and quench protection for the Tokamak Physics Experiment

    SciTech Connect

    Neumeyer, C.L.

    1994-07-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.

  2. TPX tokamak construction management

    SciTech Connect

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-12-31

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly.

  3. Tokamak divertor maps

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Verma, Arun; Boozer, Allen

    1994-08-01

    A mapping method is developed to investigate the problem of determination and control of heat-deposition patterns on the plates of a tokamak divertor. The deposition pattern is largely determined by the magnetic field lines, which are mathematically equivalent to the trajectories of a single-degree-of-freedom time-dependent Hamiltonian system. Maps are natural tools to study the generic features of such systems. The general theory of maps is presented, and methods for incorporating various features of the magnetic field and particle motion in divertor tokamaks are given. Features of the magnetic field include the profile of the rotational transform, single- versus double-null divertor, reverse map, the effects of naturally occurring low M and N, and externally imposed high-M, high-N perturbations. Particle motion includes radial diffusion, pitch angle and energy scattering, and the electric sheath at the plate. The method is illustrated by calculating the stochastic broadening in a single- null divertor tokamak. Maps provide an efficient, economic and elegant method to study the problem of motion of plasma particles in the stochastic scrape-off layer.

  4. Impurity transport in Tokamaks

    NASA Astrophysics Data System (ADS)

    Amano, T.

    1983-12-01

    Theoretical and experimental efforts directed towards gaining an understanding of impurity behavior in Tokamaks are reviewed. In the Alcator Tokamak experiments, a laser blow-off technique was used to introduce trace amounts of impurities into ohmically heated plasmas. After a series of experiments in which they injected Si, Al, Fe, Mo impurities, an equation representing empirical impurity confinement time was derived. The scaling of this equation was compared with the results of impurity injection experiments on other Tokamaks, FT-I, PDX, TFR, ISX-B. Impurity confinement times in all these cases agree remarkably well, except for the TFR confinement times, which were about a factor of two larger than predicted. In the presence of intense neutral beam injection impurity ions behave differently. Specifically, in the ISX-B experiments, a marked accumulation of impurity ions toward the center of the plasma was observed in the case of counter neutral beam injection. This was interpreted semi-quantitatively by the neoclassical effect of the rotation of the plasma driven by the neutral beam.

  5. Pseudo-MHD ballooning modes in tokamak plasmas

    SciTech Connect

    Callen, J.D.; Hegna, C.C.

    1996-08-01

    The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant {open_quotes}pseudo-MHD{close_quotes} model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for {alpha} > s{sup 2}(2 {sup 7/3}/9) (r{sub p}/R{sub 0}) or-d{radical}{Beta}/dr > (2{sup 1/6} /3)(s/ R{sub 0q}), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas.

  6. Momentum Injection in Tokamak Plasmas and Transitions to Reduced Transport

    SciTech Connect

    Parra, F. I.; Highcock, E. G.; Schekochihin, A. A.; Barnes, M.

    2011-03-18

    The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.

  7. Thermally excited proton spin-flip laser emission in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.

    1993-07-01

    Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser.

  8. Twenty Years of Research on the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  9. A MHD invariant and the confinement regimes in a tokamak

    NASA Astrophysics Data System (ADS)

    Spineanu, F.; Vlad, M.

    2016-09-01

    Fundamental Lagrangian, frozen-in and topological invariants can be useful to explain systematic connections between plasma parameters. At high plasma temperature the dissipation is small and the robust invariances are manifested. We invoke a frozen-in invariant which is an extension of Ertel’s theorem, and connects the vorticity of the large scale motions with the profile of the safety factor and of particle density. Assuming ergodicity of the small scale turbulence we consider the approximative preservation of the invariant for changes of the vorticity in an annular region of finite radial extension (i.e. poloidal rotation). We find that the ionization-induced rotation triggered by a pellet requires a reversed-q profile. In the H-mode, the invariance requires an accumulation of the current density in the rotation layer. Then this becomes a vorticity-current sheet which may explain experimental observations related to the penetration of the resonant magnetic perturbation and the filamentation during the edge localized modes.

  10. Enhancement of the Bootstrap Current in a Tokamak Pedestal

    SciTech Connect

    Kagan, Grigory; Catto, Peter J.

    2010-07-23

    The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion flow can noticeably enhance the pedestal bootstrap current when the background ions are in the banana regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised expression for the pedestal bootstrap current is presented. The prescription for inserting the modification into any existing banana regime bootstrap current expression is given.

  11. Adaptive grid finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Kuprat, A.P.; Glasser, A.H.

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  12. Current Status and Future Technical Challenges for Tokamak Magnets

    SciTech Connect

    Martovetsky, N; Minervini, J; Okuno, K; Salpiero, E; Filatov, O

    2002-11-11

    Magnet technology for fusion in the last decade has been focusing mostly on the development of magnets for tokamaks--the most advanced fusion concept at the moment. The largest and the most complex tokamak under development is ITER. To demonstrate adequate design approaches to large magnets for ITER and to develop industrial capabilities, two large model coils and three insert coils, all using full-scale conductor, were built and tested by the international collaboration during 1994-2002. The status of the magnet technology and directions of future developments are discussed in this paper.

  13. Design and Analysis of the Thermal Shield of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Xie, Han; Liao, Ziying

    2008-04-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  14. Simulation of EAST vertical displacement events by tokamak simulation code

    NASA Astrophysics Data System (ADS)

    Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.

    2016-10-01

    Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.

  15. Elements of Neoclassical Theory and Plasma Rotation in a Tokamak

    NASA Astrophysics Data System (ADS)

    Smolyakov, A.

    2015-12-01

    The following sections are included: * Introduction * Quasineutrality condition * Diffusion in fully ionized magnetized plasma and automatic ambipolarity * Toroidal geometry and neoclassical diffusion * Diffusion and ambipolarity in toroidal plasmas * Ambipolarity and equilibrium poloidal rotation * Ambipolarity paradox and damping of poloidal rotation * Neoclassical plasma inertia * Oscillatory modes of poloidal plasma rotation * Dynamics of the toroidal momentum * Momentum diffusion in strongly collisional, short mean free path regime * Diffusion of toroidal momentum in the weak collision (banana) regime * Toroidal momentum diffusion and momentum damping from drift-kinetic theory and fluid moment equations * Comments on non-axisymmetric effects * Summary * Acknowledgments * Appendix: Trapped (banana) particles and collisionality regimes in a tokamak * Appendix: Hierarchy of moment equations * Appendix: Plasma viscosity tensor in the magnetic field: parallel viscosity, gyroviscosity, and perpendicular viscosity * Appendix: Closure relations for the flux surface averaged parallel viscosity in neoclassical (banana and plateau) regimes * References

  16. Applications of fast wave in spherical tokamaks

    SciTech Connect

    Chiu, S.C.; Chan, V.S.; Lin-Liu, Y.R.; Miller, R.L.; Prater, R.; Politzer, P.

    1997-04-01

    In spherical tokamaks (ST), the magnetic field strength varies over a wide range across the plasma, and at high betas it deviates significantly from the 1/R dependence of conventional tokamaks. This, together with the high density expected in ST, poses challenging problems for RF heating and current drive. In this paper, the authors investigate the various possible applications of fast waves (FW) in ST. The adjoint technique of calculating current drive is implemented in the raytracing code CURRAY. The applicability of high harmonic and subharmonic FW to steady state ST is considered. They find that high harmonic FW tends to be totally absorbed before reaching the core and may be considered a candidate for off axis current drive while the subharmonic FW tends to be absorbed mainly in the core region and may be considered for central current drive. A difficult problem is the maintenance of current at the startup stage. In the bootstrap ramp-up scenario, the current ramp-up is mainly provided by the bootstrap current. Under this condition, the role of rf becomes mainly the sustainment of plasma through electron heating. Using a slab full-wave code SEMAL, the authors find that the ion-ion-hybrid mode conversion scheme is a promising candidate. The effect of possible existence of edge Alfven resonance and high harmonic cyclotron resonance is investigated and regimes of minimization of edge heating identified.

  17. Applications of fast wave in spherical tokamaks

    SciTech Connect

    Chiu, S.C.; Chan, V.S.; Lin-Liu, Y.R.; Miller, R.L.; Prater, R.; Politzer, P.

    1997-04-01

    In spherical tokamaks (ST), the magnetic field strength varies over a wide range across the plasma, and at high betas it deviates significantly from the 1/R dependence of conventional tokamaks. This, together with the high density expected in ST, poses challenging problems for RF heating and current drive. In this paper, we investigate the various possible applications of fast waves (FW) in ST. The adjoint technique of calculating current drive is implemented in the raytracing code CURRAY. The applicability of high harmonic and subharmonic FW to steady state ST is considered. We find that high harmonic FW tends to be totally absorbed before reaching the core and may be considered a candidate for off axis current drive while the subharmonic FW tends to be absorbed mainly in the core region and may be considered for central current drive. A difficult problem is the maintenance of current at the startup stage. In the bootstrap ramp-up scenario, the current ramp-up is mainly provided by the bootstrap current. Under this condition, the role of rf becomes mainly the sustainment of plasma through electron heating. Using a slab full-wave code SEMAL, we find that the ion-ion-hybrid mode conversion scheme is a promising candidate. The effect of possible existence of edge Alfv{acute e}n resonance and high harmonic cyclotron resonance is investigated and regimes of minimization of edge heating identified. {copyright} {ital 1997 American Institute of Physics.}

  18. Neoclassical theory inside transport barriers in tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Hsu, C. T.

    2012-02-01

    Inside the transport barriers in tokamaks, ion energy losses sometimes are smaller than the value predicted by the standard neoclassical theory. This improvement can be understood in terms of the orbit squeezing theory in addition to the sonic poloidal E ×B Mach number Up,m that pushes the tips of the trapped particles to the higher energy. In general, Up,m also includes the poloidal component of the parallel mass flow speed. These physics mechanisms are the corner stones for the transition theory of the low confinement mode (L-mode) to the high confinement mode (H-mode) in tokamaks. Here, detailed transport fluxes in the banana regime are presented using the parallel viscous forces calculated earlier. It is found, as expected, that effects of orbit squeezing and the sonic Up,m reduce the ion heat conductivity. The former reduces it by a factor of |S|3/2 and the later by a factor of R(Up ,m2)exp(-Up ,m2) with R(Up ,m2), a rational function. Here, S is the orbit squeezing factor.

  19. 20 years of research on the Alcator C-Mod tokamak

    SciTech Connect

    Greenwald, M.; Baek, S.; Barnard, H.; Beck, W.; Bonoli, P.; Brunner, D.; Burke, W.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Gao, C.; Golfinopoulos, T.; Granetz, R.; Hartwig, Z.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; and others

    2014-11-15

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  20. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  1. Sawtooth oscillation in tokamaks

    SciTech Connect

    Park, W.; Monticello, D.A.

    1989-03-01

    A three-dimensional nonlinear toroidal full MHD code, MH3D, has been used to study sawtooth oscillations in tokamaks. The profile evolution during the sawtooth crash phase compares well with experiment, but only if neoclassical resistivity is used in the rise phase. (Classical resistivity has been used in most of the previous theoretical sawtooth studies.) With neoclassical resistivity, the q value at the axis drops from 1 to about 0.8 before the crash phase, and then resets to 1 through a Kadomtsev-type complete reconnection process. This ..delta..q/sub 0/ approx. = 0.2 is much larger than ..delta..q/sub o/ approx. = 0.01, which is obtained if classical resistivity is used. The current profile is strongly peaked at the axis with a flat region around the singular surface, and is similar to the Textor profile. To understand this behavior, approximate formulas for the time behavior of current and q values are derived. A functional dependence of sawtooth period scaling is also derived. A semi-empirical scaling is found which fits the experimental data from various tokamaks. Some evidence is presented which indicates that the fast crash time is due to enhanced effective resistivity inside the singular current sheet, generated by, e.g., microinstability and electron parallel viscosity with stochastic fields at the x-point. 16 refs., 5 figs.

  2. Dynamic diagnostics of the error fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Pustovitov, V. D.

    2007-07-01

    The error field diagnostics based on magnetic measurements outside the plasma is discussed. The analysed methods rely on measuring the plasma dynamic response to the finite-amplitude external magnetic perturbations, which are the error fields and the pre-programmed probing pulses. Such pulses can be created by the coils designed for static error field correction and for stabilization of the resistive wall modes, the technique developed and applied in several tokamaks, including DIII-D and JET. Here analysis is based on the theory predictions for the resonant field amplification (RFA). To achieve the desired level of the error field correction in tokamaks, the diagnostics must be sensitive to signals of several Gauss. Therefore, part of the measurements should be performed near the plasma stability boundary, where the RFA effect is stronger. While the proximity to the marginal stability is important, the absolute values of plasma parameters are not. This means that the necessary measurements can be done in the diagnostic discharges with parameters below the nominal operating regimes, with the stability boundary intentionally lowered. The estimates for ITER are presented. The discussed diagnostics can be tested in dedicated experiments in existing tokamaks. The diagnostics can be considered as an extension of the 'active MHD spectroscopy' used recently in the DIII-D tokamak and the EXTRAP T2R reversed field pinch.

  3. Observation of finite-. beta. MHD phenomena in tokamaks

    SciTech Connect

    McGuire, K.M.

    1984-09-01

    Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.

  4. Predictive modelling and simulations of internal transport barriers in tokamaks

    NASA Astrophysics Data System (ADS)

    Zhu, Ping

    2001-09-01

    An Internal Transport Barrier (ITB) is a localized region inside a (tokamak) plasma where a steep temperature and/or density gradient forms due to much lower thermal and/or particle transport than in the surrounding regions. Internal transport barriers have now been observed in all large tokamaks after they were first discovered in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) in 1993. While suggesting a promising practical approach to the realization of fusion ignition conditions, this high performance regime poses a great challenge to our understanding of tokamak anomalous transport physics. In this work, the formation and evolution of internal transport barriers in tokamaks are studied through predictive transport modelling and simulations. Neoclassical and anomalous transport of particles, energy, and toroidal momentum are systematically formulated from the ensemble-averaged gyrokinetic equation, for a tokamak plasma with large toroidal flow on the order of the ion thermal speed. This formulation is then used to construct an updated Multi-Mode model (MMM) based on (1)the Weiland fluid model for the drift wave transport, (2)the Scott-Bateman model for drift-Alfvèn mode at the tokamak edge, and (3)poloidal and toroidal momentum transport models by Zhu, Horton and Sugama. The formation of internal transport barriers observed in two optimized shear discharges in the Joint European Torus (JET) and two negative central shear discharges in the Doublet III-D Tokamak (DIII-D) are reproduced in predictive transport simulations that use the updated MultiMode model embedded in the time-dependent one/one and half dimensional transport code BALDUR. The Weiland model for drift modes in the MultiMode model is implemented in combination with either the Hahm-Burrell or the Hamaguchi-Horton flow shear stabilization mechanisms, where the radial electric field is inferred from both the measured toroidal velocity profile and the poloidal velocity profile

  5. Tearing mode analysis in tokamaks, revisited

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1998-12-01

    A new {Delta}{sup {prime}} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon}{le}0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of the finite pressure term. Numerical results compare favorably with Furth {ital et al.} [H. P. Furth {ital et al.}, Phys. Fluids {bold 16}, 1054 (1973)] results. The effects of finite pressure, which are shown to decrease {Delta}{sup {prime}}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even in a low-{beta} regime before the toroidal magnetic curvature effects come into play. {copyright} {ital 1998 American Institute of Physics.}

  6. Basic Physics of Tokamak Transport Final Technical Report.

    SciTech Connect

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to

  7. NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK

    SciTech Connect

    WALKER, ML; FERRON, JR; HUMPHREYS, DA; JOHNSON, RD; LEUER, JA; PENAFLOR, BG; PIGLOWSKI, DA; ARIOLA, M; PIRONTI, A; SCHUSTER, E

    2002-10-01

    OAK A271 NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK. The advanced tokamak (AT) operating mode which is the principal focus of the DIII-D tokamak requires highly integrated and complex plasma control. Simultaneous high performance regulation of the plasma boundary and internal profiles requires multivariable control techniques to account for the highly coupled influences of equilibrium shape, profile, and stability control. This paper describes progress towards the DIII-D At mission goal through both significantly improved real-time computational hardware and control algorithm capability.

  8. Operation of a tokamak reactor in the radiative improved mode

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh.; Mavrin, A. A.

    2016-03-01

    The operation of a nuclear fusion reactor has been simulated within a model based on experimental results obtained at the TEXTOR-94 tokamak and other facilities in which quasistationary regimes were achieved with long confinement times, high densities, and absence of the edge-localized mode. The radiative improved mode of confinement studied in detail at the TEXTOR-94 tokamak is the most interesting such regime. One of the most important problems of modern tokamaks is the problem of a very high thermal load on a divertor (or a limiter). This problem is quite easily solved in the radiative improved mode. Since a significant fraction of the thermal energy is reemitted by an impurity, the thermal loading is significantly reduced. As the energy confinement time τ E at high densities in the indicated mode is significantly larger than the time predicted by the scaling of ITERH-98P(y, 2), ignition can be achieved in a facility much smaller than the ITER facility at plasma temperatures below 20 keV. The revealed decrease in the degradation of the confinement time τ E with an increase in the introduced power has been analyzed.

  9. Effects of orbit squeezing on poloidal mass flow and bootstrap current in tokamak plasmas

    SciTech Connect

    Shaing, K.C. ); Hsu, C.T. ); Hazeltine, R.D. )

    1994-10-01

    It is shown, by solving the drift kinetic equation, that the asymptotic values of the poloidal mass flow and the bootstrap current in the banana regime of large-aspect-ratio tokamak plasmas are not affected by orbit squeezing. However, because the definition of ion collisionality [upsilon][sub *[ital i

  10. Recent Results of IRAN-T1 Tokamak

    SciTech Connect

    Dorranian, D.; Ghoranneviss, M.; Salem, M. K.; Mahmoodi D, M.; Arvin, R.; Talebitaher, Alireza; Abhari, Ali; Khorshid, P.; Hojabri, A.

    2006-12-04

    In this article after introducing the IR-T1 tokamak and its diagnostic systems a brief discussion on the range of grossly stable operating conditions of its plasma by Hugill diagram is presented. Hard disruption instability is studied experimentally in the next part, which confirms that MHD behavior in small tokamaks can be characterized by a single parameter q(a), safety factor at plasma edge. Finally the characteristics of the new regime of IR-T1 are reported. By our new model of triggering different fields (toroidal, ohmic and vertical), the plasma duration time is increased up to 35 ms with Ip of about 25 kA. By modifying capacitance and charging voltage of ohmic and vertical fields the spike oscillations which was appeared in the plasma behavior is taken out. The role of cleaning the vacuum chamber and using heavier gas for glow discharge and the effect of base pressure is described in detail.

  11. Drift-wave fluctuation in an inviscid tokamak plasma

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Rong; Mao, Jie-Jian; Tang, Xiao-Yan

    2013-11-01

    In order to describe the characterization of resistive drift-wave fluctuation in a tokamak plasma, a coupled inviscid two-dimensional Hasegawa—Wakatani model is investigated. Two groups of new analytic solutions with and without phase shift between the fluctuant density and the fluctuant potential are obtained by using the special function transformation method. It is demonstrated that the fluctuant potential shares similar spatio—temporal variations with the density. It is found from the solutions without phase shift that the effect of the diffusion and adiabaticity on the fluctuant density is quite complex, and that the fluctuation may be controlled through the adiabaticity and diffusion. By using the typical parameters in the quasi-adiabatic regime in the solutions with phase shift, it is shown that the density gradient becomes larger as the contours become dense toward the plasma edge and the contours have irregular structures, which reveal the nonuniform distribution in the tokamak edge.

  12. High power heating of magnetic reconnection in merging tokamak experimentsa)

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Tanabe, H.; Yamada, T.; Gi, K.; Watanabe, T.; , T., Ii; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.

    2015-05-01

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R˜105. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field Brec2 ˜ Bp2. The guide toroidal field Bt does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field Bt, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with Bp > 0.4 T will enables us to heat the plasma to the alpha heating regime: Ti > 5 keV without using any additional heating facility.

  13. On steady poloidal and toroidal flows in tokamak plasmas

    SciTech Connect

    McClements, K. G.

    2010-08-15

    The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B{sub {theta}/}B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B{sub {theta}/}B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.

  14. (Injection of compact toroids for tokamak fueling and current drive)

    SciTech Connect

    Hwang, D.Q.; Rogers, J.H.; Thomas, J.C.; Evans, R.; Foley, R.; Hillyer, T.

    1991-01-01

    The experimental goals for the 1990--1991 period were the operation of the Davis Diverted Tokamak(DDT), the beat wave experiment, and the construction of the compact toroid injection experiment(CTIX). The experiment results from these areas are summarized in the posters given in the APS meeting past November. Here we shall describe the technical progress of the development of the diagnostic system for beat wave experiment, and CT injection especially in relation to the up coming injection experiments into DDT tokamak. The tokamak operation of DDT over the past year has been focused in two parameter ranges. The long pulse discharges (over 100 msec), and the low q short pulse discharges (about 10 msec). We found that the long pulse discharges required a position feedback more sophisticated than the simple passive program that we have. We are in the process of assembling this system. We also found an interesting low q(a) operating regime. Here an equilibrium can be established for a toroidal field between .5 and 1 kG. The typical plasma current is > 5kA. The density of the plasma is between 10{sup 12} and 10{sup 13} cm{sup {minus}3}. The plasma condition in these discharge are sufficiently mild that diagnostic probes can be used to measure various plasma fluctuations. We believe that this will be the regime best suited to study the interaction between the tokamak plasma and the compact toroid. A sophisticated probe system of both electrostatic and electromagnetic types similar to those used in the beat wave experiment has been designed for the up coming experiments.

  15. Slow Wave Excitation in the ICRF and HHFW Regimes

    NASA Astrophysics Data System (ADS)

    Phillips, C. K.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Valeo, E. J.; Hosea, J. C.; LeBlanc, B. P.; Ryan, P. M.; Smithe, D. N.; Wilson, J. R.; Wright, J. C.

    2011-12-01

    Theoretical considerations and high spatial resolution numerical simulations of radio frequency (rf) wave heating in tokamaks and in spherical toruses (ST) indicate that fast waves launched into tokamaks in the ion cyclotron range of frequencies (ICRF) or into spherical toruses in the high harmonic fast wave (HHFW) regime may excite a short wavelength slow mode inside of the plasma discharge due to the presence of hot electrons that satisfy the condition ωtokamaks and ST devices.

  16. Development of advanced inductive scenarios for ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.; Challis, C. D.; Ide, S.; Joffrin, E.; Kamada, Y.; Politzer, P. A.; Schweinzer, J.; Sips, A. C. C.; Stober, J.; Giruzzi, G.; Kessel, C. E.; Murakami, M.; Na, Y.-S.; Park, J. M.; Polevoi, A. R.; Budny, R. V.; Citrin, J.; Garcia, J.; Hayashi, N.; Hobirk, J.; Hudson, B. F.; Imbeaux, F.; Isayama, A.; McDonald, D. C.; Nakano, T.; Oyama, N.; Parail, V. V.; Petrie, T. W.; Petty, C. C.; Suzuki, T.; Wade, M. R.; the ITPA Integrated Operation Scenario Topical Group Members; the ASDEX-Upgrade Team; the DIII-D Team; EFDA Contributors, JET; the JT-60U Team

    2014-01-01

    Since its inception in 2002, the International Tokamak Physics Activity topical group on Integrated Operational Scenarios (IOS) has coordinated experimental and modelling activity on the development of advanced inductive scenarios for applications in the ITER tokamak. The physics basis and the prospects for applications in ITER have been advanced significantly during that time, especially with respect to experimental results. The principal findings of this research activity are as follows. Inductive scenarios capable of higher normalized pressure (βN ⩾ 2.4) than the ITER baseline scenario (βN = 1.8) with normalized confinement at or above the standard H-mode scaling are well established under stationary conditions on the four largest diverted tokamaks (AUG, DIII-D, JET, JT-60U), demonstrated in a database of more than 500 plasmas from these tokamaks analysed here. The parameter range where high performance is achieved is broad in q95 and density normalized to the empirical density limit. MHD modes can play a key role in reaching stationary high performance, but also define the limits to achieved stability and confinement. Projection of performance in ITER from existing experiments uses empirical scalings and theory-based modelling. The status of the experimental validation of both approaches is summarized here. The database shows significant variation in the energy confinement normalized to standard H-mode confinement scalings, indicating the possible influence of additional physics variables absent from the scalings. Tests using the available information on rotation and the ratio of the electron and ion temperatures indicate neither of these variables in isolation can explain the variation in normalized confinement observed. Trends in the normalized confinement with the two dimensionless parameters that vary most from present-day experiments to ITER, gyroradius and collision frequency, are significant. Regression analysis on the multi-tokamak database has been

  17. Bibliography of fusion product physics in tokamaks

    SciTech Connect

    Hively, L. M.; Sigmar, D. J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category.

  18. High Power Heating of Magnetic Reconnection in UTokyo Spherical Tokamak Merging Experiment: TS-U

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Kawanami, M.; Kimura, K.; Nakai, R.; Nishida, K.; Ishida, R.; Yamanaka, H.; Kuwahata, A.; Tanabe, H.; Inomoto, M.; Cheng, C. Z.; TS; UTST Team

    2015-11-01

    Significant ion heating of magnetic reconnection up to 0.2keV and 1.2keV were documented in two tokamak merging experiments: TS-3 and MAST, leading us to a new high-field merging experiment: TS-U in University of Tokyo. 1D and 2D contours of ion and electron temperatures measured in TS-3 already revealed clear energy-conversion of magnetic reconnection: huge outflow heating of ions in the downstream and electron heating localized at the X-point. It is noted that the ion heating energy is proportional to square of the reconnecting (poloidal) magnetic field Brec. It is because the reconnection outflow accelerates ions up to the poloidal Alfven speed. The accelerated ions are thermalized by shock-like density pileups in the downstreams. These results agree qualitatively with recent solar satellite observations and PIC simulation results. Based on those results, our poster will show the design of upscaled high-field tokamak merging experiment: TS-U. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection heating mechanisms but also for economical startup and heating of tokamak plasmas. The tokamak merging with Brec>0.3T will enables us to heat the tokamak plasma to the burning regime: Ti>5keV without using any additional heating facility.

  19. Advanced techniques in laser-ion acceleration: Conversion efficiency, beam distribution and energy scaling in the Break-Out Afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Yin, Lin; Albright, Brian; Gautier, Donald; Hoerlein, Rainer; Johnson, Randall; Kiefer, Daniel; Letzring, Sam; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Habs, Dietrich; Fernandez, Juan; Hegelich, Manuel

    2011-10-01

    Recently, increasing laser intensities and contrast made acceleration mechanisms such as the radiation pressure acceleration or the Break-Out Afterburner (BOA) accessible. These mechanisms efficiently couple laser energy into all target ion species, making them a competitive alternative to conventional accelerators. We here present experimental data addressing conversion efficiency and ion distribution scaling for both carbon C6+ and protons within the BOA regime and the transit into the TNSA regime. Unique high resolution measurements of angularly resolved carbon C6+ and proton energy spectra for targets ranging from 30nm to 25microns - recorded with a novel ion wide angle spectrometer - are presented and used to derive thickness scaling estimates. While the measured conversion efficiency for C6+ reaches up to ~6%, peak energies of 1GeV and 120MeV have been measured for C6+ and protons, respectively.

  20. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  1. Resistive instabilities in tokamaks

    SciTech Connect

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.

  2. Fuel retention in tokamaks

    NASA Astrophysics Data System (ADS)

    Loarer, T.

    2009-06-01

    Tritium retention constitutes an outstanding problem for ITER operation and future fusion reactors, particularly for the choice of the first wall materials. In present day tokamaks, fuel retention is evaluated by two complementary methods. The in situ gas balance allows evaluation of how much fuel is retained during a discharge and, typically, up to one day of experiments. Post-mortem analysis is used to determine where the fuel is retained, integrated over an experimental campaign. In all the carbon clad devices, using the two methods, the retention is demonstrated to be very closely related to the carbon net erosion. This results from plasma-wall interaction with ion and charge-exchange fluxes, ELMs and is proportional to the pulse duration. The fuel retention by implantation saturates at high wall temperatures and limits the D/C ratio in the deposited layers but, as far as a carbon source exists, the dominant retention process remains the co-deposition of carbon with deuterium. In full metallic device, in the absence of wall conditioning with boron, co-deposition is strongly reduced and fuel retention below 1% can be achieved. Extrapolation to ITER shows that removing the carbon from the plasma-facing components would increase the number of discharges to 2500 before reaching the maximum tritium limit of 700 g.

  3. Lower hybrid current drive at high density in the multi-pass regime

    SciTech Connect

    Wallace, G. M.; Faust, I. C.; Meneghini, O.; Parker, R. R.; Shiraiwa, S.; Baek, S. G.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Ma, Y.; Reinke, M. L.; Terry, J. L.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.; Schmidt, A. E.; Harvey, R. W.; Smirnov, A. P.; and others

    2012-06-15

    Assessing the performance of lower hybrid current drive (LHCD) at high density is critical for developing non-inductive current drive systems on future steady-state experiments. Excellent LHCD efficiency has been observed during fully non-inductive operation ({eta}=2.0-2.5 Multiplication-Sign 10{sup 19} AW{sup -1}m{sup -2} at n{sub e}=0.5 Multiplication-Sign 10{sup 20} m{sup -3}) on Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under conditions (n{sub e}, magnetic field and topology, and LHCD frequency) relevant to ITER [S. Shiraiwa et al., Nucl. Fusion 51, 103024 (2011)]. To extend these results to advanced tokamak regimes with higher bootstrap current fractions on C-Mod, it is necessary to increase n{sub e} to 1.0-1.5 Multiplication-Sign 10{sup 20} m{sup -3}. However, the number of current-carrying, non-thermal electrons generated by LHCD drops sharply in diverted configurations at densities that are well below the density limit previously observed on limited tokamaks. In these cases, changes in scrape off layer (SOL) ionization and density profiles are observed during LHCD, indicating that significant power is transferred from the LH waves to the SOL. Fokker-Planck simulations of these discharges utilizing ray tracing and full wave propagation codes indicate that LH waves in the high density, multi-pass absorption regime linger in the plasma edge, and SOL region, where absorption near or outside the LCFS results in the loss of current drive efficiency. Modeling predicts that non-thermal emission increases with stronger single-pass absorption. Experimental data show that increasing T{sub e} in high density LH discharges results in higher non-thermal electron emission, as predicted by the models.

  4. Nonlinear three-dimensional MHD simulations of tearing modes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lütjens, H.; Luciani, J. F.; Garbet, X.

    2001-12-01

    The comprehension of the dynamics of classical and neoclassical tearing modes is a key issue in high-performance tokamak plasmas. Avoiding these instabilities requires a good knowledge of all the physical mechanisms involved in their linear and/or nonlinear onset. Our tridimensional time evolution code XTOR, which solves the full magnetohydrodynamic (MHD) equations including thermal transport, is used to tackle this difficult problem. In this paper, to show the state of art in full-scale nonlinear MHD simulations of tokamak plasmas, we investigate the effect of plasma curvature on the tearing mode dynamics. For a realistic picture of this dynamics, heat diffusion is required in the linear regimes as well, as in the nonlinear regimes. We present a new dispersion relation including perpendicular and parallel transport, and show that it matches the linear and nonlinear regimes. This leads to a new tearing mode island evolution equation including curvature effects, valid for every island size in tokamak plasmas. This equation predicts a nonlinearly unstable regime for tearing instabilities, i.e. a regime which is linearly stable, but where the tearing mode can be destabilized nonlinearly by a finite-size seed island. These theoretical predictions are in good agreement with XTOR simulations. In particular, the nonlinear instability due to curvature effects is reproduced. Our results have an important impact on the onset mechanism of neoclassical tearing modes. They indeed predict that curvature effects lead to a resistive MHD threshold.

  5. Ion plateau transport near the tokamak magnetic axis

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1998-04-01

    Conventional neoclassical transport theory does not pertain near the magnetic axis, where orbital variation of the minor radius and the poloidal field markedly change the nature of guiding-center trajectories. Instead of the conventional tokamak banana-shaped trajectories, near-axis orbits, called potato orbits, are radially wider and lead to distinctive kinetic considerations. Here it is shown that there is a plateau regime for the near-axis case; the corresponding potato-plateau ion thermal conductivity is computed. {copyright} {ital 1998 American Institute of Physics.}

  6. Tokamak coordinate conventions: COCOS

    NASA Astrophysics Data System (ADS)

    Sauter, O.; Medvedev, S. Yu.

    2013-02-01

    Dealing with electromagnetic fields, in particular current and related magnetic fields, yields "natural" physical vector relations in 3-D. However, when it comes to choosing local coordinate systems, the "usual" right-handed systems are not necessarily the best choices, which means that there are several options being chosen. In the magnetic fusion community such a difficulty exists for the choices of the cylindrical and of the toroidal coordinate systems. In addition many codes depend on knowledge of an equilibrium. In particular, the Grad-Shafranov axisymmetric equilibrium solution for tokamak plasmas, ψ, does not depend on the sign of the plasma current Ip nor that of the magnetic field B0. This often results in ill-defined conventions. Moreover the sign, amplitude and offset of ψ are of less importance, since the free sources in the equation depend on the normalized radial coordinate. The signs of the free sources, dp/dψ and dF2/dψ (p being the pressure, ψ the poloidal magnetic flux and F=RBφ), must be consistent to generate the current density profile. For example, RF and CD calculations (Radio Frequency heating and Current Drive) require an exact sign convention in order to calculate a co- or counter-CD component. It is shown that there are over 16 different coordinate conventions. This paper proposes a unique identifier, the COCOS convention, to distinguish between the 16 most-commonly used options. Given the present worldwide efforts towards code integration, the proposed new index COCOS defining uniquely the COordinate COnventionS required as input by a given code or module is particularly useful. As codes use different conventions, it is useful to allow different sign conventions for equilibrium code input and output, equilibrium being at the core of any calculations in magnetic fusion. Additionally, given two different COCOS conventions, it becomes simple to transform between them. The relevant transformations are described in detail.

  7. Performance Projections For The Lithium Tokamak Experiment (LTX)

    SciTech Connect

    Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; Lundberg, D. P.; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.

    2009-06-17

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.

  8. Performance projections for the lithium tokamak experiment (LTX)

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; Lundberg, D. P.; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.

    2009-05-01

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.

  9. Energy losses on tokamak startup

    SciTech Connect

    Murray, J.G.; Rothe, K.E.; Bronner, G.

    1983-01-01

    During the startup of a tokamak reactor using poloidal field (PF) coils to induce plasma currents, the conducting structures carry induced currents. The associated energy losses in the circuits must be provided by the startup coils and the PF system. This paper provides quantitative and comparitive values for the energies required as a function of the thickness or resistivity of the torus shells.

  10. Fusion product measurements in tokamaks

    SciTech Connect

    Strachan, J.D.

    1985-05-01

    Diagnostic methods and the applications of fusion product measurements in tokamaks are reviewed with emphasis on results from PLT, PDX, and TFTR. Measurements have been made using the 2.5-MeV neutron from the d(d, n)/sup 3/ He reaction, the 3-MeV proton from the d(d, p)t reaction, both the 3.7-MeV alpha and the 14.7-MeV proton from the d(/sup 3/He, p)..cap alpha.. reaction, and the 14-MeV neutron from the d(t, n)..cap alpha.. reaction. The common use of these measurements is the determination of the ion temperature from the magnitude of the d-d neutron emission. For tokamak plasmas, these results are usually in good agreement with the charge exchange ion temperature. Recently, the charged fusion products have been used for high-resolution spectroscopic purposes, and emission profile measurements. Pitch angle resolution of the escaping 3-MeV proton emission has been used to determine the poloidal magnetic field inside the tokamak. Major issues in this field include the expected tritium operation on TFTR where the neutron measurements will determine when tritium will be introduced into the TFTR vessel and provide a measurement of the fusion power multiplication value (Q). The TFTR Q approx. 1 experiments will also provide a chance to measure the confinement of 3.5-MeV alphas in a tokamak.

  11. Rotation of weakly collisional plasmas in tokamaks, operated with Alfv{acute e}n waves

    SciTech Connect

    Tsypin, V.S.; Elfimov, A.G.; de Azevedo, C.A.; de Assis, A.S.

    1996-12-01

    The effect of the kinetic Alfv{acute e}n waves on weakly collisional plasma rotation in tokamaks has been studied for the plateau and banana regimes. The quasistationary rotation velocities and radial electric field have been found. The estimation of these quantities for the Phaedrus-T tokamak [S. Wukitch {ital et} {ital al}., Phys. Rev. Lett. {bold 77}, 294 (1996)] and for the Joint European Torus (JET) [A. Fasoli {ital et} {ital al}., Nucl. Fusion, {bold 36}, 258 (1996)] has been presented. It is shown that the kinetic Alfv{acute e}n waves, which are needed for current drive, change weakly the quasistationary rotation velocities and radial electric field, as found from the experimental data of these tokamaks. In conditions with increased rf power, the plasma rotation and radial electric field can essentially grow up. {copyright} {ital 1996 American Institute of Physics.}

  12. Measurement of density fluctuations in the PDX tokamak using microwave scattering techniques

    SciTech Connect

    Crowley, T.

    1984-01-01

    Density fluctuations in the PDX tokamak were analyzed with the scattering of 2 mm microwaves. The primary focus of the study was the low frequency (tokamaks and have the characteristics of drift wave turbulence. In PDX, the mean observed frequencies are about 50 to 100 kHz and the mean wavenumbers are k/sub perpendicular/ approx. 3 cm/sup -1/. It is believed that the drift waves are a possible cause of the anomalous heat transport in tokamaks. Density fluctuations with a narrow frequency spectrum were also observed. The latter include the quasi-coherent fluctuation observed in H-mode plasmas. Several scaling studies of the broad-band turbulence have been carried out. The frequency spectra, k/sub perpendicular/ spectra, and magnitude of the fluctuations were measured and their variation with toroidal field, neutral beam heating power, plasma current, position, and confinement regime in PDX was documented.

  13. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    NASA Astrophysics Data System (ADS)

    von Nessi, G. T.; Hole, M. J.; The MAST Team

    2014-11-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript.

  14. Cool, high-density regime for poloidal divertors

    SciTech Connect

    Petravic, M.; Post, D.; Heifetz, D.; Schmidt, J.

    1981-08-01

    Calculations have been performed which demonstrate the possibility of operating poloidal divertors at high densities and low temperatures. This operating regime is caused primarily by ionization of recycling neutral gas near the divertor neutralizer plate which amplifies the input particle flux thereby raising the plasma density and lowering the plasma temperature. Low temperature, high density operation of poloidal divertors would ease the design requirements for future large tokamaks such as INTOR or FED by reducing the erosion rate in the divertor and reducing the neutral density and the associated charge exchange erosion near the main plasma. This regime may have already been observed on several divertor and limiter experiments.

  15. On the economic prospects of nuclear fusion with tokamaks

    NASA Astrophysics Data System (ADS)

    Pfirsch, D.; Schmitter, K. H.

    1987-12-01

    A method of cost and construction energy estimation for tokamak fusion power stations conforming to the present stage of fusion development is described. The method is based on first-wall heat load constraints rather than Beta limitations, which, however, might eventually be the more critical of the two. It is used to discuss the economic efficiency of pure fusion, with particular reference to the European study entitled Environmental Impact and Economic Prospects of Nuclear Fusion (1986). It is shown that the claims made therein for the economic prospects of pure fusion with tokamaks, when discussed on the basis of the present-day technology, do not stand up to critical examination. A fusion-fission hybrid, however, could afford more positive prospects. Support for the stated method is derived when it is properly applied for cost estimation of advanced gas-cooled and Magnox reactors, the two examples presented by the European study to disprove it.

  16. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Wallace, G. M.; Shinya, T.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Takase, Y.; Wukitch, S.

    2016-05-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k|| increases for the fixed launched k||, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k|| are observed in the spectrally broadened wave components, as compared to the measured k|| at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k|| resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  17. The upgraded heavy ion beam probe diagnostics on the T-10 tokamak

    NASA Astrophysics Data System (ADS)

    Drabinskii, M. A.; Khabanov, P. O.; Melnikov, A. V.; Krupnik, L. I.; Kozachek, A. S.; Komarov, A. D.; Zhezhera, A. I.

    2016-09-01

    The upgraded Heavy Ion Beam Probe (HIBP) diagnostics on the T-10 tokamak (National Research Center ‘Kurchatov Institute’) is presented. HIBP is a powerful tool to study electric potential in the core and edge plasmas along with broadband turbulence and quasicoherent modes such as Geodesic Acoustic Mode (GAM) and Alfven Eigenmode (AE). To study broadband turbulence and AEs, which can be driven by fast electrons in regimes with auxiliary Electron Cyclotron Resonance Heating the frequency range of about several hundred kHz is needed. The upgrade is focused on the extension of the frequency range of HIBP signals up to 500 kHz, and on increasing of density operating limit up to 5-1019 m-3. It becomes possible due to a newly designed emitter-extractor unit of HIBP accelerator aiming to provide the primary beam with the current of 300 pA at the energy of 300 keV and diameter of 7-10 mm. The new in-vessel elements of a primary beamline - wire sensor and Faraday cup - were upgraded accordingly to be able to deliver the probing beam with advanced parameters to the plasma.

  18. Impedance of an intense plasma-cathode electron source for tokamak startup

    DOE PAGES

    Hinson, Edward Thomas; Barr, Jayson L.; Bongard, Michael W.; Burke, Marcus Galen; Fonck, Raymond J.; Perry, Justin M.

    2016-05-31

    In this study, an impedance model is formulated and tested for the ~1kV, ~1kA/cm2, arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma (narc ≈ 1021 m-3) within the electron source, and the less dense external tokamak edge plasma (nedge ≈ 1018 m-3) into which current is injected at the applied injector voltage, Vinj. Experiments on the Pegasus spherical tokamak show the injected current, Iinj, increases with Vinj according to the standard double layer scaling Iinj ~ Vinj3/2 at low current and transitions to Iinj ~ Vinj1/2more » at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb ~ Iinj/Vinj1/2. For low tokamak edge density nedge and high Iinj, the inferred beam density nb is consistent with the requirement nb ≤ nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb ~ narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.« less

  19. Bootstrapped tokamak with oscillating field current drive

    SciTech Connect

    Weening, R.H. )

    1993-07-01

    A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.

  20. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  1. Tokamak power system studies at ANL

    SciTech Connect

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-06-01

    The following features, in particular, have been examined: (a) large aspect ratio (A approx. = 6), which may ease maintenance; (b) high beta (..beta.. greater than or equal to 0.20) without indentation, which brings the maximum toroidal field down to about 6 to 7 T; (c) low toroidal current (I approx. = 4MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields they produce in the plasma. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors.

  2. Tearing mode analysis in tokamaks, revisited

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1997-12-01

    A new {Delta}{prime} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon} {le} 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease {Delta}{prime}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low {beta} regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m {ge} 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code.

  3. Neoclassical transport in high {beta} tokamaks

    SciTech Connect

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high {beta} large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high {beta} large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low {beta} values by a factor ({var_epsilon}/q{sup 2}{beta}){sup {1/2}} II. This factor is the ratio of plasma volume in the boundary layer to the volume in the core. The fraction of trapped particles on a given flux surface (f{sub t}) is also reduced by this factor so that {approximately} {sub ({var_epsilon}}/q{sup 2}{beta}){sup {1/2}}. Special attention is given to the current equation, since this is thought to be relevant at low 3 and therefore may also be relevant at high {beta}. The bootstrap current term is found to exceed the actual current by a factor of the square root of the aspect ratio.

  4. Impurities in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Boyle, D. P.; Bell, R. E.; Kaita, R.; Majeski, R.; Biewer, T. M.; Gray, T. K.; Tritz, K.; Widmann, K.

    2014-10-01

    The Lithium Tokamak Experiment (LTX) is designed to study the low-recycling regime through the use of close-fitting, lithium-coated, heatable shell quadrants surrounding the plasma volume. Lithium coatings can getter and bury impurities, but they can also become covered by impurity compounds. Liquefied coatings can both dissolve impurity compounds and bring them to the surface, while sputtering and evaporation rates increase strongly with temperature. Here, we use spectroscopic measurements to assess the effects of varying wall conditions on plasma impurities, mainly Li, C, and O. A passive Doppler spectroscopy system measures toroidal and poloidal impurity profiles using fixed-wavelength and variable-wavelength visible spectrometers. In addition, survey and high-resolution extreme ultraviolet spectrometers detect emission from higher charge states. Preliminary results show that fresh Li coatings generally reduced C and O emission. C emission decreased sharply following the first solid Li coatings. Inverted toroidal profiles in a discharge with solid Li coatings show peaked Li III emissivity and temperature profiles. Recently, experiments with fresh liquid coatings led to especially strong O reduction. Results from these and additional experiments will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  5. Recent progress in the tokamak edge modeling

    NASA Astrophysics Data System (ADS)

    Petravic, M.; Heifetz, D.; Heifetz, S.; Post, D.

    1984-12-01

    Tokamak edge modeling, with a particular emphasis on divertors, was reviewed in detail in 1982. At that time the emphasis was on the qualitative behavior of the scrape-off plasma and the atomic processes involved in the neutral-plasma interaction. While no detailed comparisons with the experiments were available, the data nevertheless showed all the basic features of the cool high-density regime predicted by the models. The two most important modeling developments of 1983 were the introduction of accurate magnetic geometries and the inclusion of impurity transport in the plasma equations. This made possible detailed comparisons with the PDX and ASDEX experiments which on the one hand showed remarkable agreement while on the other hand pointed to new areas of uncertainty, i.e., the plasma-wall and neutral-wall interactions. In another development, the scrape-off models are beginning to be linked to the main plasma transport in order to provide better boundary conditions for the main plasma models, and in particular to model limiters. The fully two-dimensional plasma flow models should be particularly useful in this area.

  6. Microwave Tokamak Experiment: Overview and status

    SciTech Connect

    Not Available

    1990-05-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs.

  7. Comprehensive numerical modelling of tokamaks

    SciTech Connect

    Cohen, R.H.; Cohen, B.I.; Dubois, P.F.

    1991-01-03

    We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell.

  8. Gyrosheath near the tokamak edge

    SciTech Connect

    Hazeltine, R.D.; Xiao, H. . Inst. for Fusion Studies); Valanju, P.M. . Fusion Research Center)

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results.

  9. Magnetic control of magnetohydrodynamic instabilities in tokamaks

    SciTech Connect

    Strait, E. J.

    2015-02-15

    Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries (δB/B∼10{sup −3} to 10{sup −4}) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas (β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error

  10. High power heating of magnetic reconnection in merging tokamak experiments

    SciTech Connect

    Ono, Y.; Tanabe, H.; Gi, K.; Watanabe, T.; Ii, T.; Yamada, T.; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.

  11. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas Christopher

    Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric

  12. Variational Symplectic Orbit Code in 3-D Tokamak Geometry

    NASA Astrophysics Data System (ADS)

    Ellison, Charles; Qin, Hong; Tang, William M.

    2011-10-01

    Since advanced tokamak experiments - including ITER - are long-pulse systems, it is important to develop accurate numerical methods to track plasma dynamics over an extended temporal period. When attempting to model the motion of individual particles, standard integrators (e.g. 4th order Runge-Kutta) discretize the differential equations of motion - but do not possess desired properties such as energy conservation. The variational symplectic integrator adopts instead a different approach via minimizing the action of the guiding center motion to determine iteration rules. Consequently, the Lagrangian symplectic structure is conserved, and the numerical energy error is bounded by a small number for all time-steps. In previous work, the theoretical basis for this method was introduced, but the implementation was for 2-D geometry. To address realistic experimental scenarios, the variational symplectic integrator has been implemented for 3-D tokamak geometry for the first time. Sample results will be presented and compared with those from standard Runge-Kutta-based 3-D tokamak orbit codes. This work was supported by the DOE contract # DE-AC02-09CH11466 and the DOE FES Fellowship.

  13. Economic analyses of alpha channeling in tokamak power plants.

    SciTech Connect

    Ehst, D.A.

    1998-09-17

    The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T{sub i} somewhat larger than the electron temperature T{sub e}, which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small.

  14. Analysis of neutral hydrogenic emission spectra in a tokamak

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.; Jaspers, R. J. E.

    2015-10-01

    Balmer-α radiation by the excitation of thermal and fast neutral hydrogenic particles has been investigated in a magnetically confined fusion device, or tokamak, from the Korea Superconducting Tokamak Advanced Research (KSTAR). From the diagnostic point of view, the emission from thermal neutrals is associated with passive spectroscopy and that from energetic neutrals that are usually injected from the outside of the tokamak to the active spectroscopy. The passive spectroscopic measurement for the thermal Balmer-α emission from deuterium and hydrogen estimates the relative concentration of hydrogen in a deuterium-fueled plasma and therefore, makes a useful tool to monitor the vacuum wall condition. The ratio of hydrogen to deuterium obtained from this measurement qualitatively correlates with the energy confinement of the plasma. The Doppler-shifted Balmer-α components from the fast neutrals features the spectrum of the motional Stark effect (MSE) which is an essential principle for the measurement of the magnetic pitch angle profile. Characterization of this active MSE spectra, especially with multiple neutral beam lines crossing along the observation line of sight, has been done for the guideline of the multi-ion-source heating beam operation and for the optimization of the narrow bandpass filters that are required for the polarimeter-based MSE diagnostic system under construction at KSTAR.

  15. Current ramp-up by lower hybrid waves in the PLT tokamak

    SciTech Connect

    Jobes, F.C.; Bernabei, S.; Chu, T.K.; Hooke, W.M.; Meservey, E.B.; Motley, R.W.; Stevens, J.E.; von Goeler, S.

    1985-03-01

    Recent lower hybrid current drive experiments have clearly demonstrated that the current in a tokamak discharge can be maintained by rf drive alone. We have extended the operating regime of such plasma to include ramping-up of the current. We find that at densities of approx. 2 x 10/sup 12/ cm/sup -3/ approximately 25% of the launched rf power is converted to magnetic field energy.

  16. L to H mode transitions and associated phenomena in divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Punjabi, A.

    1990-09-01

    This is the final report for the research project titled, L to H Mode Transitions and Associated Phenomena in Divertor Tokamaks. The period covered by this project is the fiscal year 1990. This report covers the development of Advanced Two Chamber Model.

  17. Studying an advanced regime of the non-collinear two-phonon light scattering for applications to the optical spectrum analysis

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes, Adan O.

    2016-03-01

    Principally new features of the non-collinear two-phonon light scattering governed by elastic waves of finite amplitude in birefringent bulk crystals are detected and observed. The main goals of our investigations are to reveal novel important details inherent in the nonlinearity of this effect and to study properties of similar parametric nonlinearity both theoretically and experimentally in wide-aperture crystals with moderate linear acoustic attenuation. An additional degree of freedom represented by the dispersive birefringence factor, which can be distinguished within this nonlinear phenomenon, is characterized. This physical degree of freedom gives us a one-of-a-kind opportunity to apply the strongly non-linear two-phonon light scattering in practice for the first time. The local unit-level maxima in the distribution of light scattered into the second order appear periodically as the acoustic power density grows. It makes possible to identify a few transfer function profiles peculiar to these maxima in the isolated planes of angular-frequency mismatches. These maxima give us an opportunity to choose the desirable profile for the transfer function at the fixed angle of incidence for the incoming light beam with a wide spectrum .The needed theoretical analysis is developed and proof-of-principle experiments, performed with a specially designed wide-aperture acousto-optical cell made of the calomel (α-Hg2Cl2) crystal, are presented. The obtained spectral resolution ~0.235 Å at 405 nm (i.e. the resolving power ~17,200) can be compared with the most advanced acousto-optical spectrometers for space/airborne operations. Evidently, our results with the calomel-based acousto-optical cell look like the best we can mention at the moment.

  18. UCLA program in reactor studies: The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  19. Neutral particle dynamics in the Alcator C-Mod tokamak

    SciTech Connect

    Niemczewski, A.P.

    1995-08-01

    This thesis presents an experimental study of neutral particle dynamics in the Alcator C-Mod tokamak. The primary diagnostic used is a set of six neutral pressure gauges, including special-purpose gauges built for in situ tokamak operation. While a low main chamber neutral pressure coincides with high plasma confinement regimes, high divertor pressure is required for heat and particle flux dispersion in future devices such as ITER. Thus we examine conditions that optimize divertor compression, defined here as a divertor-to-midplane pressure ratio. We find both pressures depend primarily on the edge plasma regimes defined by the scrape-off-layer heat transport. While the maximum divertor pressure is achieved at high core plasma densities corresponding to the detached divertor state, the maximum compression is achieved in the high-recycling regime. Variations in the divertor geometry have a weaker effect on the neutral pressures. For otherwise similar plasmas the divertor pressure and compression are maximum when the strike point is at the bottom of the vertical target plate. We introduce a simple flux balance model, which allows us to explain the divertor neutral pressure across a wide range of plasma densities. In particular, high pressure sustained in the detached divertor (despite a considerable drop in the recycling source) can be explained by scattering of neutrals off the cold plasma plugging the divertor throat. Because neutrals are confined in the divertor through scattering and ionization processes (provided the mean-free-paths are much shorter than a typical escape distance) tight mechanical baffling is unnecessary. The analysis suggests that two simple structural modifications may increase the divertor compression in Alcator C-Mod by a factor of about 5. Widening the divertor throat would increase the divertor recycling source, while closing leaks in the divertor structure would eliminate a significant neutral loss mechanism. 146 refs., 82 figs., 14 tabs.

  20. Tokamak plasma position dynamics and feedback control

    SciTech Connect

    Burenko, L.; Bailey, J.M.

    1983-01-01

    The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form.

  1. Steady State Tokamak Equilibria without Current Drive

    SciTech Connect

    Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.

    1997-11-01

    Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}

  2. Natural current profiles in a tokamak

    SciTech Connect

    Taylor, J.B.

    1990-08-01

    In this paper I show how one may arrive at a universal, or natural, family of Tokamak profiles using only accepted physical principles. These particular profiles are similar to ones proposed previously on the basis of ad hoc variational principles and the point of the present paper is to provide a justification for them. However in addition, the present work provides an interesting view of Tokamak fluctuations and leads to a new result -- a relationship between the inward particle pinch velocity, the diffusion coefficient and the current profile. The basic Tokamak model is described in this paper. Then an analogy is developed between Tokamak profiles and the equilibrium of a realisable dynamical system. Then the equations governing the natural Tokamak profiles are derived by applying standard statistical mechanics to this analog. The profiles themselves are calculated and some other results of the theory are described.

  3. Tokamak plasma interaction with limiters

    NASA Astrophysics Data System (ADS)

    Pitcher, Charles Spencer

    1988-08-01

    The importance of plasma purity is discussed in terms of the general requirements of controlled thermonuclear fusion. The tokamak approach to fusion and its inherent problem of plasma contamination are introduced. A main source of impurities is due to the bombardment of the limiter by energetic particles and thus the three main aspects of the plasma-limiter interaction are reviewed, boundary plasma conditions, fueling/recycling and impurity production. The experiments, carried out on the DITE tokomak at Culham Laboratory, UK, investigated these three topics and the results are compared with predicted behavior; new physical phenomena are presented in all three areas.

  4. Breakdown in the pretext tokamak

    SciTech Connect

    Benesch, J.F.

    1981-06-01

    Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges.

  5. ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK

    SciTech Connect

    AUSTIN, ME; LOHR, J

    2002-08-01

    OAK A271 ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK. The electron cyclotron emission (ECE) heterodyne radiometer diagnostic on DIII-D has been upgraded with the addition of eight channels for a total of 40. The new, higher frequency channels allow measurements of electron temperature into the magnetic axis in discharges at maximum field, 2.15 T. The complete set now extends over the full usable range of second harmonic emission frequencies at 2.0 T covering radii from the outer edge inward to the location of third harmonic overlap on the high field side. Full coverage permits the measurement of heat pulses and magnetohydrodynamic (MHD) fluctuations on both sides of the magnetic axis. In addition, the symmetric measurements are used to fix the location of the magnetic axis in tokamak magnetic equilibrium reconstructions. Also, the new higher frequency channels have been used to determine central T{sub e} with good time resolution in low field, high density discharges using third harmonic ECE in the optically gray and optically thick regimes.

  6. Kinetic analysis of MHD ballooning modes in tokamaks

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from ..beta.. = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with ..beta.., these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-..beta..-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties.

  7. An emerging understanding of H-mode discharges in tokamaks

    SciTech Connect

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the {upsilon}{sub E}{sup {yields}} = (E {times} B)/B{sup 2} flow velocity. These results are qualitatively consistent with theories which predict suppression of fluctuations by shear or curvature in {upsilon}E. The required {upsilon}E flow is generated very rapidly when the magnitude of the heating power or of an externally imposed radial current exceed threshold values and several theoretical models have been developed to explain the observed changes in the {upsilon}E flow. After the transition occurs, the altered boundary conditions enable the development of improved confinement in the plasma interior on a confinement time scale. The resulting H-mode discharge has typically twice the confinement of L-mode discharges and regimes of further improved confinement have been obtained in some H-mode scenarios.

  8. The Lithium Tokamak eXperiment (LTX) - Status and Plans

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Majeski, R.; Berzak, L.; Gray, T.; Kozub, T.; Kugel, H.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.; Ahn, J.; Doerner, R.; Maingi, R.; Soukhanovskii, V.

    2007-11-01

    The LTX is the first toroidal device with a fully non-recycling wall almost completely surrounding the plasma. Such a plasma- facing component (PFC) is expected to lead to a new plasma regime with flat Te profiles, and the LTX goal is to explore its confinement and stability. The LTX is a spherical tokamak designed to have R=40 cm, a=26 cm, Bt=3.4 kG, Ip=400 kA, Te=1 keV, and Ti=200 eV, for discharges of 100 ms or more. It contains a shell with four segments, each made of 0.375''-thick copper and a 0.0625''-thick stainless steel liner. A lithium layer, up to 100 nm thick, will be vapor deposited on the liner between shots. For a non- recycling PFC, the lithium will be kept chemically active with a shell temperature above the lithium melting point. The first tokamak experiments with large area liquid lithium PFC's used a toroidal liquid lithium limiter in the Current Drive eXperiment - Upgrade (CDX-U). To compare with CDX-U results, initial experiments will be performed with a toroidal liquid lithium ``pool'' in the lower half of the LTX shell. Assembly of LTX is complete, and preparations for plasma operations are in progress.

  9. Two-fluid simulations of driven reconnection in the mega-ampere spherical tokamak

    SciTech Connect

    Stanier, A.; Browning, P.; Gordovskyy, M.; McClements, K. G.; Gryaznevich, M. P.

    2013-12-15

    In the merging-compression method of plasma start-up, two flux-ropes with parallel toroidal current are formed around in-vessel poloidal field coils, before merging to form a spherical tokamak plasma. This start-up method, used in the Mega-Ampere Spherical Tokamak (MAST), is studied as a high Lundquist number and low plasma-beta magnetic reconnection experiment. In this paper, 2D fluid simulations are presented of this merging process in order to understand the underlying physics, and better interpret the experimental data. These simulations examine the individual and combined effects of tight-aspect ratio geometry and two-fluid physics on the merging. The ideal self-driven flux-rope dynamics are coupled to the diffusion layer physics, resulting in a large range of phenomena. For resistive MHD simulations, the flux-ropes enter the sloshing regime for normalised resistivity η≲10{sup −5}. In Hall-MHD, three regimes are found for the qualitative behaviour of the current sheet, depending on the ratio of the current sheet width to the ion-sound radius. These are a stable collisional regime, an open X-point regime, and an intermediate regime that is highly unstable to tearing-type instabilities. In toroidal axisymmetric geometry, the final state after merging is a MAST-like spherical tokamak with nested flux-surfaces. It is also shown that the evolution of simulated 1D radial density profiles closely resembles the Thomson scattering electron density measurements in MAST. An intuitive explanation for the origin of the measured density structures is proposed, based upon the results of the toroidal Hall-MHD simulations.

  10. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction

  11. Advanced Fusion Power Plant Studies. Annual Report for 1999

    SciTech Connect

    Chan, V.S.; Chu, M.S.; Greenfield, C.M.; Kinsey, J.E.; et al.

    2000-01-01

    Significant progress in physics understanding of the reversed shear advanced tokamak regime has been made since the last ARIES-RS study was completed in 1996. The 1999 study aimed at updating the physics design of ARIES-RS, which has been renamed ARIES-AT, using the improved understanding achieved in the last few years. The new study focused on: Improvement of beta-limit stability calculations to include important non-ideal effects such as resistive wall modes and neo-classical tearing modes; Use of physics based transport model for internal transport barrier (ITB) formation and sustainment; Comparison of current drive and rotational flow drive using fast wave, electron cyclotron wave and neutral particle beam; Improvement in heat and particle control; Integrated modeling of the optimized scenario with self-consistent current and transport profiles to study the robustness of the bootstrap alignment, ITB sustainment, and stable path to high beta and high bootstrap fraction operation.

  12. Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-05-08

    Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in goodmore » qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.« less

  13. Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge

    SciTech Connect

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-05-08

    Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in good qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.

  14. AC operation and runaway electron behaviour in HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Wei; Hu, Li-Qun; Zhou, Rui-Jie; Lin, Shi-Yao; Zhong, Guo-Qiang; Wang, Shao-Feng; Chen, Kai-Yun; Xu, Ping; Zhang, Ji-Zong; Ling, Bi-Li; Mao, Song-Tao; Duan, Yan-Min

    2010-06-01

    Operation of HT-7 tokamak in a multicycle alternating square wave plasma current regime is reported. A set of AC operation experiments, including LHW heating to enhance plasma ionization during the current transition and current sustainment, is described. The behaviour of runaway electrons is analysed by four HXR detectors tangentially viewing the plasma in the equatorial plane, within energy ranges 0.3-1.2 MeV and 0.3-7 MeV, separately. High energy runaway electrons (~MeV) are found to circulate predominantly in the opposite direction to the plasma current, while the number of low energy runaway electrons (~tens to hundreds of keV) circulating along the plasma current is comparable to that in the direction opposite to the plasma current. AC operation with lower hybrid current drive (LHCD) is observed to have an additional benefit of suppressing the runaway electrons if the drop of the loop voltage is large enough.

  15. Results from deuterium-tritium tokamak confinement experiments

    SciTech Connect

    Hawryluk, R.J.

    1997-02-01

    Recent scientific and technical progress in magnetic fusion experiments has resulted in the achievement of plasma parameters (density and temperature) which enabled the production of significant bursts of fusion power from deuterium-tritium fuels and the first studies of the physics of burning plasmas. The key scientific issues in the reacting plasma core are plasma confinement, magnetohydrodynamic (MHD) stability, and the confinement and loss of energetic fusion products from the reacting fuel ions. Progress in the development of regimes of operation which have both good confinement and are MHD stable have enabled a broad study of burning plasma physics issues. A review of the technical and scientific results from the deuterium-tritium experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) is given with particular emphasis on alpha-particle physics issues.

  16. Neoclassical momentum transport in an impure rotating tokamak plasma

    SciTech Connect

    Newton, S.; Helander, P.

    2006-01-15

    It is widely believed that transport barriers in tokamak plasmas are caused by radial electric-field shear, which is governed by angular momentum transport. Turbulence is suppressed in the barrier, and ion thermal transport is comparable to the neoclassical prediction, but experimentally angular momentum transport has remained anomalous. With this motivation, the collisional transport matrix is calculated for a low collisionality plasma with collisional impurity ions. The bulk plasma toroidal rotation velocity is taken to be subsonic, but heavy impurities undergo poloidal redistribution due to the centrifugal force. The impurities give rise to off-diagonal terms in the transport matrix, which cause the plasma to rotate spontaneously. At conventional aspect ratio, poloidal impurity redistribution increases the angular momentum flux by a factor up to {epsilon}{sup -3/2} over previous predictions, making it comparable to the 'banana' regime heat flux. The flux is primarily driven by radial pressure and temperature gradients.

  17. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    SciTech Connect

    Not Available

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

  18. Tokamak operation with safety factor q95 < 2 via control of MHD stability.

    PubMed

    Piovesan, P; Hanson, J M; Martin, P; Navratil, G A; Turco, F; Bialek, J; Ferraro, N M; La Haye, R J; Lanctot, M J; Okabayashi, M; Paz-Soldan, C; Strait, E J; Turnbull, A D; Zanca, P; Baruzzo, M; Bolzonella, T; Hyatt, A W; Jackson, G L; Marrelli, L; Piron, L; Shiraki, D

    2014-07-25

    Magnetic feedback control of the resistive-wall mode has enabled the DIII-D tokamak to access stable operation at safety factor q(95) = 1.9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at a given toroidal magnetic field. In tokamaks with a divertor, the limit occurs at q(95) = 2, as confirmed in DIII-D. Since the energy confinement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a whole new high-current regime not accessible before. This result brings significant possible benefits in terms of fusion performance, but it also extends resistive-wall mode physics and its control to conditions never explored before. In present experiments, the q(95) < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.

  19. Control of Dust Inventory in Tokamaks

    SciTech Connect

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Pitcher, C. S.; Taylor, N.; Furlan, J.

    2008-09-07

    Particles with sizes ranging from 100 nm to 100 {mu}m are produced in tokamaks by the interaction of the plasma with the first wall materials and divertor. Dust has not yet been of a major concern in existing tokamaks mainly because their quantities are small and these devices are not nuclear facilities. However, in ITER and in future reactors, they could represent operational and potential safety issues. The aim of this paper is thus to describe the dust creation processes in the tokamak environment. The diagnostics and removal techniques that are needed to be implemented to measure and minimise the dust inventory are also presented. The integration of these techniques into a tokamak environment is also discussed.

  20. Power and particle exhaust in tokamaks

    SciTech Connect

    Stambaugh, R.D.

    1998-01-01

    The status of power and particle exhaust research in tokamaks is reviewed in the light of ITER requirements. There is a sound basis for ITER`s nominal design positions; important directions for further research are identified.

  1. Driven-current tokamak (DCT) scoping study

    SciTech Connect

    Reid, R.L.

    1983-01-01

    The present Department of Energy (DOE) plan calls for the construction of an Engineering Test Reactor (ETR) that is to be the last major experimental fusion device prior to the commercialization of fusion power. The plasma driver of the ETR is to be either a long-pulse tokamak or a tandem mirror machine. The possibility of using the Tokamak Fusion Test Reactor (TFTR) facility to consolidate the physics and technology database for the tokamak version of the ETR has been considered. This paper addresses two of the options being considered: (1) a superconducting toroidal field (TF) coil-hydrogen plasma alternative, and (2) a superconducting or hybrid TF coil-high Q alternative. Both options assume essentially steady-state operation through the application of rf current drive. The options are evaluated on the basis of performance and cost determined by application of the Fusion Engineering Design Center (FEDC) Tokamak System Code.

  2. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    SciTech Connect

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  3. Overview of physics research on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; TCV Team

    2009-10-01

    The Tokamak à Configuration Variable (TCV) tokamak is equipped with high-power (4.5 MW), real-time-controllable EC systems and flexible shaping, and plays an important role in fusion research by broadening the parameter range of reactor relevant regimes, by investigating tokamak physics questions and by developing new control tools. Steady-state discharges are achieved, in which the current is entirely self-generated through the bootstrap mechanism, a fundamental ingredient for ITER steady-state operation. The discharge remains quiescent over several current redistribution times, demonstrating that a self-consistent, 'bootstrap-aligned' equilibrium state is possible. Electron internal transport barrier regimes sustained by EC current drive have also been explored. MHD activity is shown to be crucial in scenarios characterized by large and slow oscillations in plasma confinement, which in turn can be modified by small Ohmic current perturbations altering the barrier strength. In studies of the relation between anomalous transport and plasma shape, the observed dependences of the electron thermal diffusivity on triangularity (direct) and collisionality (inverse) are qualitatively reproduced by non-linear gyro-kinetic simulations and shown to be governed by TEM turbulence. Parallel SOL flows are studied for their importance for material migration. Flow profiles are measured using a reciprocating Mach probe by changing from lower to upper single-null diverted equilibria and shifting the plasmas vertically. The dominant, field-direction-dependent Pfirsch-Schlüter component is found to be in good agreement with theoretical predictions. A field-direction-independent component is identified and is consistent with flows generated by transient over-pressure due to ballooning-like interchange turbulence. Initial high-resolution infrared images confirm that ELMs have a filamentary structure, while fast, localized radiation measurements reveal that ELM activity first appears

  4. D-D tokamak reactor studies

    SciTech Connect

    Evans, K.E. Jr.; Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Finn, P.A.; Jung, J.; Mattas, R.F.; Misra, B.; Smith, D.L.; Stevens, H.C.

    1980-11-01

    A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated.

  5. Dust measurements in tokamaks (invited)

    SciTech Connect

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Muller, S. H.; Pigarov, A. Yu.; Rosenberg, M.; Smirnov, R. D.; West, W. P.; Boivin, R. L.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.; Roquemore, A. L.; Skinner, C. H.; Solomon, W. M.; Ratynskaia, S.

    2008-10-15

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  6. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks. Annual report, November 16, 1991--November 15, 1992

    SciTech Connect

    Scharer, J.E.

    1992-12-31

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  7. Designing a tokamak fusion reactor—How does plasma physics fit in?

    NASA Astrophysics Data System (ADS)

    Freidberg, J. P.; Mangiarotti, F. J.; Minervini, J.

    2015-07-01

    This paper attempts to bridge the gap between tokamak reactor design and plasma physics. The analysis demonstrates that the overall design of a tokamak fusion reactor is determined almost entirely by the constraints imposed by nuclear physics and fusion engineering. Virtually, no plasma physics is required to determine the main design parameters of a reactor: a , R 0 , B 0 , T i , T e , p , n , τ E , I . The one exception is the value of the toroidal current I , which depends upon a combination of engineering and plasma physics. This exception, however, ultimately has a major impact on the feasibility of an attractive tokamak reactor. The analysis shows that the engineering/nuclear physics design makes demands on the plasma physics that must be satisfied in order to generate power. These demands are substituted into the well-known operational constraints arising in tokamak physics: the Troyon limit, Greenwald limit, kink stability limit, and bootstrap fraction limit. Unfortunately, a tokamak reactor designed on the basis of standard engineering and nuclear physics constraints does not scale to a reactor. Too much current is required to achieve the necessary confinement time for ignition. The combination of achievable bootstrap current plus current drive is not sufficient to generate the current demanded by the engineering design. Several possible solutions are discussed in detail involving advances in plasma physics or engineering. The main contribution of the present work is to demonstrate that the basic reactor design and its plasma physics consequences can be determined simply and analytically. The analysis thus provides a crisp, compact, logical framework that will hopefully lead to improved physical intuition for connecting plasma physic to tokamak reactor design.

  8. Experimental investigation on electron cyclotron absorption at down-shifted frequency in the PLT tokamak

    SciTech Connect

    Mazzucato, E.; Fidone, I.; Cavallo, A.; von Goeler, S.; Hsuan, H.

    1986-05-01

    The absorption of 60 GHz electron cyclotron waves, with the extraordinary mode and an oblique angle of propagation, has been investigated in the PLT tokamak in the regime of down-shifted frequencies. The production of energetic electrons, with energies of up to 300 to 400 keV, peaks at values of toroidal field (approx. =29 kG) for which the wave frequency is significantly smaller than the electron cyclotron frequency in the whole plasma region. The observations are consistent with the predictions of the relativistic theory of electron cyclotron damping at down-shifted frequency. Existing rf sources make this process a viable method for assisting the current ramp-up, and for heating the plasma of present large tokamaks.

  9. Observation of ICRF (ion cyclotron range of frequencies) wave-packet propagation in a tokamak plasma

    SciTech Connect

    Greene, G.J.; Gould, R.W.

    1987-11-01

    Experimental observation of ICRF wave-packet propagation in a tokamak plasma is reported. Studies were carried out in the Caltech Research Tokamak in a pure hydrogen plasma and in a regime where fast-wave damping was sufficiently small to permit multiple toroidal transits of the wave-packet. Waves were launched by exciting a small loop antenna with a short burst of rf current and were detected with shielded magnetic probes. Probe scans revealed a large increase in wave-packet amplitude at smaller minor radii, and the packet velocity was found to be independent of radial position. Measurement of the packet transit time yielded direct information about the wave group velocity. Packet velocity was investigated as a function of the fundamental excitation frequency, plasma density, and toroidal magnetic field. Results are compared with the predictions of a cold plasma model which includes a vacuum layer at the edge. 24 refs., 8 figs.

  10. Do spherical tokamaks have a thermonuclear future?

    NASA Astrophysics Data System (ADS)

    Mirnov, S. V.

    2012-12-01

    This work has been initiated by the publication of a review by B.V.Kuteev et al., "Intense Fusion Neutron Sources" [Plasma Physics Reports 36, 281 (2010)]. It is stated that the key thesis of the above review that a spherical tokamak can be recommended for research neutron sources and for demonstration hybrid systems as an alternative to expensive "classical" tokamaks of the JET and ITER type is inconsistent. The analysis of the experimental material obtained during the last 10 years in the course of studies on the existing spherical tokamaks shows that the TIN-ST fusion neutron source spherical tokamak proposed by the authors of the review and intended, according to the authors' opinion, to replace "monsters" in view of its table-top dimensions (2 m3) and laboratory-level energetics cannot be transformed into any noticeable stationary megawatt-power neutron source competing with the existing classical tokamaks (in particular, with JET with its quasi-steady DT fusion power at a level of 5 MW). Namely, the maximum plasma current in the proposed tokamak will be not 3 MA, as the authors suppose erroneously, but, according to the present-day practice of spherical tokamaks, within 0.6-0.7 MA, which will lead to a reduction on the neutron flux by two to three orders of magnitude from the expected 5 MW. The possibility of the maintenance of the stationary process itself even in such a "weakened" spherical tokamak is very doubtful. The experience of the largest existing devices of this type (such as NSTX and MAST) has shown that they are incapable of operating even in a quasi-steady operating mode, because the discharge in them is spontaneously interrupted about 1 s after the beginning of the current pulse, although its expected duration is of up to 5 s. The nature of this phenomenon is the subject of further study of the physics of spherical tokamaks. This work deals with a critical analysis of the available experimental data concerning such tokamaks and a discussion of

  11. [Injection of compact toroids for tokamak fueling and current drive]. Progress report, 1990--1991

    SciTech Connect

    Hwang, D.Q.; Rogers, J.H.; Thomas, J.C.; Evans, R.; Foley, R.; Hillyer, T.

    1991-12-31

    The experimental goals for the 1990--1991 period were the operation of the Davis Diverted Tokamak(DDT), the beat wave experiment, and the construction of the compact toroid injection experiment(CTIX). The experiment results from these areas are summarized in the posters given in the APS meeting past November. Here we shall describe the technical progress of the development of the diagnostic system for beat wave experiment, and CT injection especially in relation to the up coming injection experiments into DDT tokamak. The tokamak operation of DDT over the past year has been focused in two parameter ranges. The long pulse discharges (over 100 msec), and the low q short pulse discharges (about 10 msec). We found that the long pulse discharges required a position feedback more sophisticated than the simple passive program that we have. We are in the process of assembling this system. We also found an interesting low q(a) operating regime. Here an equilibrium can be established for a toroidal field between .5 and 1 kG. The typical plasma current is > 5kA. The density of the plasma is between 10{sup 12} and 10{sup 13} cm{sup {minus}3}. The plasma condition in these discharge are sufficiently mild that diagnostic probes can be used to measure various plasma fluctuations. We believe that this will be the regime best suited to study the interaction between the tokamak plasma and the compact toroid. A sophisticated probe system of both electrostatic and electromagnetic types similar to those used in the beat wave experiment has been designed for the up coming experiments.

  12. Two-Fluid and Resistive Nonlinear Simulations of Tokamak Equilibrium, Stability, and Reconnection

    SciTech Connect

    Jardin, S.; Sovinec, C.; Breslau, J.; Ferraro, N.; Hudson, S.; King, J.; Kruger, S.; Ramos, J.; Schnack, D.

    2008-09-01

    The NIMROD and M3D / M3D-C1 codes now each have both a resistive MHD and a two-fluid (2F) capability including gyroviscosity and Hall terms. We describe: (1) a nonlinear 3D verification test in the resistive MHD regime in which the two codes are in detailed agreement , (2) new studies that illuminate the effect of two-fluid physics on spontaneous rotation in tokamaks, (3) studies of nonlinear reconnection in regimes of relevance to fusion plasmas with peak nonlinear reconnection rates that are essentially independent of the resistivity, and (4) linear two-fluid tearing mode calculations including electron mass that agree with analytic studies over a wide range of parameter regimes.

  13. Ion cyclotron emission from fusion-born ions in large tokamak plasmas: a brief review from JET and TFTR to ITER

    NASA Astrophysics Data System (ADS)

    Dendy, R. O.; McClements, K. G.

    2015-04-01

    Ion cyclotron emission (ICE) was the first collective radiative instability, driven by confined fusion-born ions, observed from deuterium-tritium plasmas in JET and TFTR. ICE comprises strongly suprathermal emission, which has spectral peaks at multiple ion cyclotron harmonic frequencies as evaluated at the outer mid-plane edge of tokamak plasmas. The measured intensity of ICE spectral peaks scaled linearly with measured fusion reactivity in JET. In other large tokamak plasmas, ICE is currently used as an indicator of fast ions physics. The excitation mechanism for ICE is the magnetoacoustic cyclotron instability (MCI); in the case of JET and TFTR, the MCI is driven by a set of centrally born trapped fusion products, lying just inside the trapped-passing boundary in velocity space, whose drift orbits make large radial excursions to the outer mid-plane edge. Diagnostic exploitation of ICE in future experiments therefore rests in part on deep understanding of the MCI, and recent advances in computational plasma physics have led to substantial recent progress, reviewed here. Particle-in-cell simulations of the MCI, with fully kinetic ions and electrons, were reported in 2013, using plasma parameters for JET ICE observations. The hybrid approximation for plasma simulations, where ions are treated as particles and electrons as a neutralising massless fluid, was then applied and reported in 2014. These simulations extend previous studies deep into the nonlinear regime of the MCI, and corroborate predictions by linear analytical theory, thereby strengthening further the link to ICE measurements. ICE is a potential diagnostic for confined alpha-particles in ITER, where measurements of ICE could yield information on energetic ion behaviour supplementing that obtainable from other diagnostics. In addition, it may be possible to use ICE to study fast ion redistribution and loss due to MHD activity in ITER.

  14. Tokamak Diagnostics Using Fusion Products.

    NASA Astrophysics Data System (ADS)

    Heidbrink, William Walter

    Measurements of neutrons and protons produced by the d(d,n)('3)He, d(t,n)(alpha), d(d,p)t, and d(('3)He,p)(alpha) fusion reactions are used to diagnose plasmas in the PLT and PDX tokamaks. An expression for the efficiency of proton detection is derived and confirmed experimentally. The time evolution of the ('3)He density indicates that a scoop limiter may pump ('3)He from the plasma faster than conventional limiters. The confinement of 1.0 MeV tritons and of 0.8 MeV ('3)He ions is studied by measuring the fraction of these fusion-produced ions that burn up in subsequent fusion reactions. In discharges with sawtooth activity and with B(,(phi)) > 2 T, the triton and ('3)He 'burnup' is consistent (within a factor of three) with predictions based on classical theories of ion confinement and slowing down. In discharges with large m = 2 or fishbone instabilities, the ('3)He burnup is less than classically predicted and, in PLT discharges at B(,(phi)) = 1.8 T, the triton burnup is over an order of magnitude smaller than predicted. Expressions for the energy spectrum of ions produced in beam-target fusion reactions are derived. Collimated measurements of the spectrum of 15 MeV protons produced by reactions between energetic ('3)He ions and relatively cold deuterons during fast wave minority heating indicate that the velocity distribution of fast ('3)He ions is peaked perpendicular to the tokamak magnetic field. The ion temperature profile and density of fast deuterons are measured with an array of collimated 3 MeV proton detectors. The fast ions produced by neutral beam injection and by launching lower hybrid waves are concentrated near the magnetic axis. Poloidal field measurements using 3 MeV protons also appear possible. In discharges in which the line radiation from central impurities does not decay, the plasma current profile is broader than in more typical discharges.

  15. Extended neoclassical transport theory for incompressible tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.

    1997-09-01

    Conventional neoclassical transport theory is extended to include the effects of orbit squeezing, and to allow the effective poloidal Mach number UpM=[(V∥/vt)+(VEB/vtBp)] of the order of unity for incompressible tokamak plasmas. Here, V∥ is the parallel mass flow, vt is the ion thermal speed, VE is the poloidal E×B drift speed, B is the magnetic field strength, and Bp is the poloidal magnetic field strength. It is found that ion thermal conductivity is reduced from its conventional neoclassical value in both banana and plateau regimes if UpM>1 and S>1. Here, S=[1+cI2Φ''/(Ω0B0)] is the orbit squeezing factor with c the speed of light, I=RBt, R the major radius, Φ the electrostatic potential, B0 the magnetic field strength on the axis, Ω0=eB0/Mc, M the ion mass, e the ion charge, Φ''=d2Φ/dψ2, and ψ the poloidal flux function. However, there is an irreducible minimum for the ion thermal conductivity in the banana-plateau regime set by the conventional Pfirsch-Schlüter transport.

  16. Full f gyrokinetic method for particle simulation of tokamak transport

    SciTech Connect

    Heikkinen, J.A. Janhunen, S.J.; Kiviniemi, T.P.; Ogando, F.

    2008-05-10

    A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear predictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a sufficiently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number (M{sub p}{approx}1) of the poloidal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels particularly strongly in a large aspect ratio tokamak at low plasma current.

  17. DSC -- Disruption Simulation Code for Tokamaks and ITER applications

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Grubert, J. E.; Zakharov, L. E.

    2010-11-01

    Arguably the most important issue facing the further development of magnetic fusion via advanced tokamaks is to predict, avoid, or mitigate disruptions. This recently became the hottest challenging topic in fusion research because of several potentially damaging effects, which could impact the ITER device. To address this issue, two versions of a new 3D adaptive Disruption Simulation Code (DSC) will be developed. The first version will solve the ideal reduced 3D MHD model in the real geometry with a thin conducting wall structure, utilizing the adaptive meshless technique. The second version will solve the resistive reduced 3D MHD model in the real geometry of the conducting structure of the tokamak vessel and will finally be parallelized. The DSC will be calibrated against the JET disruption data and will be capable of predicting the disruption effects in ITER, as well as contributing to the development of the disruption mitigation scheme and suppression of the RE generation. The progress on the first version of the 3D DSC development will be presented.

  18. The Texas Experimental Tokamak: A plasma research facility. A proposal submitted to the Department of Energy in response to Program Notice 95-10: Innovations in toroidal magnetic confinement systems

    SciTech Connect

    1995-06-12

    The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development.

  19. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  20. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  1. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  2. Microtearing modes in tokamak discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Weiland, J.; Kritz, A. H.; Luo, L.; Pankin, A. Y.

    2016-06-01

    Microtearing modes (MTMs) have been identified as a source of significant electron thermal transport in tokamak discharges. In order to describe the evolution of these discharges, it is necessary to improve the prediction of electron thermal transport. This can be accomplished by utilizing a model for transport driven by MTMs in whole device predictive modeling codes. The objective of this paper is to develop the dispersion relation that governs the MTM driven transport. A unified fluid/kinetic approach is used in the development of a nonlinear dispersion relation for MTMs. The derivation includes the effects of electrostatic and magnetic fluctuations, arbitrary electron-ion collisionality, electron temperature and density gradients, magnetic curvature, and the effects associated with the parallel propagation vector. An iterative nonlinear approach is used to calculate the distribution function employed in obtaining the nonlinear parallel current and the nonlinear dispersion relation. The third order nonlinear effects in magnetic fluctuations are included, and the influence of third order effects on a multi-wave system is considered. An envelope equation for the nonlinear microtearing modes in the collision dominant limit is introduced in order to obtain the saturation level. In the limit that the mode amplitude does not vary along the field line, slab geometry, and strong collisionality, the fluid dispersion relation for nonlinear microtearing modes is found to agree with the kinetic dispersion relation.

  3. Tokamak x ray diagnostic instrumentation

    SciTech Connect

    Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

    1987-01-01

    Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

  4. Toroidal Flow in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Cole, A. J.; Hegna, C. C.

    2007-11-01

    Many effects influence toroidal flow evolution in tokamak plasmas. Momentum sources and radial diffusion due to axisymmetric neoclassical, paleoclassical and anomalous transport are usually considered. In addition, the toroidal flow can be affected by field errors. Small, non-axisymmetric field errors arise from coil irregularities, active control coils and collective plasma magnetic distortions (e.g., NTMs, RWMs). Resonant field errors cause localized electromagnetic torques near rational surfaces in the plasma, which can lock the plasma to the wall leading to magnetic islands and reduced confinement or disruptions. Their penetration into the plasma is limited by flow-shielding effects; but they can be amplified by the plasma response at high beta. Non-resonant field errors cause magnetic pumping and radial banana drifts, and lead to toroidal flow damping over the entire plasma. Many of these processes can also produce momentum pinch and intrinsic flow effects. This poster will seek to present a coherent picture of all these effects and suggest ways they could be tested and distinguished experimentally.

  5. MHD Instabilities and Toroidal Field Effects on Plasma Column Behavior in Tokamak

    SciTech Connect

    Khorshid, Pejman; Wang, L.; Ghoranneviss, M.; Arvin, R.; Dorranian, D.; Talebitaher, A.; Salem, M. K.; Abhari, A.

    2006-12-04

    In the edge plasma of the CT-6B and IRAN-T1 tokamaks the shape of plasma column based on MHD behavior has been studied. The bulk of plasma behavior during plasma column rotation as non-rigid body plasma has been investigated. We found that mode number and rotation frequency of plasma column are different in angle position, so that the mode number detected from Mirnov coils array located in poloidal angle on the inner side of chamber is more than outer side which it can be because of toroidal magnetic field effects. The results of IR-T1 and CT-6B tokamaks compared with each other, so that in the CT-6B because of its coils number must be less, but because of its Iron core the effect of toroidal magnetic field became more effective with respect to IR-T1. In addition, it is shown that the plasma column behaves as non-Rigid body plasma so that the poloidal rotation velocity variation in CT-6B is more than IR-T1. A relative correction for island rotation frequency has been suggested in connection with IRAN-T1 and CT-6B tokamak results, which can be considered for optical measurement purposes and also for future advanced tokamak control design.

  6. Sensitivity of magnetic field-line pitch angle measurements to sawtooth events in tokamaks

    NASA Astrophysics Data System (ADS)

    Ko, J.

    2016-11-01

    The sensitivity of the pitch angle profiles measured by the motional Stark effect (MSE) diagnostic to the evolution of the safety factor, q, profiles during the tokamak sawtooth events has been investigated for Korea Superconducting Tokamak Advanced Research (KSTAR). An analytic relation between the tokamak pitch angle, γ, and q estimates that Δγ ˜ 0.1° is required for detecting Δq ˜ 0.05 near the magnetic axis (not at the magnetic axis, though). The pitch angle becomes less sensitive to the same Δq for the middle and outer regions of the plasma (Δγ ˜ 0.5°). At the magnetic axis, it is not straightforward to directly relate the γ sensitivity to Δq since the gradient of γ(R), where R is the major radius of the tokamak, is involved. Many of the MSE data obtained from the 2015 KSTAR campaign, when calibrated carefully, can meet these requirements with the time integration down to 10 ms. The analysis with the measured data shows that the pitch angle profiles and their gradients near the magnetic axis can resolve the change of the q profiles including the central safety factor, q0, during the sawtooth events.

  7. Shear flow effects on ion thermal transport in tokamaks

    SciTech Connect

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory.

  8. Transport bifurcation induced by sheared toroidal flow in tokamak plasmasa)

    NASA Astrophysics Data System (ADS)

    Highcock, E. G.; Barnes, M.; Parra, F. I.; Schekochihin, A. A.; Roach, C. M.; Cowley, S. C.

    2011-10-01

    First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear than one of finite magnetic shear, because in the former case the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence. In the zero-magnetic-shear regime, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the existence of modes, driven by the ion temperature gradient and the parallel velocity gradient, which grow transiently. Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gradients. A parametric model is constructed which accurately describes the combined effect of the temperature gradient and the flow gradient over a wide range of their values. Using this parametric model, it is shown that in the reduced-transport state, heat is transported almost neoclassically, while momentum transport is dominated by subcritical parallel-velocity-gradient-driven turbulence. It is further shown that for any given input of torque, there is an optimum input of heat which maximises the temperature gradient. The parametric model describes both the behaviour of the subcritical turbulence (which cannot be modelled by the quasi-linear methods used in current transport codes) and the complicated effect of the flow shear on the transport stiffness. It may prove useful for transport modelling of tokamaks with sheared flows.

  9. Helicity content and tokamak applications of helicity

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities.

  10. Activation analysis of the compact ignition tokamak

    SciTech Connect

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.

  11. Ripple induced trapped particle loss in tokamaks

    SciTech Connect

    White, R.B.

    1996-05-01

    The threshold for stochastic transport of high energy trapped particles in a tokamak due to toroidal field ripple is calculated by explicit construction of primary resonances, and a numerical examination of the route to chaos. Critical field ripple amplitude is determined for loss. The expression is given in magnetic coordinates and makes no assumptions regarding shape or up-down symmetry. An algorithm is developed including the effects of prompt axisymmetric orbit loss, ripple trapping, convective banana flow, and stochastic ripple loss, which gives accurate ripple loss predictions for representative Tokamak Fusion Test Reactor and International Thermonuclear Experimental Reactor equilibria. The algorithm is extended to include the effects of collisions and drag, allowing rapid estimation of alpha particle loss in tokamaks.

  12. Physics of Tokamak Plasma Start-up

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  13. Generalized discrete mapping treatment of nonresonant ripple transport in a tokamak

    SciTech Connect

    Albert, J.M.; Boozer, A.H.

    1989-06-01

    A discrete mapping is used to analyze nonresonant ripple transport in a tokamak. Pitch-angle scattering is manifested in two different terms, as in a previous treatment of resonant ripple transport. The mapping is a generalization of one which recovers the standard banana-drift regime. This is one limit of the more general mapping presented here; in the other, the quasilinear value for the diffusion coefficient emerges. When the quasilinear value applies, it can be either much greater or much less than the corresponding banana-drift value, depending on the parameter values of the mapping.

  14. Kinetic ballooning modes at the tokamak transport barrier with negative magnetic shear

    SciTech Connect

    Yamagiwa, M.; Hirose, A.; Elia, M.

    1997-11-01

    Stability of the kinetic ballooning modes is investigated for plasma parameters at the internal transport barrier in tokamak discharges with negative magnetic shear employing a kinetic shooting code with long shooting distance. It is found that the second stability regime with respect to the pressure gradient parameter, which was predicted for negative shear [A. Hirose and M. Elia, Phys. Rev. Lett. {bold 76}, 628 (1996)], can possibly disappear. The mode with comparatively low toroidal mode number and mode frequency below 100 kHz is found to be destabilized marginally only around the transport barrier characterized by steep pressure and density gradients. {copyright} {ital 1997 American Institute of Physics.}

  15. High confinement mode and edge localized mode characteristics in a near-unity aspect ratio tokamak

    DOE PAGES

    Thome, Kathreen E.; Bongard, Michael W.; Barr, Jayson L.; Bodner, Grant M.; Burke, Marcus G.; Fonck, Raymond J.; Kriete, David M.; Perry, Justin M.; Schlossberg, David J.

    2016-04-27

    Tokamak experiments at near-unity aspect ratio A ≲ 1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A ~ 3 plasmas, the L–H power threshold PLH is ~15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. Furthermore, these ultralow-A operations enable heretofore inaccessible Jedge(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  16. High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak.

    PubMed

    Thome, K E; Bongard, M W; Barr, J L; Bodner, G M; Burke, M G; Fonck, R J; Kriete, D M; Perry, J M; Schlossberg, D J

    2016-04-29

    Tokamak experiments at near-unity aspect ratio A≲1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A∼3 plasmas, the L-H power threshold P_{LH} is ∼15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible J_{edge}(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  17. High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.; Perry, J. M.; Schlossberg, D. J.

    2016-04-01

    Tokamak experiments at near-unity aspect ratio A ≲1.2 offer new insights into the self-organized H -mode plasma confinement regime. In contrast to conventional A ˜3 plasmas, the L -H power threshold PL H is ˜15 × higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible Jedge(R ,t ) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  18. Tokamak power systems studies, FY 1985

    SciTech Connect

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  19. Origin of Tokamak Density Limit Scalings

    NASA Astrophysics Data System (ADS)

    Gates, D. A.; Delgado-Aparicio, L.

    2012-04-01

    The onset criterion for radiation driven islands [P. H. Rebut and M. Hugon, Plasma Physics and Controlled Nuclear Fusion Research 1984: Proc. 10th Int. Conf. London, 1984, (IAEA, Vienna, 1985), Vol. 2] in combination with a simple cylindrical model of tokamak current channel behavior is consistent with the empirical scaling of the tokamak density limit [M. Greenwald, Nucl. Fusion 28, 2199 (1988)NUFUAU0029-551510.1088/0029-5515/28/12/009]. Many other unexplained phenomena at the density limit are consistent with this novel physics mechanism.

  20. Optimization of turn position of tokamak inductor

    NASA Astrophysics Data System (ADS)

    Aristov, Yu. A.; Vorobev, G. M.; Kuznetsov, A. V.

    Statement and methods of solution of the problem of optimizing turn position of tokamak induction are considered. Optimization is aimed at determination of inductor turn position, providing the minimal scattering of magnetic field in the region of chamber at any assigned value of volt-seconds. Algorithms of problem solution are described, and results of calculations for STX tokamak are presented. It is shown that development methods can be used for determining optimal position of turns of any coils of poloidal magnetic field, providing the assigned configuration and level of magnetic field.

  1. Rotation of tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2012-05-15

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity v{sub a}(r) with respect to that of the magnetic kink, v{sub k}, where v{sub a}(r) is set by the radial electric field required for ambipolarity. The plasma velocity, v{sub pl}=v{sub a}+v{sub k}, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy {delta}{phi}<{+-}{pi}/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  2. Neural network evaluation of tokamak current profiles for real time control (abstract)

    SciTech Connect

    Wroblewski, D.

    1997-01-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q{sub 0}, minimum value of q, q{sub min}, and the location of q{sub min}. Very good performance of the trained neural network both for simulated test data and for experimental data is demonstrated. {copyright} {ital 1997 American Institute of Physics.}

  3. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

    SciTech Connect

    Maingi, R.

    1992-08-01

    The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.

  4. The effects of sloshing energetic particles on ballooning modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Berk, H. L.

    1987-05-01

    Distributions that give rise to energetic trapped particle pressures peaked in the ``good curvature'' region of a tokamak (sloshing distributions) are examined in an attempt to find stable regimes for both the magnetohydrodynamic (MHD) and precessional modes. It is the precessional drift destabilization of ballooning modes that inhibits bridging the unstable gap to second stability by the use of deeply trapped energetic particles unless the hot particles have an extremely large energy (˜0.35 MeV for a tokamak like PDX [Phys. Rev. Lett. 49, 326 (1982)]). Unfortunately, our calculations indicate that the sloshing particles do not have a significant stabilizing effect. An analytic treatment shows that stability for the precessional mode can be found only if the sign of the energetic particle magnetic drift frequency can be reversed from its value in vacuum bad curvature without hot species diamagnetism. This is difficult to do in a tokamak because of the destabilizing contribution of the geodesic curvature to the drift frequency. Furthermore, for each of the two sloshing distributions employed (one contains only trapped particles; the other includes trapped and passing particles), a new ``continuum instability'' (where asymptotically along the field line the mode is a propagating plane wave) is found to be driven by geodesic curvature. These results indicate that energetic sloshing particles are not able to bridge the unstable gap to second stability.

  5. Tokamak startup: problems and scenarios related to the transient phases of ignited tokamak operations

    SciTech Connect

    Sheffield, J.

    1985-01-01

    During recent years improvements have been made to tokamak startup procedures, which are important to the optimization of ignited tokamaks. The use of rf-assisted startup and noninductive current drive has led to substantial reduction and even complete elimination of the volt-seconds used during startup, relaxing constraints on poloidal coil, vacuum vessel, and structure design. This paper reviews these and other improvements and discusses the various bulk heating techniques that may be used to ignite a D-T plasma.

  6. Elementary Processes Underlying Alpha Channeling in Tokamaks

    SciTech Connect

    NM.J. Fisch

    2012-06-15

    Alpha channeling in tokamaks is speculative, but also extraordinarily attractive. Waves that can accomplish this effect have been identified. Key aspects of the theory now enjoy experimental confirmation. This paper will review the elementary processes of wave-particle interactions in plasma that underlie the alpha channeling effect

  7. (High beta tokamak research and plasma theory)

    SciTech Connect

    Not Available

    1990-01-01

    Our activities on High Beta Tokamak Research during the past 12 months of the present budget period can be divided into four areas: completion of kink mode studies in HBT; completion of carbon impurity transport studies in HBT; design of HBT-EP; and construction of HBT-EP. Each of these is described briefly in the sections of this progress report.

  8. UCLA Tokamak Program Close Out Report.

    SciTech Connect

    Taylor, Robert John

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.

  9. Microinstabilities in weak density gradient tokamak systems

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  10. Toroidal Alfven wave stability in ignited tokamaks

    SciTech Connect

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  11. Fusion product measurements in tokamaks (invited; abstract)

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.

    1985-05-01

    Diagnostic methods and the applications of fusion product measurements in tokamaks are reviewed with emphasis on results from PLT, PDX, and TFTR. Measurements have been made using the 2.5-MeV neutron from the d(d, n)3He reaction, the 3-MeV proton from the d(d, p)t reaction, both the 3.7-MeV alpha and the 14.7-MeV proton from the d(3He, p)α reaction, and the 14-MeV neutron from the d(t, n)α reaction. The common use of these measurements is the determination of the ion temperature from the magnitude of the d-d neutron emission. For tokamak plasmas, these results are usually in good agreement with the charge exchange ion temperature. Recently, the charged fusion products have been used for high-resolution spectroscopic purposes, and emission profile measurements. Pitch angle resolution of the escaping 3-MeV proton emission has been used to determine the poloidal magnetic field inside the tokamak. Major issues in this field include the expected tritium operation on TFTR where the neutron measurements will determine when tritium will be introduced into the TFTR vessel and provide a measurement of the fusion power multiplication value (Q). The TFTR Q˜1 experiments will also provide a chance to measure the confinement of 3.5-MeV alphas in a tokamak.

  12. Analysis of sawtooth relaxation oscillations in tokamaks

    SciTech Connect

    Yamazaki, K.; McGuire, K.; Okabayashi, M.

    1982-07-01

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated.

  13. Spontaneous generation of rotation in tokamak plasmas

    SciTech Connect

    Parra Diaz, Felix

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  14. Diagnostics for neutral-beam-heated tokamaks

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Diagnostic techniques for neutral-beam-heated tokamak plasmas fall into three categories: (1) magnetic diagnostics for measurements of gross stored energy, (2) profile diagnostics for measurements of stored thermal and beam energy, impurity content and plasma rotation, and (3) fast time resolution diagnostics to study MHD fluctuations and micro-turbulence.

  15. Plasma-gun fueling for tokamak reactors

    SciTech Connect

    Ehst, D.A.

    1980-11-01

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment.

  16. Stabilization of tokamak plasma by lithium streams

    SciTech Connect

    L.E. Zakharov

    2000-08-07

    The stabilization theory of free-boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formulated. While the conventional, wall-locked, resistive wall mode can be well suppressed by the flow, a new, stream-locked mode determines the limits of the flow stabilization.

  17. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting

  18. Designing tokamaks to withstand electromagnetic disruption loads

    NASA Astrophysics Data System (ADS)

    Crowell, Jeffrey Arnold

    1999-11-01

    Tokamaks, the toroidal plasma confinement devices used to study fusion energy, operate by driving a multi-MA current in the plasma while creating a strong confining magnetic field. In experimental tokamaks under some conditions, the plasma can become unstable, escape its magnetic confines and rapidly cool off. On a time scale of milliseconds, the plasma current decays away in the resulting cold and highly resistive plasma. In these events, called disruptions, the rapid change in plasma current induces large currents in the surrounding conducting structures. The induced currents, flowing in the presence of a strong magnetic field, can apply substantial electromagnetic forces. Some experimental devices, such as the JET facility, have experienced extensive damage from these events. In future power reactors, even greater loads must be absorbed by components also subject to neutron embrittlement. This study models the electromagnetic and structural behavior of conceptual designs of the first generation of power-producing tokamaks to identify the components that are at risk and illuminate design options which mitigate these loads. The problem is a coupled one: the geometry and resistivity of the structure affects the induced currents while the induced currents and resulting loads place demands on the structure. Several new analytical and computational tools for the evaluation of these systems are discussed including a dual-solution technique for taking advantage of the complex electromagnetic symmetries in a typical tokamak design. The finite element method with a differential formulation and an integral method using a Green's function have been applied to 2D and 3D electromagnetic models of tokamaks. The differential formulation was found to be superior in these highly symmetric systems. The most significant design issues arise with the components most proximate to the plasma. Despite toroidal segmentation, damaging electromagnetic loads threaten the first wall and

  19. Dynamic Treatment Regimes

    PubMed Central

    Chakraborty, Bibhas; Murphy, Susan A.

    2014-01-01

    A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders, and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decision support system. Statistics plays a key role in the construction of evidence-based dynamic treatment regimes – informing best study design as well as efficient estimation and valid inference. Due to the many novel methodological challenges it offers, this area has been growing in popularity among statisticians in recent years. In this article, we review the key developments in this exciting field of research. In particular, we discuss the sequential multiple assignment randomized trial designs, estimation techniques like Q-learning and marginal structural models, and several inference techniques designed to address the associated non-standard asymptotics. We reference software, whenever available. We also outline some important future directions. PMID:25401119

  20. Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas

    SciTech Connect

    J.E. Menard; M.G. Bell; R.E. Bell; D.A. Gates; S.M. Kaye; B.P. LeBlanc; R. Maingi; S.A. Sabbagh; V. Soukhanovskii; D. Stutman; the NSTX National Research Team

    2003-11-25

    Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 (2000) 557] have achieved normalized beta values twice the conventional tokamak limit at low internal inductance and with significant bootstrap current. These experimental results have motivated a computational re-examination of the plasma aspect ratio dependence of ideal no-wall magnetohydrodynamic stability limits. These calculations find that the profile-optimized no-wall stability limit in high bootstrap fraction regimes is well described by a nearly aspect ratio invariant normalized beta parameter utilizing the total magnetic field energy density inside the plasma. However, the scaling of normalized beta with internal inductance is found to be strongly aspect ratio dependent at sufficiently low aspect ratio. These calculations and detailed stability analyses of experimental equilibria indicate that the nonrotating plasma no-wall stability limit has been exceeded by as much as 30% in NSTX in a high bootstrap fraction regime.

  1. Plasma-material Interaction Studies On Lithium And Lithiated Substrates During Compact Tokamak Operation

    SciTech Connect

    Nieto, M.; Allain, J. P.; Hassanein, A.; Titov, V.; Hendricks, M.; Gray, T.; Kaita, R.; Kugel, H.; Majeski, R.; Mansfield, D.; Spaleta, J.; Timberlake, J.

    2006-12-04

    The role of lithium on the modification of recycling regimes in fusion reactors has renewed interest of previous lithium supershot experiments carried out in TFTR. There is a need to understand the interaction between edge plasmas and lithiated plasma-facing components (PFCs), which have the potential of enabling fusion reactors to operate at low-recycling regimes. The Interaction of Materials with Particles and Components Testing (IMPACT) facility at Argonne National Laboratory is currently collaborating with Princeton Plasma Physics Laboratory (PPPL) to conduct lithiated surface studies for the National Spherical Tokamak Experiment (NSTX) and the Current Drive eXperiment - Upgrade (CDX-U). IMPACT has the necessary tools to perform experiments that diagnose the surface dynamics of lithium thin films on metallic and non-metallic substrates, and can be monitored with multiple in-situ techniques (LEISS, AES, QMS and XPS) capturing real-time surface dynamics. Therefore, these techniques are available during He+ and D+ irradiation. Surface sputtering measurements can be performed using a quartz crystal microbalance -- dual crystal unit (QCM-DCU) with very high sensitivity.Initial results suggest that lithium intercalation into graphite occurs quite rapidly and only a fraction lithium can be kept on the surface. On metallic substrates this intercalation is absent. Additional results of Li/metal systems show lithium surface self-healing with temperature. It was also found that the presence of lithium seems to inhibit hydrocarbon formation during D+ bombardment of graphite. Experiments in CDX-U have tested the effect of both solid and liquid lithium PFCs on tokamak plasmas, and significant changes in tokamak operation are observed. These include a strong reduction in both recycling and impurity levels in the gas phase, lowered loop voltage during ohmic operation, and an increased electron temperature at the edge.

  2. Magnetic diagnostics for equilibrium reconstructions in the presence of nonaxisymmetric eddy current distributions in tokamaks (invited)

    SciTech Connect

    Berzak, L.; Jones, A. D.; Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J.; Zakharov, L.

    2010-10-15

    The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R{sub 0}=0.4 m and a=0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 deg. C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

  3. High-harmonic ion cyclotron heating and current drive in ultra-small aspect ratio tokamaks

    SciTech Connect

    Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Berry, L.A.

    1996-11-01

    Ultra-small aspect ratio tokamaks present a totally new plasma environment for heating and current drive experiments and involve a number of physics issues that have not previously been explored. These devices operate at low magnetic field and relatively high density so that the effective dielectric constant of the plasma to high harmonic fast waves (HHFW), is quite high, and perpendicular wavelength of fast waves is very short. {lambda} {approximately} 2.0 cm compared with {lambda} - 10-20 cm. This makes possible strong electron absorption at high harmonics of the ion cyclotron frequency, {Omega}{sub i}, and at fairly high phase velocity in relation to electron thermal velocity. If the antenna system can control the parallel wave spectrum, this offers the promise of high efficiency off-axis current drive and the possibility for current drive radial profile control. Antenna phasing is ineffective for profile control in conventional tokamaks because of central absorption. There are also challenges for antenna design in this regime because of the high dielectric constant and the large angle of the magnetic field with respect to the equatorial plane ({approximately}45{degrees}), which varies greatly during current ramp. Preliminary experiments in this HHFW regime are being carried out in CDX-U.

  4. TEMPEST simulations of the plasma transport in a single-null tokamak geometry

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Bodi, K.; Cohen, R. H.; Krasheninnikov, S.; Rognlien, T. D.

    2010-06-01

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  5. TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry

    DOE PAGES

    X. Q. Xu; Bodi, K.; Cohen, R. H.; Krasheninnikov, S.; Rognlien, T. D.

    2010-05-28

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less

  6. TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry

    SciTech Connect

    X. Q. Xu; Bodi, K.; Cohen, R. H.; Krasheninnikov, S.; Rognlien, T. D.

    2010-05-28

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  7. Magnetic Diagnostics for Equilibrium Reconstructions in the Presence of Nonaxisymmetric Eddy Current Distributions in Tokamaks

    SciTech Connect

    Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J.; Zakharov, L.

    2010-12-10

    The lithium tokamak experiment LTX is a modest-sized spherical tokamak R0=0.4 m and a =0.26 m designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 oC. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

  8. Advancing Educational Policy by Advancing Research on Instruction

    ERIC Educational Resources Information Center

    Raudenbush, Stephen W.

    2008-01-01

    Understanding the impact of "instructional regimes" on student learning is central to advancing educational policy. Research on instructional regimes has parallels with clinical trials in medicine yet poses unique challenges because of the social nature of instruction: A child's potential outcome under a given regime depends on peers and teachers,…

  9. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    SciTech Connect

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-{beta} toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E {times} B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs.

  10. Spectroscopic Measurements on the Lithium Tokamak eXperiment

    NASA Astrophysics Data System (ADS)

    Granstedt, E. M.; Kaita, R.; Majeski, R.; Gray, T. K.; Maingi, R.; Tritz, K.; Soukhanovskii, V. A.

    2011-10-01

    The Lithium Tokamak eXperiment (LTX) is a spherical torus designed to investigate the very low-recycling, lithium wall regime for magnetically confined plasmas. Since lithium surfaces primarily influence plasma performance through their effect on wall recycling, comprehensive measurements of hydrogen fluxes from the wall are necessary. Three instruments measure Lyman- α emission around most of the poloidal cross-section: two arrays view the inboard shell and outboard shell, and a single diode views a molybdenum limiter. These measurements will be used with a neutral transport code to calculate recycling and the fueling profile. Lithium wall conditioning also affects plasma performance through modifying wall impurity fluxes. A visible survey spectrometer and filterscope measurements of lithium, carbon, and oxygen emission lines are used to quantify the fluxes of light impurities ejected from the walls. Trends in the core penetration of these light impurities are measured by an XUV spectrometer, which is also used to examine high-Z impurity emission. Finally, an AXUV array is used as a radiometer to quantify the radiation emission profile. Supported by US DOE contracts DE-AC02-09CH11466, DE-AC52-07NA27344 and an NSF Graduate Research Fellowship.

  11. Control of bootstrap current in the pedestal region of tokamaks

    SciTech Connect

    Shaing, K. C.; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  12. Scale length study in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Hiroe, S.; Goldston, R.J.; Bitter, M.; Bush, C.E.; Efthimion, P.C.; Grek, B.; Johnson, D.W.; Murakami, M.; Schivell, J.; Towner, H.H.

    1988-12-01

    The scale lengths of the electron density (L/sub n//sub e/), temperature (L/sub T//sub e/), and pressure (L/sub p//sub e/) gradients were investigated during the 1985 operating period of the Tokamak Fusion Test Reactor (TFTR) for gas-fueled plasmas with neutral beam injection and movable limiter. Although the global energy confinement time degrades as the heating power increases or the plasma current decreases, the radial profiles of the scale lengths (L/sub T//sub e/ and L/sup p//sub e/) remain unchanged. Especially, the electron pressure profile is constrained not to change. This trend appears to hold over a fairly wide range of TFTR operational regimes. The radial profiles of L/sub n//sub e/ and /eta//sub e/ (= L/sub n//sub e//L/sub T//sub e/) also appear to remain unchanged, although the uncertainties of the experimental data for these quantities are greater than those for L/sub T//sub e/ and L/sub p//sub e/. The experimental parameters are used to evaluate theoretical predictions of the electron thermal diffusivity, and the results are compared with the empirical thermal diffusivity. 34 refs., 18 figs., 2 tabs.

  13. EBW H&CD Potential for Spherical Tokamaks

    NASA Astrophysics Data System (ADS)

    Urban, J.; Decker, J.; Peysson, Y.; Preinhaelter, J.; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.

    2011-12-01

    Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-ß regimes, in which the usual EC O- and X- modes are cut-off. In this case, electron Bernstein waves (EBWs) seem to be the only option that can provide features similar to the EC waves—controllable localized heating and current drive (H&) that can be utilized for core plasma heating as well as for accurate plasma stabilization. We first derive an analytical expression for Gaussian beam OXB conversion efficiency. Then, an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX) is performed. Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.

  14. Extended neoclassical transport theory for incompressible tokamak plasmas

    SciTech Connect

    Shaing, K.C.

    1997-09-01

    Conventional neoclassical transport theory is extended to include the effects of orbit squeezing, and to allow the effective poloidal Mach number U{sub pM}=[(V{sub {parallel}}/v{sub t})+(V{sub E}B/v{sub t}B{sub p})] of the order of unity for incompressible tokamak plasmas. Here, V{sub {parallel}} is the parallel mass flow, v{sub t} is the ion thermal speed, V{sub E} is the poloidal {bold E{times}B} drift speed, B is the magnetic field strength, and B{sub p} is the poloidal magnetic field strength. It is found that ion thermal conductivity is reduced from its conventional neoclassical value in both banana and plateau regimes if U{sub pM}{gt}1 and S{gt}1. Here, S=[1+cI{sup 2}{Phi}{sup {prime}{prime}}/({Omega}{sub 0}B{sub 0})] is the orbit squeezing factor with c the speed of light, I=RB{sub t}, R the major radius, {Phi} the electrostatic potential, B{sub 0} the magnetic field strength on the axis, {Omega}{sub 0}=eB{sub 0}/Mc, M the ion mass, e the ion charge, {Phi}{sup {prime}{prime}}=d{sup 2}{Phi}/d{psi}{sup 2}, and {psi} the poloidal flux function. However, there is an irreducible minimum for the ion thermal conductivity in the banana-plateau regime set by the conventional Pfirsch{endash}Schl{umlt u}ter transport. {copyright} {ital 1997 American Institute of Physics.}

  15. First neutral beam injection experiments on KSTAR tokamak.

    PubMed

    Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  16. Banana orbits in elliptic tokamaks with hole currents

    NASA Astrophysics Data System (ADS)

    Martin, P.; Castro, E.; Puerta, J.

    2015-03-01

    Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.

  17. ASPECT: An advanced specified-profile evaluation code for tokamaks

    SciTech Connect

    Stotler, D.P.; Reiersen, W.T.; Bateman, G.

    1993-03-01

    A specified-profile, global analysis code has been developed to evaluate the performance of fusion reactor designs. Both steady-state and time-dependent calculations are carried out; the results of the former can be used in defining the parameters of the latter, if desired. In the steady-state analysis, the performance is computed at a density and temperature chosen to be consistent with input limits (e.g., density and beta) of several varieties. The calculation can be made at either the intersection of the two limits or at the point of optimum performance as the density and temperature are varied along the limiting boundaries. Two measures of performance are available for this purpose: the ignition margin or the confinement level required to achieve a prescribed ignition margin. The time-dependent calculation can be configured to yield either the evolution of plasma energy as a function of time or, via an iteration scheme, the amount of auxiliary power required to achieve a desired final plasma energy.

  18. Residual gas analysis for long-pulse, advanced tokamak operation.

    PubMed

    Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.

  19. Residual gas analysis for long-pulse, advanced tokamak operation

    SciTech Connect

    Klepper, C. C.; Hillis, D. L.; Bucalossi, J.; Douai, D.; Oddon, P.; Vartanian, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-10-15

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This ''diagnostic RGA'' has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H{sub 2}/D{sub 2} isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H{sub 2} injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H{sub 2} could increase due to thermodesorption of overheated plasma facing components.

  20. Residual Gas Analysis for Long-Pulse, Advanced Tokamak Operation

    SciTech Connect

    Klepper, C Christopher; Hillis, Donald Lee; Bucalossi, J.; Douai, D.; OddonCEA, IRFM, P.; VartanianCEA-Cadarach, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-01-01

    A shielded residual gas analyzer RGA system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This diagnostic RGA has been used in long-pulse up to 6 min discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2 /D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses 4 min absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components. 2010 American Institute of Physics.

  1. Residual gas analysis for long-pulse, advanced tokamak operationa)

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Hillis, D. L.; Bucalossi, J.; Douai, D.; Oddon, P.; Vartanian, S.; Colas, L.; Manenc, L.; Pégourié, B.

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2/D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components.

  2. A low aspect ratio tokamak transmutation system

    NASA Astrophysics Data System (ADS)

    Qiu, L. J.; Wu, Y. C.; Xiao, B. J.; Xu, Q.; Huang, Q. Y.; Wu, B.; Chen, Y. X.; Xu, W. N.; Chen, Y. P.; Liu, X. P.

    2000-03-01

    A low aspect ratio tokamak transmutation system is proposed as an alternative application of fusion energy on the basis of a review of previous studies. This system includes: (1) a low aspect ratio tokamak as fusion neutron driver, (2) a radioactivity-clean nuclear power system as blanket, and (3) a novel concept of liquid metal centre conductor post as part of the toroidal field coils. In the conceptual design, a driver of 100 MW fusion power under 1 MW/m2 neutron wall loading can transmute the amount of high level waste (including minor actinides and fission products) produced by ten standard pressurized water reactors of 1 GW electrical power output. Meanwhile, the system can produce tritium on a self-sustaining basis and an output of about 2 GW of electrical energy. After 30 years of operation, the biological hazard potential level of the whole system will decrease by two orders of magnitude.

  3. The physics of tokamak start-up

    SciTech Connect

    Mueller, D.

    2013-05-15

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

  4. Models for impurity effects in tokamaks

    SciTech Connect

    Hogan, J.T.

    1980-03-01

    Models for impurity effects in tokamaks are described with an emphasis on the relationship between attainment of high ..beta.. and impurity problems. We briefly describe the status of attempts to employ neutral beam heating to achieve high ..beta.. in tokamaks and propose a qualitative model for the mechanism by which heavy metal impurities may be produced in the startup phase of the discharge. We then describe paradoxes in impurity diffusion theory and discuss possible resolutions in terms of the effects of large-scale islands and sawtooth oscillations. Finally, we examine the prospects for the Zakharov-Shafranov catastrophe (long time scale disintegration of FCT equilibria) in the context of present and near-term experimental capability.

  5. Tritium Retention and Removal in Tokamaks

    SciTech Connect

    Skinner, Charles H.

    2009-02-19

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy. Tritium is an important source term in safety assessments, it is expensive and in short supply. Tritium can be continuously retained in a tokamak by codeposition with eroded carbon or beryllium and JET and TFTR with carbon plasma facing components showed a tritium retention level that would be unacceptable in ITER or future fusion reactors. Asdex-U and Alcator C-mod have shown reduced hydrogenic retention with tungsten clad and molybdenum plasma facing components. Once the tritium inventory approaches the administrative limit, tritium must be removed to permit continued D-T plasma operations. Several candidate techniques are being considered and need to be proven at a relevant speed and efficiency in contemporary tokamaks. Projections for ITER are discussed.

  6. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  7. Properties of dc helicity injected tokamak plasmas

    SciTech Connect

    Darrow, D.S.; Ono, M.; Forest, C.B.; Greene, G.J.; Hwang, Y.S.; Park, H.K. ); Taylor, R.J.; Pribyl, P.A.; Evans, J.D.; Lai, K.F.; Liberati, J.R. )

    1990-06-01

    Several dc helicity injection experiments using an electron beam technique have been conducted on the Current Drive Experiment (CDX) (Phys. Rev. Lett. {bold 59}, 2165 (1987)) and the Continuous Current Tokamak (CCT) (Phys. Rev. Lett. {bold 63}, 2365 (1989)). The data strongly suggest that tokamak plasmas are being formed and maintained by this method. The largest currents driven to date are 1 kA in CDX ({ital q}{sub {ital a}} =5) and 6 kA in CCT ({ital q}{sub {ital a}} =3.5). An initial comparison of discharge properties with helicity theory indicates rough agreement. Current drive energy efficiencies are 9% and 23% of Ohmic efficiency in two cases analyzed. Strong radial electric fields are observed in these plasmas that cause poloidal rotation and, possibly, improved confinement.

  8. Energetics of runaway electrons during tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Riemann, J.; Smith, H. M.; Helander, P.

    2012-01-01

    In a tokamak disruption, a substantial fraction of the plasma current can be converted into runaway electrons. Although these are usually highly relativistic, their total energy is initially much smaller than that of the pre-disruption plasma. However, following a suggestion by Putvinski et al. [Plasma Phys. Controlled Fusion 39, B157 (1997)], it is shown that as the post-disruption plasma drifts toward the first wall, a non-negligible part of the energy contained in the poloidal magnetic field can be converted into kinetic energy of the runaway electrons. This process is simulated numerically, and it is found that in an ITER-like tokamak runaway electrons can gain kinetic energies up to about 70 MJ by this mechanism.

  9. The physics of tokamak start-upa)

    NASA Astrophysics Data System (ADS)

    Mueller, D.

    2013-05-01

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

  10. The Physics of Tokamak Start-up

    SciTech Connect

    D. Mueller

    2012-11-13

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

  11. Spherical Stellarator-Tokamak Hybrid Configurations

    NASA Astrophysics Data System (ADS)

    Hanson, James D.; Yuan, Ying; Gandy, Rex F.; Knowlton, Stephen F.; Doloc, Cristian; Carnevali, Antonino; Hartwell, Gregory

    1996-11-01

    We consider low-aspect ratio stellarator-tokamak hybrid configurations similar to the inclined coils configurations of Moroz(P. E. Moroz, Phys. Plasmas 2), 4269 (1995). and the Small-Aspect Ratio Toroidal Hybrid(D. B. Batchelor et al)., poster at this meeting. (SMARTH) configurations of Batchelor et al. The advantages of these configurations include a current-free q profile which increases with minor radius, (like a tokamak's), and a magnetic divertor structure which does not rotate about the magnetic axis. Our investigations center on configurations suitable to be built as a small, inexpensive exploratory device. Initial work has focused on planar coils (for ease of construction) and small numbers of toroidal coils (for ease of access). Results from field line tracing, equilibrium, and particle orbit studies will be shown.

  12. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  13. Microtearing modes in spherical and conventional tokamaks

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Pusztai, I.; Guttenfelder, W.; Fülöp, T.; Mollén, A.

    2013-06-01

    The onset and characteristics of microtearing modes (MTM) in the core of spherical (NSTX) and conventional tokamaks (ASDEX Upgrade and JET) are studied through local linear gyrokinetic simulations with GYRO (Candy and Belli 2011 General Atomics Report GA-A26818). For experimentally relevant core plasma parameters in the NSTX and ASDEX Upgrade tokamaks, in agreement with previous works, we find MTMs as the dominant linear instability. Also, for JET-like core parameters considered in our study an MTM is found as the most unstable mode. In all of these plasmas, finite collisionality is needed for MTMs to become unstable and the electron temperature gradient is found to be the fundamental drive. However, a significant difference is observed in the dependence of the linear growth rate of MTMs on electron temperature gradient. While it varies weakly and non-monotonically in JET and ASDEX Upgrade plasmas, in NSTX it increases with the electron temperature gradient.

  14. Fast ion orbits in spherical tokamaks

    SciTech Connect

    Solano, E.R.

    1995-07-20

    In a spherical tokamak, the 1/R variation of the toroidal field is extreme, and for a given value of the safety factor a relatively low average toroidal field can be used, together with large plasma current and large plasma minor radius and elongation. The poloidal and toroidal fields are then of similar size. In consequence, the orbits of fast ions depart considerably from the guiding center orbits because of gyromotion in the small magnetic fields in the low field side.

  15. Self-Organized Stationary States of Tokamaks.

    PubMed

    Jardin, S C; Ferraro, N; Krebs, I

    2015-11-20

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  16. Self-Organized Stationary States of Tokamaks

    SciTech Connect

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-01

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  17. Confinement scaling and ignition in tokamaks

    SciTech Connect

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

  18. Tokamak with liquid metal toroidal field coil

    DOEpatents

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  19. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    NASA Astrophysics Data System (ADS)

    Azizov, E. A.

    2012-02-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.

  20. New regime of low ion collisionality in the neoclassical equilibrium of tokamak plasmas

    SciTech Connect

    Ramos, J. J.

    2015-07-15

    The neoclassical description of an axisymmetric toroidal plasma equilibrium is formulated for an unconventionally low ordering of the collisionality that suits realistic thermonuclear fusion conditions. This requires a drift-kinetic analysis to the second order of the ion Larmor radius, which yields a new contribution to the leading solution for the non-Maxwellian part of the ion distribution function if the equilibrium geometry is not up-down symmetric. An explicit geometrical factor weighs this second Larmor-radius order, low-collisionality effect that modifies the neoclassical ion parallel flow, and the ion contribution to the bootstrap current.

  1. Turbulence and transport in enhanced confinement regimes of tokamaks: Simulation and theory

    SciTech Connect

    Hahm, T.S.; Artun, M.; Beer, M.A.

    1996-12-31

    An integrated program of theory and computation has been developed to understand the physics responsible for the favorable confinement trends exhibited by, for example, enhanced reversed shear (ERS) plasmas in TFTR and DIII-D. This paper reports on (1) the quantitative assessment of ExB shear suppression of turbulence by comparison of the linear growth rate calculated from the gyrofluid/comprehensive kinetic codes and the experimentally measured shearing rate in TFTR ERS plasmas; (2) the first self-consistent nonlinear demonstration of ion temperature gradient turbulence reduction due to {angle}P{sub i} driven ExB shear by the global gyrokinetic simulation; (3) a revised neoclassical analysis and gyrokinetic particle simulation results in agreement with trends in ERS plasmas; (4) Shafranov shift induced stabilization of trapped electron mode in ERS plasmas calculated by the gyrofluid code; and (5) new nonlinear gyrokinetic equations for turbulence in core transport barriers.

  2. ECH on the MTX (Microwave Tokamak Experiment)

    SciTech Connect

    Stallard, B.W.; Byers, J.A.; Hooper, E.B.; Makowski, M.A.; Meassick, S.; Rice, B.W.; Rognlien, T.D.; Verboncoeur, J.

    1989-04-01

    The Microwave Tokamak Experiment (MTX) at LLNL is investigating the heating of high density Tokamak plasmas using an intense pulse FEL. Our first experiments, now beginning, will study the absorption and plasma heating of single FEL pulses (20 ns pulse length and peak power up to 2 GW) at a frequency of 140 GHz. A later phase of experiments also at 140 GHz will study FEL heating at 5 kHz rate for a pulse train up to 50 pulses (35 ns pulse length and peak power up to 4 GW). Future operations are planned at 250 GHz with an average power of 2 MW for a pulse train of 0.5 s. The microwave output of the FEL is transported quasi-optically to the tokamak through a window-less, evacuated pipe of 20 in. diameter, using a six mirror system. Computational modelling of the non-linear absorption for the MTX geometry predicts single-pass absorption of 40% at a density and temperature of 1.8 /times/ 10/sup 20/m/sup /minus/3/ and 1 keV, respectively. To measure plasma microwave absorption and backscatter, diagnostics are available to measure forward and reflected power (parallel wire grid beam-splitter and mirror directional couplers) and power transmitted through the plasma (segmented calorimeter and waveguide detector). Other fast diagnostics include ECE, Thompson scattering, soft x-rays, and fast magnetic probes. 8 refs., 2 figs.

  3. Management and protection system for superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Juszczyk, B.; Wojenski, A.; Zienkiewicz, P.; Kasprowicz, G.; Pozniak, K.; Romaniuk, R.

    2015-09-01

    This paper describes system for a diagnostics of a high-voltage power supply section of tokamaks. System is designed to assure reliability and safety of power supply subsystems. It is divided into two main components: remote and local. Remote part is located near tokamak, whereas local part can be localised away from the tokamak area. The remote side consists of custom, standalone devices. On the other hand, the local device is based on the uTCA.4 architecture. Components are connected with an optic fibre over a link-layer protocol which provides high throughput, low latency and transmission redundancy. All main operations ie. data processing, transmission etc. are performed on the FPGA devices. At the local side there is one device treated as a master device. It implements sort of a routing table which connects consecutive system inputs and outputs. It also provides possibility for some user defined data processing. This document contains general system overview, short description of hardware used in the project and gateware implementation.

  4. Remote feedback stabilization of tokamak instabilities

    SciTech Connect

    Sen, A.K. )

    1994-05-01

    A novel remote suppressor consisting of an injected ion beam has been used for the stabilization of plasma instabilities. A collisionless curvature-driven trapped-particle instability, an [bold E][times][bold B] flute mode and an ion temperature gradient (ITG) instability have been successfully suppressed down to noise levels using this scheme. Furthermore, the first experimental demonstration of a multimode feedback stabilization with a single sensor--suppressor pair has been achieved. Two modes (an [bold E][times][bold B] flute and an ITG mode) were simultaneously stabilized with a simple state-feedback-type method where more state'' information was generated from a single-sensor Langmuir probe by appropriate signal processing. The above experiments may be considered as paradigms for controlling several important tokamak instabilities. First, feedback suppression of edge fluctuations in a tokamak with a suitable form of insulated segmented poloidal limiter sections used as Langmuir-probe-like suppressors is proposed. Other feedback control schemes are proposed for the suppression of electrostatic core fluctuations via appropriately phased ion density input from a modulated neutral beam. Most importantly, a scheme to control major disruptions in tokamaks via feedback suppression of kink (and possibly) tearing modes is discussed. This may be accomplished by using a modulated neutral beam suppressor in a feedback loop, which will supply a momentum input of appropriate phase and amplitude. Simple theoretical models predict modest levels of beam energy, current, and power.

  5. The Spherical Tokamak MEDUSA for Mexico

    NASA Astrophysics Data System (ADS)

    Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.

    2011-10-01

    The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14m, a < 0.10m, BT < 0.5T, Ip < 40kA, 3ms pulse) is currently being recomissioned at the Universidad Autónoma de Nuevo León, Mexico, as part of an agreement between the Faculties of Mech.-Elect. Eng. and Phy. Sci.-Maths. The main objective for having MEDUSA is to train students in plasma physics & technical related issues, aiming a full design of a medium size device (e.g. Tokamak-T). Details of technical modifications and a preliminary scientific programme will be presented. MEDUSA-MX will also benefit any developments in the existing Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.

  6. SOL Width Scaling in the MAST Tokamak

    NASA Astrophysics Data System (ADS)

    Ahn, Joon-Wook; Counsell, Glenn; Connor, Jack; Kirk, Andrew

    2002-11-01

    Target heat loads are determined in large part by the upstream SOL heat flux width, Δ_h. Considerable effort has been made in the past to develop analytical and empirical scalings for Δh to allow reliable estimates to be made for the next-step device. The development of scalings for a large spherical tokamak (ST) such as MAST is particularly important both for development of the ST concept and for improving the robustness of scalings derived for conventional tokamaks. A first such scaling has been developed in MAST DND plasmas. The scaling was developed by flux-mapping data from the target Langmuir probe arrays to the mid-plane and fitting to key upstream parameters such as P_SOL, bar ne and q_95. In order to minimise the effects of co-linearity, dedicated campaigns were undertaken to explore the widest possible range of each parameter while keeping the remainder as fixed as possible. Initial results indicate a weak inverse dependence on P_SOL and approximately linear dependence on bar n_e. Scalings derived from consideration of theoretical edge transport models and integration with data from conventional devices is under way. The established scaling laws could be used for the extrapolations to the future machine such as Spherical Tokamak Power Plant (STPP). This work is jointly funded by Euratom and UK Department of Trade and Industry. J-W. Ahn would like to recognise the support of a grant from the British Foreign & Commonwealth Office.

  7. Local transport in Joint European Tokamak edge-localized, high-confinement mode plasmas with H, D, DT, and T isotopes

    NASA Astrophysics Data System (ADS)

    Budny, R. V.; Ernst, D. R.; Hahm, T. S.; McCune, D. C.; Christiansen, J. P.; Cordey, J. G.; Gowers, C. G.; Guenther, K.; Hawkes, N.; Jarvis, O. N.; Stubberfield, P. M.; Zastrow, K.-D.; Horton, L. D.; Saibene, G.; Sartori, R.; Thomsen, K.; von Hellermann, M. G.

    2000-12-01

    The edge-localized, high-confinement mode regime is of interest for future Tokamak reactors since high performance has been sustained for long durations. Experiments in the Joint European Tokamak [M. Keilhacker et al., Nuclear Fusion 39, 209 (1999)] have studied this regime using scans with the toroidal field and plasma current varied together in H, D, DT, and T isotopes. The local energy transport in more than fifty of these plasmas is analyzed, and empirical scaling relations are derived for energy transport coefficients during quasi-steady state conditions using dimensionless parameters. Neither the Bohm nor gyro-Bohm expressions give the shapes of the profiles. The scalings with β and ν* are in qualitative agreement with Ion Temperature Gradient theory.

  8. Polarimetric spectra analysis for tokamak pitch angle measurements

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.; Lange, A. G. G.; de Bock, M. F. M.

    2013-10-01

    Measurements of the internal magnetic field structures using conventional polarimetric approaches are considered extremely challenging in fusion-reactor environments whereas the information on current density profiles is essential to establish steady-state and advance operation scenarios in such reactor-relevant devices. Therefore, on ITER a hybrid system is proposed for the current density measurements that uses both polarimetry and spectral measurements. The spectrum-based approaches have been tested in the Korea Superconducting Tokamak Advanced Research (KSTAR) during the past two plasma campaigns. As such, KSTAR is a test-bed for the proposed ITER hybrid system. Measurements in the plasma core are based on the motional Stark effect (MSE) spectrum of the neutral beam emission. For the edge profiles, the Zeeman effect (ZE) acting on the lithium emission spectrum of the newly installed (2013) Lithium-beam-diagnostic is exploited. The neutral beam emission spectra, complicated by the multi-ion-source beam injection, are successfully fitted making use of the data provided by the Atomic Data and Analysis Structure (ADAS) database package. This way pitch angle profiles could be retrieved from the beam emission spectra. With the same spectrometer/CCD hardware as on MSE, but with a different wavelength range and different lines of sight, the first ZE spectrum measurements have been made. The Zeeman splitting comparable to and greater than the instrumental broadening has been routinely detected at high toroidal field operations ( ~ 3 Tesla).

  9. Ideal Stability of the Tokamak H--mode Edge Region

    NASA Astrophysics Data System (ADS)

    Wilson, H. R.

    1998-11-01

    Tokamak performance is often controlled by stability of the edge plasma. Consistent with ``stiff'' transport models, the confinement in tokamak discharges is strongly correlated with the magnitude of the edge pressure pedestal which is limited by MHD stability. Furthermore, the high performance ELM-free H--modes are terminated by low toroidal mode number n, MHD modes driven by high edge pressure gradient, and edge current. We have evaluated low n modes using the δ W code GATO, and both high edge pressure gradient and high edge current density are found to destabilize the n=1, 2, and 3 ideal modes. We have included the self-consistent bootstrap current in the equilibria generation, and have completed a thorough survey of the effects of plasma shape and edge pressure profiles on the edge ballooning stability. The bootstrap current density helps to provide access to the second regime of stability, which is easier for: higher elongation, intermediate triangularity, larger aspect ratio, narrower pedestal width, and higher q_95. The intermediate n stability is being evaluated using a high-mode-number peeling/ ballooning mode model,(J.W. Connor, R.J. Hastie, H.R. Wilson, and R.L. Miller, Phys. Plasmas 5), 2687 (1998). where a critical role is played by the edge current density. This edge model describes the interaction of peeling mode (current driven) and ballooning mode (pressure driven) effects at high, but finite, mode number; a modified ballooning mode formalism is shown to be valid at the plasma edge. Based upon this edge model, a 2D eigenvalue code has been written to determine the stability of these modes for arbitrary shape cross sections, and edge pressure and current profiles including bootstrap current effects. This model suggests a power threshold for L--H transitions and provides a plausible explanation for an ELM cycle. Results will be presented for the pressure gradient and edge current density stability boundaries for a range of shapes and pedestal widths

  10. Next-step-targeted experiments on the Mega-Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M.; Akers, R. J.; Counsell, G. F.; Cunningham, G.; Dnestrovskij, A.; Field, A. R.; Hender, T. C.; Kirk, A.; Lloyd, B.; Meyer, H.; Morris, A. W.; Sykes, A.; Tabasso, A.; Valovic, M.; Voss, G. M.; Wilson, H. R.

    2003-05-01

    Since its first physics campaign, the principal parameters on MAST (Mega-Amp Spherical Tokamak) [A. Sykes et al., Nuclear Fusion 41, 1423 (2001)] have been brought up towards their design values. Considerable advances have been made in a range of physics areas of direct relevance to the International Thermonuclear Experimental Reactor (ITER) [ITER Physics Basis, Nuclear Fusion 39, 2175 (1999)]. In this paper, results on H-mode access, global confinement and pedestal studies are presented and compared with conventional aspect ratio tokamak scalings. Physics and engineering requirements relevant to next step spherical tokamak devices are discussed, in particular the plasma formation, current ramp-up and sustainment, and plasma exhaust. Results of first experiments directly targeting these issues are presented: Plasma current up to 0.5 MA has been produced without use of the central solenoid flux, and current ramp-up and sustainment without use of the central solenoid flux has been demonstrated. Experiments on neutral beam heating and current drive (CD) demonstrate up to 50% bootstrap current fraction and good CD efficiency, and divertor power loading has been found to be tolerable and have a favorable outboard asymmetry.

  11. The conceptual design of a robust, compact, modular tokamak reactor based on high-field superconductors

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.

    2012-10-01

    Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.

  12. An improved neoclassical drift-magnetohydrodynamical fluid model of helical magnetic island equilibria in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2016-05-01

    The effect of the perturbed ion polarization current on the stability of neoclassical tearing modes in tokamak plasmas is calculated using an improved, neoclassical, four-field, drift-magnetohydrodynamical model. The calculation involves the self-consistent determination of the pressure and scalar electric potential profiles in the vicinity of the associated magnetic island chain, which allows the chain's propagation velocity to be fixed. Two regimes are considered. First, a regime in which neoclassical ion poloidal flow damping is not strong enough to enhance the magnitude of the polarization current (relative to that found in slab geometry). Second, a regime in which neoclassical ion poloidal flow damping is strong enough to significantly enhance the magnitude of the polarization current. In both regimes, two types of solution are considered. First, a freely rotating solution (i.e., an island chain that is not interacting with a static, resonant, magnetic perturbation). Second, a locked solution (i.e., an island chain that has been brought to rest in the laboratory frame via interaction with a static, resonant, magnetic perturbation). In all cases, the polarization current is found to be either always stabilizing or stabilizing provided that ηi≡d ln Ti/d ln ne does not exceed some threshold value. In certain ranges of ηi, the polarization current is found to have a stabilizing effect on a freely rotating island, but a destabilizing effect on a corresponding locked island.

  13. Recent progress on the Compact Ignition Tokamak (CIT)

    SciTech Connect

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  14. Progress and prospects in understanding the physics of tokamak experiments

    SciTech Connect

    Hutchinson, I.

    1992-12-01

    A whistle-stop tour of the diverse physics of tokamak plasma confinement. This talk will illustrate the way in which fusion research on tokamaks has led to important and interesting physics results, and discuss some of the scientific challenges still ahead before fusion`s potential can be established.

  15. Fokker-Planck/Transport model for neutral beam driven tokamaks

    SciTech Connect

    Killeen, J.; Mirin, A.A.; McCoy, M.G.

    1980-01-01

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented.

  16. A simulation study of a controlled tokamak plasma

    NASA Astrophysics Data System (ADS)

    Fujii, N.; Niwa, Y.

    1980-03-01

    A tokamak circuit theory, including results of numerical simulation studies, is applied to a control system synthesized for a Joule heated tokamak plasma. The treatment is similar to that of Ogata and Ninomiya (1979) except that in this case a quadrupole field coil current is considered coexisting with image induced on a vacuum chamber.

  17. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    NASA Astrophysics Data System (ADS)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  18. Hybrid Fusion: The Only Viable Development Path for Tokamaks?

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2009-03-01

    The world needs a great deal of carbon free energy, and soon, for civilization to continue. Fusion's goal is to develop such a carbon free energy source. For the last 4 decades, tokamaks have been the best magnetic fusion has to offer. But what if its development stops short of commercial fusion? This paper introduces `conservative design principles' for tokamaks. These are very simple, are reasonably based in theory, and have always constrained tokamak operation. Assuming they continue to do so, it is unlikely that tokamaks will ever make it as commercial reactors. This is independent of their confinement properties. However because of the large additional gain in hybrid fusion, tokamaks reactors look like they can make it as hybrid fuel producers, and provide large scale power by mid century or shortly thereafter.

  19. Operation of bolometer system using Pt foil on SiN substrate detector for EAST tokamak

    NASA Astrophysics Data System (ADS)

    Duan, Y. M.; Mao, S. T.; Hu, L. Q.; Xu, P.; Xu, L. Q.; Zhang, J. Z.; Lin, S. Y.

    2016-11-01

    The foil resistive bolometer diagnostic on experimental advanced superconducting tokamak has been upgraded partly with a new generation of detectors. The new detectors have faster response time. However, the microwave interference is still a serious issue for the bolometer system. The system response to microwave is tested, and the test results show that the closed Wheatstone bridge circuit in the detector is the most sensitive component to high power microwave field. Simulation results of microwave transmission by the high frequency structure simulator software and shielding design are also presented.

  20. 3D passive stabilization of n = 0 MHD modes in EAST tokamak.

    PubMed

    Chen, S L; Villone, F; Xiao, B J; Barbato, L; Luo, Z P; Liu, L; Mastrostefano, S; Xing, Z

    2016-01-01

    Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented. PMID:27597182

  1. 3D passive stabilization of n = 0 MHD modes in EAST tokamak

    PubMed Central

    Chen, S. L.; Villone, F.; Xiao, B. J.; Barbato, L.; Luo, Z. P.; Liu, L.; Mastrostefano, S.; Xing, Z.

    2016-01-01

    Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented. PMID:27597182

  2. Conceptual Design of 25-Barrel Pellet Injector with Cycle Refrigerator for HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Xiao, Zhenggui; Zhu, Genliang; Liu, Dequan

    2006-07-01

    The preliminary design of a multi-barrels pellet injector with cycle refrigerator as an advanced plasma-fuelling tool for HL-2A tokamak has been proposed. The design aims at precise temperature control, easy operation with high reliability and high flexibility. GM-cycle refrigerator and pipe-gun structure have been employed to produce 25 pellets in 25 gun barrels simultaneously and the design aims. have been accomplished. Prime design principle, engineering parameters, structure and layout of the cryostat components as well as calculation of heat load for the cryostat are presented.

  3. 3D passive stabilization of n = 0 MHD modes in EAST tokamak.

    PubMed

    Chen, S L; Villone, F; Xiao, B J; Barbato, L; Luo, Z P; Liu, L; Mastrostefano, S; Xing, Z

    2016-09-06

    Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented.

  4. Analysis of the Gas Puffing Performance for Improving the Repeatability of Ohmic Discharges in the SUNIST Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Xie, Huiqiao; Tan, Yi; Ke, Rui; Wang, Wenhao; Gao, Zhe

    2014-08-01

    The gas puffing performance plays a key role in repeatable discharges in the Sino-UNIted Spherical Tokamak (SUNIST) experiments. In this paper, temporal evolution of the gas pressure in the vacuum vessel and the dependence of the repeatability of plasma discharges on different timing arrangements between the gas puffing pulse and the Ohmic field have been experimentally investigated. The results show that, after a fast rising phase, the gas pressure becomes quasi-stationary. In the regime of the discharges being started up when the gas pressure has already reached the quasi-stationary state for about 37 ms, an improved repeatability of the plasma discharges is achieved.

  5. Mathematical modeling plasma transport in tokamaks

    SciTech Connect

    Quiang, Ji

    1995-12-31

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10{sup 20}/m{sup 3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  6. Hamiltonian theory of the ion cyclotron minority heating dynamics in tokamak plasmas

    SciTech Connect

    Becoulet, A.; Gambier, D.J.; Samain, A. )

    1991-01-01

    The question of heating a tokamak plasma by means of electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is considered in the perspective of large rf powers and in the low collisionality regime. In such a case, the quasilinear theory (QLT) is validated by the Hamiltonian dynamics of the wave--particle interaction which exceeds the threshold of the intrinsic stochasticity. The Hamiltonian dynamics is represented by the evolution of a set of three canonical action angle variables well adapted to the tokamak magnetic configuration. This approach allows derivation of the rf diffusion coefficient with very few assumptions. The distribution function of the resonant ions is written as a Fokker--Planck equation but the emphasis is put on the QL diffusion instead of on the usual diffusion induced by collisions. The Fokker--Planck equation is then given a variational form from which a solution is derived in the form of a semianalytical trial function of three parameters: the percentage of resonant particles contained in the tail, an isotropic width {Delta}{ital T}, and an anisotropic width {Delta}{ital P}. This solution is successfully tested against real experimental observations. It is shown that in the case of the JET tokamak (Plasma Phys. Controlled Fusion {bold 30}, 1467 (1988)) the distribution function is influenced by adiabatic barriers which in turn limit the Hamiltonian stochasticity domain within energy values typically in the MeV range. Consequently and for a given ICRF power, the tail energy excursion is lower and its concentration higher than that from a bounce-averaged prediction. This may actually be an advantage for machines like JET (Plasma Phys. Controlled Fusion {bold 30}, 1467 (1988)) considering the energy range required to simulate the {alpha}-particle behavior in a relevant fusion reactor.

  7. Electrostatic analysis of the tokamak edge plasma

    SciTech Connect

    Motley, R.W.

    1981-07-01

    The intrusion of an equipotential poloidal limiter into the edge plasma of a circular tokamak discharge distorts the axisymmetry in two ways: (1) it (partially) shorts out the top-to-bottom Pfirsch-Schlueter driving potentials, and (2) it creates zones of back current flow into the limiter. The resulting boundary mismatch between the outer layers and the inner axisymmetric Pfirsch-Schlueter layer provides free energy to drive the edge plasma unstable. Special limiters are proposed to symmetrize the edge plasma and thereby reduce the electrical and MHD activity in the boundary layer.

  8. Electron cyclotron emission imaging in tokamak plasmas

    SciTech Connect

    Munsat, Tobin; Domier, Calvin W.; Kong, Xiangyu; Liang, Tianran; Luhmann, Jr.; Neville C.; Tobias, Benjamin J.; Lee, Woochang; Park, Hyeon K.; Yun, Gunsu; Classen, Ivo. G. J.; Donne, Anthony J. H.

    2010-07-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the large-aperture optical systems and the linear detector arrays sensitive to millimeter-wavelength radiation. We present the status and recent progress on existing instruments as well as new systems under development for future experiments. We also discuss data analysis techniques relevant to plasma imaging diagnostics and present recent temperature fluctuation results from the tokamak experiment for technology oriented research (TEXTOR).

  9. Viscosity in the edge of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    1993-05-01

    A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the 'short radial gradient scale length' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates.

  10. Magnetic field measurements in tokamak plasmas

    SciTech Connect

    Feldman, U.; Seely, J.F.; Sheeley,Jr., N.R.; Suckewer, S.; Title, A.M.

    1984-11-01

    The measurement of the poloidal magnetic field in a tokamak plasma from the Zeeman splitting and polarization of the magnetic dipole radiation from heavy ions is discussed. When viewed from a direction perpendicular to the toroidal field, the effect of the poloidal field on the circularly polarized radiation is detectable using a photoelectric polarimeter. The Zeeman splittings for a number of magnetic dipole transitions with wavelengths in the range 2300--9300 A are presented. An imaging polarimeter is proposed that can measure the poloidal magnetic field with space and time resolution.

  11. Tokamak physics experiment: Diagnostic windows study

    SciTech Connect

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

  12. Diamagnetic flux measurement in Aditya tokamak

    SciTech Connect

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore

    2010-12-15

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  13. Self-Organized Stationary States of Tokamaks

    DOE PAGES

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-17

    We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to non-linearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary non-sawtoothing “hybrid” discharges, often referred to as “flux-pumping”.

  14. Nonlinear gyrokinetic equations for tokamak microturbulence

    SciTech Connect

    Hahm, T.S.

    1988-05-01

    A nonlinear electrostatic gyrokinetic Vlasov equation, as well as Poisson equation, has been derived in a form suitable for particle simulation studies of tokamak microturbulence and associated anomalous transport. This work differs from the existing nonlinear gyrokinetic theories in toroidal geometry, since the present equations conserve energy while retaining the crucial linear and nonlinear polarization physics. In the derivation, the action-variational Lie perturbation method is utilized in order to preserve the Hamiltonian structure of the original Vlasov-Poisson system. Emphasis is placed on the dominant physics of the collective fluctuations in toroidal geometry, rather than on details of particle orbits. 13 refs.

  15. 3D MHD Simulations of Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  16. Steady state plasma operation in RF dominated regimes on EAST

    SciTech Connect

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N. Li, J. G.

    2015-12-10

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.

  17. Examination Regimes and Student Achievement

    ERIC Educational Resources Information Center

    Cosentino de Cohen, Clemencia

    2010-01-01

    Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…

  18. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    SciTech Connect

    Dorf, M. A.; Cohen, R. H.; Joseph, I.; Simakov, A. N.

    2013-08-15

    The use of the standard approaches for evaluating a neoclassical radial electric field E{sub r}, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak, charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (E{sub r}-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. The parameter regimes, where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.

  19. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    SciTech Connect

    Dorf, M. A.; Cohen, R. H.; Simakov, A. N.; Joseph, I.

    2013-08-27

    The use of the standard approaches for evaluating a neoclassical radial electric field Er, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak, charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (Er-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. As a result, the parameter regimes where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.

  20. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Simakov, A. N.; Joseph, I.

    2013-08-27

    The use of the standard approaches for evaluating a neoclassical radial electric field Er, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak,more » charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (Er-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. As a result, the parameter regimes where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.« less