Science.gov

Sample records for advanced triga reactor

  1. 78 FR 5840 - Notice of License Termination for University of Illinois Advanced TRIGA Reactor, License No. R-115

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... COMMISSION Notice of License Termination for University of Illinois Advanced TRIGA Reactor, License No. R-115... No. R-115, for the University of Illinois Advanced TRIGA Reactor (ATR). The NRC has terminated the..., Facility Operating License No. R-115 is terminated. The above referenced documents may be examined,...

  2. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  3. Extension of TRIGA reactor capabilities

    SciTech Connect

    Gietzen, A.J.

    1980-07-01

    The first TRIGA reactor went into operation at 10 kW about 22 years ago. Since that time 55 TRIGAs have been put into operation including steady-state powers up to 14,000 kW and pulsing reactors that pulse to 20,000,000 kW. Five more are under construction and a proposal will soon be submitted for a reactor of 25,000 kW. Along with these increases in power levels (and the corresponding fluxes) the experimental facilities have also been expanded. In addition to the installation of new TRIGA reactors with enhanced capabilities many of the older reactors have been modified and upgraded. Also, a number of reactors originally fueled with plate fuel were converted to TRIGA fuel to take advantage of the improved technical and safety characteristics, including the ability for pulsed operation. In order to accommodate increased power and performance the fuel has undergone considerable evolution. Most of the changes have been in the geometry, enrichment and cladding material. However, more recently further development on the UZrH alloy has been carried out to extend the uranium content up to 45% by weight. This increased U content is necessary to allow the use of less than 20% enrichment in the higher powered reactors while maintaining longer core lifetime. The instrumentation and control system has undergone remarkable improvement as the electronics technology has evolved so rapidly in the last two decades. The information display and the circuitry logic has also undergone improvements for enhanced ease of operation and safety. (author)

  4. TRIGA research reactor activities around the world

    SciTech Connect

    Chesworth, R.H.; Razvi, J.; Whittemore, W.L. )

    1991-11-01

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia.

  5. A Computer Code for TRIGA Type Reactors.

    1992-04-09

    Version 00 TRIGAP was developed for reactor physics calculations of the 250 kW TRIGA reactor. The program can be used for criticality predictions, power peaking predictions, fuel element burn-up calculations and data logging, and in-core fuel management and fuel utilization improvement.

  6. Computational analysis of irradiation facilities at the JSI TRIGA reactor.

    PubMed

    Snoj, Luka; Zerovnik, Gašper; Trkov, Andrej

    2012-03-01

    Characterization and optimization of irradiation facilities in a research reactor is important for optimal performance. Nowadays this is commonly done with advanced Monte Carlo neutron transport computer codes such as MCNP. However, the computational model in such calculations should be verified and validated with experiments. In the paper we describe the irradiation facilities at the JSI TRIGA reactor and demonstrate their computational characterization to support experimental campaigns by providing information on the characteristics of the irradiation facilities. PMID:22154389

  7. Decommissioning of the Northrop TRIGA reactor

    SciTech Connect

    Cozens, George B.; Woo, Harry; Benveniste, Jack; Candall, Walter E.; Adams-Chalmers, Jeanne

    1986-07-01

    An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)

  8. Monte Carlo modelling of TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  9. Fission product release from TRIGA-LEU reactor fuels

    SciTech Connect

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S

    1980-07-01

    Due to present international concerns over nuclear proliferation, TRIGA reactor fuels will utilize only low-enriched uranium (LEU) (enrichment <20%). This requires increased total uranium loading per unit volume of fuel in order to maintain the appropriate fissile loading. Tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing up to 45 wt-% uranium. These tests, performed in late 1977 and early 1978, were similar to those conducted earlier on TRIGA fuels with 8.5 wt-% U. Fission gas release measurements were made on prototypic specimens from room temperature to 1100 deg. C in the TRIGA King Furnace Facility. The fuel specimens were irradiated in the TRIGA reactor at a low power level. The fractional releases of the gaseous nuclides of krypton and xenon were measured under steady-state operating conditions. Clean helium was used to sweep the fission gases released during irradiation from the furnace into a standard gas collection trap for gamma counting. The results of these tests on TRIGA-LEU fuel agree well with data from the similar, earlier tests on TRIGA fuel. The correlation used to calculate the release of fission products from 8.5 wt-% U TRIGA fuel applies equally well for U contents up to 45 wt-%. (author)

  10. Fission-product release from TRIGA-LEU reactor fuels

    SciTech Connect

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S.

    1980-11-01

    The release of fission products, both gaseous and volatile metals, from TRIGA fuel is important for the analysis of possible accident conditions related to reactor operation and the design of future TRIGA fuel systems. Because of present national concerns over nuclear proliferation, it has become clear that future reactor fuels will, of necessity, utilize low-enriched uranium (LEU, enrichment <20%). This will require increasing the total uranium loading per unit volume of the higher-loaded TRIGA fuels for the purpose of maintaining the appropriate fissile loading. Because of these new developments, tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing 8.5 to 45 wt % uranium.

  11. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect

    Veca, Anthony R.; Whittemore, William L.

    1994-07-01

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  12. Completed Decommissioning of the Research Reactor TRIGA Heidelberg We are specialised in Decommissioning a Research Reactor in Germany now

    SciTech Connect

    Juenger-Graef, B.; Hoever, K.; Moser, T.; Berthold, M.; Blenski, H.J.

    2006-07-01

    This paper describes the decommissioning of the TRIGA Heidelberg II reactor which was used until 1999, and of the TRIGA Heidelberg I reactor, which was for the last 20 years in a safe containment. (authors)

  13. Reactor instrumentation renewal of the TRIGA reactor Vienna, Austria

    SciTech Connect

    Boeck, H.; Weiss, H.; Hood, W.E.; Hyde, W.K.

    1992-07-01

    The TRIGA Mark-II reactor at the Atominstitut in Vienna, Austria is replacing its twenty-four year old instrumentation system with a microprocessor based control system supplied by General Atomics. Ageing components, new governmental safety requirements and a need for state of the art instrumentation for training students has spurred the demand for new reactor instrumentation. In Austria a government appointed expert is assigned the responsibility of reviewing the proposed installation and verifying all safety aspects. After a positive review, final assembly and checkout of the instrumentation system may commence. The instrumentation system consists of three basic modules: the control system console, the data acquisition console and the NH-1000 wide range channel. Digital communications greatly reduce interwiring requirements. Hardwired safety channels are independent of computer control, thus, the instrumentation system in no way relies on any computer intervention for safety function. In addition, both the CSC and DAC computers are continuously monitored for proper operation via watchdog circuits which are capable of shutting down the reactor in the event of computer malfunction. Safety channels include two interlocked NMP-1000 multi-range linear channels for steady state mode, an NPP-1000 linear safety channel for pulse mode and a set of three independent fuel temperature monitoring channels. The microprocessor controlled wide range NM- 1000 digital neutron monitor (fission chamber based) functions as a startup/operational channel, and provides all power level related Interlocks. The Atominstitut TRIGA reactor is configured for four modes of operation: manual mode, automatic mode (servo control), pulsing mode and square wave mode. Control of the standard control rods is via stepping motor control rod drives, which offers the operator the choice of which control rods are operated by the servo system in automatic and square wave model. (author)

  14. TRIGA reactor facility at the Armed Forces Radiobiology Research Institute: A simplified technical description. revision. Technical report

    SciTech Connect

    Moore, M.L.

    1994-01-01

    This publication provides a simplified technical description of the TRIGA research reactor at AFRRI. Topics covered include general principles of reactor operation and a description of the TRIGA reactor and its unique features.

  15. Modification of the Core Cooling System of TRIGA 2000 Reactor

    SciTech Connect

    Umar, Efrizon; Fiantini, Rosalina

    2010-06-22

    To accomplish safety requirements, a set of actions has to be performed following the recommendations of the IAEA safety series 35 applied to research reactor. Such actions are considered in modernization of the old system, improving the core cooling system and safety evaluations. Due to the complexity of the process and the difficulty in putting the apparatus in the reactor core, analytical and experimental study on the determination of flow and temperature distribution in the whole coolant channel are difficult to be done. In the present work, a numerical study of flow and temperature distribution in the coolant channel of TRIGA 2000 has been carried out using CFD package. For this study, simulations were carried out on 3-D tested model. The model consists of the reactor tank, thermal and thermalizing column, reflector, rotary specimen rack, chimney, fuel element, primary pipe, diffuser, beam tube and a part of the core are constructed by 1.50 million unstructured tetrahedral cell elements. The results show that for the initial condition (116 fuel elements in the core) and for the inlet temperature of 24 deg. C and the primary velocity of 5.6 m/s, there no boiling phenomena occur in the coolant channel. Due to this result, it is now possible to improve the core cooling system of TRIGA 2000 reactor. Meanwhile, forced flow from the diffuser system only affected the flow pattern in the outside of chimney and put on a small effect to the fluid flow's velocity in the inside of chimney.

  16. Modification of the Core Cooling System of TRIGA 2000 Reactor

    NASA Astrophysics Data System (ADS)

    Umar, Efrizon; Fiantini, Rosalina

    2010-06-01

    To accomplish safety requirements, a set of actions has to be performed following the recommendations of the IAEA safety series 35 applied to research reactor. Such actions are considered in modernization of the old system, improving the core cooling system and safety evaluations. Due to the complexity of the process and the difficulty in putting the apparatus in the reactor core, analytical and experimental study on the determination of flow and temperature distribution in the whole coolant channel are difficult to be done. In the present work, a numerical study of flow and temperature distribution in the coolant channel of TRIGA 2000 has been carried out using CFD package. For this study, simulations were carried out on 3-D tested model. The model consists of the reactor tank, thermal and thermalizing column, reflector, rotary specimen rack, chimney, fuel element, primary pipe, diffuser, beam tube and a part of the core are constructed by 1.50 million unstructured tetrahedral cell elements. The results show that for the initial condition (116 fuel elements in the core) and for the inlet temperature of 24°C and the primary velocity of 5.6 m/s, there no boiling phenomena occur in the coolant channel. Due to this result, it is now possible to improve the core cooling system of TRIGA 2000 reactor. Meanwhile, forced flow from the diffuser system only affected the flow pattern in the outside of chimney and put on a small effect to the fluid flow's velocity in the inside of chimney.

  17. Development of the ageing management database of PUSPATI TRIGA reactor

    NASA Astrophysics Data System (ADS)

    Ramli, Nurhayati; Maskin, Mazleha; Tom, Phongsakorn Prak; Husain, Nurfazila; Farid, Mohd Fairus Abd; Ramli, Shaharum; Adnan, Amirul Syazwan; Abidin, Nurul Husna Zainal

    2016-01-01

    Since its first criticality in 1982, PUSPATI TRIGA Reactor (RTP) has been operated for more than 30 years. As RTP become older, ageing problems have been seen to be the prominent issues. In addressing the ageing issues, an Ageing Management (AgeM) database for managing related ageing matters was systematically developed. This paper presents the development of AgeM database taking into account all RTP major Systems, Structures and Components (SSCs) and ageing mechanism of these SSCs through the system surveillance program.

  18. The SANS facility at the Pitesti 14MW TRIGA reactor

    SciTech Connect

    Ionita, I. Grabcev, B.; Todireanu, S.; Constantin, F.; Shvetsov, V.; Anghel, E.; Popescu, G.; Mincu, M.; Datcu, A.

    2006-12-15

    The SANS facility existing at the Pitesti 14MW TRIGA reactor is presented. The main characteristics and the preliminary evaluation of the installation performances are given. A monochromatic neutron beam with 1.5 A {<=} {lambda} {<=} 5 A is produced by a mechanical velocity selector with helical slots. A fruitful partnership was established between INR Pitesti (Romania) and JINR Dubna (Russia). The first step in this cooperation consists in the manufacturing in Dubna of a battery of gas-filled positional detectors devoted to the SANS instrument.

  19. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ...) published a notice in the Federal Register on July 20, 2012 (77 FR 42771), ``License Renewal for the Dow...: I. Correction In the Federal Register (FR) of July 20, 2012, in FR Doc. 2012- 17733, on page 42772... COMMISSION Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical...

  20. Code System to Calculate Mixed Cores in TRIGA Mark II Research Reactor.

    2001-08-29

    Version 00 TRIGLAV is a computer program for reactor calculations of mixed cores in a TRIGA Mark II research reactor. It can be applied for fuel element burn-up calculations, for power and flux distributions calculations and for reactivity predictions. The TRIGLAV program requires the WIMS-D4 program with the original WIMS cross-section library extended for TRIGA reactor specific nuclides. This package includes the code TRIGAC, which is a new version of TRIGAP.

  1. Analysis of cocked fuel elements in the AFRRI TRIGA Mark-F reactor

    SciTech Connect

    Sholtis, Joseph A. Jr.

    1982-07-01

    The Armed Forces Radiobiology Research Institute (AFRRI) TRIGA Mark-F pulsing reactor has experienced eight cocked fuel elements during the period 5 November 1974 through 17 February 1982. Although there are no adverse health and safety consequences associated with their occurrence and there is no credible potential for system damage, cocked TRIGA fuel elements do cause inconvenience to the reactor staff and a temporary delay in operations. This paper presents the history of cocked TRIGA fuel elements at AFRRI, discusses possible mechanisms for their occurrence, and outlines a plan to isolate and ultimately determine their actual cause.

  2. Environmental Assessment: Relocation and storage of TRIGA{reg_sign} reactor fuel, Hanford Site, Richland, Washington

    SciTech Connect

    1995-08-01

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations.

  3. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M.; Weng, C.K.; Lindsay, R.W.

    1992-06-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  4. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M. . Dept. of Nuclear Engineering); Weng, C.K. . Dept. of Mechanical Engineering); Lindsay, R.W. )

    1992-01-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  5. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  6. Thermal hydraulics modeling of the US Geological Survey TRIGA reactor

    NASA Astrophysics Data System (ADS)

    Alkaabi, Ahmed K.

    The Geological Survey TRIGA reactor (GSTR) is a 1 MW Mark I TRIGA reactor located in Lakewood, Colorado. Single channel GSTR thermal hydraulics models built using RELAP5/MOD3.3, RELAP5-3D, TRACE, and COMSOL Multiphysics predict the fuel, outer clad, and coolant temperatures as a function of position in the core. The results from the RELAP5/MOD3.3, RELAP5-3D, and COMSOL models are similar. The TRACE model predicts significantly higher temperatures, potentially resulting from inappropriate convection correlations. To more accurately study the complex fluid flow patterns within the core, this research develops detailed RELAP5/MOD3.3 and COMSOL multichannel models of the GSTR core. The multichannel models predict lower fuel, outer clad, and coolant temperatures compared to the single channel models by up to 16.7°C, 4.8°C, and 9.6°C, respectively, as a result of the higher mass flow rates predicted by these models. The single channel models and the RELAP5/MOD3.3 multichannel model predict that the coolant temperatures in all fuel rings rise axially with core height, as the coolant in these models flows predominantly in the axial direction. The coolant temperatures predicted by the COMSOL multichannel model rise with core height in the B-, C-, and D-rings and peak and then decrease in the E-, F-, and G-rings, as the coolant tends to flow from the bottom sides of the core to the center of the core in this model. Experiments at the GSTR measured coolant temperatures in the GSTR core to validate the developed models. The axial temperature profiles measured in the GSTR show that the flow patterns predicted by the COMSOL multichannel model are consistent with the actual conditions in the core. Adjusting the RELAP5/MOD3.3 single and multichannel models by modifying the axial and cross-flow areas allow them to better predict the GSTR coolant temperatures; however, the adjusted models still fail to predict accurate axial temperature profiles in the E-, F-, and G-rings.

  7. An analysis of decommissioning costs for the AFRRI TRIGA reactor facility

    SciTech Connect

    Forsbacka, Matt

    1990-07-01

    A decommissioning cost analysis for the AFRRI TRIGA Reactor Facility was made. AFRRI is not at this time suggesting that the AFRRI TRIGA Reactor Facility be decommissioned. This report was prepared to be in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations which requires the assurance of availability of future decommissioning funding. The planned method of decommissioning is the immediate decontamination of the AFRRI TRIGA Reactor site to allow for restoration of the site to full public access - this is called DECON. The cost of DECON for the AFRRI TRIGA Reactor Facility in 1990 dollars is estimated to be $3,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment is an additional $600,000. Thus the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for this cost estimate is a study of the decommissioning costs of a similar reactor facility that was performed by Battelle Pacific Northwest Laboratory (PNL) as provided in USNRC publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA. (author)

  8. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    SciTech Connect

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-07-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  9. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    NASA Astrophysics Data System (ADS)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  10. Analysis of decommissioning costs for the AFRRI TRIGA reactor facility. Technical report

    SciTech Connect

    Forsbacka, M.; Moore, M.

    1989-12-01

    This report provides a cost analysis for decommissioning the Armed Forces Radiobiology Research Institute (AFRRI) TRIGA reactor facility. AFRRI is not suggesting that the AFRRI TRIGA reactor facility be decommissioned. This report was prepared in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations, which requires that funding for the decommissioning of reactor facilities be available when licensed activities cease. The planned method of decommissioning is complete decontamination (DECON) of the AFRRI TRIGA reactor site to allow for restoration of the site to full public access. The cost of DECON in 1990 dollars is estimated to be $3,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment will be an additional $600,000. Thus, the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for developing this cost estimate was a study of the decommissioning costs of similar reactor facility performed by Battelle Pacific Northwest Laboratory, as provided in U.S. Nuclear Regulatory Commission publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA reactor facility.

  11. Neutron fluence and energy reproducibility of a 2-dollar TRIGA reactor Pulse

    SciTech Connect

    Payne, Rosara F.; Drader, Jessica A.; Friese, Judah I.; Greenwood, Lawrence R.; Hines, Corey C.; Metz, Lori A.; Kephart, Jeremy D.; King, Matthew D.; Pierson, Bruce D.; Smith, Jeremy D.; Wall, Donald E.

    2009-10-01

    Washington State University’s 1 MW TRIGA reactor has a long history of utilization for neutron activation analysis (NAA). TRIGA reactors have the ability to pulse, reach supercritical (k>1) for short bursts of time. At this high power and fast time the energy spectrum and neutron fluence are largely uncharacterized. The pulse neutron energy spectrum and fluence were determined by the activation of Cu, Au, Co, Fe, and Ti. These analyses were completed with and without Cd shielding to determine reproducibility between pulses. The applications and implications of the neutron energy and fluence reproducibility to the use of pulsed NAA will be discussed.

  12. Natural and mixed convection in the cylindrical pool of TRIGA reactor

    NASA Astrophysics Data System (ADS)

    Henry, R.; Tiselj, I.; Matkovič, M.

    2016-05-01

    Temperature fields within the pool of the JSI TRIGA MARK II nuclear research reactor were measured to collect data for validation of the thermal hydraulics computational model of the reactor tank. In this context temperature of the coolant was measured simultaneously at sixty different positions within the pool during steady state operation and two transients. The obtained data revealed local peculiarities of the cooling water dynamics inside the pool and were used to estimate the coolant bulk velocity above the reactor core. Mixed natural and forced convection in the pool were simulated with a Computational Fluid Dynamics code. A relatively simple CFD model based on Unsteady RANS turbulence model was found to be sufficient for accurate prediction of the temperature fields in the pool during the reactor operation. Our results show that the simple geometry of the TRIGA pool reactor makes it a suitable candidate for a simple natural circulation benchmark in cylindrical geometry.

  13. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    PubMed

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. PMID:26141293

  14. Advances in reactor physics education: Visualization of reactor parameters

    SciTech Connect

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-07-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  15. Fluid Flow Characteristic Simulation of the Original TRIGA 2000 Reactor Design Using Computational Fluid Dynamics Code

    NASA Astrophysics Data System (ADS)

    Fiantini, Rosalina; Umar, Efrizon

    2010-06-01

    Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.

  16. Fluid Flow Characteristic Simulation of the Original TRIGA 2000 Reactor Design Using Computational Fluid Dynamics Code

    SciTech Connect

    Fiantini, Rosalina; Umar, Efrizon

    2010-06-22

    Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.

  17. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Sheik; Hamzah, Mohd Arif Arif B.

    2014-02-01

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP).

  18. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    SciTech Connect

    Muhamad, Shalina Sheik; Hamzah, Mohd Arif Arif B.

    2014-02-12

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP)

  19. Conversion and evaluation of the THOR reactor core to TRIGA fuel elements

    SciTech Connect

    Li, S.-H.; Shiau, L.-C.

    1990-07-01

    The THOR reactor is a pool type 1 MW research reactor and has been operated since 1961. The original MTR fuel elements have been gradually replaced by TRIGA fuel elements since 1977 and the conversion completed in 1987. The calculations were performed for various core configurations by using computer codes, WIMS/CITATION. The computing results have been evaluated and compared with the core measurements after the fuel conversion. The analysis results are in good correspondence with the measurements. (author)

  20. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  1. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. Neutronics analysis of the proposed 25-MW leu TRIGA Multipurpose Research Reactor

    SciTech Connect

    Nurdin, M.; Bretscher, M.M.; Snelgrove, J.L.

    1982-01-01

    More than two years ago the government of Indonesia announced plans to purchase a research reactor for the Puspiptek Research Center in Serpong Indonesia to be used for isotope production, materials testing, neutron physics measurements, and reactor operator training. Reactors using low-enriched uranium (LEU) plate-type and rod-type fuel elements were considered. This paper deals with the neutronic evaluation of the rod-type 25-MW LEU TRIGA Multipurpose Research Reactor (MPRR) proposed by the General Atomic Company of the United States of America.

  3. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    SciTech Connect

    Zakaria, Norasalwa Mustafa, Muhammad Khairul Ariff Anuar, Abul Adli Idris, Hairul Nizam Ba'an, Rohyiza

    2014-02-12

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  4. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    NASA Astrophysics Data System (ADS)

    Zakaria, Norasalwa; Mustafa, Muhammad Khairul Ariff; Anuar, Abul Adli; Idris, Hairul Nizam; Ba'an, Rohyiza

    2014-02-01

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  5. Unique applications of research reactors with TRIGA UZrH[sub x] fuel

    SciTech Connect

    Whittemore, W.L. )

    1993-01-01

    The TRIGA reactor fuel (UZrH[sub x]) in research reactors provides significant safety features that have permitted varied and unique applications. The safety features include a very large, prompt, negative temperature coefficient of reactivity; very high safety limit for fuel temperature (1150[degrees]C); and large fission product retention even for unclad fuel. The recognized safety of these reactors has permitted them to be located as appropriate on university campuses in buildings housing lecture halls and in hospitals. It has also facilitated installation of in-core or near-core experiments and facilities, including liquid hydrogen or other cryogenic neutron sources.

  6. Verifying the Asymmetric Multiple Position Neutron Source (AMPNS) method using the TRIGA reactor

    SciTech Connect

    Kim, Soon-Sam; Leyine, S.H.

    1984-07-01

    A new experimental/analytical method has been developed using the Penn State Breazeale (TRIGA) reactor, to measure the k{sub eff} of a damaged core, e.g., the TMI-2 core, and unfold its k{sub infinity} distribution. This new method, the Asymmetric Multiple Position Neutron Source (AMPNS) method, uses the response of several neutron detectors in fixed positions around the core periphery (and possibly in the core) when a neutron source is placed sequentially in different discrete core positions. Experiments have been performed with the Penn State Breazeale TRIGA Reactor (PSBR) and analyzed with appropriate neutron calculations, using PSU-LEOPARD and EXTERMINATOR-II (EXT-II), to verify the method.

  7. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    SciTech Connect

    Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A.; Barbot, L.; Domergue, C.; Destouches, C.

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

  8. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    PubMed

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. PMID:25576735

  9. Production of {sup 99}Mo using LEU and molybdenum targets in a 1 MW Triga reactor

    SciTech Connect

    Mo, S.C.

    1993-12-31

    The production of {sup 99}Mo using Low Enriched Uranium (LEU) and natural molybdenum targets in a 1 MW Triga reactor is investigated. The successive linear programming technique is applied to minimize the target loadings for different yield constraints. The irradiation time is related to the kinetics of the growth and decay of {sup 99}Mo. The feasibility of a neutron generated based {sup 99}Mo production system is discussed.

  10. The history and perspective of Romania-USA cooperation in the field of technologic transfer of TRIGA reactor concept

    SciTech Connect

    Ciocaanescu, M.; Ionescu, M.

    1996-08-01

    The cooperation between Romania and the USA in the field of technologic transfer of nuclear research reactor technology began with the steady state 14 MW{sub t} TRIGA reactor, installed at INR Pitesti, Romania. It is the first in the range of TRIGA reactors proposed as a materials testing reactor. The first criticality was reached in November 19, 1979 and first operation at 14 MW{sub t} level was in February 1980. The paper will present the short history of this cooperation and the perspective for a new cooperation for building a Nuclear Heating Plant using the TRIGA reactor concept for demonstration purpose. The energy crisis is a world-wide problem which affects each country in different ways because the resources and the consumption are unfairly distributed. World-wide research points out that the fossil fuel sources are not to be considered the main energy sources for the long term as they are limited.

  11. Monte Carlo design for a new neutron collimator at the ENEA Casaccia TRIGA reactor.

    PubMed

    Burgio, N; Rosa, R

    2004-10-01

    The TRIGA RC-1 1MW reactor operating at ENEA Casaccia Center is currently being developed as a second neutron imaging facility that shall be devoted to computed tomography as well as neutron tomography. In order to reduce the gamma-ray content in the neutron beam, the reactor tangential piercing channel was selected. A set of Monte Carlo simulation was used to design the neutron collimator, to determine the preliminary choice of the materials to be employed in the collimator design. PMID:15246415

  12. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    PubMed

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. PMID:25958412

  13. Transition from HEU to LEU fuel in Romania's 14-MW TRIGA reactor

    SciTech Connect

    Bretscher, M.M.; Snelgrove, J.L.

    1991-01-01

    The 14-MW TRIGA steady state reactor (SSR) located in Pitesti, Romania, first went critical in the fall of 1979. Initially, the core configuration for full power operation used 29 fuel clusters each containing a 5 {times} 5 square array of HEU (10 wt%) -- ZrH -- Er (2.8 wt%) fuel-moderator rods (1.295 cm o.d.) clad in Incology. With a total inventory of 35 HEU fuel clusters, burnup considerations required a gradual expansion of the core from 29 to 32 and finally to 35 clusters before the reactor was shut down because of insufficient excess reactivity. At this time each of the original 29 fuel clusters had an overage {sup 235}U burnup in the range from 50 to 62%. Because of the US policy regarding the export of highly enriched uranium, fresh HEU TRIGA replacement fuel is not available. After a number of safety-related measurements, the SSR is expected to resume full power operation in the near future using a mixed core containing five LEU TRIGA clusters of the same geometry as the original fuel but with fuel-moderator rods containing 45 wt% U (19.7% {sup 235}U enrichment) and 1.1 wt% Er. Rods for 14 additional LEU fuel clusters will be fabricated by General Atomics. In support of the SSR mixed core operation numerous neutronic calculations have been performed. This paper presents some of the results of those calculations.

  14. Transition from HEU to LEU fuel in Romania`s 14-MW TRIGA reactor

    SciTech Connect

    Bretscher, M.M.; Snelgrove, J.L.

    1991-12-31

    The 14-MW TRIGA steady state reactor (SSR) located in Pitesti, Romania, first went critical in the fall of 1979. Initially, the core configuration for full power operation used 29 fuel clusters each containing a 5 {times} 5 square array of HEU (10 wt%) -- ZrH -- Er (2.8 wt%) fuel-moderator rods (1.295 cm o.d.) clad in Incology. With a total inventory of 35 HEU fuel clusters, burnup considerations required a gradual expansion of the core from 29 to 32 and finally to 35 clusters before the reactor was shut down because of insufficient excess reactivity. At this time each of the original 29 fuel clusters had an overage {sup 235}U burnup in the range from 50 to 62%. Because of the US policy regarding the export of highly enriched uranium, fresh HEU TRIGA replacement fuel is not available. After a number of safety-related measurements, the SSR is expected to resume full power operation in the near future using a mixed core containing five LEU TRIGA clusters of the same geometry as the original fuel but with fuel-moderator rods containing 45 wt% U (19.7% {sup 235}U enrichment) and 1.1 wt% Er. Rods for 14 additional LEU fuel clusters will be fabricated by General Atomics. In support of the SSR mixed core operation numerous neutronic calculations have been performed. This paper presents some of the results of those calculations.

  15. NATCRCTR: One-dimensional thermal-hydraulics analysis code for natural-circulation TRIGA reactors

    SciTech Connect

    Feltus, M.A.; Rubinaccio, G.

    1996-12-31

    The Pennsylvania State University nuclear engineering department is evaluating the upgrade of the Reed College (Portland, Oregon) TRIGA reactor from 250 kW to 1 MW in two areas: thermal-hydraulics and steady-state neutronics analysis. This analysis was initiated as a cooperative effort between Penn State and Reed College as a training project for two International Atomic Energy Agency (IAEA) fellows from Ghana. The two Ghanaian IAEA fellows were assisted by G. Rubinaccio, an undergraduate, who undertook the task of writing the new computer programs for the thermal-hydraulic and physics evaluation as a three-credit special design project course. The Reed College TRIGA, which has a fixed graphite radial reflector, is cooled by natural circulation, without external cross-flow; whereas, the Penn State Breazeale Reactor has significant crossflow into its sides. To model the Reed TRIGA, the NATCRCTR program has been developed from first principles using the following assumptions: 1. The core is surrounded by the fixed reflector structure, which acts as a one-dimensional channel. 2. The core inlet temperature distribution is constant at the core bottom. 3. The axial heat flux distribution is a chopped cosine shape. 4. The heat transfer in the fuel is primarily in the radial directions. 5. A small gap between the fuel and cladding exists. The NATCRCTR code is used to find the peak centerline fuel, gap, and cladding surface temperatures, based on assumed flux and engineering peaking factors.

  16. Analysis of safety limits of the Moroccan TRIGA MARK II research reactor

    NASA Astrophysics Data System (ADS)

    Erradi, L.; Essadki, H.

    2001-06-01

    The main objective of this study is to check the ability of the Moroccan TRIGA MARK II research reactor, designed to use natural convection cooling, to operate at its nominal power (2 MW) with sufficient safety margins. The neutronic analysis of the core has been performed using Leopard and Mcrac codes and the parameters of interest were the power distributions, the power peaking factors and the core excess reactivity. The thermal hydraulic analysis of the TRIGA core was performed using the French code FLICA designed for transient and study state situations. The main safety related parameters of the core have been evaluated with special emphasises on the following: maximum fuel temperature, minimum DNBR and maximum void fraction. The obtained results confirm the designer predictions except for the void fraction.

  17. Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    NASA Astrophysics Data System (ADS)

    Karch, J.; Sobolev, Yu.; Beck, M.; Eberhardt, K.; Hampel, G.; Heil, W.; Kieser, R.; Reich, T.; Trautmann, N.; Ziegner, M.

    2014-04-01

    The performance of the solid deuterium ultra-cold neutron (UCN) source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10MJ is described. The solid deuterium converter with a volume of cm3 (8mol), which is exposed to a thermal neutron fluence of n/cm2, delivers up to 240000 UCN ( m/s) per pulse outside the biological shield at the experimental area. UCN densities of 10 cm3 are obtained in stainless-steel bottles of 10 L. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.

  18. Startup experience at the University of Texas TRIGA Mark II Reactor

    SciTech Connect

    Bauer, Thomas L.; Wehring, Bernard W.

    1992-07-01

    After eight years of singular effort, the UT-TRIGA Mark II research reactor was licensed and is fully operational. This reactor is the focus of a new reactor laboratory facility which is located at the Balcones Research Center, a north Austin campus of The University of Texas at Austin. The UT-TRIGA reactor is licensed for 1.1 MW steady power operation and 3 dollar pulsing. A startup program was implemented upon receipt of the facility license on January 17, 1992. Several facility features are unique to this startup. Among these were the use of fuel with various burnup and a digital control system. The reactor laboratory staff with assistance from a General Atomics instrumentation engineer performed all phases of the startup program. Core loading began in February 1992 with final testing completed in May 1992. Several unusual problems were encountered during this time. Experiment authorizations have been written to resume Neutron Activation Analysis programs and isotope production. Several neutron beam tube experiments are in the design and test phase. (author)

  19. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    PubMed

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  20. Development process of the new control console of ININ's TRIGA mark III reactor

    SciTech Connect

    Rivero-Gutierrez, T.

    2006-07-01

    A description of the development of the new ININ's TRIGA Mark III reactor control console is presented in this meeting. Most of the operation and safety monitoring of the reactor is carried out by means of a personal computer (PC), some interface cards, and an auxiliary computer that drives the control rod mechanisms. In this console, the safety actions are taken by the Protection System (SEC), which acquires the data directly from the safety related systems, specified in the reactor's console design technical specifications. The console, based on the concept of virtual instrumentation, is composed of a group of systems that make easier to the operator the activation of the sequential steps required to operate the reactor. (authors)

  1. McClellan Nuclear Radiation Center (MNRC) TRIGA reactor: Four years of operations

    SciTech Connect

    Heidel, C.C.; Richards, W.J.

    1994-07-01

    McClellan Air Force Base, at Sacramento, California, is headquarters for the Sacramento Air Force Logistics Center (SM-ALC). McClellan Air Force Base provides extensive inspection and maintenance capabilities for the F-111, F-1 5, and other military aircraft. Criticality of the MNRC TRIGA reactor was obtained on January 20, 1990 with 63 standard TRIGA fuel elements, three fuel-followed control rods and one air-followed control rod. Presently there are 93 fuel elements in the reactor core. The reactor can be operated at 1 MW steady state power, producing pulses up to three dollars worth of reactivity addition, and can be square waved up to 1 MW. The reactor core contains a circular grid plate and a graphite reflector assembly surrounding the core. Four tangential beam ports installed in the reflector assembly provide a thermal neutron flux to four radiography bays. The reactor tank is twenty-four (24) feet deep, seven and one-half (7.5) feet in diameter, and has a protrusion in the upper portion of the reactor tank. This protrusion is scheduled for use as a neutron thermal collimator in the future. Besides the neutron radiography capabilities, the reactor contains a pneumatic rabbit system, a central thimble, an in-core irradiation facility, and three additional cutouts that provide locations for additional irradiation facilities. The central thimble can be removed along with the B-ring locations of the upper portion of the grid plate to provide an additional and larger in-core irradiation facility. A new upper grid plate has been manufactured to expand one triangular cutout so that larger experiments can be inserted directly into the reactor core. Some operational problems experienced during the first four years of operations are the timeout of the CSC and DAC watchdogs, deterioration of the heat exchanger gaskets, and loss of thermocouples in the instrumented fuel elements. (author)

  2. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    PubMed

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. PMID:25746919

  3. Technical Specifications for the Neutron Radiography Facility (TRIGA Mark 1 Reactor). Revision 6

    SciTech Connect

    Tomlinson, R.L.; Perfect, J.F.

    1988-04-01

    These Technical Specifications state the limits under which the Neutron Radiography Facility, with its associated TRIGA Mark I Reactor, is operated by the Westinghouse Hanford Company for the US Department of Energy. These specifications cover operation of the Facility for the purpose of examination of specimens (including contained fissile material) by neutron radiography, for the irradiation of specimens in the pneumatic transfer system and approved in-core or in-pool irradiation facilities and operator training. The Final Safety Analysis Report (TC-344) and its supplements, and these Technical Specifications are the basic safety documents of the Neutron Radiography Facility.

  4. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel.

    PubMed

    Vega-Carrillo, H R; Hernández-Dávila, V M; Aguilar, F; Paredes, L; Rivera, T

    2014-01-01

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a (6)LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port. PMID:23746708

  5. A Multi-Phased Sampling Effort to Characterize a University TRIGA Research Reactor

    SciTech Connect

    Taylor, K.E.; Holm, R.L.

    2006-07-01

    A radiological characterization project was conducted at the University of Illinois (University) TRIGA research nuclear reactor in July 2005 as part of the long-term facility decommissioning project. The characterization effort included multiple survey and sampling techniques designed to assess both contamination of the reactor building and equipment and activation of reactor components and the reactor bio-shield. Radiation measurements included alpha and beta surface contamination measurements, gamma dose rate measurements, and gross gamma radiation measurements. Modeling was conducted based on the field measurements to predict concentrations of activation products in reactor components that were not directly sampled. The sampling effort included collecting removable contamination swipes, concrete samples from the reactor room floor and bio-shield, soil samples from below and around the perimeter of the reactor building, graphite samples from graphite moderator, and metal samples from reactor components. Concrete samples were obtained using an innovative technology that allowed for quick sample collection and analysis. Concrete, soil, graphite, and metal samples were analyzed on-site using liquid scintillation counters and gamma spectroscopy. Additional samples were sent off-site for analysis. (authors)

  6. Failure of TRIGA fuel cladding at the Berkeley research reactor

    SciTech Connect

    Denton, Michael M.; Lim, Tek H.

    1986-07-01

    Following a long maintenance shutdown during which a fission chamber was refurbished and a compensated ion chamber replaced, concentrations of radioisotopes were detected in the reactor-room air on a Constant (CAM) after two and a half hours of full-power operation. Following test lead to identification of three fission-product gasses in the reactor room air: Kr{sup 85m}, Kr{sup 87} , and Kr{sup 88} . Conservative estimates indicated the maximum concentrations of all fission gasses to be about 1.1x10{sup -8} {mu}Ci/ml with a total release of less than 1 mCi. It was concluded that the gasses come from a leaking fuel element. Three old, instrumented elements with defective thermocouples were removed first and the reactor was tested at full-power. No abnormal activities were detected during or following the operation. Each of the suspected fuel elements are instrumented with leadout tubes extending 15 feet to above the pool surface. This suggests some possible causes for the cladding failure. First, flexing due to daily movement of the core could have weakened the tube/cladding connection. Secondly, the cladding itself may have been damaged during maintenance procedures requiring removal of the elements or repositioning of the leadout tubes.

  7. Cross sections for fuel depletion and radioisotope production calculations in TRIGA reactors

    SciTech Connect

    Aguilar, H.F.; Mazon, R.R.

    1994-07-01

    For TRIGA Reactors, the fuel depletion and isotopic inventory calculations, depends on the computer code and in the cross sections of some important actinides used. Among these we have U-235, U-238, Pu-239, Pu-240 and Pu-241. We choose ORIGEN2, a code with a good reputation in this kind of calculations, we observed the cross sections for these actinides in the libraries that we have (PWR's and BWR), the fission cross section for U-235 was about 50 barns. We used a PWR library and our results were not satisfactory, specially for standard elements. We decided to calculate cross sections more suitable for our reactor, for that purpose we simulate the standard and FLIP TRIGA cells with the transport code WIMS. We used the fuel average flux and COLAPS (a home made program), to generate suitable cross sections for ORIGEN2, by collapsing the WIMS library cross sections of these nuclides. For the radioisotope production studies using the Central Thimble, we simulate the A and B rings and used the A average flux to collapse cross sections. For these studies, the required nuclides sometimes are not present in WIMS library, for them we are planning to process the ENDF/B data, with NJOY system, and include the cross sections to WIMS library or to collapse them using the appropriate average-flux and the program COLAPS. (author)

  8. TRIGA reactor facility at the Armed Forces Radiobiology Research Institute: a simplified technical description. Technical report

    SciTech Connect

    Moore, M.L.; Elsasser, S.

    1986-05-01

    In support of its mission the Armed Forces Radiobiology Research Institute (AFRRI) operates a medium-sized research nuclear reactor. The reactor is used to generate radiations, primarily neutrons and gamma rays, which are used to conduct experimental biomedical research and to produce isotopes. The radiations are delivered to the experiments in one of two ways: a pulse operation delivers a very short burst of high power, or a steady-state operation delivers a longer, continuous low- to medium-power exposure. The reactor is also used to train military personnel in reactor operations. TRIGA is an acronym for Training, Research, and Isotope, General Atomics. Mark-F is the specific General Atomics Reactor model, distinguished by a pool, a movable core, exposure-room facilities, and the ability to pulse to momentary high powers. Reactor operations at AFRRI began is 1962. In 1965, a change was made from aluminum-clad to stainless steel-clad fuel elements. Currently more than 150 multiple exposure experiments are performed each year using the reactor.

  9. Polarized advanced fuel reactors

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    The d-/sup 3/He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs.

  10. Validating the Serpent Model of FiR 1 Triga Mk-II Reactor by Means of Reactor Dosimetry

    NASA Astrophysics Data System (ADS)

    Viitanen, Tuomas; Leppänen, Jaakko

    2016-02-01

    A model of the FiR 1 Triga Mk-II reactor has been previously generated for the Serpent Monte Carlo reactor physics and burnup calculation code. In the current article, this model is validated by comparing the predicted reaction rates of nickel and manganese at 9 different positions in the reactor to measurements. In addition, track-length estimators are implemented in Serpent 2.1.18 to increase its performance in dosimetry calculations. The usage of the track-length estimators is found to decrease the reaction rate calculation times by a factor of 7-8 compared to the standard estimator type in Serpent, the collision estimators. The differences in the reaction rates between the calculation and the measurement are below 20%.

  11. NRF TRIGA packaging

    SciTech Connect

    Clements, M.D.

    1995-11-01

    Training Reactor Isotopes, General Atomics (TRIGA{reg_sign}) Reactors are in use at four US Department of Energy (DOE) complex facilities and at least 23 university, commercial, or government facilities. The development of the Neutron Radiography Facility (NRF) TRIGA packaging system began in October 1993. The Hanford Site NRF is being shut down and requires an operationally user-friendly transportation and storage packaging system for removal of the TRIGA fuel elements. The NRF TRIGA packaging system is designed to remotely remove the fuel from the reactor and transport the fuel to interim storage (up to 50 years) on the Hanford Site. The packaging system consists of a cask and an overpack. The overpack is used only for transport and is not necessary for storage. Based upon the cask`s small size and light weight, small TRIGA reactors will find it versatile for numerous refueling and fuel storage needs. The NRF TRIGA packaging design also provides the basis for developing a certifiable and economical packaging system for other TRIGA reactor facilities. The small size of the NRF TRIGA cask also accommodates placing the cask into a larger certified packaging for offsite transport. The Westinghouse Hanford Company NRF TRIGA packaging, as described herein can serve other DOE sites for their onsite use, and the design can be adapted to serve university reactor facilities, handling a variety of fuel payloads.

  12. 76 FR 69296 - University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... published in the Federal Register on July 21, 2011 (76 FR 43733-43737). The NRC received no request for a..., 2011 (76 FR 60091-60094), and concluded that renewal of the facility operating license will not have a... COMMISSION University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of...

  13. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  14. Thermal hydraulic analysis for the Oregon State TRIGA reactor using RELAP5-3D

    SciTech Connect

    Marcum, W.R.; Woods, B.G.; Hartman, M.

    2008-07-15

    Thermal hydraulic analyses have being conducted at Oregon State University (OSU) in support of the conversion of the OSU TRIGA reactor (OSTR) core from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel as part of the Reduced Enrichment for Research and Test Reactors program. The goals of the thermal hydraulic analyses were to calculate natural circulation flow rates, coolant temperatures and fuel temperatures as a function of core power for both the HEU and LEU cores; calculate peak values of fuel temperature, cladding temperature, surface heat flux as well as departure from nuclear boiling ratio (DNBR) for steady state and pulse operation; and perform accident analyses for the accident scenarios identified in the OSTR safety analysis report. RELAP5-3D Version 2.4.2 was implemented to develop a model for the thermal hydraulic study. The OSTR core conversion is planned to take place in late 2008. (author)

  15. Neutronic and thermal hydraulic analysis of the Geological Survey TRIGA Reactor

    NASA Astrophysics Data System (ADS)

    Shugart, Nicolas

    The United States Geological Survey TRIGA Reactor (GSTR) is a 1 MW reactor located in Lakewood, Colorado. In support of the GSTR's relicensing efforts, this project developed and validated a Monte Carlo N-Particle Version 5 (MCNP5) model of the GSTR reactor. The model provided estimates of the excess reactivity, power distribution and the fuel temperature, water temperature, void, and power reactivity coefficients for the current and limiting core. The MCNP5 model predicts a limiting core excess reactivity of 6.48 with a peak rod power of 22.2 kW. The fuel and void reactivity coefficients for the limiting core are strongly negative, and the core water reactivity coefficient is slightly positive, consistent with other TRIGA analyses. The average fuel temperature reactivity coefficient of the full power limiting core is -0.0135 /K while the average core void coefficient is -0.069 /K from 0-20 % void. The core water temperature reactivity coefficient is +0.012 /K. Following the neutronics analysis, the project developed RELAP5 and PARET-ANL models of the GSTR hot-rod fuel channel under steady state and transient conditions. The GSTR limiting core, determined as part of this analysis, provides a worst case operating scenario for the reactor. During steady state operations, the hot rod of the limiting core has a peak fuel temperature of 829 K and a minimum departure from nucleate boiling ratio of 2.16. After a $3.00 pulse reactivity insertion the fuel reaches a peak temperature is 1070 K. Examining the model results several seconds after a pulse reveals flow instabilities that result from weaknesses in the current two-channel model.

  16. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    NASA Astrophysics Data System (ADS)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  17. Reduced enrichment neutronics evaluation for Texas A and M's TRIGA reactor

    SciTech Connect

    Rajalakshmi, M.J.; Reuscher, J.A. )

    1990-06-01

    The Texas A and M Nuclear Science Center reactor (NSCR) designed by General Atomics (GA) uses a fuel-life improvement program TRIGA fuel element. It is composed of 8.5 wt% uranium in U-ZrH{sub 1.6}-Er fuel with a {sup 235}U enrichment of 70 at.% and 1.5 wt% of erbium. The US Nuclear Regulatory Commission requires that the enrichment not exceed 20 at.% for the next loading, provided the fuel is available. To meet this requirement GA has developed shrouded four-rod clusters using low-enriched U-ZrH{sub 1.6}-Er fuel for TRIGA cores operating at powers up to 2 MW. This fuel contains 20 wt% of uranium with an enrichment of 20 at.% and 0.5 wt% of erbium and a homogeneous mixture of hydrogen moderator. Thermal-hydraulic calculations show the feasibility of operating the NSCR at 2 MW. The objective of this study is to assess the ability of the NSCR to operate at 2 MW using the reduced-enrichment fuel. This study also covers a three-dimensional neutronics analysis of the NSCR core using the new fuel. Results obtained are compared with results obtained with another candidate fuel, BeO-UO{sub 2}-Er.

  18. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    NASA Astrophysics Data System (ADS)

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  19. University of Illinois nuclear pumped laser program. [experiments with a TRIGA pulsed reactor with a broad pulse and a low peak flux

    NASA Technical Reports Server (NTRS)

    Miley, G. H.

    1979-01-01

    The development of nuclear pumped lasers with improved efficiency, energy storage capability, and UF6 volume pumping is reviewed. Results of nuclear pumped laser experiments using a TRIGA-type pulsed reactor are outlined.

  20. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    SciTech Connect

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Irwan, M. N.; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy

    2014-09-03

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of {sup 134}Cs, {sup 137}Cs, {sup 152}Eu, {sup 54}Mn, {sup 58}Co, {sup 60}Co and {sup 65}Zn. The leachability test shows a small concentrations (<1 Bq/l) of {sup 152}Eu and {sup 134}Cs were leached out from the spent resin while {sup 60}Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  1. Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.

    PubMed

    Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S

    2012-10-01

    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. PMID:22885391

  2. Determination of α and f parameters at the 14-MW TRIGA reactor at Pitesti, Romania

    NASA Astrophysics Data System (ADS)

    Bărbos, D.; Păunoiu, C.; Roth, C.

    2010-10-01

    For experimental α determination the two-monitor method has been applied to determine α parameter in the irradiation channels at TRIGA 14 MW reactor (SCN Pitesti). The modified two-monitor method by using Cd ratio measurements eliminates the introducing of systematic errors due to the inaccuracy of absolute nuclear data. This characterization of the epithermal neutron spectrum is used in the k0-method of NAA, implemented at the SCN Pitesti. Neutron spectrum parameters were determined in the inner irradiation channel XC-1 and for outer irradiation channels: Beryllium J-6, Beryllium J-7, and Beryllium K-11. For α and f parameter verification a standard reference material denominated ECRM379-1 was analyzed using k0 standardization.

  3. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    NASA Astrophysics Data System (ADS)

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy, Irwan, M. N.

    2014-09-01

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of 134Cs, 137Cs, 152Eu, 54Mn, 58Co, 60Co and 65Zn. The leachability test shows a small concentrations (<1 Bq/l) of 152Eu and 134Cs were leached out from the spent resin while 60Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  4. Triga Mark III Reactor Operating Power and Neutron Flux Study by Nuclear Track Methodology

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Golzarri, J. I.; Raya-Arredondo, R.; Cruz-Galindo, S.; Sajo-Bohus, L.

    The operating power of a TRIGA Mark III reactor was studied using Nuclear Track Methodology (NTM). The facility has a Highly Enriched Uranium core that provides a neutron flux of around 2 x 1012 n cm-2 s-1 in the TO-2 irradiation channel. The detectors consisted of a Landauer® CR-39 (allyl diglycol polycarbonate) chip covered with a 3 mm Plexiglas® converter. After irradiation, the detectors were chemically etched in a 6.25M-KOH solution at 60±1 °C for 6 h. Track density was determined by a custom-made Digital Image Analysis System. The results show a direct proportionality between reactor power and average nuclear track density for powers in the range 0.1-7 kW. Data reproducibility and relatively low uncertainty (±3%) were achieved. NTM is a simple, fast and reliable technique that can serve as a complementary procedure to measure reactor operating power. It offers the possibility of calibrating the neutron flux density in any low power reactor.

  5. Testing the applicability of the k0-NAA method at the MINT's TRIGA MARK II reactor

    NASA Astrophysics Data System (ADS)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-08-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k0 method has become the preferred standardization method of NAA ( k0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters ( α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k0-NAA method at the MINT.

  6. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    SciTech Connect

    Espinosa, G. Golzarri, J. I.; Raya-Arredondo, R.; Cruz-Galindo, S.; Sajo-Bohus, L.

    2015-07-23

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  7. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Golzarri, J. I.; Raya-Arredondo, R.; Cruz-Galindo, S.; Sajo-Bohus, L.

    2015-07-01

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 1012 n cm-2 s-1, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer® PADC as neutron detection material, covered by 3 mm Plexiglas® as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  8. Extraction of pure thermal neutron beam for the proposed PGNAA facility at the TRIGA research reactor of AERE, Savar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Alam, Sabina; Zaman, M. A.; Islam, S. M. A.; Ahsan, M. H.

    1993-10-01

    A study on collimators and filters for the design of a spectrometer for prompt gamma neutron activation analysis (PGNAA) at one of the radial beamports of the TRIGA Mark II reactor at AERE, Savar has been carried out. On the basis of this study a collimator and a filter have been designed for the proposed PGNAA facility. Calculations have been done for measuring neutron flux at various positions of the core of the reactor using the computer code TRIGAP. Gamma dose in the core of the reactor has also been measured experimentally using TLD technique in the present work.

  9. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    NASA Astrophysics Data System (ADS)

    Abdullah, Y.; Hamid, N. A.; Mansor, M. A.; Ahmad, M. H. A. R. M.; Yusof, M. R.; Yazid, H.; Mohamed, A. A.

    2013-06-01

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  10. Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz

    SciTech Connect

    Ziegner, Markus; Schmitz, Tobias; Hampel, Gabriele; Khan, Rustam; Blaickner, Matthias; Palmans, Hugo; Sharpe, Peter; Böck, Helmuth

    2014-11-01

    Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. Methods: The depletion calculation code ORIGEN2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a MCNP5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established ATTILA model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. Results: The MCNP5 simulated neutron spectrum and source strength are found to be in good agreement with the previous ATTILA model whereas the photon production is much lower. Both MCNP5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the MCNP5 simulations and experiments demonstrates that the ATTILA model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural

  11. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    PubMed

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor. PMID:27552124

  12. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield.

    PubMed

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Böck, Helmuth; Steinhauser, Georg

    2011-11-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10(9)cm(-2)s(-1) at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. PMID:21646026

  13. Conversion of TRIGA research reactors from high-enriched- to low-enriched-uranium fuels: owner/operator view

    SciTech Connect

    Feltz, D.E.

    1986-01-01

    In June 1985, the US Nuclear Regulatory Commission (NRC) commissioners issued a four-point directive to the NRC staff concerning the conversion of research reactors from the use of high-enriched-uranium (HEU) to low-enriched-uranium (LEU) fuels. As a result of this directive, the earlier concerns of the research reactor community that were presented to the NRC during the comment period of the 1984 proposed rule on HEU-LEU conversion must be dealt with now. This paper discusses the items of most concern to HEU TRIGA owner/operators for conversion to LEU fuel.

  14. Simulation of Collimator for Neutron Imaging Facility of TRIGA MARK II PUSPATI Reactor

    NASA Astrophysics Data System (ADS)

    Zin, Muhammad Rawi Mohamed; Jamro, Rafhayudi; Yazid, Khairiah; Hussain, Hishamuddin; Yazid, Hafizal; Ahmad, Megat Harun Al Rashid Megat; Azman, Azraf; Mohamad, Glam Hadzir Patai; Hamzah, Nai'im Syaugi; Abu, Mohamad Puad

    Neutron Radiography facility in TRIGA MARK II PUSPATI reactor is being upgraded to obtain better image resolution as well as reducing exposure time. Collimator and exposure room are the main components have been designed for fabrication. This article focuses on the simulation part that was carried out to obtain the profile of collimated neutron beam by utilizing the neutron transport protocol code in the Monte Carlo N-Particle (MCNP) software. Particular interest is in the selection of materials for inlet section of the collimator. Results from the simulation indicates that a combination of Bismuth and Sapphire, each of which has 5.0 cm length that can significantly filter both the gamma radiation and the fast neutrons. An aperture made of Cadmium with 1.0 cm opening diameter provides thermal neutron flux about 1.8 x108 ncm-2s-1 at the inlet, but reduces to 2.7 x106 ncm-2s-1 at the sample plane. Still the flux obtained is expected to reduces exposure time as well as gaining better image resolution.

  15. Critical heat flux in natural convection cooled TRIGA reactors with hexagonal bundle

    SciTech Connect

    Yang, J.; Avery, M.; De Angelis, M.; Anderson, M.; Corradini, M.; Feldman, E. E.; Dunn, F. E.; Matos, J. E.

    2012-07-01

    A three-rod bundle Critical Heat Flux (CHF) study at low flow, low pressure, and natural convection condition has been conducted, simulating TRIGA reactors with the hexagonally configured core. The test section is a custom-made trefoil shape tube with three identical fuel pin heater rods located symmetrically inside. The full scale fuel rod is electrically heated with a chopped-cosine axial power profile. CHF experiments were carried out with the following conditions: inlet water subcooling from 30 K to 95 K; pressure from 110 kPa to 230 kPa; mass flux up to 150 kg/m{sup 2}s. About 50 CHF data points were collected and compared with a few existing CHF correlations whose application ranges are close to the testing conditions. Some tests were performed with the forced convection to identify the potential difference between the CHF under the natural convection and forced convection. The relevance of the CHF to test parameters is investigated. (authors)

  16. Production of 37Ar in The University of Texas TRIGA reactor facility

    SciTech Connect

    Egnatuk, Christine M.; Lowrey, Justin; Biegalski, S.; Bowyer, Ted W.; Haas, Derek A.; Orrell, John L.; Woods, Vincent T.; Keillor, Martin E.

    2011-06-19

    The detection of {sup 37}Ar is important for on-site inspections for the Comprehensive Nuclear-Test-Ban Treaty monitoring. In an underground nuclear explosion this radionuclide is produced by {sup 40}Ca(n,{alpha}){sup 37}Ar reaction in surrounding soil and rock. With a half-life of 35 days, {sup 37}Ar provides a signal useful for confirming the location of an underground nuclear event. An ultra-low-background proportional counter developed by Pacific Northwest National Laboratory is used to detect {sup 37}Ar, which decays via electron capture. The irradiation of Ar gas at natural enrichment in the 3L facility within the Mark II TRIGA reactor facility at The University of Texas at Austin provides a source of {sup 37}Ar for the calibration of the detector. The {sup 41}Ar activity is measured by the gamma activity using an HPGe detector after the sample is removed from the core. Using the {sup 41}Ar/{sup 37}Ar production ratio and the {sup 41}Ar activity, the amount of {sup 37}Ar created is calculated. The {sup 41}Ar decays quickly (half-life of 109.34 minutes) leaving a radioactive sample of high purity {sup 37}Ar and only trace levels of {sup 39}Ar.

  17. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  18. Conceptual Design of a Clinical BNCT Beam in an Adjacent Dry Cell of the Jozef Stefan Institute TRIGA Reactor

    SciTech Connect

    Maucec, Marko

    2000-11-15

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further, a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as 'pressed-only' low-density Al{sub 2}O{sub 3} and AlF{sub 3}, are considered. The proposed version of the BNCT facility, with PbF{sub 2} as the epithermal neutron filter/moderator, provides an epithermal neutron flux of {approx}1.1 x 10{sup 9} n/cm{sup 2}.s, thus enabling patient irradiation times of <60 min. With reasonably low fast neutron and photon contamination ([overdot]D{sub nfast}/{phi}{sub epi} < 5 x 10{sup -13} Gy.cm{sup 2}/n and [overdot]D{sub {gamma}} /{phi}{sub epi} < 3 x 10{sup -13} Gy.cm{sup 2}/n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs.

  19. Estimation of (41)Ar activity concentration and release rate from the TRIGA Mark-II research reactor.

    PubMed

    Hoq, M Ajijul; Soner, M A Malek; Rahman, A; Salam, M A; Islam, S M A

    2016-03-01

    The BAEC TRIGA research reactor (BTRR) is the only nuclear reactor in Bangladesh. Bangladesh Atomic Energy Regulatory Authority (BAERA) regulations require that nuclear reactor licensees undertake all reasonable precautions to protect the environment and the health and safety of persons, including identifying, controlling and monitoring the release of nuclear substances to the environment. The primary activation product of interest in terms of airborne release from the reactor is (41)Ar. (41)Ar is a noble gas readily released from the reactor stacks and most has not decayed by the time it moves offsite with normal wind speed. Initially (41)Ar is produced from irradiation of dissolved air in the primary water which eventually transfers into the air in the reactor bay. In this study, the airborne radioisotope (41)Ar generation concentration, ground level concentration and release rate from the BTRR bay region are evaluated theoretically during the normal reactor operation condition by several governing equations. This theoretical calculation eventually minimizes the doubt about radiological safety to determine the radiation level for (41)Ar activity whether it is below the permissible limit or not. Results show that the estimated activity for (41)Ar is well below the maximum permissible concentration limit set by the regulatory body, which is an assurance for the reactor operating personnel and general public. Thus the analysis performed within this paper is so much effective in the sense of ensuring radiological safety for working personnel and the environment. PMID:26736180

  20. Material Sample Collection with Tritium and Gamma Analyses at the University of Illinois's Nuclear Research Laboratory TRIGA Nuclear Research Reactor

    SciTech Connect

    Charters, G.; Aggarwal, S.

    2006-07-01

    The University of Illinois in Champaign-Urbana has an Advanced TRIGA reactor facility which was built in 1960 and operated until August 1998. The facility was shutdown for a variety of reasons, primarily due to a lack of usage by the host institution. In 1998 the reactor went into SAFSTOR and finally shipped its fuel in 2004. At the present time a site characterization and decommissioning plan are in process and hope to be submitted to the NRC in early 2006. The facility had to be fully characterized and part of this characterization involved the collection and analysis of samples. This included various solid media such as, concrete, graphite, metals, and sub-slab surface soils for immediate analysis of Activation and Tritium contamination well below the easily measured surfaces. This detailed facility investigation provided a case to eliminate historical unknowns, increasing the confidence for the segregation and packaging of high specific activity Low Level Radwaste (LLRW), from which a strategy of 'surgical-demolition' and segregation could be derived thus maximizing the volumes of 'clean material'. Performing quantitative volumetric concrete or metal radio-analyses safer and faster (without lab intervention) was a key objective of this dynamic characterization approach. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilises or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the are a around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated that needs to be treated and stabilized before disposal. The goal was to avoid those field activities that could cause this type of release. Therefore

  1. Implementation of k0-INAA standardisation at ITU TRIGA Mark II research reactor, Turkey based on k0-IAEA software

    NASA Astrophysics Data System (ADS)

    Esen, Ayse Nur; Haciyakupoglu, Sevilay

    2016-02-01

    The purpose of this study is to test the applicability of k0-INAA method at the Istanbul Technical University TRIGA Mark II research reactor. The neutron spectrum parameters such as epithermal neutron flux distribution parameter (α), thermal to epithermal neutron flux ratio (f) and thermal neutron flux (φth) were determined at the central irradiation channel of the ITU TRIGA Mark II research reactor using bare triple-monitor method. HPGe detector calibrations and calculations were carried out by k0-IAEA software. The α, f and φth values were calculated to be -0.009, 15.4 and 7.92·1012 cm-2 s-1, respectively. NIST SRM 1633b coal fly ash and intercomparison samples consisting of clay and sandy soil samples were used to evaluate the validity of the method. For selected elements, the statistical evaluation of the analysis results was carried out by z-score test. A good agreement between certified/reported and experimental values was obtained.

  2. 14. U.S. TRIGA users conference. Final program and summary of papers

    SciTech Connect

    1994-07-01

    The following papers were presented at the Conference: Early Development and Use of the TRIGA Reactor; Results of the MCNP Analysis of 20/20 LEU Fuel for the Oregon State University TRIGA Reactor; Upgradeable 2MW TRIGA Reactor Design for the Morocco Nuclear Energy Center McClellan Nuclear Radiation Center TRIGA Reactor: Four Years of Operations.

  3. Advances by the Integral Fast Reactor Program

    SciTech Connect

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs.

  4. Results of the MCNP analysis of 20/20 LEU fuel for the Oregon State University TRIGA Reactor

    SciTech Connect

    Dodd, B.; Klein, A.C.; Lewis, B.R.; Merritt, P.A.

    1995-12-31

    The Monte Carlo Neutron/Photon (MCNP) code has been used to perform the neutronics analysis required to support revision of the Oregon State University TRIGA Reactor (OSTR) Safety Analysis Report (SAR). The SAR revision is a necessary part of the preparation of the application for authorization to convert the OSTR core from High Enriched Uranium (HEU) FLIP fuel to a Low Enriched Uranium (LEU) fuel. Before MCNP was applied to LEU-fueled cores, it was first validated by comparing MCNP calculations on FLIP cores to historical, measured values for these cores. The LEU fuel considered was the 20 wt%, 20% enriched (20/20) TRIGA fuel approved by the Nuclear Regulatory Commission (NRC) in NUREG 1282. The results show that the 20/20 fuel is much more reactive than FLIP fuel. A just-critical OSTR FLIP core contains 65 elements, while a just-critical 20/20 core only needs 51 elements. Similarly, the current operational FLIP core consists of 88 elements, whereas a 20/20 core giving the same core excess only requires 65 elements. This presents a significant problem for the OSTR because of potentially significant neutron flux loss in experimental facilities. Further analysis shows that to achieve a full size operational core of about 90 LEU elements the erbium content of the LEU fuel would need to be increased from 0.47wt% to about 0.85 wt%.

  5. Results of the MCNP analysis of 20/20 LEU fuel for the Oregon State University TRIGA reactor

    SciTech Connect

    Dodd, B.; Klein, A.C.; Lewis, B.R.; Merritt, P.A

    1994-07-01

    The Monte Carlo Neutron/Photon (MCNP) code has been used to perform the neutronics analysis required to support revision of the Oregon State University TRIGA Reactor (OSTR) Safety Analysis Report (SAR). The SAR revision is a necessary part of the preparation of the application for authorization to convert the OSTR core from High Enriched Uranium (HEU) FLIP fuel to a Low Enriched Uranium (LEU) fuel. Before MCNP was applied to LEU-fueled cores, it was first validated by comparing MCNP calculations on FLIP cores to historical, measured values for these cores. The LEU fuel considered was the 20 wt%, 20 % enriched (20/20) TRIGA fuel approved by the Nuclear Regulatory Commission (NRC) in NUREG 1282. The results show that the 20/20 fuel is much more reactive than FLIP fuel. A just-critical OSTR FLIP core contains 65 elements, while a just-critical 20/20 core only needs 51 elements. Similarly, the current operational FLIP core consists of 88 elements, whereas a 20/20 core giving the same core excess only requires 65 elements. This presents a significant problem for the OSTR because of potentially significant neutron flux loss in experimental facilities. Further analysis shows that to achieve a full size operational core of about 90 LEU elements the erbium content of the LEU fuel would need to be increased from 0.47 wt% to about 0.85 wt%. (author)

  6. Analytical analyses of startup measurements associated with the first use of LEU fuel in Romania's 14-MW TRIGA reactor

    SciTech Connect

    Bretscher, M.M.; Snelgrove, J.L. ); Ciocanescu, M. )

    1992-01-01

    The 14-MW TRIGA steady state reactor (SSR) is located in Pitesti, Romania. Beginning with an HEU core (10 wt% U), the reactor first went critical in November 1979 but was shut down ten years later because of insufficient excess reactivity. Last November the Institute for Nuclear Research (INR), which operates the SSR, received from the ANL RERTR program a shipment of 125 LEU pins fabricated by General Atomics and of the same geometry as the original fuel but with an enrichment of 19.7% 235U and a loading of 45 wt% U. Using 100 of these pins, four LEU clusters, each containing a 5 x 5 square array of fuel rods, were assembled. These four LEU clusters replaced the four most highly burned HEU elements in the SSR. The reactor resumed operations last February with a 35-element mixed HEU/LEU core configuration. In preparation for full power operation of the SSR with this mixed HEU/LEU core, a number of measurements were made. These included control rod calibrations, excess reactivity determinations, worths of experiment facilities, reaction rate distributions, and themocouple measurements of fuel temperatures as a function of reactor power. This paper deals with a comparison of some of these measured reactor parameters with corresponding analytical calculations.

  7. Determination of the irradiation field at the research reactor TRIGA Mainz for BNCT.

    PubMed

    Nagels, S; Hampel, G; Kratz, J V; Aguilar, A L; Minouchehr, S; Otto, G; Schmidberger, H; Schütz, C; Vogtländer, L; Wortmann, B

    2009-07-01

    For the application of the BNCT for the excorporal treatment of organs at the TRIGA Mainz, the basic characteristics of the radiation field in the thermal column as beam geometry, neutron and gamma ray energies, angular distributions, neutron flux, as well as absorbed gamma and neutron doses must be determined in a reproducible way. To determine the mixed irradiation field thermoluminescence detectors (TLD) made of CaF(2):Tm with a newly developed energy-compensation filter system and LiF:Mg,Ti materials with different (6)Li concentrations and different thicknesses as well as thin gold foils were used. PMID:19380234

  8. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    NASA Astrophysics Data System (ADS)

    Dris, Zakaria bin; Mohamed, Abdul Aziz bin; Hamid, Nasri A.; Azman, Azraf; Ahmad, Megat Harun Al Rashid Megat; Jamro, Rafhayudi; Yazid, Hafizal

    2016-01-01

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried out using a neutron spectrometer.

  9. Calculation of the Activity Inventory for the TRIGA Reactor at the Medical University of Hannover (MHH) in Preparation for Dismantling the Facility

    SciTech Connect

    Hampel, G.; Scheller, F.; Bernnat, W.; Pfister, G.; Klaux, U.; Gerhards, E.

    2002-02-25

    It is planned to dismantle the TRIGA reactor facility at the Medical University of Hannover (MHH). Radioactive waste resulting from this dismantling will be disposed of externally, any remaining materials as well as the building structures will then be measured to ensure there is no residual activity. In preparation for this and to plan the techniques which will be used to dismantle the reactor, calculations were made in order to determine the amount of activity and the dose rates for the reactor tank and its inside components as well as for the biological shield and its radial beam tube.

  10. Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Fourmentel, Damien; Barbot, Loïc; Villard, Jean-François; Kaiba, Tanja; Gašper, Žerovnik; Snoj, Luka

    2015-12-01

    The characterization of experimental locations of a research nuclear reactor implies the determination of neutron and photon flux levels within, with the best achievable accuracy. In nuclear reactors, photon fluxes are commonly calculated by Monte Carlo simulations but rarely measured on-line. In this context, experiments were conducted with a miniature gas ionization chamber (MIC) based on miniature fission chamber mechanical parts, recently developed by the CEA (French Atomic Energy and Alternative Energies Commission) irradiated in the core of the Jožef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia. The aim of the study was to compare the measured MIC currents with calculated currents based on simulations with the MCNP6 code. A discrepancy of around 50% was observed between the measured and the calculated currents; in the latter taking into consideration only the prompt photon field. Further experimental measurements of MIC currents following reactor SCRAMs (reactor shutdown with rapid insertions of control rods) provide evidence that over 30% of the total measured signal is due to the delayed photon field, originating from fission and activation products, which are untreated in the calculations. In the comparison between the measured and calculated values, these findings imply an overall discrepancy of less than 20% of the total signal which is still unexplained.

  11. Design of neutron beams for neutron capture therapy using a 300-kW slab TRIGA reactor

    SciTech Connect

    Liu, H.B.

    1995-03-01

    A design for a slab reactor to produce an epithermal neutron beam and a thermal neutron beam for use in neutron capture therapy (NCT) is described. A thin reactor with two large-area faces, a ``slab`` reactor, was planned using eighty-six 20% enriched TRIGA fuel elements and four B{sub 4}C control rods. Two neutron beams were designed: an epithermal neutron beam from one face and a thermal neutron beam from the other. The planned facility, based on this slab-reactor core with a maximum operating power of 300 kW, will provide an epithermal neutron beam of 1.8 {times} 10{sup 9} n{sub epi}/cm{sup 2}{center_dot}s intensity with low contamination by fast neutrons and gamma rays and a thermal neutron beam of 9.0 {times} 10{sup 9}n{sub th}/cm{sup 2}{center_dot}s intensity with low fast-neutron dose and gamma dose. Both neutron beams will be forward directed. Each beam can be turned on and off independently through its individual shutter. A complete NCT treatment using the designed epithermal or thermal neutron beam would take 30 or 20 min, respectively, under the condition of assuming 10{mu}g {sup 10}B/g in the blood. Such exposure times should be sufficiently short to maintain near-optimal target (e.g., {sup 10}B, {sup 157}Gd, and {sup 235}U) distribution in tumor versus normal tissues throughout the irradiation. With a low operating power of 300 kW, the heat generated in the core can be removed by natural convection through a pool of light water. The proposed design in this study could be constructed for a dedicated clinical NCT facility that would operate very safely.

  12. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    SciTech Connect

    Karim, Julia Abdul

    2008-05-20

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained.

  13. Criticality safety assessment of a TRIGA reactor spent-fuel pool under accident conditions

    SciTech Connect

    Glumac, B; Ravnik, M.; Logar, M.

    1997-02-01

    Additional criticality safety analysis of a pool-type storage for TRIGA spent fuel at the Jozef Stefan Institute in Ljubljana, Slovenia, is presented. Previous results have shown that subcriticality is not guaranteed for some postulated accidents (earthquake with subsequent fuel rack disintegration resulting in contact fuel pitch) under the assumption that the fuel rack is loaded with fresh 12 wt% standard fuel. To mitigate this deficiency, a study was done on replacing a certain number of fuel elements in the rack with cadmium-loaded absorber rods. The Monte Carlo computer code MCNP4A with an ENDF/B-V library and detailed three-dimensional geometrical model of the spent-fuel rack was used for this purpose. First, a minimum critical number of fuel elements was determined for contact pitch, and two possible geometries of rack disintegration were considered. Next, it was shown that subcriticality can be ensured when pitch is decreased from a rack design pitch of 8 cm to contact, if a certain number of fuel elements (8 to 20 out of 70) are replaced by absorber rods, which are uniformly mixed into the lattice. To account for the possibility that random mixing of fuel elements and absorber rods can occur during rack disintegration and result in a supercritical configuration, a probabilistic study was made to sample the probability density functions for random absorber rod lattice loadings. Results of the calculations show that reasonably low probabilities for supercriticality can be achieved (down to 10{sup {minus}6} per severe earthquake, which would result in rack disintegration and subsequent maximum possible pitch decrease) even in the case where fresh 12 wt% standard TRIGA fuel would be stored in the spent-fuel pool.

  14. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.

    1994-12-01

    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  15. Design, construction, and demonstration of a neutron beamline and a neutron imaging facility at a Mark-I TRIGA reactor

    NASA Astrophysics Data System (ADS)

    Craft, Aaron E.

    The fleet of research and training reactors is aging, and no new research reactors are planned in the United States. Thus, there is a need to expand the capabilities of existing reactors to meet users' needs. While many research reactors have beam port facilities, the original design of the United States Geological Survey TRIGA Reactor (GSTR) did not include beam ports. The MInes NEutron Radiography (MINER) facility developed by this thesis and installed at the GSTR provides new capabilities for both researchers and students at the Colorado School of Mines. The facility consists of a number of components, including a neutron beamline and beamstop, an optical table, an experimental enclosure and associated interlocks, a computer control system, a multi-channel plate imaging detector, and the associated electronics. The neutron beam source location, determined through Monte Carlo modeling, provides the best mixture of high neutron flux, high thermal neutron content, and low gamma radiation content. A Monte Carlo n-Particle (MCNP) model of the neutron beam provides researchers with a tool for designing experiments before placing objects in the neutron beam. Experimental multi-foil activation results, compared to calculated multi-foil activation results, verify the model. The MCNP model predicts a neutron beamline flux of 2.2*106 +/- 6.4*105 n/cm2-s based on a source particle rate determined from the foil activation experiments when the reactor is operating at a power of 950 kWt with the beam shutter fully open. The average cadmium ratio of the beamline is 7.4, and the L/D of the neutron beam is approximately 200+/-10. Radiographs of a sensitivity indicator taken using both the digital detector and the transfer foil method provide one demonstration of the radiographic capabilities of the new facility. Calibration fuel pins manufactured using copper and stainless steel surrogate fuel pellets provide additional specimens for demonstration of the new facility and offer a

  16. Plant maintenance and advanced reactors, 2006

    SciTech Connect

    Agnihotri, Newal

    2006-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Advanced plants to meet rising expectations, by John Cleveland, International Atomic Energy Agency, Vienna; A flexible and economic small reactor, by Mario D. Carelli and Bojan Petrovic, Westinghouse Electric Company; A simple and passively safe reactor, by Yury N. Kuznetsov, Research and Development Institute of Power Engineering (NIKIET), Russia; Gas-cooled reactors, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; ISI project managment in the PRC, by Chen Chanbing, RINPO, China; and, Fort Calhoun refurbishment, by Sudesh Cambhir, Omaha Public Power District.

  17. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    PubMed

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. PMID:26315099

  18. Adaptation of triple axis neutron spectrometer for SANS measurements using alumina samples at TRIGA reactor of Bangladesh

    NASA Astrophysics Data System (ADS)

    Ahmed, F. U.; Kamal, I.; Yunus, S. M.; Datta, T. K.; Azad, A. K.; Zakaria, A. K. M.; Goyal, P. S.

    2005-09-01

    Double crystal method known as Bonse and Hart's technique has been employed to develop small angle neutron scattering (SANS) facility on a triple axis neutron spectrometer at TRIGA Mark II (3 MW) research reactor of Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh. Two Si(1 1 1) crystals with very small mosaic spread ∼1 min have been used for this purpose. At an incident neutron wavelength of 1.24 Å, this device is useful for SANS in the Q range between 1.6×10 -3 and 10 -1 Å -1. This Q range allows investigating particle sizes and interparticle correlations on a length scale of ∼200 Å. Results of SANS experiments on three alumina (Al 2O 3) samples as performed using above setup are presented. It is seen that Al 2O 3 particles, indeed, scatter neutrons in regions of small angles. It is also seen that scattering is different for different samples showing that it changes with a change in particle size.

  19. Active in-core irradiation of SiC JFETs at 300 C in a TRIGA nuclear reactor

    SciTech Connect

    McGarrity, J.; Scozzie, C.; Blackburn, J.; DeLancey, M.

    1996-12-31

    In this paper the authors demonstrate that SiC transistors have the potential to operate in the severe high temperature and radiation environments of commercial and space nuclear power sources. 6H-SiC FETs were exposed to neutron fluxes and gamma dose rates as high as 1.6 {times} 10{sup 12} n/cm{sup 2}/sec and 3.8 {times} 10{sup 4} rad(Si)/sec while they were maintained under bias at both 300 C and room temperature within the core of a TRIGA reactor operated at 200 kW power level. The radiation exposure was continuous and the bias on the devices was interrupted only to record the current-voltage characteristics at various accumulated neutron fluences from 10{sup 13} to 5 {times} 10{sup 15} n/cm{sup 2}. No significant degradation in the device characteristics was observed until the total neutron fluence exceeded 10{sup 15} n/cm{sup 2} for irradiation at 25 C, and no significant changes were observed even at 5 {times} 10{sup 15} n/cm{sup 2} at 300 C.

  20. Analysis of higher than normal fuel temperatures in the hexagonal geometry TRIGA reactor

    SciTech Connect

    Hughes, D.; Boyle, P.; Levine, S.H.

    1996-12-31

    The 1-MW Pennsylvania State University TRIGA has hexagonal geometry and a water-filled central thimble. It was operated with all 8.5 wt% U fuel from December 1965 until July 1972, when 12 wt% U fuel elements replaced the 8.5 wt% U fuel in the centermost ring, the B ring. Although the power density of the 12 wt% U fuel was {approximately}35% greater than the corresponding 8.5 wt% U fuel, its maximum steady-state fuel temperature was always below 500{degrees}C when operating at 1 MW. Since that time, the core has been successfully loaded by placing six 12 wt% U fuel elements in the B ring. The used 12 wt% U fuel moved outward. Recently, however, a new instrumented 12 wt% U fuel element initially read a much higher fuel temperature than all previous similar fuel elements. The purpose of this paper is to present the calculations and experiments performed to correlate calculations with experimental data and to determine the cause of the higher fuel temperature for this element.

  1. Challenges in the Development of Advanced Reactors

    SciTech Connect

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  2. 12. U.S. TRIGA users conference. Papers and abstracts

    SciTech Connect

    1990-07-01

    The Conference presentations were devoted to the following topics: new developments and improvements, including modifications of TRIGA reactors and equipment; experiments with TRIGA reactors (Neutron Radiography); radiochemistry, radioisotope production and beam irradiations (experiment applications, simulation); reactor physics - fuel utilization; reactor operation and maintenance experience; safety aspects, licensing and radiation protection.

  3. Development of TRIGA-based experimental device for fiber optics in-core instrumentation testing for VHTRs

    SciTech Connect

    Johns, J. M.; Tsvetkov, P. V.

    2012-07-01

    Given the harsh environments of high temperature reactors, new in-core instrumentation has to be developed, since existing approaches may fail prematurely in VHTRs. The paper discusses ongoing efforts to support progress of suitable advanced in-core instrumentation technologies and develop an experimental approach for evaluation of their performance within VHTRs via emulation of VHTR in-core conditions in TRIGA reactors. Successful completion of the presented computational analysis concludes the first phase of the project. As demonstrated, it is proposed to use a high temperature furnace with fluence equivalency in operating TRIGA reactors. (authors)

  4. Deployment of a three-dimensional array of Micro-Pocket Fission Detector triads (MPFD3) for real-time, in-core neutron flux measurements in the Kansas State University TRIGA Mark-II Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Ohmes, Martin Francis

    A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

  5. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    SciTech Connect

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  6. Irradiation Facilities at the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-12-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

  7. Thermal-Hydraulic Analysis of the 3-MW TRIGA MARK-II Research Reactor Under Steady-State and Transient Conditions

    SciTech Connect

    Huda, M.Q.; Bhuiyan, S.I.; Chakrobortty, T.K.; Sarker, M.M.; Mondal, M.A.W

    2001-07-15

    Important thermal-hydraulic parameters of the 3-MW TRIGA MARK-II research reactor operating under both steady-state and transient conditions are reported. Neutronic analyses were performed by using the CITATION diffusion code and the MCNP4B2 Monte Carlo code. The output of CITATION and MCNP4B2 were input to the PARET thermal-hydraulic code to study the steady-state and transient thermal-hydraulic behavior of the reactor. To benchmark the PARET model, data were obtained from different measurements performed by thermocouples in the instrumented fuel (IF) rod during the steady-state operation both under forced- and natural-convection mode and compared with the calculation. The mass flow rates needed for input to PARET were taken from the Final Safety Analysis Report for a downward forced coolant flow equivalent to 3500 gal/min. For natural convection cooling of the reactor, the mass flow rate was generated using the NCTRIGA code. Peak fuel temperatures measured by the thermocouples in the IF rods at different power levels of the TRIGA core were compared with the values calculated by PARET. The axial distribution of the temperatures of the fuel centerline, fuel surface, and the cladding surface in the hot channel were calculated for the reactor operating at the full-power level. Fuel surface heat flux and heat transfer coefficients for the hot channel were also calculated for the reactor operating at the full-power level. The investigated results were found to be in good agreement with the experimental and operational values. The testing of the PARET model calculations through benchmarking the available TRIGA experimental and operational data for pulse-mode operations showed that PARET can successfully be used to analyze the transient behavior of the reactor. Major transient parameters, such as peak power and prompt energy released after pulse, full-width at half-maximum of pulse peak, and maximum fuel centerline temperatures for different fuel elements at different

  8. Advanced absorber assembly design for breeder reactors

    SciTech Connect

    Pitner, A.L.; Birney, K.R.

    1980-01-01

    An advanced absorber assembly design has been developed for breeder reactor control rod applications that provides for improved in-reactor performance, longer lifetimes, and reduced fabrication costs. The design comprises 19 vented pins arranged in a circular array inside of round duct tubes. The absorber material is boron carbide; cladding and duct components are constructed from the modified Type 316 stainless steel alloy. Analyses indicate that this design will scram 30 to 40% faster than the reference FFTF absorber assembly. The basic design characteristics of this advanced FFTF absorber assembly are applicable to large core breeder reactor design concepts.

  9. Advanced Catalytic Hydrogenation Retrofit Reactor

    SciTech Connect

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  10. Advances in Tandem Mirror fusion power reactors

    SciTech Connect

    Perkins, L.J.; Logan, B.G.

    1986-05-20

    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  11. Advanced PPA Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Aske, James; Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA s Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development work.

  12. The Design and Construction of a Cold Neutron Source for Use in the Cornell University Triga Reactor

    NASA Astrophysics Data System (ADS)

    Young, Lydia Jane

    A cold neutron source has been designed and constructed for insertion into the 6"-radial beam port of the Cornell University TRIGA reactor for use with a neutron guide tube system. The main differences between this cold source and other existing sources are the use of heat conduction as the method of cooling and the use of mesitylene (1,3,5 -trimethylbenzene; melting point, 228(DEGREES)K; boiling point, 437(DEGREES)K) as the moderating material. This thesis describes the design and construction details of the cold neutron source, discusses its safety aspects, and presents its cryogenic performance curves and also the results of a test of its neutron moderating ability. A closed-cycle helium gas refrigerator, located outside the reactor shielding, cools the 500 cm('3) moderator chamber and its surrounding heat shield by heat conduction through two meters of copper and rod tubing. Moderator temperatures of 23 (+OR-) 3(DEGREES)K have been achieved. Mesitylene, a hydrocarbon, is an effective cold moderator because even at low temperatures the weakly hindered rotational motions of its methyl groups enable the absorption of small amounts of energy ((LESSTHEQ) 0.005 eV) from neutrons. The use of mesitylene simplifies the cold source design because it is a liquid at room temperature and thus, the usual design safeguards required for sources using gaseous moderators are not necessary. Moreover, the flammability of mesitylene is much smaller than that of hydrogen and methane, which are the commonly used cold moderators. A method of transferring and handling the mesitylene, a carcinogen, was devised to ensure minimal contact with this substance. To test the neutron moderating ability of the cold neutron source, an out-of-reactor neutron transmission experiment was performed with the moderator chamber first at room temperature and then at about 23(DEGREES)K. The results indicate that the neutron energy spectrum is strongly shifted to lower energies when the chamber is cold

  13. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kamal, I.; Yunus, S. M.; Datta, T. K.; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S.; Berliner, R.; Yelon, W. B.

    2016-07-01

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6mm thickness each. The monochromator design was optimized to provide maximum flux on 3mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30˚ (2θ) at each step and covers 120˚ in 4 steps. When the detector is placed at 1.6 m it subtends 20˚ at each step and covers 120˚ in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology

  14. 77 FR 42771 - License Renewal for the Dow Chemical TRIGA Research Reactor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... releases of radioactive effluents. As discussed in the NRC staff's safety evaluation, the systems and... that releases of radioactive material and personnel exposures were all well within applicable... Reactor Operations Gaseous radioactive effluents are discharged by the facility exhaust system via...

  15. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  16. Corrosion damage to the aluminum tank liner of the U.S. Geological Survey TRIGA Reactor

    SciTech Connect

    Perryman, R.E.; Millard, H.T. Jr.; Rusling, D.H.; Heifer, P.G.; Smith, W.L.

    1988-07-01

    During a routine maintenance small holes at the side of the tank of the reactor, penetrating the tank liner were discovered. Apparently the corrosion was acting from the back side of the tank forming the holes. The NRC was promptly notified and routine operations were suspended. Further investigation lead to the discovery of 74 holes, most of which were less than 1/8 inch in diameter with a few as large as 1/4 inch diameter. The results of an examination of the plate cut from the side of the tank correlated the absence of tar coating with the presence of numerous corrosion pits and craters. Along the welds in the corroded areas, parallel corrosion troughs existed on either side of the weld. Most of the pits and craters were too small to be detected by ultrasonic survey. In order to remedy the physical problem and be able to resume the reactor operation, a short-term strategy was adopted which involved covering the 74 holes with aluminum patches coated with epoxy. Reactor operations were resumed and over the next month four new holes were found and four patches applied. An inspection conducted after four months of operation found 28 new holes and the rate of leakage of water from the tank had increased to about 0.7 l/h. Because the rate of formation of holes seemed to be accelerating and the time required for maintenance was becoming unacceptable, it was decided to cease operation of the reactor until long-term repairs could be made. A new aluminum tank liner will be installed within the existing tank. A 2-inch wide annular void will then exist between the new and old liners. A pump will be installed inside the new liner to prevent the ground water from contacting it. The top of the void will be shielded to reduce the exposure to neutrons and gamma rays scattered from areas near the reactor. The reactor will be reinstalled at the bottom of the new liner on a plate which can be levelled from a distance of 10 feet.

  17. Neutron dosimetry and damage calculations for the TRIGA MARK-II reactor in Vienna

    NASA Astrophysics Data System (ADS)

    Weber, H. W.; Böck, H.; Unfried, E.; Greenwood, L. R.

    1986-02-01

    In order to improve the source characterization of the reactor, especially for recent irradiation experiments in the central irradiation thimble, neutron activation experiments were made on 16 nuclides and the neutron flux spectrum was adjusted using the computer code STAY'SL. The results for the total, thermal and fast neutron flux density at a reactor power of 250 kW are as follows: 2.1 × 10 17, 6.1 × 10 16 ( E < 0.55 eV), 7.6 × 10 16 ( E > 0.1 MeV) and 4.0 × 10 16 ( E > 1 MeV) m -2 s -1. respectively. Calculated damage energy cross sections and gas production rates are presented for selected elements.

  18. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect

    BOWEN, W.W.

    1999-11-08

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FFTF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This document reflects the 1 Oct 1999 baseline.

  19. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect

    GANTT, D.A.

    2000-01-12

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FETF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This revision reflects the 19 Oct 1999 baseline.

  20. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    SciTech Connect

    Maskin, Mazleha; Tom, Phongsakorn Prak; Lanyau, Tonny Anak; Saad, Mohamad Fauzi; Ismail, Ahmad Razali; Abu, Mohamad Puad Haji; Brayon, Fedrick Charlie Matthew; Mohamed, Faizal

    2014-02-12

    As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia.

  1. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    NASA Astrophysics Data System (ADS)

    Maskin, Mazleha; Tom, Phongsakorn Prak; Lanyau, Tonny Anak; Brayon, Fedrick Charlie Matthew; Mohamed, Faizal; Saad, Mohamad Fauzi; Ismail, Ahmad Razali; Abu, Mohamad Puad Haji

    2014-02-01

    As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia.

  2. Methods of reducing liquid effluent from the OSU TRIGA MKII Reactor

    SciTech Connect

    Higginbotham, J.F.; Dodd, B.; Pratt, D.S.; Smith, S.; Anderson, T.V.

    1992-07-01

    In 1991, the OSU Radiation Center implemented a program to minimize the liquid effluent generated by the reactor facility. The goal of program is to become a 'zero' release facility with regards to routine liquid discharges. Only two liquid waste streams exist for the OSU reactor facility: discharges resulting from changing resin in the deminerializer and decontamination of equipment, primarily sample loading tubes. This paper describes a system which allows remote resin exchange to performed with the collection of all flush water. This water is then recycled for use as makeup for the primary water system. The service life of the resin is maximized by using a steam distillation unit as the source of makeup water to the deminerializer system instead of water coming directly from the City of Corvallis water supply. The second source of liquid waste water comes from the decontamination of the plastic loading tubes used to encapsulate samples. This process originally involved placing the tubes in a dishwasher and sending the discharge to a hold up tank. If the radionuclide concentrations in the tank were below the maximum permissible concentrations of 10CFR20 then it was released to the sanitary sewerage. This process was replaced in 1991 with a system which involved manual washing and rinsing of the tubes with the liquids being absorbed for disposal as solid waste. This paper will also describe the system which is being built to replace this process. It will use the dishwasher unit again but the liquid discharge will collected for absorption and disposal as solid waste. (author)

  3. Preliminary TRIGA fuel burn-up evaluation by means of Monte Carlo code and computation based on total energy released during reactor operation

    SciTech Connect

    Borio Di Tigliole, A.; Bruni, J.; Panza, F.; Alloni, D.; Cagnazzo, M.; Magrotti, G.; Manera, S.; Prata, M.; Salvini, A.; Chiesa, D.; Clemenza, M.; Pattavina, L.; Previtali, E.; Sisti, M.; Cammi, A.

    2012-07-01

    Aim of this work was to perform a rough preliminary evaluation of the burn-up of the fuel of TRIGA Mark II research reactor of the Applied Nuclear Energy Laboratory (LENA) of the Univ. of Pavia. In order to achieve this goal a computation of the neutron flux density in each fuel element was performed by means of Monte Carlo code MCNP (Version 4C). The results of the simulations were used to calculate the effective cross sections (fission and capture) inside fuel and, at the end, to evaluate the burn-up and the uranium consumption in each fuel element. The evaluation, showed a fair agreement with the computation for fuel burn-up based on the total energy released during reactor operation. (authors)

  4. Reliability assurance for regulation of advanced reactors

    SciTech Connect

    Fullwood, R.; Lofaro, R.; Samanta, P.

    1991-01-01

    The advanced nuclear power plants must achieve higher levels of safety than the first generation of plants. Showing that this is indeed true provides new challenges to reliability and risk assessment methods in the analysis of the designs employing passive and semi-passive protection. Reliability assurance of the advanced reactor systems is important for determining the safety of the design and for determining the plant operability. Safety is the primary concern, but operability is considered indicative of good and safe operation. This paper discusses several concerns for reliability assurance of the advanced design encompassing reliability determination, level of detail required in advanced reactor submittals, data for reliability assurance, systems interactions and common cause effects, passive component reliability, PRA-based configuration control system, and inspection, training, maintenance and test requirements. Suggested approaches are provided for addressing each of these topics.

  5. Reliability assurance for regulation of advanced reactors

    SciTech Connect

    Fullwood, R.; Lofaro, R.; Samanta, P.

    1991-12-31

    The advanced nuclear power plants must achieve higher levels of safety than the first generation of plants. Showing that this is indeed true provides new challenges to reliability and risk assessment methods in the analysis of the designs employing passive and semi-passive protection. Reliability assurance of the advanced reactor systems is important for determining the safety of the design and for determining the plant operability. Safety is the primary concern, but operability is considered indicative of good and safe operation. This paper discusses several concerns for reliability assurance of the advanced design encompassing reliability determination, level of detail required in advanced reactor submittals, data for reliability assurance, systems interactions and common cause effects, passive component reliability, PRA-based configuration control system, and inspection, training, maintenance and test requirements. Suggested approaches are provided for addressing each of these topics.

  6. Advances in FCC reactor technology

    SciTech Connect

    Schnaith, M.W.; Gilbert, A.T.; Lomas, D.A.; Myers, D.N.

    1995-09-01

    The riser termination device and the feed distribution system are the key elements that enable FCC reactor technology to achieve the high performance demanded in the 1990s and beyond. UOP`s development efforts have combined cold flow modeling and commercial optimization testing to produce new technology in both areas. A key differentiation of the UOP feed-catalyst contacting system is the use of a catalyst acceleration zone to moderate density and achieve plug flow before feed injection. Commercial data confirm the benefit and importance of elevated feed injection and proper catalyst environment in this three-phase system. A new high-performance Optimix feed nozzle has been developed and cold-flow tested and is currently undergoing commercial demonstration. New riser disengagement technology with prestripping has been extended to internal riser FCC units. The new disengager design will achieve at least 98% hydrocarbon containment. Cold-flow modeling has confirmed catalyst separation efficiency, and the design has been accepted for two FCC reactor revamps scheduled for mid-1995 and for 1996.

  7. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    NASA Astrophysics Data System (ADS)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  8. Corrosion in the aluminum containment tank at the Nuclear Center of Mexico TRIGA Mark III reactor

    SciTech Connect

    Mota, Juan Ramon

    1986-07-01

    The reactor developed a leak inside the exposure room discovered when it was opened for a routine inspection. This leak started to diminish immediately after it was found and disappeared completely in 2.5 months. The hydrostatic tests of the exposure room cooling water pipes and of the primary cooling system suction pipe proved that piping do not have leaks. A portion of the total volume of water was drained from the pool to conduct an inspection on the aluminum liner. Penetrant dye tests were initiated over welded Joints and walls. Welded Joints were all found to be in good condition but a total of 35 indications were reported on walls and concentrated on two main areas. A vacuum system was used to test for leakage. Seven indications were found to be perforations that crossed through the wall, fifteen indications did not cross through the wall but required repair and the rest were superficial irregularities. For the inspection of surfaces that remained covered by water, two methods were used. One was a television camera that was adapted to be used under water and hooked to a monitor and a videorecorder for close up inspection of the walls. The other consisted of submarine still color photography performed by divers. The evaluation of these inspections concluded that out of the 10 areas previously identified, only one presented the kind of problem that required repair. The last inspection performed was that using ultrasound techniques. Irregularities found did not require complete replacement of the aluminum liner. The repair procedures included the welding of aluminum plates over damaged areas and the injection of an effective insulating material (resin) to stop the corrosion mechanism.

  9. Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  10. 7. biennial U.S. TRIGA users' conference. Papers and abstracts

    SciTech Connect

    1980-07-01

    The conference covers the following topics: new developments in the TRIGA system; uses of microprocessors in control and monitoring and measurement of TRIGA performance parameters; safeguards, emergency planning, reactor standards; research facilities, fuel tests and calculations; TRIGA reactor parameters: emergency training.

  11. The advanced neutron source reactor: An overview

    SciTech Connect

    West, C.D.

    1990-01-01

    The Advanced Neutron Source (ANS) will be a new user facility for all kinds of neutron research, including neutron scattering, materials testing, materials analysis, isotope production and nuclear physics experiments. The centerpiece of the facility is to be the world's highest flux beam reactor. There will be beams of hot, cold and thermal neutrons for more than 40 simultaneous scattering and nuclear physics experiments. In addition, there will be irradiation positions and rabbit tubes for in-pile experiments, testing and isotopes production (including transuranium isotopes). To reduce technical risks and to minimize safety issues, the reactor design is based on technology already employed in existing research reactors. The fuel elements are annular assemblies of aluminum clad involute fuel plates, similar to the design of the High Flux Isotope Reactor (HFIR) at Oak Ridge and the Institut Laue-Langevin (ILL) Reactor in Grenoble. As is common with many other research reactors, the core is cooled, moderated and reflected by heavy water. The preferred fuel is U{sub 3}Si{sub 2} - a high-density fuel form developed by Argonne National Laboratory and Babcock and Wilcox that has been extensively tested in reactors in the United States, Europe and Japan. 7 figs., 2 tabs.

  12. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    PubMed

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  13. Analytical analyses of startup measurements associated with the first use of LEU fuel in Romania`s 14-MW TRIGA reactor

    SciTech Connect

    Bretscher, M.M.; Snelgrove, J.L.; Ciocanescu, M.

    1992-12-01

    The 14-MW TRIGA steady state reactor (SSR) is located in Pitesti, Romania. Beginning with an HEU core (10 wt% U), the reactor first went critical in November 1979 but was shut down ten years later because of insufficient excess reactivity. Last November the Institute for Nuclear Research (INR), which operates the SSR, received from the ANL RERTR program a shipment of 125 LEU pins fabricated by General Atomics and of the same geometry as the original fuel but with an enrichment of 19.7% 235U and a loading of 45 wt% U. Using 100 of these pins, four LEU clusters, each containing a 5 x 5 square array of fuel rods, were assembled. These four LEU clusters replaced the four most highly burned HEU elements in the SSR. The reactor resumed operations last February with a 35-element mixed HEU/LEU core configuration. In preparation for full power operation of the SSR with this mixed HEU/LEU core, a number of measurements were made. These included control rod calibrations, excess reactivity determinations, worths of experiment facilities, reaction rate distributions, and themocouple measurements of fuel temperatures as a function of reactor power. This paper deals with a comparison of some of these measured reactor parameters with corresponding analytical calculations.

  14. Summary of the mirror advanced reactor study

    SciTech Connect

    Logan, B.G.; Henning, C.D.; Carlson, G.A.; Gordon, J.D.; Maniscalco, J.A.; Kulcinski, G.L.; Perkins, L.J.; Parmer, J.F.; Bilton, J.R.; Glancy, J.E.

    1984-07-26

    The Mirror Advanced Reactor Study (MARS) is a conceptual design of a 1200-MWe commercial tandem mirror reactor for electricity and synfuels (methanol) production. Thermal barrier end plugs of the TMX-U/MFTF-B type allow steady-state ignition of a 130-m-long central-cell DT plasma. Compact, gridless direct converters supply all the plant auxiliary power. The simple lead-lithium eutectic-cooled blanket has high neutron energy multiplication (1.36) as well as a low tritium inventory (< 8 g), and it will not melt in accidents.

  15. Uncertainty quantification approaches for advanced reactor analyses.

    SciTech Connect

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  16. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  17. Mirror Advanced Reactor Study interim design report

    SciTech Connect

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  18. Measurement of DNA damage induced by irradiation with gamma-rays from a TRIGA Mark II research reactor in human cells using Fast Micromethod.

    PubMed

    Hassanein, Hamdy; Müller, Claudia I; Schlösser, Dietmar; Kratz, Karl-Ludwig; Senyuk, Olga F; Schröder, Heinz C

    2002-06-01

    The Fast Micromethod is a novel quick and convenient microplate assay for determination of DNA single-strand breaks. This method measures the rate of unwinding of cellular DNA upon exposure to alkaline conditions using a fluorescent dye which preferentially binds to double-stranded DNA. Here we applied this method to determine the levels of DNA single-strand breaks in HeLa cells induced by y-irradiation deriving from fission isotopes and activation products at the TRIGA Mark II research reactor in Mainz. An increased strand scission factor (SSF) value, which is indicative for DNA damage, was found at doses of 1 Gy and higher. A similar increase in SSF value, which further increased in a dose-dependent manner, was found in human peripheral blood mononuclear cells after irradiation with 6 MV X-rays from a linear accelerator to give a total exposure of 0.5 to 10 Gy. PMID:12064446

  19. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    PubMed

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature. PMID:1962281

  20. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  1. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  2. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.

    PubMed

    Schmitz, Tobias; Blaickner, Matthias; Schütz, Christian; Wiehl, Norbert; Kratz, Jens V; Bassler, Niels; Holzscheiter, Michael H; Palmans, Hugo; Sharpe, Peter; Otto, Gerd; Hampel, Gabriele

    2010-10-01

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also

  3. Prospects for the development of advanced reactors

    SciTech Connect

    Semenov, B.A.; Kupitz, J.; Cleveland, J.

    1992-12-31

    Energy supply is an important prerequisite for further socio-economic development, especially in developing countries where the per capita energy use is only a very small fraction of that in industrialized countries. Nuclear energy is an essentially unlimited energy resource with the potential to provide this energy in the form of electricity, district heat and process heat under environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide a tremendous amount of experience has been accumulated during development, licensing, construction and operation of nuclear power reactors. The experience forms a sound basis for further improvements. Nuclear programmes in many countries are addressing the development of advanced reactors which are intended to have better economics, higher reliability and improved safety in order to overcome the current concerns of nuclear power. Advanced reactors now being developed could help to meet the demand for new plants in developed and developing countries, not only for electricity generation, but also for district heating, desalination and for process heat. The IAEA, as the only global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced nuclear power programmes and offers assistance to countries with an interest in exploratory or research programmes.

  4. Advanced Small Modular Reactor Economics Status Report

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic and nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation

  5. Beryllium Use in the Advanced Test Reactor

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  6. Plant maintenance and advanced reactors, 2007

    SciTech Connect

    Agnihotri, Newal

    2007-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: A new day for energy in America; Committed to success more than ever, by Andy White, GE--Hitachi Nuclear Energy; Competitive technology for decades, by Steve Tritch, Westinghouse Electric Company; Pioneers of positive community relationship, by Exelon Nuclear; A robust design for 60-years, by Ray Ganthner, Areva; Aiming at no evacuation plants, by Kumiaki Moriya, Hitachi-GE Nuclear Energy, Ltd.; and, Desalination and hydrogen economy, by Dr. I. Khamis, International Atomic Energy Agency. Industry innovation articles in this issue are: Reactor vessel closure head project, by Jeff LeClair, Prairie Island Nuclear Generating Plant; and Submersible remote-operated vehicle, by Michael S. Rose, Entergy's Fitzpatrick Nuclear Station.

  7. Plant maintenance and advanced reactors issue, 2008

    SciTech Connect

    Agnihotri, Newal

    2009-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

  8. MELCOR development for existing and advanced reactors

    SciTech Connect

    Summers, R.M.

    1993-12-31

    Recent efforts in MELCOR development to address previously identified deficiencies have resulted in release of MELCOR 1.8.2, a much-improved version of the code. Major new models have been implemented for direct containment heating, ice condensers, debris quenching, lower plenum debris behavior, core materials interactions` and radial relocation of debris. Significant improvements have also been made in the modeling of interfacial momentum exchange and in the modeling of fission product release, condensation/evaporation, and aerosol behavior. Efforts are underway to address two-phase hydrodynamics difficulties, to improve modeling of water condensation on structures and fine-scale natural circulation within the reactor vessel, and to implement CORCON-Mod3. Improvements are also being made to MELCOR`s capability to handle new features of the advanced light water reactor designs, including drainage of water films on connected heat structures, heat transfer from the external surface of the reactor vessel to a flooded cavity, and creep rupture failure of the lower head. Additional development needs in other areas are discussed.

  9. Dose estimation in B16 tumour bearing mice for future irradiation in the thermal column of the TRIGA reactor after B/Gd/LDL adduct infusion.

    PubMed

    Protti, N; Ballarini, F; Bortolussi, S; Bruschi, P; Stella, S; Geninatti, S; Alberti, D; Aime, S; Altieri, S

    2011-12-01

    To test the efficacy of a new (10)B-vector compound, the B/Gd/LDL adduct synthesised at Torino University, in vivo irradiations of murine tumours are in progress at the TRIGA Mark II reactor of the Pavia University. A localised B16 melanoma tumour is generated in C57BL/6 mice and subsequently infused with the adduct. During the irradiation, the mouse will be put in a shield to protect the whole body except the tumour in the back-neck area. To optimise the treatment set-up, MCNP simulations were performed. A very simplified mouse model was built using MCNP geometry capabilities, as well as the geometry of the shield made of 99% (10)B enriched boric acid. A hole in the shield is foreseen in correspondence of the back-neck region. Many configurations of the shield were tested in terms of neutron flux, dose distribution and mean induced activity in the tumour region and in the radiosensitive organs of the mouse. In the final set-up, up to five mice can be treated simultaneously in the reactor thermal column and the neutron fluence in the tumour region for 10 min of irradiation is of about 5×10(12) cm(-2). PMID:21459587

  10. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  11. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  12. Advanced Burner Reactor Preliminary NEPA Data Study.

    SciTech Connect

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  13. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  14. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  15. Advanced nuclear reactor public opinion project

    SciTech Connect

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  16. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  17. Advanced ceramic cladding for water reactor fuel

    SciTech Connect

    Feinroth, H.

    2000-07-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of {approximately}60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies {ge}50% would be examined.

  18. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  19. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    SciTech Connect

    Seifritz, W.

    1983-11-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase.

  20. LBB application in the US operating and advanced reactors

    SciTech Connect

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  1. Improved methodology for temperature predictions in advanced reactors

    SciTech Connect

    Ambrosek, R.G.; Chang, G.S.

    1995-10-01

    Advanced nuclear reactors maximize power and/or flux levels for increased performance levels. One of the challenges is accurate prediction of temperatures in the structural components and experiments. An improved methodology utilizing the computer codes MCNP and ABAQUS has been demonstrated in instrumented experiments at the Advanced Test Reactor. The analytical predictions have shown excellent agreement with the measured results.

  2. Calculations of dose distributions in the lungs of a rat model irradiated in the thermal column of the TRIGA reactor in Pavia.

    PubMed

    Protti, N; Bortolussi, S; Stella, S; Gadan, M A; De Bari, A; Ballarini, F; Bruschi, P; Ferrari, C; Clerici, A M; Zonta, C; Bakeine, J G; Dionigi, P; Zonta, A; Altieri, S

    2009-07-01

    To test the possibility to apply boron neutron capture therapy (BNCT) to lung tumors, some rats are planned to be irradiated in the thermal column of the TRIGA reactor of the University of Pavia. Before the irradiation, lung metastases will be induced in BDIX rats, which will be subsequently infused with boronophenylalanine (BPA). During the irradiation, the rats will be positioned in a box designed to shield the whole animal except the thorax area. In order to optimize the irradiation set-up and to design a suitable shielding box, a set of calculations were performed with the MCNP Monte Carlo transport code. A rat model was constructed using the MCNP geometry capabilities and was positioned in a box with walls filled with lithium carbonate. A window was opened in front of the lung region. Different shapes of the holder and of the window were tested and analyzed in terms of the dose distribution obtained in the lungs and of the dose absorbed by the radiosensitive organs in the rat. The best configuration of the holder ensures an almost uniform thermal neutron flux inside the lungs (Phi(max)/Phi(min)=1.5), an irradiation time about 10 min long, to deliver at least 40 Gy(w) to the tumor, a mean lung dose of 5.9+/-0.4 Gy(w), and doses absorbed by all the other healthy tissues below the tolerance limits. PMID:19406647

  3. INSIGHTS INTO THE ROLE OF THE OPERATOR IN ADVANCED REACTORS.

    SciTech Connect

    PERSENSKY, J.; LEWIS, P.; O'HARA, J.

    2005-11-13

    NUCLEAR POWER PLANT PERSONNEL PLAY A VITAL ROLE IN THE PRODUCTIVE, EFFICIENT, AND SAFE GENERATION OF ELECTRIC POWER, WHETHER FOR CONVENTIONAL LIGHT WATER REACTORS OR NEW ADVANCED REACTORS. IT IS WIDELY RECOGNIZED THAT HUMAN ACTIONS THAT DEPART FROM OR FAIL TO ACHIEVE WHAT SHOULD BE DONE CAN BE IMPORTANT CONTRIBUTORS TO THE RISK ASSOCIATED WITH THE OPERATION OF NUCLEAR POWER PLANTS. ADVANCED REACTORS ARE EXPECTED TO PRESENT A CONCEPT OF OPERATI...

  4. TRIGA Mark II benchmark experiment; Part II: Pulse operation

    SciTech Connect

    Mele, I.; Ravnik, M.; Trkov, A. )

    1994-01-01

    Experimental results of pulse parameters and control rod worth measurements at TRIGA Mark 2 reactor in Ljubljana are presented. The measurements were performed with a completely fresh, uniform, and compact core. Only standard fuel elements with 12 wt% uranium were used. Special efforts were made to get reliable and accurate results at well-defined experimental conditions, and it is proposed to use the results as a benchmark test case for TRIGA reactors.

  5. Thermochemical modelling of advanced CANDU reactor fuel

    NASA Astrophysics Data System (ADS)

    Corcoran, Emily Catherine

    2009-04-01

    With an aging fleet of nuclear generating facilities, the imperative to limit the use of non-renewal fossil fuels and the inevitable need for additional electricity to power Canada's economy, a renaissance in the use of nuclear technology in Canada is at hand. The experience and knowledge of over 40 years of CANDU research, development and operation in Ontario and elsewhere has been applied to a new generation of CANDU, the Advanced CANDU Reactor (ACR). Improved fuel design allows for an extended burnup, which is a significant improvement, enhancing the safety and the economies of the ACR. The use of a Burnable Neutron Absorber (BNA) material and Low Enriched Uranium (LEU) fuel has created a need to understand better these novel materials and fuel types. This thesis documents a work to advance the scientific and technological knowledge of the ACR fuel design with respect to thermodynamic phase stability and fuel oxidation modelling. For the BNA material, a new (BNA) model is created based on the fundamental first principles of Gibbs energy minimization applied to material phase stability. For LEU fuel, the methodology used for the BNA model is applied to the oxidation of irradiated fuel. The pertinent knowledge base for uranium, oxygen and the major fission products is reviewed, updated and integrated to create a model that is applicable to current and future CANDU fuel designs. As part of this thesis, X-Ray Diffraction (XRD) and Coulombic Titration (CT) experiments are compared to the BNA and LEU models, respectively. From the analysis of the CT results, a number of improvements are proposed to enhance the LEU model and provide confidence in its application to ACR fuel. A number of applications for the potential use of these models are proposed and discussed. Keywords: CANDU Fuel, Gibbs Energy Mimimization, Low Enriched Uranium (LEU) Fuel, Burnable Neutron Absorber (BNA) Material, Coulometric Titration, X-Ray Diffraction

  6. ANDES Measurements for Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Plompen, A. J. M.; Hambsch, F.-J.; Kopecky, S.; Nyman, M.; Rouki, C.; Salvador Castiñeira, P.; Schillebeeckx, P.; Belloni, F.; Berthoumieux, E.; Gunsing, F.; Lampoudis, C.; Calviani, M.; Guerrero, C.; Cano-Ott, D.; Gonzalez Romero, E.; Aïche, M.; Jurado, B.; Mathieu, L.; Derckx, X.; Farget, F.; Rodrigues Tajes, C.; Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Borcea, C.; Negret, A.; Colonna, N.; Goncalves, I.; Penttilä, H.; Rinta-Antila, S.; Kolhinen, V. S.; Jokinen, A.

    2014-05-01

    A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23Na, Mo, Zr, and 238U, neutron capture cross sections of 238U, 241Am, neutron induced fission cross sections of 240Pu, 242Pu, 241Am, 243Am and 245Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am, Cm and Cf. Finally, four isotopes are studied which are important to improve predictions for delayed neutron precursors and decay heat by total absorption gamma-ray spectrometry (88Br, 94Rb, 95Rb, 137I). The measurements which are performed at state-of-the-art European facilities have the ambition to achieve the lowest possible uncertainty, and to come as close as is reasonably achievable to the target uncertainties established by sensitivity studies. An overview is presented of the activities and achievements, leaving detailed expositions to the various parties contributing to the conference.

  7. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  8. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    SciTech Connect

    Allen, Todd R.; Busby, Jeremy T; Klueh, Ronald L; Maloy, S; Toloczko, M

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP s advanced nuclear recycle reactors program.

  9. Development of a system model for advanced small modular reactors.

    SciTech Connect

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  10. Criticality and Safety Parameter Studies of a 3-MW TRIGA MARK-II Research Reactor and Validation of the Generated Cross-Section Library and Computational Method

    SciTech Connect

    Bhuiyan, S.I.; Mondal, M.A.W.; Sarker, M.M.; Rahman, M.; Shahdatullah, M.S.; Huda, M.Q.; Chakrobortty, T.K.; Khan, M.J.H

    2000-05-15

    This study deals with the analysis of some neutronics and safety parameters of the current core of a 3-MW TRIGA MARK-II research reactor and validation of the generated macroscopic cross-section library and calculational techniques by benchmarking with experimental, operational, and available Safety Analysis Report (SAR) values. The overall strategy is: (a) generation of the problem-dependent cross-section library from basic Evaluated Nuclear Data Files such as ENDF/B-VI and JENDL-3.2 with NJOY94.10+, (b) use of the WIMSD-5 package to generate a few-group neutron macroscopic cross section for all of the materials in the core and its immediate neighborhood, (c) use the three-dimensional CITATION code to perform the global analysis of the core, and (d) checking of the validity of the CITATION diffusion code with the MCNP4B2 Monte Carlo code. The ultimate objective is to establish methods for reshuffling the current core configuration to upgrade the thermal flux at irradiation locations for increased isotope production. The computational methods, tools and techniques, customization of cross-section libraries, various models for cells and supercells, and many associated utilities are standardized and established/validated for the overall neutronic analysis. The excess reactivity, neutron flux, power distribution, power peaking factors, determination of the hot spot, and fuel temperature reactivity coefficients {alpha}{sub f} in the temperature range of 45 to 1000 deg. C are studied. All the analyses are performed using the 4- and 7-group libraries of the macroscopic cross sections generated from the 69-group WIMSD-5 library. The 7-group calculations yield comparatively better agreement with the experimental value of k{sub eff} and the other core parameters. The CITATION test runs using different cross-section sets based on the different models applied in the WIMSD-5 calculations show a strong influence of those models on the final integral parameter. Some of the cells

  11. Thermal hydraulic calculations to support increase in operating power in McClellen Nuclear Radiation Center(MNRC) TRIGA reactor.

    SciTech Connect

    Jensen, R. T.

    1998-05-05

    The RELAP5/Mod3.1 computer program has been used to successfully perform thermal-hydraulic analyses to support the Safety Analysis for increasing the MNRC reactor from 1.0 MW to 2.0 MW. The calculation results show the reactor to have operating margin for both the fuel temperature and critical heat flux limits. The calculated maximum fuel temperature of 705 C is well below the 750 C operating limit. The critical heat flux ratio was calculated to be 2.51.

  12. Shielding considerations for advanced space nuclear reactor systems

    SciTech Connect

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

  13. Expansion of a test bed for advanced reactor monitoring and control

    SciTech Connect

    Edwards, R.M.

    2000-07-01

    In previously completed work, the Penn State TRIGA reactor was established as a test bed for monitoring and control research for nuclear reactors. The essential component of this research reactor application is a means for an experiment to change reactor power through an experimental changeable reactivity device (ECRD). An ECRD is implemented as a TRIGA reactor moveable experiment where an aluminum tube containing an absorber material is positioned within the central thimble of the reactor by an experimental setup. The test bed capabilities are now being expanded to enhance research for monitoring, operations, and control under a US Department of Energy Nuclear Engineering Education and Research (NEER) grant initiated in 1999. Areas in which the capabilities of the test bed are being expanded are (a) experimental computer hardware and software upgrades, (b) additional ECRDs, (c) power-reactor thermal-hydraulic simulation fidelity in a hybrid reactor simulator (HRS) application, and (d) incorporation of a thermal-hydraulic testloop in the HRS paradigm. This summary describes progress in (a) and (b).

  14. Feasibility study of the University of Utah TRIGA reactor power upgrade in respect to control rod system

    NASA Astrophysics Data System (ADS)

    Cutic, Avdo

    The objectives of this thesis are twofold: to determine the highest achievable power levels of the current University of Utah TRIG Reactor (UUTR) core configuration with the existing three control rods, and to design the core for higher reactor power by optimizing the control rod worth. For the current core configuration, the maximum reactor power, eigenvalue keff, shutdown margin, and excess reactivity have been measured and calculated. These calculated estimates resulted from thermal power calibrations, and the control rod worth measurements at various power levels. The results were then used as a benchmark to verify the MCNP5 core simulations for the current core and then to design a core for higher reactor power. This study showed that the maximum achievable power with the current core configuration and control rod system is 150kW, which is 50kW higher than the licensed power of the UUTR. The maximum achievable UUTR core power with the existing fuel is determined by optimizing the core configuration and control rod worth, showing that a power upgrade of 500 kW is achievable. However, it requires a new control rod system consisting of a total of four control rods. The cost of such an upgrade is $115,000.

  15. Low Temperature Fatigue Properties of Advanced Cyanate-Ester Blends after Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Fabian, P. E.; Munshi, N. A.; Feucht, S. W.

    2004-06-01

    Fiber reinforced composites offer a broad spectrum of applications due to their excellent material performance under demanding conditions. Therefore, these materials will also be employed as insulation systems for the superconducting magnets in fusion devices. However, high doses of gamma and neutron irradiation lead to a drastic damage mostly of the organic matrices, such as pure epoxy resins. An improvement of these composites with regard to higher radiation resistance is of special importance to ensure stable coil operation over the plant lifetime. Recently, a series of advanced S2-glass fiber composites was developed, which consist of novel cyanate ester (CE) blends. All systems were irradiated in the TRIGA reactor (Vienna, Austria) to a neutron fluence of 1×1021 and 1×1022 m-2 (E>0.1 MeV), in order to assess the radiation hardness of their ultimate tensile strength. Furthermore, the material performance under cyclic load was investigated by tension-tension fatigue measurements at 77 K in view of the pulsed ITER operating conditions.

  16. Low Temperature Fatigue Properties of Advanced Cyanate-Ester Blends after Reactor Irradiation

    SciTech Connect

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H.W.; Fabian, P.E.; Munshi, N.A.; Feucht, S.W.

    2004-06-28

    Fiber reinforced composites offer a broad spectrum of applications due to their excellent material performance under demanding conditions. Therefore, these materials will also be employed as insulation systems for the superconducting magnets in fusion devices. However, high doses of gamma and neutron irradiation lead to a drastic damage mostly of the organic matrices, such as pure epoxy resins. An improvement of these composites with regard to higher radiation resistance is of special importance to ensure stable coil operation over the plant lifetime. Recently, a series of advanced S2-glass fiber composites was developed, which consist of novel cyanate ester (CE) blends. All systems were irradiated in the TRIGA reactor (Vienna, Austria) to a neutron fluence of 1x1021 and 1x1022 m-2 (E>0.1 MeV), in order to assess the radiation hardness of their ultimate tensile strength. Furthermore, the material performance under cyclic load was investigated by tension-tension fatigue measurements at 77 K in view of the pulsed ITER operating conditions.

  17. Steady-State Axial Temperature and Flow Velocity in Triga Channel.

    2007-02-28

    Version 00 TRISTAN-IJS is a computer program for calculating steady-state axial temperature distribution and flow velocity through a vertical coolant channel in low power TRIGA reactor core, cooled by natural circulation. It is designed for steady-state thermohydraulic analysis of TRIGA research reactors operating at a low power level of 1-2 MW.

  18. Conceptual design of the advanced marine reactor MRX

    NASA Astrophysics Data System (ADS)

    1991-02-01

    Design studies on the advanced marine reactors have been done continuously since 1983 at the Japan Atomic Energy Research Institute (JAERI) in order to develop attractive marine reactors for the next generation. At present, two marine reactor concepts are being formulated. One is 100 MWt MRX (Marine Reactor X) for an icebreaker and the other is 300 kWe DRX (Deep-sea Reactor X) for a deep-sea research vessel. They are characterized by an integral type pressurized water reactor (PWR) built-in type control rod drive mechanisms, a water-filled container and a passive decay heat removal system, which realize highly passive safe and compact reactors. This paper is a detailed report including all major results of the MRX design study.

  19. Chemical and material studies to understand the source of corrosion in the Geological Survey TRIGA Reactor (GSTR) tank liner

    SciTech Connect

    Rusling, D.H.; Millard, H.T. Jr.; Heifer, P.G.; Perryman, R.E.; Smith, W.L.

    1988-07-01

    Corrosion damage to the aluminum tank liner of the GSTR reactor was discovered and samples of various materials were collected for chemical and mineralogical analyses. The following scenario for the corrosion was suggested: 1. Cyclical temperature changes caused the tank liner to change size repeatedly. It extruded tar as it expanded and created voids as it contracted. 2. Hydrostatic pressure forced ground water through openings in the concrete into voids near the bottom of the tank, and overflow introduced tank water at the top of the tank. 3. The expansion-contraction cycle moved the water around the complex, interconnecting systems of voids and, in some locations, caused the tar-to-aluminum bond to fail. 4. Chemical interactions of the water with the tar and concrete supplied the elements capable of corroding the aluminum (e.g., Zn, Cu). 5. The corrosive solution has reacted with the aluminum over the lifetime of the reactor to produce the present corrosion damage. 6. As corrosion pits became holes, reactor tank water entered the voids.

  20. Radioactivity of spent TRIGA fuel

    NASA Astrophysics Data System (ADS)

    Usang, M. D.; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-04-01

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  1. Radioactivity of spent TRIGA fuel

    SciTech Connect

    Usang, M. D. Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  2. Issues affecting advanced passive light-water reactor safety analysis

    SciTech Connect

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-08-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

  3. Issues affecting advanced passive light-water reactor safety analysis

    SciTech Connect

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

  4. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  5. Testing WIMS-D4M cross sections and the ANL ENDF/B-V 69 group library. Results from global diffusion and Monte Carlo calculations compared with measurements in the Romanian 14-MW TRIGA reactor

    SciTech Connect

    Bretscher, M.M.

    1993-12-31

    The WIMS-D4 code has been modified (WIMS-D4M) to produce microscopic isotopic cross sections in ISOTXS format for use in diffusion and transport calculations. Beginning with 69-group libraries based on ENDF/B-V data, numerous cell calculations have been made to prepare a set of broad group cross sections for use in diffusion calculations. Global calculations have been made for two control rod states of the Romanian steady state TRIGA reactor with 29 fresh HEU fuel clusters. Detailed Monte Carlo calculations also have been performed for the same reactor configurations using data based on ENDF/B-V. Results from these global calculations are compared with each other and with the measured excess reactivities. Although region-averaged macroscopic principal cross sections obtained from WIMS-D4M are in good agreement with the corresponding Monte Carlo values, problems exist with the high energy (E > 10 keV) microscopic hydrogen transport cross sections.

  6. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  7. Northrop Triga facility decommissioning plan versus actual results

    SciTech Connect

    Gardner, F.W.

    1986-01-01

    This paper compares the Triga facility decontamination and decommissioning plan to the actual results and discusses key areas where operational activities were impacted upon by the final US Nuclear Regulatory Commission (NRC)-approved decontamination and decommissioning plan. Total exposures for fuel transfer were a factor of 4 less than planned. The design of the Triga reactor components allowed the majority of the components to be unconditionally released.

  8. Advanced development of immobilized enzyme reactors

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.; Carter, Layne

    1991-01-01

    Fixed-bed reactors have been used at NASA-Marshall to purify wastewater generated by an end-use equipment facility, on the basis of a combination of multifiltration unibeds and enzyme unibeds. The enzyme beds were found to effectively remove such targeted organics as urea, alcohols, and aldehydes, down to levels lying below detection limits. The enzyme beds were also found to remove organic contaminants not specifically targeted.

  9. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    NASA Astrophysics Data System (ADS)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  10. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the

  11. Advanced Test Reactor Capabilities and Future Irradiation Plans

    SciTech Connect

    Frances M. Marshall

    2006-10-01

    The Advanced Test Reactor (ATR), located at the Idaho National Laboratory (INL), is one of the most versatile operating research reactors in the Untied States. The ATR has a long history of supporting reactor fuel and material research for the US government and other test sponsors. The INL is owned by the US Department of Energy (DOE) and currently operated by Battelle Energy Alliance (BEA). The ATR is the third generation of test reactors built at the Test Reactor Area, now named the Reactor Technology Complex (RTC), whose mission is to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The current experiments in the ATR are for a variety of customers--US DOE, foreign governments and private researchers, and commercial companies that need neutrons. The ATR has several unique features that enable the reactor to perform diverse simultaneous tests for multiple test sponsors. The ATR has been operating since 1967, and is expected to continue operating for several more decades. The remainder of this paper discusses the ATR design features, testing options, previous experiment programs, future plans for the ATR capabilities and experiments, and some introduction to the INL and DOE's expectations for nuclear research in the future.

  12. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  13. Health Monitoring to Support Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs) are based on advanced reactor concepts, some of which were promoted by the Generation IV International Forum, and are being considered for diverse missions including desalination of water, production of hydrogen, etc. While the existing fleet of commercial nuclear reactors provides baseload electricity, it is conceivable that aSMRs could be implemented for both baseload and load following applications. The effect of diverse operating missions and unit modularity on plant operations and maintenance (O&M) is not fully understood and limiting these costs will be essential to successful deployment of aSMRs. Integrated health monitoring concepts are proposed to support the safe and affordable operation of aSMRs over their lifetime by enabling management of significant in-vessel and in-containment active and passive components.

  14. Astronaut Kevin Chilton works with advanced cell reactor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Kevin P. Chilton, pilot, works with an advanced cell reactor, which incorporated the first ever videomicroscope, on the Space Tissue Loss (STL-B) experiment on the Space Shuttle Endeavour's middeck. This experiment studied cell growth during the STS-59 mission.

  15. A wall-crawling robot for reactor vessel inspection in advanced reactors

    SciTech Connect

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-06-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected.

  16. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2004-10-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  17. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    SciTech Connect

    Grover, S.B.

    2004-10-06

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  18. Status of the TRIGA shipments to the INEEL from Europe

    SciTech Connect

    Mustin, T.; Stump, R.C.; Tyacke, M.J.

    1997-10-09

    This paper reports the activities underway by the US Department of Energy (DOE) for returning Training, Research, Isotope, General Atomics (TRIGA) spent nuclear fuel (SNF) from foreign research reactors (FRR) in four European countries to the Idaho National Engineering and Environmental Laboratory (INEEL). Those countries are Germany, Italy, Romania, and Slovenia. This is part of the ``Nuclear Weapons Nonproliferation Policy`` of returning research reactor SNF containing uranium enriched in the US. This paper describes the results of a pre-assessment trip in September, 1997, to these countries, including: history of the reactors and research being performed; inventory of TRIGA SNF; fuel types (stainless steel, aluminum, or Incoloy) and enrichments; and each country`s plans for returning their TRIGA SNF to the INEEL.

  19. Advanced high-temperature, high-pressure transport reactor gasification

    SciTech Connect

    Swanson, M.L.

    1999-07-01

    The mission of the U.S. Department of Energy's (DOE's) Federal Energy Technology Center Office of Power Systems Product Management is to foster the development and deployment of advanced, clean, and affordable fossil-based (coal) power systems. These advanced power systems include the development and demonstration of gasification-based advanced power systems. These systems are integral parts of the Vision 21 Program for the co-production of power and chemicals which is being developed at DOE. DOE has been developing advanced gasification systems which lower the capital and operating cost of producing syngas for electricity or chemicals production. A transport reactor gasifier has shown potential to be a low-cost syngas producer as compared to other gasification systems because of its high throughput. This work directly supports the Power Systems Development Facility (PSDF) utilizing the Kellogg, Brown and Root (KBR) transport reactor located at the Southern Company Services (SCS) Wilsonville, Alabama, site. Over 1000 hours of operation on three different fuels in the pilot-scale transport reactor development unit (TRDU) has been completed to date. The Energy and Environmental Research Center (EERC) has established an extensive database on the operation of various fuels in a transport reactor gasifier. This database will be useful in determining the effectiveness of design changes on a transport reactor gasifier. It has been demonstrated that corrected fuel gas heating values ranging between 105 to 130 Btu/scf can be achieved. Factors that affect the TRDU product gas quality appear to be circulation rate, coal type, temperature, and air:coal and steam:coal ratios. Future plans are to modify the transport reactor mixing zone and J-leg loop seal to increase backmixing, thereby increasing solids residence time and gasifier performance. Enriched air- and oxygen-blown gasification tests, especially on widely available low-cost fuels such as petroleum coke, will also be

  20. Advanced High Temperature Reactor Neutronic Core Design

    SciTech Connect

    Ilas, Dan; Holcomb, David Eugene; Varma, Venugopal Koikal

    2012-01-01

    The AHTR is a 3400 MW(t) FHR class reactor design concept intended to serve as a central generating station type power plant. While significant technology development and demonstration remains, the basic design concept appears sound and tolerant of much of the remaining performance uncertainty. No fundamental impediments have been identified that would prevent widespread deployment of the concept. This paper focuses on the preliminary neutronic design studies performed at ORNL during the fiscal year 2011. After a brief presentation of the AHTR design concept, the paper summarizes several neutronic studies performed at ORNL during 2011. An optimization study for the AHTR core is first presented. The temperature and void coefficients of reactivity are then analyzed for a few configurations of interest. A discussion of the limiting factors due to the fast neutron fluence follows. The neutronic studies conclude with a discussion of the control and shutdown options. The studies presented confirm that sound neutronic alternatives exist for the design of the AHTR to maintain full passive safety features and reasonable operation conditions.

  1. INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2007-09-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  2. Metal fire implications for advanced reactors. Part 1, literature review.

    SciTech Connect

    Nowlen, Steven Patrick; Radel, Ross F.; Hewson, John C.; Olivier, Tara Jean; Blanchat, Thomas K.

    2007-10-01

    Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior.

  3. 78 FR 46621 - Status of the Office of New Reactors' Implementation of Electronic Distribution of Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Reactor Correspondence AGENCY: Nuclear Regulatory Commission. ACTION: Implementation of electronic distribution of advanced reactor correspondence; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC... the Division of Operating Reactor Licensing (DORL) in October 2008. All four regions are...

  4. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  5. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.; Holcomb, D.E.; Wood, R.T.

    2012-09-15

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  6. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  7. On Enhancing Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. However, the economics of AdvSMRs suffer from the loss of economy-of-scale for both construction and operation. The controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance (O&M) costs. These expenses could potentially be managed through optimized scheduling of O&M activities for components, reactor modules, power blocks, and the full plant. Accurate, real-time risk assessment with integrated health monitoring of key active components can support scheduling of both online and offline inspection and maintenance activities.

  8. DOE/NE robotics for advanced reactors

    SciTech Connect

    Not Available

    1991-01-01

    This document details activities during this reporting period. The Michigan group has developed, built, and tested a general purpose interface circuit for DC motors and encoders. This interface is based on an advanced microchip, the HCTL 1100 manufactured by Hewlett Packard. The HCTL 1100 can be programmed by a host computer in real-time, allowing sophisticated motion control for DC motors. At the University of Florida, work on modeling the details of the seismic isolators and the jack mechanism has been completed. A separate 3D solid view of the seismic isolator floor, with the full set of isolators shown in detail, has been constructed within IGRIP. ORNL led the robotics team at the ALMR review meeting. Discussions were held with General Electric (GE) engineers and contractors on the robotic needs for the ALMR program. The Tennessee group has completed geometric modeling of the Andros Mark VI mobile platform with two fixed tracks and for articulated tracks, the give degree-of-freedom manipulator and its end-effector, and two cameras. A graphical control of panel was developed which allow the user to operate the simulated robot. The University of Texas team visited ORNL to complete the implementation of computed-torque controller on the CESARm manipulator. This controller was previously developed and computer simulations were carried out specifically for the CESARm robot.

  9. Advanced reactor instrumentation and control reliability and risk assessment

    SciTech Connect

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-01-01

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I C systems requires determining the reliability of the I C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  10. Advanced reactor instrumentation and control reliability and risk assessment

    SciTech Connect

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-12-31

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I&C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I&C systems requires determining the reliability of the I&C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I&C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I&C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  11. Technology Verification of the Advanced Integral Reactor SMART

    SciTech Connect

    Si-Hwan Kim; Young-Dong Hwang; Hee-Chul Kim; Sung-Quun Zee

    2006-07-01

    SMART(System-Integrated Modular Advanced Reactor) is an integral type advanced pressurized water reactor with a rated thermal power of 330 MW, developed at KAERI (Korea Atomic Energy Research Institute) for a seawater desalination and small scale electricity generation. Safety and economic improvement are the two most important considerations in the design of the SMART. The SMART design combines firmly established commercial reactor design technologies with advanced design features. The advanced design features and technologies implemented into the SMART design have been proven or will be qualified through the technology verification program of SMART. Technology verification program of SMART consists of basic thermal-hydraulic experiments, separate effect test, major components performance test, system integrated tests of safety system and one fifth scaled pilot plant construction project. The overall performance and safety of SMART will be demonstrated through the SMART-pilot plant (SMART-P). The SMART-P plant construction project is currently underway and will be complete the construction by 2010. (authors)

  12. An RFQ cooler and buncher for the TRIGA-SPEC experiment

    NASA Astrophysics Data System (ADS)

    Beyer, T.; Blaum, K.; Block, M.; Düllmann, Ch. E.; Eberhardt, K.; Eibach, M.; Frömmgen, N.; Geppert, C.; Gorges, C.; Grund, J.; Hammen, M.; Kaufmann, S.; Krieger, A.; Nagy, Sz.; Nörterhäuser, W.; Renisch, D.; Smorra, C.; Will, E.

    2014-01-01

    A linear Paul trap for cooling of ion beams, the former cooler for emittance elimination radiofrequency quadrupole (RFQ) at MISTRAL/ISOLDE, has been installed and commissioned at the TRIGA-SPEC experiment located at the research reactor TRIGA Mainz. It is connected to a hot-surface-ionization ion source and a subsequent mass separator for ionization and pre-separation of neutron-rich fission products as delivered from the reactor. The capability of accumulating and bunching ion beams has been implemented to provide low-emittance ion pulses of 250 ns width containing up to 106 ions. A technical description of the upgraded RFQ as well as its characterization with stable ions is presented. Its installation allows delivery of low-emittance ion bunches to the two branches of the TRIGA-SPEC experiment, namely TRIGA-TRAP and TRIGA-LASER.

  13. Advances in process intensification through multifunctional reactor engineering

    SciTech Connect

    O'Hern, T. J.

    2012-03-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

  14. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  15. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  16. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  17. CASL: The Consortium for Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Kothe, Douglas B.

    2010-11-01

    Like the fusion community, the nuclear engineering community is embarking on a new computational effort to create integrated, multiphysics simulations. The Consortium for Advanced Simulation of Light Water Reactors (CASL), one of 3 newly-funded DOE Energy Innovation Hubs, brings together an exceptionally capable team that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated the Virtual Reactor (VR), will: 1) Enable the use of leadership-class computing for engineering design and analysis to improve reactor capabilities, 2) Promote an enhanced scientific basis and understanding by replacing empirically based design and analysis tools with predictive capabilities, 3) Develop a highly integrated multiphysics environment for engineering analysis through increased fidelity methods, and 4) Incorporate UQ as a basis for developing priorities and supporting, application of the VR tools for predictive simulation. In this presentation, we present the plans for CASL and comment on the similarity and differences with the proposed Fusion Simulation Project (FSP).

  18. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D; Holcomb, David Eugene; Wood, Richard Thomas

    2012-10-01

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  19. Current Status of the Advanced High Temperature Reactor

    SciTech Connect

    Holcomb, David Eugene; Ilas, Dan; Qualls, A L; Peretz, Fred J; Varma, Venugopal Koikal; Bradley, Eric Craig; Cisneros, Anselmo T.

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

  20. Current status of the advanced high temperature reactor

    SciTech Connect

    Holcomb, D. E.; Iias, D.; Quails, A. L.; Peretz, F. J.; Varma, V. K.; Bradley, E. C.; Cisneros, A. T.

    2012-07-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)

  1. Updated comparison of economics of fusion reactors with advanced fission reactors

    SciTech Connect

    Delene, J.G.

    1990-01-01

    The projected cost of electricity (COE) for fusion is compared with that from current and advanced nuclear fission and coal-fired plants. Fusion cost models were adjusted for consistency with advanced fission plants and the calculational methodology and cost factors follow guidelines recommended for cost comparisons of advanced fission reactors. The results show COEs of about 59--74 mills/kWh for the fusion designs considered. In comparison, COEs for future fission reactors are estimated to be in the 43--54 mills/kWh range with coal-fired plant COEs of about 53--69 mills/kWh ($2--3/GJ coal). The principal cost driver for the fusion plants relative to fission plants is the fusion island cost. Although the estimated COEs for fusion are greater than those for fission or coal, the costs are not so high as to preclude fusion's competitiveness as a safe and environmentally sound alternative.

  2. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  3. Temperature controlled material irradiation in the advanced test reactor

    SciTech Connect

    Furstenau, R.V.; Ingrahm, F.W.

    1995-12-31

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor`s principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor`s capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment `in-pile tube (IPT)` inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities.

  4. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  5. 10. biennial U.S. TRIGA users' conference. Papers and abstracts

    SciTech Connect

    1986-07-01

    The conference cover the following main topics for TRIGA reactors: reactor instrumentation and measurements of reactor parameters, reactor operation and modifications, design innovation and service works, fast neutron spectrum, fuel examination, neutron flux, heat transfer, accidents analysis, corrosion problems, fuel failures and fuel management, mechanical problems and maintenance.

  6. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  7. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  8. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  9. Korea Research Reactor -1 & 2 Decommissioning Project in Korea

    SciTech Connect

    Park, S. K.; Chung, U. S.; Jung, K. J.; Park, J. H.

    2003-02-24

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D & D) project of these two research reactors, the first D & D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 & 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000.

  10. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  11. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt; Groten, Will; Judzis, Arvids; Foley, Richard; Smith, Larry; Cross, Will; Vogt, T.

    2011-06-27

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  12. Prognostics Health Management for Advanced Small Modular Reactor Passive Components

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-10-18

    In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

  13. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    SciTech Connect

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley; Steven Taylor

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  14. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    SciTech Connect

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; K. Condie

    2011-06-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility (NSUF) in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  15. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  16. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  17. Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2008-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

  18. 77 FR 76089 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  19. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146-64147... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a...

  20. 77 FR 59678 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... October 17, 2011, (76 FR 64126-64127). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  1. 78 FR 37595 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  2. 76 FR 34276 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... participation in ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038-65039... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  3. Advanced Space Nuclear Reactors from Fiction to Reality

    NASA Astrophysics Data System (ADS)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  4. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  5. A Novel Approach to Material Development for Advanced Reactor Systems

    SciTech Connect

    Was, G.S.; Atzmon, M.; Wang, L.

    1999-12-22

    OAK B188 A Novel Approach to Material Development for Advanced Reactor Systems. Year one of this project had three major goals. First, to specify, order and install a new high current ion source for more rapid and stable proton irradiation. Second, to assess the use low temperature irradiation and chromium pre-enrichment in an effort to isolate a radiation damage microstructure in stainless steels without the effects of RIS. Third, to prepare for the irradiation of reactor pressure vessel steel and Zircaloy. In year 1 quarter 1, the project goal was to order the high current ion source and to procure and prepare samples of stainless steel for low temperature proton irradiation.

  6. A Novel Approach to Material Development for Advanced Reactor Systems

    SciTech Connect

    Was, G.S.; Atzmon, M.; Wang, L.

    2000-06-27

    OAK B188 A Novel Approach to Material Development for Advanced Reactor Systems. Year one of this project had three major goals. First, to specify, order and install a new high current ion source for more rapid and stable proton irradiation. Second, to assess the use of low temperature irradiation and chromium pre-enrichment in an effort to isolate a radiation damage microstructure in stainless steel without the effects of RIS. Third, to initiate irradiation of reactor pressure vessel steel and Zircaloy. In year 1 quarter 3, the project goal was to complete irradiation of model alloys of RPV steels for a range of doses and begin sample characterization. We also planned to prepare samples for microstructure isolation in stainless steels, and to identify sources of Zircaloy for irradiation and characterization.

  7. Lead-bismuth eutectic as advanced reactor collant : operational experience

    SciTech Connect

    Woloshun, K. A.; Watts, V.; Li, N.

    2004-01-01

    Some proposed advanced reactor concepts would be cooled by lead or lead-bismuth eutectic (LBE). An LBE test loop was designed and built at Los Alamos to develop the engineering and materials technology necessary to successfully implement LBE as a coolant (Fig. 1). Operational since December 2001, this test loop has been used to develop and demonstrate safe operation, oxygen concentration and metal corrosion control, instrumentation, thermal-hydraulic performance of heat exchangers and recuperators, and free convection and forced pumping. This paper discusses the technology development and lessons learned from the operation of this facility. A LBE test loop has been operational since December 2001. Using procedures, training, and engineering controls, this loop has operated without an accident. Continuous improvements in operation procedures and instrumentation over these years have resulted in a facility of high reliability, providing the groundwork for the use of LBE as a reactor coolant for temperatures up to 550 C.

  8. Design of the reactor vessel inspection robot for the advanced liquid metal reactor

    SciTech Connect

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-06-01

    A consortium of four universities and Oak Ridge National Laboratory designed a prototype wall-crawling robot to perform weld inspection in an advanced nuclear reactor. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a mock non-hostile environment and shown to perform as expected, as detailed in this report.

  9. Evolutionary/advanced light water reactor data report

    SciTech Connect

    1996-02-09

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (``burned``) in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ``evolutionary`` or ``advanced`` designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ``evolutionary`` LWR alternative.

  10. ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Metal fires and their implications for advanced reactors.

    SciTech Connect

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean; Hewson, John C.; Blanchat, Thomas K.

    2010-10-01

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in these areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety

  12. Advanced Test Reactor Testing Experience: Past, Present and Future

    SciTech Connect

    Frances M. Marshall

    2005-04-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors -- US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead experiment, which allows for active monitoring and control of experiment conditions during the irradiation. The highest level of complexity of experiment is the pressurized water loop experiment, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

  13. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  14. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  15. INEL advanced test reactor plutonium-238 production feasibility assessment

    SciTech Connect

    Schnitzler, B.G. )

    1993-01-10

    Results of a preliminary neutronics assessment indicate the feasibility of [sup 238]Pu production in the Idaho National Engineering Laboratory Advanced Test Reactor (ATR). Based on the results of this assessment, an annual production of 11.3 kg [sup 238]Pu can be achieved in the ATR. An annual loading of 102 kg [sup 237]Np is required for the particular target configuration and irradiation scenario examined. The [sup 236]Pu contaminant level is approximately 6 parts per million at zero cooling time. The product quality is about 90% [sup 238]Pu. Neptunium feedstock requirements, [sup 238]Pu production rates, or product purity can be optimized depending on their relative importances.

  16. Advanced fuels for plutonium management in pressurized water reactors

    NASA Astrophysics Data System (ADS)

    Vasile, A.; Dufour, Ph; Golfier, H.; Grouiller, J. P.; Guillet, J. L.; Poinot, Ch; Youinou, G.; Zaetta, A.

    2003-06-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1. More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate.

  17. Structural thermal tests on Advanced Neutron Source reactor fuel plates

    SciTech Connect

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin aluminum-clad fuel plates proposed for the Advanced Neutron Source reactor are stressed by the high-velocity coolant flowing on each side of the plates and by the thermal gradients in the plates. The total stress, composed of the sum of the flow stress and the thermal stress at a point, could be reduced if the thermal loads tend to relax when the stress magnitude approaches the yield stress of the material. The potential of this occurring would be very significant in assessing the structural reliability of the fuel plates and has been investigated through experiment. The results of this investigation are given in this report.

  18. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with

  19. 76 FR 11524 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Boiling Water Reactors (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactors... participation in ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038-...

  20. 76 FR 18585 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor... October 21, 2010, (75 FR 65038- 65039). Detailed meeting agendas and meeting transcripts are available...

  1. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  2. Completion of the first NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover; John Maki; David Petti

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during

  3. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G.

    1990-01-01

    Research and development in fast reactor reprocessing has been under way about 20 years in several countries throughout the world. During the past decade in France and the United Kingdom, active development programs have been carried out in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the EBR-II facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. Germany and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in all of these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper will focus principally on the search for improved facility concepts and better maintenance systems in the CFRP and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  4. Fabrication development for the Advanced Neutron Source Reactor

    SciTech Connect

    Pace, B.W.; Copeland, G.L.

    1995-08-01

    This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U{sub 3}Si{sub 2} rather than U{sub 3}O{sub 8}, and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m{sup 3}). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to {approx}3.5 Mg U/m{sup 3}; however, much less evaluation was done for the higher loadings.

  5. Flow excursion time scales in the advanced neutron source reactor

    SciTech Connect

    Sulfredge, C.D.

    1995-04-01

    Flow excursion transients give rise to a key thermal limit for the proposed Advanced Neutron Source (ANS) reactor because its core involves many parallel flow channels with a common pressure drop. Since one can envision certain accident scenarios in which the thermal limits set by flow excursion correlations might be exceeded for brief intervals, a key objective is to determine how long a flow excursion would take to bring about a system failure that could lead to fuel damage. The anticipated time scale for flow excursions has been examined by subdividing the process into its component phenomena: bubble nucleation and growth, deceleration of the resulting two-phase flow, and finally overcoming thermal inertia to heat up the reactor fuel plates. Models were developed to estimate the time required for each individual stage. Accident scenarios involving sudden reduction in core flow or core exit pressure have been examined, and the models compared with RELAP5 output for the ANS geometry. For a high-performance reactor like the ANS, flow excursion time scales were predicted to be in the millisecond range, so that even very brief transients might lead to fuel damage. These results should prove useful whenever one must determine the time involved in any portion of a flow excursion transient.

  6. Temperature controlled material irradiation in the advanced test reactor

    NASA Astrophysics Data System (ADS)

    Ingram, F. W.; Palmer, A. J.; Stites, D. J.

    1998-10-01

    The United States Department of Energy (US DOE) has initiated the development of an Irradiation Test Vehicle (ITV) for fusion materials irradiation at the Advanced Test Reactor (ATR) in Idaho Falls, Idaho, USA. The ITV is capable of providing neutron spectral tailoring and individual temperature control for up to 15 experiment capsules simultaneously. The test vehicle consists of three In-Pile Tubes (IPTs) running the length of the reactor vessel. These IPTs are kept dry and test trains with integral instrumentation are inserted and removed through a transfer shield plate above the reactor vessel head. The test vehicle is designed to irradiate specimens as large as 2.2 cm in diameter, at temperatures of 250-800°C, achieving neutron damage rates as high as 10 displacements per atom per year. The high fast to thermal neutron flux ratio required for fusion materials testing is accomplished by using an aluminum filler to displace as much water as possible from the flux trap and surrounding the filler piece with a ring of replaceable neutron absorbing material. The gas blend temperature control system remains in place from test to test, thus hardware costs for new tests are limited to the experiment capsule train and integral instrumentation.

  7. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    NASA Astrophysics Data System (ADS)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  8. FFTF and Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect

    GANTT, D.A.

    2000-10-31

    This Resource Load Schedule (RLS) addresses two missions. The Advanced Reactors Transition (ART) mission, funded by DOE-EM, is to transition assigned, surplus facilities to a safe and compliant, low-cost, stable, deactivated condition (requiring minimal surveillance and maintenance) pending eventual reuse or D&D. Facilities to be transitioned include the 309 Building Plutonium Recycle Test Reactor (PRTR) and Nuclear Energy Legacy facilities. This mission is funded through the Environmental Management (EM) Project Baseline Summary (PBS) RL-TP11, ''Advanced Reactors Transition.'' The second mission, the Fast Flux Test Facility (FFTF) Project, is funded through budget requests submitted to the Office of Nuclear Energy, Science and Technology (DOE-NE). The FFTF Project mission is maintaining the FFTF, the Fuels and Materials Examination Facility (FMEF), and affiliated 400 Area buildings in a safe and compliant standby condition. This mission is to preserve the condition of the plant hardware, software, and personnel in a manner not to preclude a plant restart. This revision of the Resource Loaded Schedule (RLS) is based upon the technical scope in the latest revision of the following project and management plans: Fast Flux Test Facility Standby Plan (Reference 1); Hanford Site Sodium Management Plan (Reference 2); and 309 Building Transition Plan (Reference 4). The technical scope, cost, and schedule baseline is also in agreement with the concurrent revision to the ART Fiscal Year (FY) 2001 Multi-Year Work Plan (MYWP), which is available in an electronic version (only) on the Hanford Local Area Network, within the ''Hanford Data Integrator (HANDI)'' application.

  9. Transport of fission products with a helium gas-jet at TRIGA-SPEC

    NASA Astrophysics Data System (ADS)

    Eibach, M.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Herfurth, F.; Geppert, C.; Ketelaer, J.; Ketter, J.; Krämer, J.; Krieger, A.; Knuth, K.; Nagy, Sz.; Nörtershäuser, W.; Smorra, C.

    2010-02-01

    A helium gas-jet system for the transport of fission products from the research reactor TRIGA Mainz has been developed, characterized and tested within the TRIGA-SPEC experiment. For the first time at TRIGA Mainz carbon aerosol particles have been used for the transport of radionuclides from a target chamber with high efficiency. The radionuclides have been identified by means of γ-spectroscopy. Transport time, efficiency as well as the absolute number of transported radionuclides for several species have been determined. The design and the characterization of the gas-jet system are described and discussed.

  10. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  11. Overview of the US program of controls for advanced reactors

    SciTech Connect

    White, J.D.; Sackett, J.I.; Monson, R.; Lindsay, R.W.; Carroll, D.G.

    1989-01-01

    An automated control system can incorporate control goals and strategies, assessment of present and future plant status, diagnostic evaluation and maintenance planning, and signal and command validation. It has not been feasible to employ these capabilities in conventional hard-wired, analog, control systems. Recent advances in computer-based digital data acquisition systems, process controllers, fiber-optic signal transmission artificial intelligence tools and methods, and small inexpensive, fast, large-capacity computers---with both numeric and symbolic capabilities---have provided many of the necessary ingredients for developing large, practical automated control systems. Furthermore, recent reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. This paper presents an overall US national perspective for advanced controls research and development. The goals of high reliability, low operating cost and simple operation are described. The staged approach from conceptualization through implementation is discussed. Then the paper describes the work being done by ORNL, ANL and GE. The relationship of this work to the US commercial industry is also discussed.

  12. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration

    SciTech Connect

    Curtis Smith; Steven Prescott; Tony Koonce

    2014-04-01

    A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

  13. Interpretation of TRIGA reactivity transients with RELAP5/PARCS coupled-code

    SciTech Connect

    Bandini, G.; Meloni, P.; Polidori, M.

    2006-07-01

    In the frame of future experiments to carried out upon TRIGA reactors, which aim to verify the real feasibility of the ADS (Accelerator Driven System) concept, it is essential to build a numerical tool able to simulate the dynamic behaviour of the reactor in subcritical configuration. This model developed to support the design of subcritical experiments and the safety analysis of the reactor, as a first step has to be assessed against the experimental data available for the critical reactor. To this purpose the thermal-hydraulic/ neutronic numerical model based on the RELAP5/PARCS coupled-code is been tested against the experimental reactivity transients conducted on the RC1-TRIGA reactor at the ENEA Casaccia Research Center in forecast of the TRADE (TRIGA Accelerator Driven Experiment) subcritical experience. The results of the calculations already performed show a qualitative good agreement with the experimental data and allow to address the future developments and improvements of the numerical model. (authors)

  14. The Advanced Test Reactor Irradiation Facilities and Capabilities

    SciTech Connect

    S. Blaine Grover; Raymond V. Furstenau

    2007-03-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR’s unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments.

  15. Safety Assurance for Irradiating Experiments in the Advanced Test Reactor

    SciTech Connect

    T. A. Tomberlin; S. B. Grover

    2004-11-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment.

  16. Advanced nuclear reactor public opinion project. Interim report

    SciTech Connect

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  17. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Mei-Juan, Li; Xiao-Long, Liu; Yun-Tao, Liu; Geng-Fang, Tian; Jian-Bo, Gao; Zhou-Xiang, Yu; Yu-Qing, Li; Li-Qi, Wu; Lin-Feng, Yang; Kai, Sun; Hong-Li, Wang; R. Santisteban, J.; Dong-Feng, Chen

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  18. Advanced Reactor Innovation Evaluation Study (ARIES) Properties Archive

    DOE Data Explorer

    ARIES stands for Advanced Reactor Innovation Evaluation Study. It is a program and a team that explores the commercial potential of fusion as an energy resource. Though it is a multi-institutional program, ARIES is led by the University of California at San Diego. ARIES studies both magnetic fusion energy (MFE) and inertial fusion energy (IFE), using an approach that integrates theory, experiments, and technology. The ARIES team proposes fusion reactor designs and works to understand how technology, materials and plasma physics processes interact and influence each other. A 2005 report to the Fusion Energy Sciences Advisory Committee ("Scientific Challenges, Opportunities, and Priorities for the U.S. Fusion Energy Sciences Program") noted on page 98 an example of the importance of this materials properties aspect: "For instance, effects on plasma edge by various plasma facing materials and effects on various plasma stabilization and control techniques by highly conducting liquid metal blankets are being considered by physicists." This web page is an archive of material properties collected here for the use of the ARIES Fusion Power Plant Studies Team.

  19. Fuel qualification plan for the Advanced Neutron Source Reactor

    SciTech Connect

    Copeland, G.L.

    1995-07-01

    This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would have been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.

  20. Hollow current profile scenarios for advanced tokamak reactor operations

    SciTech Connect

    Gourdain, P.-A.; Leboeuf, J.-N.

    2009-11-15

    Advanced tokamak scenarios are a possible approach to boosting reactor performances. Such schemes usually trigger current holes, a particular magnetohydrodynamics equilibrium where no current or pressure gradients exist in the core of the plasma. While such equilibria have large bootstrap fractions, flat pressure profiles in the plasma core may not be optimal for a reactor. However, moderate modifications of the equilibrium current profile can lead to diamagnetism where most of the pressure gradient is now balanced by poloidal currents and the toroidal magnetic field. In this paper, we consider the properties of diamagnetic current holes, also called ''dual equilibria,'' and demonstrate that fusion throughput can be significantly increased in such scenarios. Their stability is investigated using the DCON code. Plasmas with a beta peak of 30% and an average beta of 6% are found stable to both fixed and free-boundary modes with toroidal mode numbers n=1-4, as well as Mercier and high-n ballooning modes. This is not surprising as these scenarios have a normal beta close to 3.

  1. Neutron spectrum studies in the ATR (Advanced Test Reactor)

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.; Putnam, M.H.

    1990-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) has been and currently is used to provide irradiation fields to study the effects of intense radiation on samples of reactor materials. These samples include fuel, cladding, control and structural materials. The ATR is also used to irradiate target materials for the production of radionuclides used in industrial and medical applications as well as for scientific research. Routine monitoring of the thermal'' and fast'' neutron levels have been conducted during every operational cycle since its startup in 1970. The routine neutron dosimetry has been primarily accomplished using the {sup 59}Co(n,{gamma}){sup 60}Co reaction for thermal'' neutrons and the {sup 58}Ni(n,p) {sup 58}Co reaction for fast'' neutrons as described in ASTM standard methods E261, E262, and E264. Neutron spectrum studies have now been conducted in the epithermal and fast neutron energy ranges for the various capsule irradiation test facilities and the routine neutron monitoring locations. 7 refs., 5 figs., 1 tab.

  2. Advanced neutron source reactor probabilistic flow blockage assessment

    SciTech Connect

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.

  3. TRIGA-SPEC: the prototype of MATS and LaSpec

    NASA Astrophysics Data System (ADS)

    Kaufmann, S.; Beyer, T.; Blaum, K.; Block, M.; Düllmann, Ch E.; Eberhardt, K.; Eibach, M.; Geppert, C.; Gorges, C.; Grund, J.; Hammen, M.; Krämer, J.; Nagy, Sz; Nörtershäuser, W.; Renisch, D.; Schneider, F.; Wendt, K.

    2015-04-01

    Investigation of short-lived nuclei is a challenging task that MATS and LaSpec will handle at the low energy branch of Super-FRS at FAIR. The groundwork for those experiments is laid-out already today at the TRIGA-SPEC facility as a powerful development platform located at the research reactor TRIGA Mainz. The latest status, new developments and first results of commissioning runs are presented here.

  4. Proposed modification of an instrumented TRIGA fuel element so that it may be handled with a standard TRIGA fuel handling tool

    SciTech Connect

    Doane, Harry J.

    1992-07-01

    Instrumented fuel elements whose thermocouples are no longer functional are still a useful source of reactor fuel. Their usefulness is hampered somewhat by the extension tubing that must extend above water level to keep the thermocouple extension leads dry and to keep pool water from interacting with the gas tight lead seal which is made below the lower coupling in the extension tubing. This facility proposes to modify an instrumented TRIGA fuel element by removing the extension tubing at the lower coupling and attaching to it a top end fixture that is normally supplied with a standard TRIGA fuel element. This would then allow movement of the modified fuel element with a standard TRIGA fuel handling tool. This paper will present the considerations involved in performing this modification and the presenter will solicit any useful information that might be contributed by attendees of the TRIGA Owners' Conference. (author)

  5. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  6. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Gregg L. Sharp; R. T. McCracken

    2003-06-01

    The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, “Safety Basis Requirements,” requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, “Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants”2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  7. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Sharp, G.L.; McCracken, R.T.

    2003-05-13

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  8. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  9. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  10. 76 FR 5218 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Register on October 21, 2010 (75 FR 65038- 65039). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water...

  11. Assessment results of the Indonesian TRIGA SNF to be shipped to INEEL

    SciTech Connect

    Jefimoff, J.; Robb, A.K.; Wendt, K.M.; Syarip, I.; Alfa, T.

    1997-10-09

    This paper describes the Training, Research, Isotope, General Atomics (TRIGA) spent nuclear fuel (SNF) examination performed by technical personnel from the Idaho National Engineering and Environmental Laboratory (INEEL) at the Bandung and Yogyakarta research reactor facilities in Indonesia. The examination was required before the SNF would be accepted for transportation to and storage at the INEEL. This paper delineates the Initial Preparations prior to the Indonesian foreign research reactor (FRR) fuel examination. The technical basis for the examination, the TRIGA SNF Acceptance Criteria, and the physical condition required for transportation, receipt and storage of the TRIGA SNF at the INEEL is explained. In addition to the initial preparations, preparation descriptions of the Work Plan For TRIGA Fuel Examination, the Underwater Examination Equipment used, and personnel Examination Team Training are included. Finally, the Fuel Examination and Results of the aluminum and stainless steel clad TRIGA fuel examination have been summarized. Lessons learned from all the activities completed to date is provided in an addendum. The initial preparations included: (1) coordination between the INEEL, FRR or Badan Tenaga Atom Nasional (BATAN), DOE-HQ, and the US State Department and Embassy; (2) incorporating Savannah River Site (SRS) FRR experience and lessons learned; (3) collecting both FRR facility and spent fuel data, and issuing a radionuclide report (Radionuclide Mass Inventory, Activity, Decay Heat, and Dose Rate Parametric Data for TRIGA Spent Nuclear Fuels) needed for transportation and fuel acceptance at the INEEL; and (4) preexamination work at the research reactor for the fuel examination.

  12. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  13. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels. PMID:23274823

  14. Core design studies for advanced burner test reactor.

    SciTech Connect

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating

  15. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  16. An Integrated Marine Propulsion System Utilising TRIGA{sup TM} Fuel

    SciTech Connect

    Manach, G.; Monnez, J-P.; Freeman, M.J.; Newell, A.; Brushwood, J.M.; Thompson, A.; Collins, C.; Scholes, N.; Hamilton, P.J.; Beeley, P.A.

    2004-07-01

    This paper describes the reactor physics, shielding, thermal hydraulics, reactor dynamics and safety studies conducted to develop a proposed Integrated Marine Propulsion System (IMPS) utilising TRIGA{sup TM} type uranium zirconium hydride fuel. The study has demonstrated that the IMPS plant is feasible and meets the design safety principles and safety criteria imposed on the study. (authors)

  17. BN-800 advanced nuclear power plant with fast reactor

    SciTech Connect

    Shishkin, A.N.; Kuzavkov, N.G.; Sobolev, V.A.; Shestakov, G.V.; Bagdasarov, Yu.E.; Kochetkov, L.A.; Matveyev, V.I.; Poplavsky, V.M.

    1993-12-31

    Bn-800 reactor plant with fast reactor and sodium coolant in the primary and secondary circuits is designed for operation as part of the power units in the Yuzhno-Uralskaya nuclear power plant scheduled to be constructed in Chelyabinsk region and as part unit 4 in the Beloyarskaya nuclear power plant. Reactor operations are described.

  18. High-Precision Mass Measurements At TRIGA-TRAP

    NASA Astrophysics Data System (ADS)

    Smorra, C.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Eibach, M.; Herfurth, F.; Ketelaer, J.; Knuth, K.; Nörtershäuser, W.; Nagy, Sz.

    2010-04-01

    In order to study neutron-rich nuclides far from the valley of stability as well as long-lived actinoids the double Penning-trap mass spectrometer TRIGA-TRAP has been recently installed at the research reactor TRIGA Mainz. Short-lived neutron-rich fission products are produced by thermal neutron-induced fission of an actinoid target installed close to the reactor core. A helium gas-jet system with carbon aerosol particles is used to extract the fission products to the experiment. The Penning trap system has already been commissioned. Off-line mass measurements are routinely performed using a recently developed laser ablation ion source, and the gas-jet system has been tested. An overview of the experiment and current status will be given.

  19. High-Precision Mass Measurements At TRIGA-TRAP

    SciTech Connect

    Smorra, C.; Eibach, M.; Beyer, T.; Blaum, K.; Block, M.; Herfurth, F.; Eberhardt, K.; Ketelaer, J.; Knuth, K.; Noertershaeuser, W.; Nagy, Sz.

    2010-04-30

    In order to study neutron-rich nuclides far from the valley of stability as well as long-lived actinoids the double Penning-trap mass spectrometer TRIGA-TRAP has been recently installed at the research reactor TRIGA Mainz. Short-lived neutron-rich fission products are produced by thermal neutron-induced fission of an actinoid target installed close to the reactor core. A helium gas-jet system with carbon aerosol particles is used to extract the fission products to the experiment. The Penning trap system has already been commissioned. Off-line mass measurements are routinely performed using a recently developed laser ablation ion source, and the gas-jet system has been tested. An overview of the experiment and current status will be given.

  20. Status of the TRIGA shipments to the INEEL from Asia

    SciTech Connect

    Tyacke, M.; George, W.; Petrasek, A.; Stump, R.C.; Patterson, J.

    1997-10-09

    This paper will report on preparations being made for returning Training, Research, Isotope, General Atomics (TRIGA) foreign research reactor (FRR) spent fuel from South Korea and Indonesia to the Idaho National Engineering and Environmental Laboratory (INEEL). The roles of US Department of Energy, INEEL, and NAC International in implementing a safe shipment are provided. Special preparations necessitated by making a shipment through a west coast port of the US to the INEEL will be explained. The institutional planning and actions needed to meet the unique political and operational environment for making a shipment from Asia to INEEL will be discussed. Facility preparation at both the INEEL and the FRRs is discussed. Cask analysis needed to properly characterize the various TRIGA configurations, compositions, and enrichments is discussed. Shipping preparations will include an explanation of the integrated team of spent fuel transportation specialists, and shipping resources needed to retrieve the fuel from foreign research reactor sites and deliver it to the INEEL.

  1. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    SciTech Connect

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs.

  2. Advances in crack-arrest technology for reactor pressure vessels

    SciTech Connect

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs.

  3. On-Line NDE for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Nakagawa, N.; Inanc, F.; Thompson, R. B.; Junker, W. R.; Ruddy, F. H.; Beatty, J. M.; Arlia, N. G.

    2003-03-01

    This expository paper introduces the concept of on-line sensor methodologies for monitoring the integrity of components in next generation power systems, and explains general benefits of the approach, while describing early conceptual developments of suitable NDE methodologies. The paper first explains the philosophy behind this approach (i.e. the design-for-inspectability concept). Specifically, we describe where and how decades of accumulated knowledge and experience in nuclear power system maintenance are utilized in Generation IV power system designs, as the designs are being actively developed, in order to advance their safety and economy. Second, we explain that Generation IV reactor design features call for the replacement of the current outage-based maintenance by on-line inspection and monitoring. Third, the model-based approach toward design and performance optimization of on-line sensor systems, using electromagnetic, ultrasonic, and radiation detectors, will be explained. Fourth, general types of NDE inspections that are considered amenable to on-line health monitoring will be listed. Fifth, we will describe specific modeling developments to be used for radiography, EMAT UT, and EC detector design studies.

  4. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... COMMISSION Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors AGENCY... Treatment of Non-Safety Systems (RTNSS) for Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES:...

  5. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  6. Gas Evolution Measurements on Reactor Irradiated Advanced Fusion Magnet Insulation Systems

    NASA Astrophysics Data System (ADS)

    Humer, K.; Seidl, E.; Weber, H. W.; Fabian, P. E.; Feucht, S. W.; Munshi, N. A.

    2006-03-01

    Glass-fiber reinforced plastics (GFRPs) are used as insulation materials for the superconducting magnet coils of the International Thermonuclear Experimental Reactor (ITER). The radiation environment present at the magnet location will lead to gas production, swelling and weight loss of the laminate, which may result in a pressure rise combined with undefined stresses on the magnet coil casing. Consequently, these effects are important parameters for the engineering and design criteria of superconducting magnet coil structures. In this study, newly developed epoxy and cyanate-ester (CE) based S2-glass fiber reinforced insulation systems were irradiated at ambient temperature in the TRIGA-Mark II reactor (Vienna) to a fast neutron fluence of 1 and 5×1021 m-2 (E>0.1 MeV) prior to measurements of gas evolution, swelling and weight loss. The CE based laminates show increased radiation resistance, i.e. less gas evolution. The highest radiation hardness up to the highest dose was observed in a pure CE system. In addition, the effects of swelling and weight loss are either negligible or less pronounced for all systems. The results prove that the newly developed CE based composites are serious candidate insulation systems for ITER.

  7. Gas Evolution Measurements on Reactor Irradiated Advanced Fusion Magnet Insulation Systems

    SciTech Connect

    Humer, K.; Seidl, E.; Weber, H. W.; Fabian, P. E.; Feucht, S. W.; Munshi, N. A.

    2006-03-31

    Glass-fiber reinforced plastics (GFRPs) are used as insulation materials for the superconducting magnet coils of the International Thermonuclear Experimental Reactor (ITER). The radiation environment present at the magnet location will lead to gas production, swelling and weight loss of the laminate, which may result in a pressure rise combined with undefined stresses on the magnet coil casing. Consequently, these effects are important parameters for the engineering and design criteria of superconducting magnet coil structures. In this study, newly developed epoxy and cyanate-ester (CE) based S2-glass fiber reinforced insulation systems were irradiated at ambient temperature in the TRIGA-Mark II reactor (Vienna) to a fast neutron fluence of 1 and 5x1021 m-2 (E>0.1 MeV) prior to measurements of gas evolution, swelling and weight loss. The CE based laminates show increased radiation resistance, i.e. less gas evolution. The highest radiation hardness up to the highest dose was observed in a pure CE system. In addition, the effects of swelling and weight loss are either negligible or less pronounced for all systems. The results prove that the newly developed CE based composites are serious candidate insulation systems for ITER.

  8. Fuel, Structural Material and Coolant for an Advanced Fast Micro-Reactor

    NASA Astrophysics Data System (ADS)

    Do Nascimento, J. A.; Duimarães, L. N. F.; Ono, S.

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials.

  9. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  10. Proceedings of a Symposium on Advanced Compact Reactor Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.

  11. Mirror Advanced Reactor Study (MARS): executive summary and overview

    SciTech Connect

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.

  12. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shipment, as specified in the regulations of DOT in 49 CFR 172.202 and 172.203(d); (3) The point of origin... 10 Energy 2 2014-01-01 2014-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs...

  13. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... regulations of DOT in 49 CFR 172.202 and 172.203(d); (3) The point of origin of the shipment and the 7-day... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b),...

  14. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shipment, as specified in the regulations of DOT in 49 CFR 172.202 and 172.203(d); (3) The point of origin... 10 Energy 2 2013-01-01 2013-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs...

  15. 75 FR 7632 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... October 14, 2009 (74 FR 58268-58269). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR) The ACRS Subcommittee on ABWR will hold a meeting on March 2, 2010, at...

  16. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear waste contained in the shipment, as specified in the regulations of DOT in 49 CFR 172.202 and 172... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b),...

  17. 75 FR 10840 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... October 14, 2009, (74 FR 58268-58269). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will hold a meeting on March...

  18. 76 FR 61118 - Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... published in the Federal Register on October 21, 2010, (75 FR 65038-65039). Detailed meeting agendas and... Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Flint North building, 11555 Rockville Pike, Rockville, MD. After registering with security,...

  19. TRIGA Mark II benchmark experiment; Part I: Steady-state operation

    SciTech Connect

    Mele, I.; Ravnik, M.; Trkov, A. )

    1994-01-01

    The experimental results of startup tests after reconstruction and modification of the TRIGA Mark II reactor in Ljubljana are presented. The experiments were performed with a completely fresh, compact, and uniform core. The operating conditions were well defined and controlled, so that the results can be used as a benchmark test case for TRIGA reactor calculations. Both steady-state and pulse mode operation were tested. In this paper, the following steady-state experiments are treated: critical core and excess reactivity, control rod worths, fuel element reactivity worth distribution, fuel temperature distribution, and fuel temperature reactivity coefficient.

  20. University Reactor Instrumentation Grant

    SciTech Connect

    S. M. Bajorek

    2000-02-01

    A noble gas air monitoring system was purchased through the University Reactor Instrumentation Grant Program. This monitor was installed in the Kansas State TRIGA reactor bay at a location near the top surface of the reactor pool according to recommendation by the supplier. This system is now functional and has been incorporated into the facility license.

  1. Neutron and gamma radiography of UO{sub 2} and TRIGA fuel elements

    SciTech Connect

    Robinson, A.H.; Gao, Y.C.; Johnson, A.G.; Ringle, J.C.

    1982-07-01

    The Oregon State TRIGA Reactor neutron radiography facility has been used to produce both neutron and gamma radiographs of reactor fuel. In this paper a comparison of the applicability of neutron and gamma radiography to both UO{sub 2} fuel pins and TRIGA fuel elements is made. In the case of UO{sub 2} fuel, conventional thermal neutron radiography produces excellent quality radiographs. These radiographs may be used to detect various defects in the fuel such as enrichment differences, cracks, end-capping, inclusions, etc. For TRIGA fuel elements, conventional thermal neutron radiography will not show the internal structure. This is due to the high hydrogen content of the fuel. These elements are typically 8.5 w/o uranium in Zr-H{sub 1.7}; the density of hydrogen in the fuel being about 80 percent that of water. Further, while epithermal radiography significantly improves the radiographs, defects may go undetected. As an alternative to neutron radiography, high energy gamma radiographs of TRIGA fuel elements have been taken using the same facility. The gamma spectrum emitted by the reactor core is sufficiently high in energy that very good radiographs may be obtained with this technique. These radiographs show excellent detail for the internal structure of the TRIGA fuel. (author)

  2. Unconventional digital reactor control without conventional programming

    SciTech Connect

    Edwards, R.M.; Johns, R.M.; Kenney, S.J.

    1995-12-31

    Recent advances in simulation technology have resulted in the capability to design, test, and implement advanced control algorithms without the need for the labor-intensive effort of writing and debugging of computer programs. This technology has been adopted for a program of experimental development of power reactor control, which is jointly sponsored by the National Science Foundation and the Electric Power Research Institute. The experimental reactor control test bed utilizes the General Atomic Mark III TRIGA reactor at the Penn State Breazeale reactor facility. Control experiments are conducted within the movable experiment technical specifications of the TRIGA. A digital controller with an experimental control algorithm is interfaced to a secondary control rod (SCR). The new technology presented in this paper utilizes a UNIX network-compatible microprocessor-based controller operating under the Wind River Systems VxWorks real-time operating system. The controller interfaces with the Math-works MATLAB/SIMULINK development environment and Real-Time Innovations 8 monitoring software remotely operated on a SPARC workstation.

  3. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  4. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  5. Development of an advanced antineutrino detector for reactor monitoring

    NASA Astrophysics Data System (ADS)

    Classen, T.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Ho, A.; Jonkmans, G.; Kogler, L.; Reyna, D.; Sur, B.

    2015-01-01

    Here we present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. This paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass per detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.

  6. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    2004-07-01

    This factsheet describes a research project whose goal is to develop the knowledge and tools required to develop and scale a novel multiphase pulse-flow, catalytic reactor for acid catalyzed C4 paraffin/olefin alkylation, to industrial dimensions.

  7. 76 FR 27102 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on U.S. Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor... follows: Friday, May 27, 2011--8:30 a.m. Until 5 p.m. The Subcommittee will review Chapter 5,...

  8. Advanced-power-reactor design concepts and performance characteristics

    NASA Technical Reports Server (NTRS)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  9. Developing a Comprehensive Software Suite for Advanced Reactor Performance and Safety Analysis

    SciTech Connect

    Pointer, William David; Bradley, Keith S; Fischer, Paul F; Smith, Micheal A; Tautges, Timothy J; Ferencz, Robert M; Martineau, Richard C; Jain, Rajeev; Obabko, Aleksandr; Billings, Jay Jay

    2013-01-01

    This paper provides an introduction to the reactor analysis capabilities of the nuclear power reactor simulation tools that are being developed as part of the U.S. Department of Energy s Nuclear Energy Advanced Modeling and Simulation (NEAMS) Toolkit. The NEAMS Toolkit is an integrated suite of multi-physics simulation tools that leverage high-performance computing to reduce uncertainty in the prediction of performance and safety of advanced reactor and fuel designs. The Toolkit effort is comprised of two major components, the Fuels Product Line (FPL), which provides tools for fuel performance analysis, and the Reactor Product Line (RPL), which provides tools for reactor performance and safety analysis. This paper provides an overview of the NEAMS RPL development effort.

  10. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  11. Operational characteristics of the new 12 wt% TRIGA fuel

    SciTech Connect

    Boyle, P.; Levine, S.H.

    1997-12-01

    It has been reported that an instrumented TRIGA fuel element, I-15, had higher than normal fuel temperatures. As shown in Fig. 1, one of the newest instrumented fuel elements, I-17, has fuel temperatures equal to/and or higher than that of I-15. Another new fuel element, I-16, behaves similarly to I-17, and this is before they have been pulsed (the first pulses increase the steady-state temperature). Thus, there is a significant increase in the measured fuel temperatures of the newest TRIGA fuel received from General Atomics. They are estimated to measure fuel temperatures that exceed 600{degrees}C when in the B-ring at 1 MW at their beginning of life (BOL). The purpose of this summary is to report on the measurements performed with these new fuel elements and to describe the effect that the new information is having on the future fuel management plans for the Penn State Breazeale Research Reactor.

  12. Implementation of an aerodynamic lens for TRIGA-SPEC

    NASA Astrophysics Data System (ADS)

    Grund, J.; Düllmann, Ch. E.; Eberhardt, K.; Nagy, Sz.; van de Laar, J. J. W.; Renisch, D.; Schneider, F.

    2016-06-01

    We report on the optimization of the gas-jet system employed to couple the TRIGA-SPEC experiment to the research reactor TRIGA Mainz. CdI2 aerosol particles suspended in N2 as carrier gas are used for an effective transport of fission products from neutron induced 235 U fission from the target chamber to a surface ion source. Operating conditions of the gas-jet were modified to enable the implementation of an aerodynamic lens, fitting into the limited space available in front of the ion source. The lens boosts the gas-jet efficiency by a factor of 4-10. The characterization of the gas-jet system as well as the design of the aerodynamic lens and efficiency studies are presented and discussed.

  13. TRIGA FUEL PHASE I AND II CRITICALITY CALCULATION

    SciTech Connect

    L. Angers

    1999-11-23

    The purpose of this calculation is to characterize the criticality aspect of the codisposal of TRIGA (Training, Research, Isotopes, General Atomic) reactor spent nuclear fuel (SNF) with Savannah River Site (SRS) high-level waste (HLW). The TRIGA SNF is loaded into a Department of Energy (DOE) standardized SNF canister which is centrally positioned inside a five-canister defense SRS HLW waste package (WP). The objective of the calculation is to investigate the criticality issues for the WP containing the five SRS HLW and DOE SNF canisters in various stages of degradation. This calculation will support the analysis that will be performed to demonstrate the viability of the codisposal concept for the Monitored Geologic Repository (MGR).

  14. Structural and piping issues in the design certification of advanced reactors

    SciTech Connect

    Ali, S.A.; Terao, D.; Bagchi, G.

    1996-07-01

    The purpose of this paper is to discuss the design certification of structures and piping for evolutionary and passive advanced light water reactors. Advanced reactor designs are based on a set of assumed site-related parameters that are selected to envelop a majority of potential nuclear power plant sites. Multiple time histories are used as the seismic design basis in order to cover the majority of potential sites in the US. Additionally, design are established to ensure that surface motions at a particular site will not exceed the enveloped standard design surface motions. State-of-the-art soil-structure interaction (SSI) analyses have been performed for the advanced reactors, which include structure-to-structure interaction for all seismic Category 1 structures. Advanced technology has been utilized to exclude the dynamic effects of pipe rupture from structural design by demonstrating that the probability of pipe rupture is extremely low. For piping design, the advanced reactor vendors have developed design acceptance criteria (DAC) which provides the piping design analysis methods, design procedures, and acceptance criteria. In SECY-93-087 the NRC staff recommended that the Commission approve the approach to eliminate the OBE from the design of structures and piping in advanced reactors and provided guidance which identifies the necessary changes to existing seismic design criteria. The supplemental criteria address fatigue, seismic anchor motion, and piping stress limits when the OBE is eliminated.

  15. Facility modernization Annular Core Research Reactor

    SciTech Connect

    Morris, F.M.; Luera, T.F.; McCrory, F.M.; Nelson, D.A.; Trowbridge, F.R.; Wold, S.A.

    1990-07-01

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  16. Temperature feedback of TRIGA MARK-II fuel

    NASA Astrophysics Data System (ADS)

    Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.

    2016-01-01

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.

  17. Advances in process intensification through multifunctional reactor engineering.

    SciTech Connect

    Cooper, Marcia A.; Miller, James Edward; O'Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  18. Review of the proposed materials of construction for the SBWR and AP600 advanced reactors

    SciTech Connect

    Diercks, D.R.; Shack, W.J.; Chung, H.M.; Kassner, T.F.

    1994-06-01

    Two advanced light water reactor (LWR) concepts, namely the General Electric Simplified Boiling Water Reactor (SBWR) and the Westinghouse Advanced Passive 600 MWe Reactor (AP600), were reviewed in detail by Argonne National Laboratory. The objectives of these reviews were to (a) evaluate proposed advanced-reactor designs and the materials of construction for the safety systems, (b) identify all aging and environmentally related degradation mechanisms for the materials of construction, and (c) evaluate from the safety viewpoint the suitability of the proposed materials for the design application. Safety-related systems selected for review for these two LWRs included (a) reactor pressure vessel, (b) control rod drive system and reactor internals, (c) coolant pressure boundary, (d) engineered safety systems, (e) steam generators (AP600 only), (f) turbines, and (g) fuel storage and handling system. In addition, the use of cobalt-based alloys in these plants was reviewed. The selected materials for both reactors were generally sound, and no major selection errors were found. It was apparent that considerable thought had been given to the materials selection process, making use of lessons learned from previous LWR experience. The review resulted in the suggestion of alternate an possibly better materials choices in a number of cases, and several potential problem areas have been cited.

  19. Overview of the Consortium for the Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Franceschini, Fausto; Evans, Thomas M.; Gehin, Jess C.

    2016-02-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) was established in July 2010 for the purpose of providing advanced modeling and simulation solutions for commercial nuclear reactors. The primary goal is to provide coupled, higher-fidelity, usable modeling and simulation capabilities than are currently available. These are needed to address light water reactor (LWR) operational and safety performance-defining phenomena that are not yet able to be fully modeled taking a first-principles approach. In order to pursue these goals, CASL has participation from laboratory, academic, and industry partners. These partners are pursuing the solution of ten major "Challenge Problems" in order to advance the state-of-the-art in reactor design and analysis to permit power uprates, higher burnup, life extension, and increased safety. At present, the problems being addressed by CASL are primarily reactor physics-oriented; however, this paper is intended to introduce CASL to the reactor dosimetry community because of the importance of reactor physics modelling and nuclear data to define the source term for that community and the applicability and extensibility of the transport methods being developed.

  20. Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

    SciTech Connect

    Holbrook, Mark; Kinsey, Jim

    2015-03-01

    In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the “General Design Criteria for Nuclear Power Plants,” Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take

  1. Advanced reactor safety program. Stakeholder interaction and feedback

    SciTech Connect

    Szilard, Ronaldo H.; Smith, Curtis L.

    2014-08-01

    In the Spring of 2013, we began discussions with our industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require substantial participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  2. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  3. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. PMID:21399407

  4. Advanced Fast Reactor - 100 (AFR-100) Report for the Technical Review Panel

    SciTech Connect

    Grandy, Christopher; Sienicki, James J.; Moisseytsev, Anton; Krajtl, Lubomir; Farmer, Mitchell T.; Kim, Taek K.; Middleton, B.

    2014-06-04

    This report is written to provide an overview of the Advanced Fast Reactor-100 in the requested format for a DOE technical review panel. This report was prepared with information that is responsive to the DOE Request for Information, DE-SOL-0003674 Advanced Reactor Concepts, dated February 27, 2012 from DOE’s Office of Nuclear Energy, Office of Nuclear Reactor Technologies. The document consists of two main sections. The first section is a summary of the AFR-100 design including the innovations that are incorporated into the design. The second section contains a series of tables that respond to the various questions requested of the reactor design team from the subject DOE RFI.

  5. A combined gamma scanning and optical inspection system for spent TRIGA fuel

    SciTech Connect

    Boeck, H.; Allmer, G.

    1990-07-01

    A multipurpose lead container is used to investigate both the burn-up and the mechanical condition of standard TRIGA fuel elements. Especially in view of ageing reactor cores, this equipment is important to determine the further use of a specific fuel element and, therefore, saves operational costs.

  6. 11. biennial U.S. TRIGA users' conference. Papers and abstracts

    SciTech Connect

    1988-07-01

    The Conference was devoted to different aspects of TRIGA reactors design, operation and applications. The main topics concerned fuel elements, control rod drive system; modelling of corrosion damage and other chemical and material studies; neutron flux measurements and spectrum; irradiation devices; fuel element failures; neutron radiography etc.

  7. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  8. Detailed flux calculations for the conceptual design of the Advanced Neutron Source Reactor

    SciTech Connect

    Wemple, C.A.

    1995-05-01

    A detailed MCNP model of the Advanced Neutron Source Reactor has been developed. All reactor components inside the reflector tank were included, and all components were highly segmented. Neutron and photon multigroup flux spectra have been calculated for each segment in the model, and thermal-to-fast neutron flux ratios were determined for each component segment. Axial profiles of the spectra are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the group fluxes for all important reflector components have a standard deviation below 10%.

  9. Status of development and licensing support for advanced liquid metal reactors in the United States

    SciTech Connect

    Pedersen, D.R. ); Gyorey, G. )

    1991-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment.

  10. Status of development and licensing support for advanced liquid metal reactors in the United States

    SciTech Connect

    Pedersen, D.R.; Gyorey, G.

    1991-12-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment.

  11. Advanced reactors transition fiscal year 1995 multi-year program plan WBS 7.3

    SciTech Connect

    Loika, E.F.

    1994-09-22

    This document describes in detail the work to be accomplished in FY-1995 and the out years for the Advanced Reactors Transition (WBS 7.3). This document describes specific milestones and funding profiles. Based upon the Fiscal Year 1995 Multi-Year Program Plan, DOE will provide authorization to perform the work outlined in the FY 1995 MYPP. Following direction given by the US Department of Energy (DOE) on December 15, 1993, Advanced Reactors Transition (ART), previously known as Advanced Reactors, will provide the planning and perform the necessary activities for placing the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown condition. The DOE goal is to accomplish the shutdown in approximately five years. The Advanced Reactors Transition Multi-Year Program Plan, and the supporting documents; i.e., the FFTF Shutdown Program Plan and the FFTF Shutdown Project Resource Loaded Schedule (RLS), are defined for the life of the Program. During the transition period to achieve the Shutdown end-state, the facilities and systems will continue to be maintained in a safe and environmentally sound condition. Additionally, facilities that were associated with the Office of Nuclear Energy (NE) Programs, and are no longer required to support the Liquid Metal Reactor Program will be deactivated and transferred to an alternate sponsor or the Decontamination and Decommissioning (D and D) Program for final disposition, as appropriate.

  12. Single channel flow blockage accident phenomena identification and ranking table (PIRT) for the advanced Candu reactor

    SciTech Connect

    Popov, N.K.; Abdul-Razzak, A.; Snell, V.G.; Langman, V.; Sills, H.

    2004-07-01

    The Advanced Candu Reactor (ACRTM) is an evolutionary advancement of the current Candu 6{sup R} reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular concept of horizontal fuel channels surrounded by a heavy water moderator, as with all Candu reactors. However, ACR uses slightly enriched uranium (SEU) fuel, compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (e.g., via reductions in the heavy water requirements and the use of a light water coolant), as well as improved safety. This paper documents the results of Phenomena Identification and Ranking Table (PIRT) results for a very limited frequency, beyond design basis event of the ACR design. This PIRT is developed in a highly structured process of expert elicitation that is well supported by experimental data and analytical results. The single-channel flow blockage event in an ACR reactor assumes a severe flow blockage of one of the reactor fuel channels, which leads to a reduction of the flow in the affected channel, leading to fuel cladding and fuel temperature increase. The paper outlines the design characteristics of the ACR reactor that impact the PIRT process and computer code applicability. It also describes the flow blockage phenomena, lists all components and systems that have an important role during the event, discusses the PIRT process and results, and presents the finalized PIRT tables. (authors)

  13. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    SciTech Connect

    Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

    2012-05-01

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  14. Compiled reports on the applicability of selected codes and standards to advanced reactors

    SciTech Connect

    Benjamin, E.L.; Hoopingarner, K.R.; Markowski, F.J.; Mitts, T.M.; Nickolaus, J.R.; Vo, T.V.

    1994-08-01

    The following papers were prepared for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission under contract DE-AC06-76RLO-1830 NRC FIN L2207. This project, Applicability of Codes and Standards to Advance Reactors, reviewed selected mechanical and electrical codes and standards to determine their applicability to the construction, qualification, and testing of advanced reactors and to develop recommendations as to where it might be useful and practical to revise them to suit the (design certification) needs of the NRC.

  15. Piping benchmark problems for the General Electric Advanced Boiling Water Reactor

    SciTech Connect

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1993-08-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boiling water reactor standard design, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set.

  16. Tri-Gas Pressurization System Testing and Modeling for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Polsgrove, R.; Stephens, J.; Hedayat, A.

    2014-01-01

    The use of Tri-gas in rocket propulsion systems is somewhat of a new technology. This paper defines Tri-gas as a mixture of gases composed largely of helium with a small percentage of a stoichiometric mixture of hydrogen and oxygen. When exposed to a catalyst the hydrogen and oxygen in the mixture combusts, significantly raising the temperature of the mixture. The increase in enthalpy resulting from the combustion process significantly decreases the required quantity of gas needed to pressurize the ullage of the vehicle propellant tanks. The objective of this effort was to better understand the operating characteristics of Tri-gas in a pressurization system with low temperature applications. In conjunction with ongoing programs at NASA Marshall Space Flight Center, an effort has been undertaken to evaluate the operating characteristics of Tri-gas through modeling and bench testing. Through improved understanding of the operating characteristics, the risk of using this new technology in a launch vehicle propulsion system was reduced. Bench testing of Tri-gas was a multistep process that targeted gas characteristics and performance aspects that pose a risk to application in a pressurization system. Pressurization systems are vital to propulsion system performance. Keeping a target ullage pressure in propulsions tanks is necessary to supply propellant at the conditions and flow rates required to maintain desired engine functionality. The first component of testing consisted of sampling Tri-gas sources that had been stagnant for various lengths of time in order to determine the rate at which stratification takes place. Second, a bench test was set up in which Tri-gas was sent through a catalyst bed. This test was designed to evaluate the performance characteristics of Tri-gas, under low temperature inlet temperatures, in a flight-like catalyst bed reactor. The third, most complex, test examined the performance characteristics of Tri-gas at low temperature temperatures

  17. Behavior of 12 wt% TRIGA fuel after many years of operation

    SciTech Connect

    Levine, S.H.; Boyle, P.

    1997-12-01

    In July 1972, six 12 wt% Uzr-H TRIGA fuel elements were loaded into the B-ring, the innermost ring, of the Penn State Breazeale Research Reactor (PSBR) to increase its k{sub eff}. Of these initial six fuel elements, three remain in the core, and the other three fuel elements had to be removed from the core. The purpose of this summary is to present operational-type data on the 12 wt% Uzr-H TRIGA fuel elements that have been in the PSBR during the past 25 yr and to postulate reasons for the structural change of those removed from the core.

  18. Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials

    SciTech Connect

    J. J. Einerson

    2005-05-01

    Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.

  19. SMAHTR - A Concept for a Small, Modular Advanced High Temperaure Reactor

    SciTech Connect

    Gehin, Jess C; Greene, Sherrell R; Holcomb, David Eugene; Carbajo, Juan J; Cisneros, Anselmo T; Corwin, William R; Ilas, Dan; Wilson, Dane F; Varma, Venugopal Koikal; Bradley, Eric Craig; Yoder, III, Graydon L

    2010-01-01

    Several new high temperature reactor concepts, referred to as Fluoride Salt Cooled High Temperature Reactors (FHRs), have been developed over the past decade. These FHRs use a liquid salt coolant combined with high temperature gas-cooled reactor fuels (TRISO) and graphite structural materials to provide a reactor that operates at very high temperatures and is scalable to large sizes perhaps exceeding 2400 MWt. This paper presents a new small FHR the Small Modular Advanced High Temperature Reactor or SmAHTR . SmAHTR is targeted at applications that require compact, high temperature heat sources either for high efficiency electricity production or process heat applications. A preliminary SmAHTR concept has been developed that delivers 125 MWt of energy in an integral primary system design that places all primary and decay heat removal heat exchangers inside the reactor vessel. The current reactor baseline concept utilizes a prismatic fuel block core, but multiple removable fuel assembly concepts are under evaluation as well. The reactor vessel size is such that it can be transported on a standard tractor-trailer to support simplified deployment. This paper will provide a summary of the current SmAHTR system concept and on-going technology and system architecture trades studies.

  20. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    SciTech Connect

    Bohachek, Randolph Charles

    2015-09-01

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  1. Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011

    SciTech Connect

    Not Listed

    2011-11-01

    The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

  2. Advanced sodium fast reactor accident source terms : research needs.

    SciTech Connect

    Powers, Dana Auburn; Clement, Bernard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  3. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    SciTech Connect

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  4. Hydrogen and Oxygen Gas Production in the UT TRIGA Reflector

    SciTech Connect

    D. S. O'Kelly

    2000-11-12

    In December 1999, The University of Texas at Austin (UT) reported an unusual condition associated with the annular graphite reflector surrounding the Nuclear Engineering Teaching Laboratory (NETL) TRIGA reactor. The aluminum container encapsulating the graphite showed signs of bulging or swelling. Further, during an investigation of this occurrence, bubbles were detected coming from a weld in the aluminum. The gas composition was approximately 2:1 hydrogen to oxygen. After safety review and equipment fabrication, the reflector was successfully vented and flooded. The ratio of the gases produced is unusual, and the gas production mechanism has not yet been explained.

  5. Insights from the WGRISK workshop on the PSA of advanced and new reactors

    SciTech Connect

    Georgescu, G.; Ahn, K. I.; Amri, A.

    2012-07-01

    Probabilistic Safety Assessment /Probabilistic Risk Assessment for new and advanced reactors is recognized as an essential complement of the deterministic approaches to achieve improved safety and performances of new nuclear power plants, comparing to the operating plants. However, the development of PSA to these reactors is encountered to concurrent challenges, mainly due to the limited available design information, as well as due to potentially new initiating events, accident sequences and phenomena. The use of PSA in the decision making process is also challenging since the resulting PSA may not sufficiently reflect the future as-built, as-operated plant information. In order to address these aspects, the OECD/NEA/WGRISK initiated two coordinated tasks on 'PSA for Advanced Reactors' and 'PSA in the frame of Design and Commissioning of New NPPs'. In this context, a joint workshop was organized by OECD, during which related subjects were presented and discussed, including PSA for generation IV reactors, PSA for evolutionary reactors, PSA for small modular reactors, severe accidents and Level 2 PSA, Level 3 PSA and consequences analysis, digital I and C modeling, passive systems reliability, safety-security interface, as well as the results of the surveys performed in the frame of theses WGRISK tasks. (authors)

  6. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  7. Advanced propulsion engine assessment based on a cermet reactor

    NASA Astrophysics Data System (ADS)

    Parsley, Randy C.

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  8. Advanced propulsion engine assessment based on a cermet reactor

    NASA Technical Reports Server (NTRS)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  9. 78 FR 41436 - Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... solicitation for public comment published in the Federal Register on October 12, 2012 (77 FR 62270), on the... COMMISSION Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors... Treatment of Non-Safety Systems (RTNSS) for Passive Advanced Light Water Reactors.'' The NRC seeks...

  10. Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory

    SciTech Connect

    Sivill, R.L.

    1990-03-01

    This Reference Site Selection Report was prepared by EG G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs.

  11. Progress Towards Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Pardini, Allan F.; Suter, Jonathan D.; Prowant, Matthew S.

    2014-08-01

    Sustainable nuclear power to promote energy security and to reduce greenhouse gas emissions are two key national energy priorities. The development of deployable small modular reactors (SMRs) is expected to support these objectives by developing technologies that improve the reliability, sustain safety, and improve affordability of new reactors. Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Prognostic health management (PHM) systems can benefit both the safety and economics of deploying AdvSMRs and can play an essential role in managing the inspection and maintenance of passive components in AdvSMR systems. This paper describes progress on development of a prototypic PHM system for AdvSMR passive components, with thermal creep chosen as the target degradation mechanism.

  12. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... regulations of DOT in 49 CFR 172.202 and 172.203(d); (3) The point of origin of the shipment and the 7-day... 10 Energy 2 2012-01-01 2012-01-01 false Advance notification of shipment of irradiated reactor fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED)...

  13. Advanced Computational Thermal Studies and their Assessment for Supercritical-Pressure Reactors (SCRs)

    SciTech Connect

    D. M. McEligot; J. Y. Yoo; J. S. Lee; S. T. Ro; E. Lurien; S. O. Park; R. H. Pletcher; B. L. Smith; P. Vukoslavcevic; J. M. Wallace

    2009-04-01

    The goal of this laboratory / university collaboration of coupled computational and experimental studies is the improvement of predictive methods for supercritical-pressure reactors. The general objective is to develop supporting knowledge needed of advanced computational techniques for the technology development of the concepts and their safety systems.

  14. Characterization of a Real-time Neutron Imaging Test Station at China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    He, Linfeng; Han, Songbai; Wang, Hongli; Wei, Guohai; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    A real-time neutron imaging test station was recently installed at the China Advanced Research Reactor. The objective of this work was to determine its operational characteristics, including neutron beam profile, the spatial resolution and time resolution. The performance of the equipment was demonstrated by a real time neutron imaging test of the water dynamics in a fuel cell.

  15. 2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  16. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. 2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond

    SciTech Connect

    mike lewis

    2011-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. 2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  19. 2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  20. Human Factors Engineering (HFE) insights for advanced reactors based upon operating experience

    SciTech Connect

    Higgins, J.; Nasta, K.

    1997-01-01

    The NRC Human Factors Engineering Program Review Model (HFE PRM, NUREG-0711) was developed to support a design process review for advanced reactor design certification under 10CFR52. The HFE PRM defines ten fundamental elements of a human factors engineering program. An Operating Experience Review (OER) is one of these elements. The main purpose of an OER is to identify potential safety issues from operating plant experience and ensure that they are addressed in a new design. Broad-based experience reviews have typically been performed in the past by reactor designers. For the HFE PRM the intent is to have a more focussed OER that concentrates on HFE issues or experience that would be relevant to the human-system interface (HSI) design process for new advanced reactors. This document provides a detailed list of HFE-relevant operating experience pertinent to the HSI design process for advanced nuclear power plants. This document is intended to be used by NRC reviewers as part of the HFE PRM review process in determining the completeness of an OER performed by an applicant for advanced reactor design certification. 49 refs.

  1. Detailed heat load calculations for the conceptual design of the Advanced Neutron Source reactor

    SciTech Connect

    Wemple, C.A.

    1993-12-01

    A very detailed MCNP model of the Advanced Neutron Source reactor has been developed at Idaho National Engineering Laboratory. All reactor components inside the reflector vessel were included, and al components were highly segmented. Specific heat loads (watts per gram) have been calculated for each segment in the model, and system-integrated total powers are compared with the design value for the total reactor fission power. The calculated results agree very well with the design values. Axial profiles of the heat loads are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the heat loads for all important reflector components have a standard deviation below 5%.

  2. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  3. Extensions to SCDAP/RELAP5-3D for Analysis of Advanced Reactors

    SciTech Connect

    Harvego, Edwin Allan; Siefken, Larry James

    2003-04-01

    The SCDAP/RELAP5-3D code was extended to enable the code to perform transient analyses of advanced LWRs (Light Water Reactors) and HTGRs (High Temperature Gas Reactors). The extensions for LWRs included: (1) representation of micro-heterogeneous fuel varying in composition in the radial and axial directions, (2) modeling of two-dimensional radial/axial heat conduction for more accurate calculation of fuel and cladding temperatures during the reflood period of a large break loss-of-coolant accident (LOCA), (3) modeling of fuel-cladding interface pressure and fuel-cladding gap conductance, (4) representation of radial power profiles varying in a discontinuous manner in the axial direction, and (5) addition of material properties for fuel composed of mixtures of ThO2-UO2 and ThO2-PuO2. The extensions for HTGR analyses included: (1) modeling of the transient two-dimensional temperature behavior of graphite moderated reactor cores (pebble bed and block-type), reactor vessel, and reactor containment, (2) modeling of flow losses and convective heat transfer in pebble bed reactor cores, (3) modeling of oxidation of graphite components in reactor cores due to the ingress of air and/or water, and (4) modeling of the affect of oxidation on the composition of gases in the reactor system. The applications of the extended code to LWR analyses showed that advanced fuels intended for proliferation resistance and waste reduction could also be designed to produce calculated peak cladding temperatures during a large break LOCA less than the 1477 K acceptance criterion in 10 CFR 50.46. Fuels composed of ThO2-UO2 and ThO2-PuO2 are examples of such fuels. The applications of the extended code to HTGR analyses showed that: (1) HTGRs can be designed for passive removal of all decay heat, and (2)

  4. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect

    Not Available

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  5. Testing of an advanced thermochemical conversion reactor system

    NASA Astrophysics Data System (ADS)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.

  6. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  7. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  8. Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect

    S. B. Grover

    2007-05-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment

  9. Requirements for Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. aSMRs are conceived for applications in remote locations and for diverse missions that include providing process or district heating, water desalination, and hydrogen production. Several challenges exist with respect to cost-effective operations and maintenance (O&M) of aSMRs, including the impacts of aggressive operating environments and modularity, and limiting these costs and staffing needs will be essential to ensuring the economic feasibility of aSMR deployment. In this regard, prognostic health management (PHM) systems have the potential to play a vital role in supporting the deployment of aSMR systems. This paper identifies requirements and technical gaps associated with implementation of PHM systems for passive aSMR components.

  10. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    SciTech Connect

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

  11. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    SciTech Connect

    Goodarz Ahmadi

    2000-11-01

    In the first year of the project, solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions are compared with the experimental data and good agreement was found. Progress was also made in analyzing the gravity chute flows of solid-liquid mixtures. An Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is being developed. The approach uses an Eulerian analysis of gas liquid flows in the bubble column, and makes use of the Lagrangian particle tracking procedure to analyze the particle motions. Progress was also made in developing a rate dependent thermodynamically consistent model for multiphase slurry flows in a state of turbulent motion. The new model includes the effect of phasic interactions and leads to anisotropic effective phasic stress tensors. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The formulation of a thermodynamically consistent model for chemically active multiphase solid-fluid flows in a turbulent state of motion was also initiated. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also to establish the material parameters of the model. (2) To provide experimental data for phasic fluctuation and mean velocities, as well as the solid volume fraction in the shear flow devices. (3) To develop an accurate computational capability incorporating the new rate-dependent and anisotropic model for analyzing reacting and

  12. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    SciTech Connect

    Goodarz Ahmadi

    2001-10-01

    In the second year of the project, the Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is further developed. The approach uses an Eulerian analysis of liquid flows in the bubble column, and makes use of the Lagrangian trajectory analysis for the bubbles and particle motions. An experimental set for studying a two-dimensional bubble column is also developed. The operation of the bubble column is being tested and diagnostic methodology for quantitative measurements is being developed. An Eulerian computational model for the flow condition in the two-dimensional bubble column is also being developed. The liquid and bubble motions are being analyzed and the results are being compared with the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures is also being studied. Further progress was also made in developing a thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion. The balance laws are obtained and the constitutive laws are being developed. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The technique of Phase-Doppler anemometry was used in these studies. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also establish the

  13. Advanced Reactors Transition program fiscal year 1998 multi-year work plan

    SciTech Connect

    Gantt, D.A.

    1997-09-25

    The mission of the Advanced Reactors Transition program is two-fold. First, the program is to maintain the Fast Flux Test Facility (FFTF) and the Fuels and Materials Examination Facility (FMEF) in Standby to support a possible future role in the tritium production strategy. Secondly, the program is to continue deactivation activities which do not conflict with the Standby directive. On-going deactivation activities include the processing of non-usable, irradiated, FFTF components for storage or disposal; deactivation of Nuclear Energy legacy test facilities; and deactivation of the Plutonium Recycle Test Reactor (PRTR) facility, 309 Building.

  14. A Novel Approach to Materials Development for Advanced Reactor Systems. Annual Report for Year 1

    SciTech Connect

    Was, G.S.; Atzmon, M.; Wang, L.

    2000-09-28

    OAK B188 A Novel Approach to Materials Development for Advanced Reactor Systems. Annual Report for Year 1 Year one of this project had three major goals. First, to specify, order and install a new high current ion source for more rapid and stable proton irradiation. Second, to assess the use of chromium pre-enrichment and the combination of cold-work and irradiation hardening in an effort to assess the role of radiation damage in IASCC without the effects of RIS. Third, to initiate irradiation of reactor pressure vessel steel and Zircaloy. Program Achievements for Year One: Progress was made on all 4 tasks in year one.

  15. DEVELOPMENT OF HUMAN FACTORS ENGINEERING GUIDANCE FOR SAFETY EVALUATIONS OF ADVANCED REACTORS.

    SciTech Connect

    O'HARA, J.; PERSENSKY, J.; SZABO, A.

    2006-10-01

    Advanced reactors are expected to be based on a concept of operations that is different from what is currently used in today's reactors. Therefore, regulatory staff may need new tools, developed from the best available technical bases, to support licensing evaluations. The areas in which new review guidance may be needed and the efforts underway to address the needs will be discussed. Our preliminary results focus on some of the technical issues to be addressed in three areas for which new guidance may be developed: automation and control, operations under degraded conditions, and new human factors engineering methods and tools.

  16. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-07-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  17. Advanced Test Reactor In-Canal Ultrasonic Scanner: Experiment Design and Initial Results on Irradiated Plates

    SciTech Connect

    D. M. Wachs; J. M. Wight; D. T. Clark; J. M. Williams; S. C. Taylor; D. J. Utterbeck; G. L. Hawkes; G. S. Chang; R. G. Ambrosek; N. C. Craft

    2008-09-01

    An irradiation test device has been developed to support testing of prototypic scale plate type fuels in the Advanced Test Reactor. The experiment hardware and operating conditions were optimized to provide the irradiation conditions necessary to conduct performance and qualification tests on research reactor type fuels for the RERTR program. The device was designed to allow disassembly and reassembly in the ATR spent fuel canal so that interim inspections could be performed on the fuel plates. An ultrasonic scanner was developed to perform dimensional and transmission inspections during these interim investigations. Example results from the AFIP-2 experiment are presented.

  18. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  19. Reactor physics analyses of the advanced neutron source three-element core

    SciTech Connect

    Gehin, J.C.

    1995-08-01

    A reactor physics analysis was performed for the Advanced Neutron Source reactor with a three-element core configuration. The analysis was performed with a two-dimensional r-z 20-energy-group finite-difference diffusion theory model of the 17-d fuel cycle. The model included equivalent r-z geometry representations of the central control rods, the irradiation and production targets, and reflector components. Calculated quantities include fuel cycle parameters, fuel element power distributions, unperturbed neutron fluxes in the reflector and target regions, reactivity perturbations, and neutron kinetics parameters.

  20. TRIGA MARK-II source term

    NASA Astrophysics Data System (ADS)

    Usang, M. D.; Hamzah, N. S.; J. B., Abi M.; M. Z., M. Rawi; Abu, M. P.

    2014-02-01

    ORIGEN 2.2 are employed to obtain data regarding γ source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences of results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel.

  1. TRIGA MARK-II source term

    SciTech Connect

    Usang, M. D. Hamzah, N. S. Abi, M. J. B. Rawi, M. Z. M. Rawi Abu, M. P.

    2014-02-12

    ORIGEN 2.2 are employed to obtain data regarding γ source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences of results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel.

  2. TRIGA spent-fuel storage criticality analysis

    SciTech Connect

    Ravnik, M.; Glumac, B.

    1996-06-01

    A criticality safety analysis of a pool-type storage for spent TRIGA Mark II reactor fuel is presented. Two independent computer codes are applied: the MCNP Monte Carlo code and the WIMS lattice cell code. Two types of fuel elements are considered: standard fuel elements with 12 wt% uranium concentration and FLIP fuel elements. A parametric study of spent-fuel storage lattice pitch, fuel element burnup, and water density is presented. Normal conditions and postulated accident conditions are analyzed. A strong dependence of the multiplication factor on the distance between the fuel elements and on the effective water density is observed. A multiplication factor <1 may be expected for an infinite array of fuel rods at center-to-center distances >6.5 cm, regardless of the fuel element type and burnup. At shorter distances, the subcriticality can be ensured only by adding absorbers to the array of fuel rods even if the fuel rods were burned to {approximately}20% burnup. The results of both codes agree well for normal conditions. The results show that WIMS may be used as a complement to the Monte Carlo code in some parts of the criticality analysis.

  3. Roadmap for development of an advanced head-end reactor

    SciTech Connect

    Del Cul, G.D.; Johnson, J.A.; Spencer, B.B.; Collins, E.D.

    2013-07-01

    A novel dry treatment process for used nuclear fuel (UNF) using nitrogen dioxide is being developed to remove volatile and semi-volatile fission products and convert the monolithic fuel material to a fine powder suitable as a feed to many different separations processes. The process may be considered an advanced form of voloxidation, which was envisioned to remove tritium from the fuel prior to introduction of the fuel into the aqueous separations systems, where subsequent separation of tritium from the water would be difficult and expensive. The product from NO{sub 2} reaction can be selectively chosen to be U{sub 3}O{sub 8}, UO{sub 3}, or a nitrate by adjusting the processing conditions; all products are generated at temperatures lower than those used in standard voloxidation. All the fundamental tenants of the process have been successfully demonstrated as a proof of principle, and many aspects have been corroborated multiple times at laboratory scale. The goal of this roadmap is to define the activities required to develop the process to a technology-readiness level sufficient to an engineering-scale implementation. (authors)

  4. A review of two recent occurrences at the Advanced Test Reactor involving subcontractor activities

    SciTech Connect

    Dahlke, H.J.; Jensen, N.C.; Vail, J.A.

    1997-11-01

    This report documents the results of a brief, unofficial investigation into two incidents at the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR) facility, reported on October 25 and 31, 1997. The first event was an unanticipated breach of confinement. The second involved reactor operation with an inoperable seismic scram subsystem, violating the reactor`s Technical Specifications. These two incidents have been found to be unrelated. A third event that occurred on December 16, 1996, is also discussed because of its similarities to the first event listed above. Both of these incidents were unanticipated breaches of confinement, and both involved the work of construction subcontractor personnel. The cause for the subcontractor related occurrences is a work control process that fails to effectively interface with LMITCO management. ATR Construction Project managers work sufficient close with construction subcontractor personnel to understand planned day-to-day activities. They also have sufficient training and understanding of reactor operations to ensure adherence to applicable administrative requirements. However, they may not be sufficiently involved in the work authorization and control process to bridge an apparent communications gap between subcontractor employees and Facility Operations/functional support personnel for work inside the reactor facility. The cause for the inoperable seismic scram switch (resulting from a disconnected lead) is still under investigation. It does not appear to be subcontractor related.

  5. Examination of loop-operator-initiated events for the advanced test reactor

    SciTech Connect

    Durney, J.L.; Majumdar, D.

    1989-01-01

    The Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory is a unique high-flux test reactor having nine major test positions for irradiation of reactor materials. These test positions contain inpile tubes (IPT) that are connected to external piping and equipment (loops) to provide the high-temperature, high-pressure environment for the testing. The design of the core has intimately integrated the IPTs into the fuel region by means of a serpentine fuel arrangement resulting in a close reactivity coupling between the loop thermal hydraulics and the core. Consequently, operator actions potentially have an impact on the reactor power transients resulting from off-normal conditions in these facilities. This paper examines these operator-initiated events and their consequences. The analysis of loop-operator-initiated events indicates there is no damage to the reactor core even when assuming no operator intervention for mitigation. However, analysis does assume a scram occurs when required by the reactor protection systems.

  6. Advanced Pressurized Water Reactor for Improved Resource Utilization: Part I - Survey of Potential Improvements

    SciTech Connect

    Turner, S.E.; Gurley, M.K.; Kirby, K.D.; Mitchell, W. III

    1981-09-15

    This document is an interim report under ACDA BOA AC9NX707, Task Order 80-03, which covers the evaluation of certain potential improvements in pressurized water reactor designs intended to enhance uranium fuel utilization. The objective of these evaluations is to seek advanced, non-retrofittable improvements that could possibly be commercialized by the end of the century, and, on the basis of a preliminary evaluation, to select compatible improvements for incorporation into a composite advanced pressurized water reactor concept. The principal areas of investigation include reduced parasitic absorption of neutrons (Task 1), reduced neutron leakage (Task 2), and alternative fuel design concepts (Task 3). To the extent possible, the advanced concept developed in an earlier study (Retrofittable Modifications to Pressurized Water Reactors for Improved Resource Utilization, SSA-128, October 1980) is used as a basis in developing the advanced composite concept. The reference design considered typical of present PWR commercial practice is the system described in RESAR-414, Reference Safety Analysis Report, Westinghouse Nuclear Energy Systems, October 1976.

  7. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  8. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  9. Fundamental approach to TRIGA steady-state thermal-hydraulic CHF analysis.

    SciTech Connect

    Feldman, E.; Nuclear Engineering Division

    2008-03-30

    Methods are investigated for predicting the power at which critical heat flux (CHF) occurs in TRIGA reactors that rely on natural convection for primary flow. For a representative TRIGA reactor, two sets of functions are created. For the first set, the General Atomics STAT code and the more widely-used RELAP5-3D code are each employed to obtain reactor flow rate as a function of power. For the second set, the Bernath correlation, the 2006 Groeneveld table, the Hall and Mudawar outlet correlation, and each of the four PG-CHF correlations for rod bundles are used to predict the power at which CHF occurs as a function of channel flow rate. The two sets of functions are combined to yield predictions of the power at which CHF occurs in the reactor. A combination of the RELAP5-3D code and the 2006 Groeneveld table predicts 67% more CHF power than does a combination of the STAT code and the Bernath correlation. Replacing the 2006 Groeneveld table with the Bernath CHF correlation (while using the RELAP5-3D code flow solution) causes the increase to be 23% instead of 67%. Additional RELAP5-3D flow-versus-power solutions obtained from Reference 1 and presented in Appendix B for four specific TRIGA reactors further demonstrates that the Bernath correlation predicts CHF to occur at considerably lower power levels than does the 2006 Groeneveld table. Because of the lack of measured CHF data in the region of interest to TRIGA reactors, none of the CHF correlations considered can be assumed to provide the definitive CHF power. It is recommended, however, to compare the power levels of the potential limiting rods with the power levels at which the Bernath and 2006 Groeneveld CHF correlations predict CHF to occur.

  10. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    SciTech Connect

    Bolisetti, Chandrakanth; Coleman, Justin Leigh

    2015-06-01

    of interest. The specific nonlinear soil behavior included in the NLSSI calculation presented in this report is gapping and sliding. Other NLSSI effects are not included in the calculation. The results presented in this report document initial model runs in the linear and nonlinear analysis process. Final comparisons between traditional and advanced SPRA will be presented in the September 30th deliverable.

  11. Modeling & analysis of criticality-induced severe accidents during refueling for the Advanced Neutron Source Reactor

    SciTech Connect

    Georgevich, V.; Kim, S.H.; Taleyarkhan, R.P.; Jackson, S.

    1992-10-01

    This paper describes work done at the Oak Ridge National Laboratory (ORNL) for evaluating the potential and resulting consequences of a hypothetical criticality accident during refueling of the 330-MW Advanced Neutron Source (ANS) research reactor. The development of an analytical capability is described. Modeling and problem formulation were conducted using concepts of reactor neutronic theory for determining power level escalation, coupled with ORIGEN and MELCOR code simulations for radionuclide buildup and containment transport Gaussian plume transport modeling was done for determining off-site radiological consequences. Nuances associated with modeling this blast-type scenario are described. Analysis results for ANS containment response under a variety of postulated scenarios and containment failure modes are presented. It is demonstrated that individuals at the reactor site boundary will not receive doses beyond regulatory limits for any of the containment configurations studied.

  12. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  13. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    SciTech Connect

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  14. In-Situ Creep Testing Capability for the Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2012-09-01

    An instrumented creep testing capability is being developed for specimens irradiated in Pressurized Water Reactor (PWR) coolant conditions at the Advanced Test Reactor (ATR). The test rig has been developed such that samples will be subjected to stresses ranging from 92 to 350 MPa at temperatures between 290 and 370 °C up to at least 2 dpa (displacement per atom). The status of Idaho National Laboratory (INL) efforts to develop the test rig in-situ creep testing capability for the ATR is described. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by INL to evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory (HTTL). Initial data from autoclave tests with 304 stainless steel (304 SS) specimens are reported.

  15. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  16. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    SciTech Connect

    Agarwal, Vivek; Smith, James A.; Jewell, James Keith

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  17. Current status of advanced pelletized cold moderators development for IBR-2M research reactor

    NASA Astrophysics Data System (ADS)

    Kulikov, S.; Belyakov, A.; Bulavin, M.; Mukhin, K.; Shabalin, E.; Verhoglyadov, A.

    2013-03-01

    The world's first advanced pelletized cold neutron moderator is prepared to be put into operation at the IBR-2M pulsed research reactor. It provides long-wavelength neutrons to the most of neutron spectrometers at the beams of the IBR-2M reactor. Aromatic hydrocarbons are used as a material for cold moderators. It is a very attractive material because of its high radiation resistance, good moderating properties, incombustibility, etc. It is shown that the idea of beads transport by a helium flow at cryogenic temperatures is successful. The recent progress and plans for moderator development at the IBR-2M reactor as well as the experimental results of beads transport are discussed in the paper.

  18. Apollo - An advanced fuel fusion power reactor for the 21st century

    SciTech Connect

    Kulcinski, G.L.; Emmert, G.A.; Blanchard, J.P.; El-Guebaly, L.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.E.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Witt, R.J.

    1989-03-01

    A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented. A low aspect ratio (A=2-4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m/sup 2/) allows a permanent first wall to be designed and the low nuclear decay heat enables the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor.

  19. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    PubMed

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR. PMID:19776247

  20. Application of the LBB regulatory approach to the steamlines of advanced WWER 1000 reactor

    SciTech Connect

    Kiselyov, V.A.; Sokov, L.M.

    1997-04-01

    The LBB regulatory approach adopted in Russia in 1993 as an extra safety barrier is described for advanced WWER 1000 reactor steamline. The application of LBB concept requires the following additional protections. First, the steamline should be a highly qualified piping, performed in accordance with the applicable regulations and guidelines, carefully screened to verify that it is not subjected to any disqualifying failure mechanism. Second, a deterministic fracture mechanics analysis and leak rate evaluation have been performed to demonstrate that postulated through-wall crack that yields 95 1/min at normal operation conditions is stable even under seismic loads. Finally, it has been verified that the leak detection systems are sufficiently reliable, diverse and sensitive, and that adequate margins exist to detect a through wall crack smaller than the critical size. The obtained results are encouraging and show the possibility of the application of the LBB case to the steamline of advanced WWER 1000 reactor.

  1. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    SciTech Connect

    Wood, RT

    2004-09-27

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  2. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    SciTech Connect

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' (Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety) is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document.

  3. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    SciTech Connect

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  4. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    SciTech Connect

    Chen, N.C.J.; Yoder, G.L. ); Wendel, M.W. )

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs.

  5. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    SciTech Connect

    Holmes, Forest Howard

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  6. Advanced Light Water Reactor Program: Program management and staff review methodology

    SciTech Connect

    Moran, D.H.

    1986-12-01

    This report summarizes the NRC/EPRI coordinated effort to develop design requirements for a standardized advanced light water reactor (ALWR) and the procedures for screening and applying new generic safety issues to this program. The end-product will be an NRC-approved ALWR Requirements Document for use by the nuclear industry in generating designs of LWRs to be constructed for operation in the 1990s and beyond.

  7. Advanced reactors transition FY 1997 multi-year work plan WBS 7.3

    SciTech Connect

    Hulvey, R.K.

    1996-09-27

    This document describes in detail the work to be accomplised in FY 1997 and the out-years for the Advanced Reactors Transition (WBS 7.3) under the management of the Babcock & Wilcox Hanford Company. This document also includes specific milestones and funding profiles. Based upon the Fiscal Year 1997 Multi-Year Work Plan, the Department of Energy will provide authorization to perform the work described.

  8. Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors

    SciTech Connect

    William Richins; Stephen Novascone; Cheryl O'Brien

    2009-08-01

    Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors William Richins1, Stephen Novascone1, and Cheryl O’Brien1 1Idaho National Laboratory, US Dept. of Energy, Idaho Falls, Idaho, USA, e-mail: William.Richins@inl.gov The Idaho National Laboratory (INL, USA) and IASMiRT sponsored an international forum Nov 5-6, 2008 in Porvoo, Finland for nuclear industry, academic, and regulatory representatives to identify structural issues in current and future advanced reactor design, especially for extreme conditions and external threats. The purpose of this Topical Workshop was to articulate research, engineering, and regulatory Code development needs. The topics addressed by the Workshop were selected to address critical industry needs specific to advanced reactor structures that have long lead times and can be the subject of future SMiRT technical sessions. The topics were; 1) structural/materials needs for extreme conditions and external threats in contemporary (Gen. III) and future (Gen. IV and NGNP) advanced reactors and 2) calibrating simulation software and methods that address topic 1 The workshop discussions and research needs identified are presented. The Workshop successfully produced interactive discussion on the two topics resulting in a list of research and technology needs. It is recommended that IASMiRT communicate the results of the discussion to industry and researchers to encourage new ideas and projects. In addition, opportunities exist to retrieve research reports and information that currently exists, and encourage more international cooperation and collaboration. It is recommended that IASMiRT continue with an off-year workshop series on select topics.

  9. 76 FR 78096 - U.S. Advanced Boiling Water Reactor Aircraft Impact Design Certification Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is amending its regulations to certify an amendment to the U.S. Advanced Boiling Water Reactor (U.S. ABWR) standard plant design to comply with the NRC's aircraft impact assessment (AIA) regulations. This action allows applicants or licensees intending to construct and operate a U.S. ABWR to comply with the NRC's AIA regulations by......

  10. Reactor physics studies for the Advanced Fuel Cycle Initiative (AFCI) Reactor-Accelerator Coupling Experiments (RACE) Project

    NASA Astrophysics Data System (ADS)

    Stankovskiy, Evgeny Yuryevich

    In the recently completed RACE Project of the AFCI, accelerator-driven subcritical systems (ADS) experiments were conducted to develop technology of coupling accelerators to nuclear reactors. In these experiments electron accelerators induced photon-neutron reactions in heavy-metal targets to initiate fission reactions in ADS. Although the Idaho State University (ISU) RACE ADS was constructed only to develop measurement techniques for advanced experiments, many reactor kinetics experiments were conducted there. In the research reported in this dissertation, a method was developed to calculate kinetics parameters for measurement and calculation of the reactivity of ADS, a safety parameter that is necessary for control and monitoring of power production. Reactivity is measured in units of fraction of delayed versus prompt neutron from fission, a quantity that cannot be directly measured in far-subcritical reactors such as the ISU RACE configuration. A new technique is reported herein to calculate it accurately and to predict kinetic behavior of a far-subcritical ADS. Experiments conducted at ISU are first described and experimental data are presented before development of the kinetic theory used in the new computational method. Because of the complexity of the ISU ADS, the Monte-Carlo method as applied in the MCNP code is most suitable for modeling reactor kinetics. However, the standard method of calculating the delayed neutron fraction produces inaccurate values. A new method was developed and used herein to evaluate actual experiments. An advantage of this method is that its efficiency is independent of the fission yield of delayed neutrons, which makes it suitable for fuel with a minor actinide component (e.g. transmutation fuels). The implementation of this method is based on a correlated sampling technique which allows the accurate evaluation of delayed and prompt neutrons. The validity of the obtained results is indicated by good agreement between experimental

  11. A Review of the Containment Building Design for the Advanced Reactor

    SciTech Connect

    Lee, Joon-Ho; Park, Mun-Baek; Yun, Soon-Chul

    2004-07-01

    A pilot plant is being designed to prove and validate the technical merits and capabilities of the System-Integrated Modular Advanced Reactor(SMART) technology. The first phase of architect/engineering services is being in progress to obtain the construction permit for the pilot plant. During this first phase, the Safe Guard Vessel that surrounds the reactor vessel was eliminated and its function incorporated into the containment building structure. Further investigation and review were performed to optimize the Reactor Containment Building structure and the layout inside to ensure all design criteria and concepts required by the SMART technology were met. This paper describes the review and the design of the Reactor Containment Building structure for the pilot plant considering the requirements of the original SMART design. The results of this review show that the cylindrical reinforced concrete containment was selected from the various types of the containment buildings and will be used to demonstrate the performance of the original SMART reactor. (authors)

  12. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    SciTech Connect

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  13. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    SciTech Connect

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  14. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  15. Safeguards and Non-proliferation Issues as Related to Advanced Fuel Cycle and Advanced Fast Reactor Development with Processing of Reactor Fuel

    SciTech Connect

    Rahmat Aryaeinejad; Jerry D. Cole; Mark W. Drigert; Dee E. Vaden

    2006-10-01

    The goal of this work is to establish basic data and techniques to enable safeguards appropriate to a new generation of nuclear power systems that will be based on fast spectrum reactors and mixed actinide fuels containing significant quantities of "minor" actinides, possibly due to reprocessing, and determination of what new radiation signatures and parameters need to be considered. The research effort focuses on several problems associated with the use of fuel having significantly different actinide inventories that current practice and on the development of innovative techniques using new radiation signatures and other parameters useful for safeguards and monitoring. In addition, the development of new distinctive radiation signatures as an aid in controlling proliferation of nuclear materials has parallel applications to support Gen-IV and current advanced fuel cycle initiative (AFCI) goals as well as the anticipated Global Nuclear Energy Partnership (GNEP).

  16. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    SciTech Connect

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  17. Activation analysis using Cornell TRIGA

    SciTech Connect

    Hossain, Tim Z.

    1994-07-01

    A major use of the Cornell TRIGA is for activation analysis. Over the years many varieties of samples have been analyzed from a number of fields of interest ranging from geology, archaeology and textiles. More recently the analysis has been extended to high technology materials for applications in optical and semiconductor devices. Trace analysis in high purity materials like Si wafers has been the focus in many instances, while in others analysis of major/minor components were the goals. These analysis has been done using the delayed mode. Results from recent measurements in semiconductors and other materials will be presented. In addition the near future capability of using prompt gamma activation analysis using the Cornell cold neutron beam will be discussed. (author)

  18. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  19. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    SciTech Connect

    Ingersoll, D.T.

    2004-07-29

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  20. The U-ZrH{sub x} alloy: Its properties and use in TRIGA fuel

    SciTech Connect

    Simnad, M.T.

    1980-07-01

    The uranium-zirconium-hydride fuel is an integral fuel-moderator system. Development of the UZr-hydride fuel technology has been under way at General Atomic since 1957. During this period over 6000 fuel elements have been fabricated for the TRIGA reactors. Over 25,000 pulses have been performed with the TRIGA fuel elements at General Atomic. The TRIGA fuel was developed around the concept of inherent safety. The development and the characteristics of the TRIGA fuels are described in this paper. The fabrication techniques have been developed to the point where the production of fuel bodies containing controlled amounts of hydrogen and burnable poison (erbium) has been carried out in sizes up to 1.5 in. in diameter. The instrumented fuel elements have been designed to determine the temperatures in the fuels and claddings and to record the gas pressures in the fuel elements, under both steady- state and pulsed operations. The physical, mechanical and corrosion properties of the fuel are presented, along with empirical correlations relating irradiation behavior and fission product retention to temperature, composition, burnup, and neutron flux and fluence. (author)

  1. Neutronics investigation of advanced self-cooled liquid blanket systems in the helical reactor

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M. Z.

    2008-03-01

    Neutronics investigations have been conducted in the design activity of the helical-type reactor Force Free Helical Reactor (FFHR2) adopting Flibe-cooled and Li-cooled advanced liquid blanket systems. In this study, comprehensive investigations and geometry modifications related to the tritium breeding ratios (TBRs), neutron shielding performance and neutron wall loading on the first walls in FFHR2 have been performed by improving the three-dimensional (3D) neutronics calculation system developed for non-axisymmetric helical designs. The total TBRs obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. However, it appeared that the most important neutronics issue in the present helical blanket configuration was suppression of neutron streaming through the divertor pumping areas and reflection from support structures for protection of poloidal and helical coils. Evaluation of neutron wall loading on the first walls indicated that the peaking factor would be moderated as low as 1.2 by the toroidal and helical effect of the helical-shaped plasma distribution in the helical reactor.

  2. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    SciTech Connect

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  3. Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments.

    PubMed

    Ćalić, Dušan; Žerovnik, Gašper; Trkov, Andrej; Snoj, Luka

    2016-01-01

    The main aim of this paper is the development and validation of a 3D computational model of TRIGA research reactor using Serpent 2 code. The calculated parameters were compared to the experimental results and to calculations performed with the MCNP code. The results show that the calculated normalized reaction rates and flux distribution within the core are in good agreement with MCNP and experiment, while in the reflector the flux distribution differ up to 3% from the measurements. PMID:26516989

  4. Updated pipe break analysis for Advanced Neutron Source Reactor conceptual design

    SciTech Connect

    Wendel, M.W.; Chen, N.C.J.; Yoder, G.L.

    1994-04-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at the Oak Ridge National Laboratory that will supply the highest continuous neutron flux levels of any reactor in the world. It uses plate-type fuel with high-mass-flux and highly subcooled heavy water as the primary coolant. The Conceptual Safety Analysis for the ANSR was completed in June 1992. The thermal-hydraulic pipe-break safety analysis (performed with a specialized version of RELAP5/MOD3) focused primarily on double-ended guillotine breaks of the primary piping and some core-damage mitigation options for such an event. Smaller, instantaneous pipe breaks in the cold- and hot-leg piping were also analyzed to a limited extent. Since the initial analysis for the conceptual design was completed, several important changes to the RELAP5 input model have been made reflecting improvements in the fuel grading and changes in the elevation of the primary coolant pumps. Also, a new philosophy for pipe-break safety analysis (similar to that adopted for the New Production Reactor) accentuates instantaneous, limited flow area pipe-break accidents in addition to finite-opening-time, double-ended guillotine breaks of the major coolant piping. This paper discloses the results of the most recent instantaneous pipe-break calculations.

  5. Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms

    SciTech Connect

    Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.

    2003-02-15

    A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed.

  6. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    SciTech Connect

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  7. Development of Regulatory Technical Requirements for the Advanced Integral Type Research Reactor

    SciTech Connect

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik; Kim, Hho Jung

    2004-07-01

    This paper presents the current status of the study on the development of regulatory technical requirements for the licensing review of an advanced integral type research reactor of which the license application is expected in a few years. According to the Atomic Energy Act of Korea, both research and education reactors are subject to the technical requirements for power reactors in the licensing review. But, some of the requirements may not be applicable or insufficient for the licensing reviews of reactors with unique design features. Thus it is necessary to identify which review topics or areas can not be addressed by the existing requirements and to develop the required ones newly or supplement appropriately. Through the study performed so far, it has been identified that the following requirements need to be developed newly for the licensing review of SMART-P: the use of proven technology, the interfacial facility, the non-safety systems, and the metallic fuels. The approach and basis for the development of each of the requirements are discussed. (authors)

  8. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    SciTech Connect

    Honma, George

    2015-10-01

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will be used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).

  9. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of

  10. Summary of the Advanced Reactor Design Criteria (ARDC) Phase 2 Activities

    SciTech Connect

    Holbrook, Mark Raymond

    2015-09-01

    This report provides an end-of-year summary reflecting the progress and status of proposed regulatory design criteria for advanced non-LWR designs in accordance with the Level 3 milestone in M3AT-15IN2001017 in work package AT-15IN200101. These criteria have been designated as ARDC, and they provide guidance to future applicants for addressing the GDC that are currently applied specifically to LWR designs. The report provides a summary of Phase 2 activities related to the various tasks associated with ARDC development and the subsequent development of example adaptations of ARDC for Sodium Fast Reactor (SFR) and modular High Temperature Gas-cooled Reactor (HTGR) designs.

  11. NUCLEAR DATA NEEDS FOR ADVANCED REACTOR SYSTEMS. A NEA NUCLEAR SCIENCE COMMITTEE INITIATIVE.

    SciTech Connect

    SALVATORES,J.M.; ALIBERTI, G.; PALMIOTTI, G.; ROCHMAN, D.; OBLOZINSKY, P.; HERMANN, M.; TALOU, P.; KAWANO, T.; LEAL, L.; KONING, A.; KODELI, I.

    2007-04-22

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered.

  12. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A. T. D.; Georgii, R.; Hao, L. J.; Liu, Y. T.

    2016-06-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×107 n/cm2/s at neutron incident energy Ei=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  13. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  14. Fiscal year 1999 multi-year work plan, advanced reactors transition program

    SciTech Connect

    Gantt, D.A.

    1998-09-17

    The Advanced Reactors Transition (ART) has two missions. One, funded by DOE-EM is to transition assigned, surplus facilities to a safe and compliant, low-cost stable, deactivated condition (requiring minimal surveillance and maintenance) pending eventual reuse or D and D. Facilities to be transitioned include the 309 Building/Plutonium Recycle Test Reactor (PRTR) and Nuclear Energy (NE) Legacy Facilities. The second mission, funded by DOE-NE, is to maintain the Fast Flux Test Facility (FFTF) and affiliated 400 Area buildings in a safe and compliant standby condition. The condition of the plant hardware, software and personnel is to be preserved in a manner not to preclude a plant restart.

  15. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  16. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    SciTech Connect

    Thompson, P.B.; Meek, W.E.

    1993-07-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

  17. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    SciTech Connect

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C.

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  18. Temperature monitoring options available at the Idaho national laboratory advanced test reactor

    NASA Astrophysics Data System (ADS)

    Daw, J. E.; Rempe, J. L.; Knudson, D. L.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.

    2013-09-01

    As part of the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Clearly, temperature sensor selection for irradiation tests will be determined based on the irradiation environment and budget. However, temperature sensors now offered by INL include a wide array of melt wires in small capsules, silicon carbide monitors, commercially available thermocouples, and specialized high temperature irradiation resistant thermocouples containing doped molybdenum and niobium alloy thermoelements. In addition, efforts have been initiated to develop and evaluate ultrasonic thermometers for irradiation testing. This array of temperature monitoring options now available to ATR and other Material and Test Reactor (MTR) users fulfills recent customer requests.

  19. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  20. Core design studies for a 1000 MW{sub th} advanced burner reactor.

    SciTech Connect

    Kim, T. K.; Yang, W. S.; Grandy, C.; Hill, R.; Nuclear Engineering Division

    2009-04-01

    This paper describes the core design and performance characteristics of 1000 MW{sub th} Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of {approx}0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with low and high TRU conversion ratios were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from {approx}0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties.

  1. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  2. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  3. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates

  4. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  5. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  6. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design Certification Rule for the U.S. Advanced Boiling Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. A Appendix A to Part 52—Design Certification Rule for the U.S. Advanced Boiling...

  7. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design Certification Rule for the U.S. Advanced Boiling Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. A Appendix A to Part 52—Design Certification Rule for the U.S. Advanced Boiling...

  8. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    SciTech Connect

    Holcomb, David Eugene; Ilas, Dan; Varma, Venugopal Koikal; Cisneros, Anselmo T; Kelly, Ryan P; Gehin, Jess C

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  9. Results of the Irradiation of R6R018 in the Advanced Test Reactor

    SciTech Connect

    Adam B Robinson; Daniel Wachs; Pavel Medvedev; Curtis Clark; Gray Chang; Misti Lillo; Jan-Fong Jue; Glenn Moore; Jared Wight

    2010-04-01

    For over 30 years the Reduced Enrichment for Research and Test Reactors (RERTR) program has worked to provide the fuel technology and analytical support required to convert research and test reactors from nuclear fuels that utilize highly enriched uranium (HEU) to fuels based on low-enriched uranium (LEU) (defined as <20% U-235). This effort is driven by a desire to minimize international civilian commerce in weapons usable materials. The RERTR fuel development program has executed a wide array of fuel tests over the last decade that clearly established the viability of research reactor fuels based on uranium-molybdenum (U-Mo) alloys. Fuel testing has included a large number of dispersion type fuels capable of providing uranium densities up to approximately 8.5 g U/cc (~1.7 g U-235/cc at 20% enrichment). The dispersion fuel designs tested are very similar to existing research test reactor fuels in that the U-Mo particles simply replace the current fuel phase within the matrix. In 2003 it became evident that the first generation U-Mo-based dispersion fuel within an aluminum matrix exhibited significant fuel performance problems at high power and burn-up. These issues have been successfully addressed with a modest modification to the matrix material composition. Testing has shown that small additions of silicon (2–5 wt%) to the aluminum (Al) matrix stabilizes the fuel performance. The fuel plate R6R018 which was irradiated in the Advanced Test Reactor (ATR) as part of the RERTR-9B experiment was part of an investigation into the role of the silicon content in the matrix. This plate consisted of a U-7Mo fuel phase dispersed in an Al-3.5Si matrix clad in Al-6061. This report outlines the fabrication history, the as fabricated analysis performed prior to irradiation, the irradiation conditions, the post irradiation examination results, and an analysis of the plates behavior.

  10. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  11. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  12. Design considerations of the irradiation test vehicle for the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  13. Potential for, and implications of, advanced technology phase operation of the International Thermonuclear Experimental Reactor

    SciTech Connect

    Brereton, S.J.; Perkins, L.J.

    1990-11-01

    The purpose of this work, therefore, was to explore the feasibility and the additional technical implications associated with operating ITER for an extended period of time at high performance. The goals of an Advanced Technology Phase (ATP) for ITER may include: achievement of reactor-typical power densities, high temperature/high efficiency blanket operation, net electric power generation, high end-of-life fluences, steady state or very long pulse operation, and self-sufficient tritium breeding. This study focused mainly on these three objectives.

  14. ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs

    SciTech Connect

    Murphy, BD

    2004-03-10

    Cross-section libraries for the ORIGEN-ARP system were extended to include four non-U.S. reactor types: the Magnox reactor, the Advanced Gas-Cooled Reactor, the VVER-440, and the VVER-1000. Typical design and operational parameters for these four reactor types were determined by an examination of a variety of published information sources. Burnup simulation models of the reactors were then developed using the SAS2H sequence from the Oak Ridge National Laboratory SCALE code system. In turn, these models were used to prepare the burnup-dependent cross-section libraries suitable for use with ORIGEN-ARP. The reactor designs together with the development of the SAS2H models are described, and a small number of validation results using spent-fuel assay data are reported.

  15. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  16. Summary of Thermocouple Performance During Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor and Out-of-Pile Thermocouple Testing in Support of Such Experiments

    SciTech Connect

    A. J. Palmer; DC Haggard; J. W. Herter; M. Scervini; W. D. Swank; D. L. Knudson; R. S. Cherry

    2011-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina

  17. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    SciTech Connect

    Curtis Smith

    2013-09-01

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  18. Advanced start-up of anaerobic attached film expanded bed reactor by pre-aeration of biofilm carrier.

    PubMed

    Ye, Fen-xia; Chen, Ying-xu; Feng, Xiao-shan

    2005-01-01

    The start-up and performance of the anaerobic attached film expanded bed (AAFEB) reactor with pre-aeration of carrier were investigated. The carriers of the reactors had been aerated for 10 days before they were put into the AAFEB reactors. The results indicated that the reactors advance the start-up by 15 days, and maintain higher efficiency when they were subjected to organic and hydraulic loading shock, but during steady-state operation, the reactors did not show better performance than the control reactors without pre-aeration of carrier. The thicker biofilm and higher biomass concentration of the reactors with pre-aeration were observed during the start-up period, but the difference between two types of reactors tapered with the time course, and at the steady-state operation, the difference between two types of reactors on these two parameters was not obvious. Maximum specific methane or acids production rates, dehydrogenase activity and coenzyme F(420) content were continuously higher than those of the control reactors. After running 30 days, filamentous bacteria dominated in the reactors with pre-aeration, whereas the cocci were predominant species in the control reactors. It was suggested that the action of the biofilm is strongly dependent on the biofilm thickness or the biomass concentration in normal circumstances, but under adverse circumstances, such as organic or hydraulic loading shock, the characteristics and activity of the anaerobic granular sludge play key roles on the reactor performance. These results clearly indicated that pre-aeration of carrier favor to enhance the start-up and performance of AAFEB reactor. PMID:15364089

  19. Interim results of the study of control room crew staffing for advanced passive reactor plants

    SciTech Connect

    Hallbert, B.P.; Sebok, A.; Haugset, K.

    1996-03-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study.

  20. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    SciTech Connect

    Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.; Qualls, A. L.

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.